New Jersey Institute of Technology

Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-1991

Dynamic analysis of the generalized slider crank

Sahidur Rahman
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Cf Part of the Mechanical Engineering Commons

Recommended Citation
Rahman, Sahidur, "Dynamic analysis of the generalized slider crank" (1991). Theses. 1292.
https://digitalcommons.njit.edu/theses/1292

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.


https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.njit.edu%2Ftheses%2F1292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1292?utm_source=digitalcommons.njit.edu%2Ftheses%2F1292&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen



The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.



ABSTRACT
Dynamic Analysis of the Generalized Slider Crank

by
Sahidur Rahman

A numerical technique is used to analyze the kinematics of the generalized
slider crank mechanism and an analytical technique to derive dynamic force equations
for that mechanism has been formulated. The numerical technique used for displace-
ment analysis is based on a combination of Newton-Raphson and Davidon-Fletcher-
Powell optimization algorithm using dual-number coordinate-transformation matrices.
Velocity analysis is performed by using a dual number method. Finally, dynamic force
analysis is accomplished on the basis of the dual-Euler equation and D’Alembert’s
principle. The approach is developed in such a manner that a digital computer can
detect when a solution is possible and then solve the whole problem.

In addition, kinematic displacements of slider and dynamic forces and torques
at each of the joints have been graphed against input crank angles for different offsets.
In all the graphs, possible cases have been compared with the ideal case, when the

mechanism has zero offsets.
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INTRODUCTION

1.1 Background and Motivation

In recent years mechanisms with multi-degree-of-freedom systems have commanded
a great deal of research activity. The rapid advancements of the robot manipulator for
industry is fueling the interest of many researchers. In 1964 Uicker, Denavit and
Hartenberg developed an iterative technique for displacement analysis of spatial
mechanisms using 4 X4 transformation matrices (1). Later in 1967 Uicker did the
dynamic force analysis of spatial linkages (2). Dual-number element coordinate trans-
formation matrices were introduced by researchers such as Yang to study spatial
mechanisms. In 1964 Yang and Freudenstein applied dual-number quaternion algebra
to the analysis of spatial mechanisms (3). Based on dual vectors and screw calculus,
Yang formulated inertia force equations for RCCC mechanisms (R stands for revolute
joint and C stands for cylindrical joint) in 1971 (4). One year later Bagci did dynamic
force and torque analysis of the planar 4R mechanism and spatial RCCC mechanism
using dual vectors and 3 X3 screw matrix (5). Pennock and Yang in 1983 developed the
technique for dynamic analysis of a multi-rigid-body open chain system based on
Newtonian mechanics with a composite 3X3 dual number, 6 X1 Plucker coordinate
method (6). In 1984 Fischer and Freudenstein did the complete derivation of internal
force and torque components of a statically loaded cardan joint with manufacturing
tolerances (7). As an extension of the earlier work, Chen and Freudenstein in 1986
developed a dynamic analysis of a universal joint with manufacturing tolerances (8).
Fischer and Paul successfully extended the concept of Uicker-Denavit-Hartenberg in
1989 for kinematic displacement analysis of a double cardon joint driveline using 3 X3
dual number transformation matrices (9). In 1990 Fischer investigated displacement

errors in Cardan joints caused by coupler-link joint-axes offset (10). To model robot
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manipulators mathematically, Lagrange-Euler and Newton-Euler formulations using
4x4 transformation matrices have been used widely. The method described here
serves a meaningful alternative to the existing procedures.

Sandor and Erdman did the displacement, velocity and acceleration analysis of
a similar type of mechanism using 4 x4 transformation matrix (11). The solution is
based on Newton-Raphson iterative procedure commonly used for the solution of
nonlinear equations. The present work owes much to pioneering work of Uicker,
Denavit, Hartenberg and Yang on spatial mechanisms.
1.2 Outline of Thesis
Chapter 2 explains how displacement analysis is done numerically and the method of
deriving expressions for joint velocities, accelerations and dynamic forces acting at each
of the joints. Chapter 3 illustrates a physical example, discusses about the results and

draws conclusions.
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ANALYSIS AND FORMULATION OF THE METHOD

2.1 Basic Definitions:
Joint axis: A joint axis is established at the connection of two links. It is defined as the
axis about which one link can either rotate or translate or both relative to the other.

Link axis and link length: Link length is defined as the shortest distance
measured along the common normal between two joint axes of the link and the common
normal is the link axis.

Link twist angle: Link twist angle is defined as the angle between two joint axis
of the link.

Generalized slider crank: The generalized slider crank is actually a spatial
mechanism with multi-degree-of-freedom joints, whereas the conventional slider crank
universally used in reciprocating engins and compressors is a planar mechanism with

single-degree-of-freedom joints. In a planar slider crank, the joint between frame and

Figure 1 Planar(ideal) slider crank with no offset

crankis revolute and has one degree of freedom; i.e. rotation only. In generalized slider

crank it is a cylindrical joint which has two degrees of freedom, one of translation and



Figure 2 Planar slider crank with offset a4 only

Figure 3 Generalized slider crank with all offsets

13
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the other of rotation. In a planar slider crank, the joints between the crank and the
connecting rod and between connecting rod and slider are both revolute joints. In
generalized case both are ball (spherical) joints which have three rotational degrees of
freedom about each one of three mutually perpendicular axes. For both the cases, the
joint betweenslider and frame is prismatici.e. joint having only one translational degree
of fréedom.

Rotation matrix: A rotation matrix can be defined as a transformation matrix
which operates on a position vector in a three-dimensional euclidean space and maps
its coordinates expressed in a rotated coordinate system (body-attached frame) to a
reference coordinate system.

2.2 Notations:
Joint axis, link axis and the axis perpendicular to both of them in a right-handed
coordinate system are respectively denoted by k, i-and j. Rotations about these axes are
respectively denoted by 6, « and #.
~Basic 3X3 rotation matrices (13) are denoted by [X(a)],
[Y(#n)]and [ Z (0)]. Theyrespectively represent rotations abouti,j and k axes and
can be written as:

1 0 o0
[X(a)]=10 ca —sa
0 sa ca

~cn 0 snj
[Y(n)]=|0 10
—sn 0 cn

(0 —s6 0]

(Z(6)]=|s60 cO O
0 0 1

when dual-number operations are done a,  and 6 are respectively replaced by

&, 7 and 6.
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2.3 Creation of link-joint parameter table:
Fig. 1 shows the planar slider crank mechanism without any offset; this is the ideal case
without any tolerance error. Here, four coordinate frames are fixed on the distal end
(fore-end) of each of the links at the joints. Each coordinate frame consists of three
mutually perpendicular axesi, j and k. Joint I is between frame (fixed link) and crank,
joint 2is between crank and connecting rod, joint 3 is between connecting rod and slider
andjoint4is between slider and frame. For the planar case, joints I, 2 and 3 are revolute
joints, each of which has one rotational degree of freedom, and joint 4 is prismatic with
one sliding degree of freedom. Two axes of each frame are shown, from which one can
see the position of the third axis, since each frame comprises a right-handed coordinate
system. Fig. 2 shows the planar slider crank with offset a4 only; there is no other
difference between fig. 1 and fig. 2. Fig. 3 is the generalized slider crank in which joint
1 is cylindrical with one translational and one rotational degrees of freedom, joints 2
and 3 are ball joints, each of which has three rotational degrees of freedom, and joint
4 is prismatic, exactly the same as in the planar case.

The link parameters are:

a1 =crank length

a2 = connecting rod length

a3=twist angle between two joint axes - the axis of the joint between connecting

rod and slider i.e. axis k3 (not shown) and the axis of the joint between slider and frame

Table 1 Link-joint parameters
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i.e. axis k¢; the angle is measured counterclockwise according to right-hand rule and is
equal to 90 degrees.

a4=offset distance between two joint axes, one is the axis of the joint between
frame and crank i.e. axis k7 and the another is the axis of the joint between the slider
and the frame i.e. axis k¢. Axes k7 and k¢ are mutually perpendicular axes and the
distance a¢ is measured from k¢ to kJ.

a4=twist angle between two joint axes k7 and ky; the angle is measured
counterclockwise according to right-hand rule. For the ideal(planar) slider crank this
angle is 270 degrees.

The joint variables are:

01, 62 and 63 =angular displacements about joint axes at joints 7, 2 and 3
respectively.

n2 =angular displacement about the axis j2, perpendicular to the joint axis as
well as the link axis at joint 2 .

n3=angular displacement about the axis j3, perpendicular to the joint axis as
well as the link axis at joint 3 i.e. axis j3.

S1 =displacement of the crank along the axis of joint I i.e. axis k1.

S¢ =slider displacement which is measured about the axis k<.

The link-joint parameter table is shown in table 1. This table describes the
complete geometry of the mechanism.
2.4 Transformation Matrices:
Once the coordinate systems are rigidly fixed to each link of the mechanism and the
link-joint parameter table is formed, coordinate-transformation matrices are specified.
Coordinate-transformation matrices contain information about the links and the
displacements (both sliding and rotation) between coordinate frames in the form of

dual angles. The derivations of dual-number element coordinate transformation
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matrices, describing the links connecting joints 7 and 2, 2 and 3, 3 and 4 and 4 and 1,
are as follows.

The cosine and sine will be abbreviated by ¢ and s respectively in the remainder
of this work. The dual-number operator (3, 4), also called Clifford’s screw operator, is
denoted by & (82 =0, e#0). The dual-number operator is used to express rotation and
displacement about the same axis in combined way. It has the following properties:

¢'= 6 + &S [0 and S are respectively rotation and displacement of any link about

the same axis], then trigonometric functions of dual-angle can be obtained by using
. d d . o
Taylor expansion. So, s6 = s6 + &S ~o (59) c0'=co + 65— 5(c0), etc. All identities

for ordinary trigonometry hold true for dual angle.

One can trace the path from joint I to joint 2 by taking the rotation through
angle 07 and sliding through distance Sz about and along the k7 axis, followed by a link
twist angle rotation through zero degrees with a translation through the link length a;
about and along the i2 axis. Therefore, the transformation matrix, specifying the
location of coordinate frame {2} with respect to frame {1}, can be written as

R c6; —s6; 0] {1 0 0O
M =[Z(6)][X(&)]=|s01 cbp 0| |0 cdy —siy
0 0 1|0 s ciy

c01 - 8S1.591 —s01 —£S1c01 0 1 0 0
= |50y +&51c0; cO1—eSis6; 0| |0 caq—easa; —saq—eajcay
0 0 11 10 say +eaca;  caq — easay

Since 6i = 01 + £S1and &1 =0 + ea1 as there is no link twist (a1 =0 ), the above

expression can be simplified as [ In short 3 is replaced by M ],
cfy —s6; 0 —S8156; —S1c0; ays9;
My=|s6; cb; O|+e| Syc6; —Sys6; —aych;
0 0 1 0 ai 0 (1)
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The path from joint 2 to joint 3 can be traced by taking a rotation through angle
62 and a translation through zero distance about and along the k2 axis (not shown),
followed by a rotation through angle #2 with no translation about the j2 axis, followed
by no rotation and a translation through link length a2 distance along the i3 axis.
Therefore, the derivation of the transformation matrix, specifying the location of

coordinate frame {3} with respect to frame {2}, is as follows:

3L =1Z )Y@ [X(E)]

c6y —s65 0| | e O spp| [1 O 0
=|s6; ¢, O[] 0 1 0|0 cdy —say
0 0 1| |[-s75 0 cip| |0 sy oy

Oy — €Sxs0,  —50, —€ScOy O | cnp—€Exsn, 0 snpteExn,

= |80, + &Sc0)  cOy—eSxs0, O 0 1 0
0 0 1| | —smp—eExcn, 0 cnp—eEqsn,
1 0 0
0 cay—eaya, —sa,—Eayas

ew]

sa2 + 8a2ca2 Ca2 - Eazs’az
Since S2=0,E2=0,a2 =0, and so 6r=02+¢eS2 = 02,775 =2+ eE2 =12 and

@2 = as + eaz = eaz. The above expression can be compressed as [ In short, AL is
replaced by L2],

cOxcny —s0, cOx5119 0 axlysn, axst,
f:z = |80,cny €Oy sOxsm, | +e|0 axsOxsm, —anch,
=s12 0 cmp 0 ayem, 0 2)

The path from joint 3 to joint 4 can be traced by taking a rotation through angle
03 and a translation through zero distance about and along the k3 axis (not shown),
followed by a rotation through angle #3 with no translation about the j3 axis, followed
by a 90-degree rotation with no translation about the i4 axis. Therefore, the derivation
of the transformation matrix, specifying the location of coordinate frame {4} with

respect to frame {3}, is as follows:
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L =1Z @)1 YA [X@3)]

c3 —sb3 O| [c3 0 s73| (1 0 0
= [s03 63 0 0 1 0|0 cay —si3
0 0 1| {-s73 0 ci3| (0 sa3 cay
cO3 — £S3505  —s03 —eS3c03 O | cnz3—eEgsny 0 syz+eEscns
= [5O3 + £S3c03  cO3—€S3s0; 0 0 1 0
0 0 1| | —sn3—eEscns 0 cnz—eEssns
1 0 0

0 caz—eassa; —saz—eascay
0 sQ3 + €a3C0q CQy — EA3503

Since S3=0,E3=0,a3=0and so 9§=03+ES3=03,7§§=173+8E3=773

and &3 = a3 + ea3 = Z;— (as the link-twist angle =90 degrees), the above expression can

be compressed as [ in short, AL is replaced by 2 1

cOscns clysmy 563
L/'\B = |sOzcns sO3sm3 —cO3
—sn3 ez 0 ()

The path from joint 4 to joint I can be traced by sliding through distance S¢ with
no rotation along the k¢ axis, followed by a rotation through angle a4 and a translation
through distance a4 about and along the i7 axis. Therefore, the transformation matrix,

specifying the location of coordinate frame {1} with respect to frame {4}, is written as

follows:
R by ~s0; 0] [1 © 0
M=1Z(6)1[X ()] =|s0s cbs 0| |0 cay —say
0 0 1§10 sagy cay
C04 - 8S4S'04 "_.5’94 —8S4694 0 1 0 0

= S94 + 8S4C€4 604—8.54594 0 0 CQy — EAyS0Y —SA4—EAYCOY
0 0 1| |0 say+eagcay cay — €ays0y
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Since 63 = 0 + £S4, as there is no rotation (64 =0 ), and a4 = a4 + eas, the above

expression can be compressed as [ In short, 1 is replaced by My 1

10 O 0 —Sqcay Sysay
e
My= |0 cay —say|+e|Sq —agsay —asay
0 saq cay 0 ayqcay —aysay (4)

2.5 Partial Derivatives of the Transformation Matrices:

Noting that this problem is to be adapted to computer operation, linear operator
matrices will be introduced to perform differentiations of the transformation matrices.
Taking the partial derivatives of the transformation matrices with respect to the variable
quantity contained in the matrix is accomplished by premultiplying by an operator
matrix. The derivation of partial differential operator of each of the four transforma-
tion matrices follows.

The first transformation matrix contains only input parameters (input crank
angle and axial displacement) and crank length, which are all known quantities.
Therefore this matrix need not be differentiated.

The second transformation matrix contains two unknown variables 62 and #72.
Upon taking the partial derivative of this matrix (equation 2) with respect to variable

02, the result is,

oL, ~50,c110 —COy —$0,57, 0 —axbmy axt
5, = cOycny  —s0y cOxsmy | +€|0 axcbasy, ansOs| = Oro, L2
0 0 0 0 0 0

where partial differential operator Qrg, can be obtained in a number of ways; the

easiest is perhaps by inspection. Hence operator Qr6, can be written as follows:

R 0 -10
QL92= 1 0 0
0 0 0 (22)

The partial derivative of matrix equation (2) with respect to variable #2 is,
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of, |02 O Oremy 0 axbyen, 0
s = ~s0573 0 sOxma| +€|0 axOemy O =Qp, Ly

—cp 0 —s7p 0 —~axn, O

hence partial differential operator Or., can be written as,

0 0 C62
“C62 —S92 0 (Zb)

The partial derivative of matrix equation (3) with respect to variable 63 is,

5 £3 —50367]3 —S03S7]3 603 ~ ~
30, = c03OCﬂg 6936?’73 533 =016,13

hence the partial differential operator Q165 can be written as,

. 0-10
QL93= 1 0 0
0 0 0 (3a)

The partial derivative of matrix equation (3) with respect to variable #3 is,

5 A3 —cbsysm3 cOseng O R
6_?]_ = —S93S1]3 S03C773 0| = Q L?]3 L3
—cn3 —sn3 O

SN}

hence the partial differential operator Ory; can be written as,

0 0 C03
Ory, = 0 0 63
—cb; —s0; 0 (3b)

The partial derivative of matrix equation (4) with respect to variable S¢ is,

siF 0 —cay say
”S—4 =e/l 0 0= QMS4 ﬁ‘*
4 0 0 0

hence the partial differential operator Oms, can be written as,

—&

o ;m O
oo O

QMS4 = 8
(4a)
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2.6 Displacement Analysis:
The relationship between transformation matrices which describes the four links of the
mechanism and the joints connecting them is given by the Condition of Loop Closure.
Because the links are connected end to end to form a closed loop, transforming from
the frame to crank to the connecting rod to the slider brings one back to the coordinate

system fixed on the frame as if no transformation at all has occured. Hence this can

be written mathematically as:
WML =T )
which is a nonlinear matrix equation, where fis dual identity matrix
~ 100 000
I=1010(+e|0 00
001 000 (6)
2.6.1 Dual-number formulation of Numerical Method:
The numerical method being used to determine the displacements is based on the
algorithm (12) introduced by Hall, Root & Sandgren (1977). This algorithm is the
combination of Davidon-Fletcher-Powell optimization routine with the Newton-Raph-
son method as applied to kinematics by Uicker, Denavit and Hartenberg (1964). This
procedure was developed for the use with 4 X4 homogeneous transformation matrices,
and was adopted to 3X3 dual-number matrices by Fischer and Paul(1988). Details of
the Newton-Raphson method are as follows.
A first order expansion of the loop closure equation is
[My][ Ly + Org L 66, + é\Ln Ly 0m,1[ Ly + Oy Ly 065 + éLn Lyon5]
[A}4+§MSA}4‘SS4]=IA (7
where 02, 72, 63, 73 and S¢ are guesses of displacement variables; 662, 32, 603, 673 and

0S4 are errors between guesses and exact values of the displacement variables; QOrg,

QLy and QMg are partial differential operators such that (as shown before)
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0 -10

Qrg=11 0 0
0 00 ®
0 0 cb

Orp=|0 0 s0
-0 —s6 0 9)
0 — 0

Omus=1¢ 0 0
000 (10)

Expanding equation (7), and putting it into a form which is computationally
advantageous, the following equation is obtained. Performance of the multiplication
yields avery lengthy equation. However, keeping with the idea of the iteration process,

all higher order terms of the form (662063, etc) are neglected.

12\12692+I/J\ '26772+;I3603+I/7; '36173+I/1; " 4084 = l?T —IA (11)

where
1/7;2 = 1\}1§L9A/’}f (12)
f/‘-;'z = ]/V}lé\LnA}{ (13)
Hs = (j’t’ 1EZ)§L6(M1L2) (14)
H's = (MyLp)0p, (ML) 15)
H (1\} 1E2£3)§Ms (J\’} 1E2E3) (16)

In general,
ﬁz = (7/:17/:2 ****** fi—-l)é\X(?lfz ”””””” 7/:1'—1)T (17)
and

AN AN

B = MyL,LoM, (18)

Equation (11) is condensed to

F=B'-T (19)
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Equations (11) through (19) are all 3x3 dual-number matrix equations. So this

equation can be written in a matrix form as follows:

where

Fiy1 Fip Fi3 By3—1 By Bs
Fy1 Fypp Fpg| =| Byy Bp—1 By

F31 F3p F33 Bz By Byp—l

f/’:u = ﬁz,ll 86, + H '2,11 972 + I§3,11‘593 +H '3,11 073 + H "'4,11084
1/;12 = ﬁz,u 86, + H '2,12072 + ﬁ3,12‘593 +H '3120m3 + H 412054
1?13 = ﬁ2,13 60, + H '2,13012 + ﬁ3,13‘593 +H 313013 + H 4,13 084
1::21 = §2,21 66, + H '2,21012 + I;3,21593 +H ‘3201 0m3 + H "'421084
1/7\22 = f/‘}z,zz 86, + H '2,22,012 + f/“}3,22593 +H '3220m3 + H '4,22054
1::23 = ffz,za 86, + H '2,230m2 + 133,23‘593 +H '323013 + H "'4,23 054
1%1 = I/—}2,31 66, + H '231075 + ﬁ3,31693 +H ‘331013 + H "'431054
f/':sz = ﬁz,sz 66, + H '2320m5 + 133,32593 +H ‘33203 + H "'432084

F33 = Hj 3300, + H'y 33 0np + H3 33003 + H'3 330113 + H''4 3365,

(192)

(19b)

So from equation (19a) nine dual equations can be written from this matrix

equation, out of which only three are independent. Using the three terms in the upper

triangle of each matrix and separating them into a set of real equations and a set of dual

equations:

and

Fp12=Byn
Fp13=By31
Fp23=By3;

(20)
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Fg12=Bgn
F413=Bg31
Fy3=By3 (21)

where the symbols p and d represent primary and dual components respectively.
Equation set (20) does not include the constraint that the each diagonal element must
be equal to unity at closure. This constraint is included through modification of the
current set of equations as discussed in Sandor and Erdman (1984). So, this set can be

modified as,

Fp12=Bp1+By11+By00—2

Fp13 =Bp31 +Bp11 +Bp33—2

Fy03=By3p+ Byt By33—2 (22)

Figure 4 Planar slider crank when crank angle is zero
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The left-hand sides of equations (21) & (22) contain the linear combination of
respective elements of the H matrices and the error terms are contained in the left hand
side of equation (11). Hence, combining equations (21) & (22) as partitions of a single
matrix of real-number equations, the resulting equation is

A V,

P P
Ay Vi (23)
where
Hop1z "p12 Hzp1o H'yp  H'gpo
Hyp3 H'yp3 Hyp13 H'yps  H'4py3
Hypns H'op3 Hzpoz H'zpoz  H'gyo3
A= |[m————m e e —————
Hyg12 H'g12 H3g1n Hzgp H'yno
Hygs H' 3413 Higi3  Hagzs H'yg3
i Hyps H'2im Higns H'ags  H'g03 | @
Byp1+Byy1 + By =2
By1+By11+ Bz —2
_ | Bt Byt Byas—2
B
By
B3 (25)
and
56, |
)
A = |86,
013
0S4 (26)

Rearranging equation (23) to solve for the error terms, the Newton-Raphson
iteration technique can be achieved. But the matrix4, which is 6 X5, cannot be inverted

in usual method in order to do so, unless manipulations are performed as follows.

A7 = (aTa)"UT
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Hence the modified form of equation (23) is as follows:

A=y Uty (23a)
which is exactly same as A = A7,

The guesses of displacement variables are revised by adding the error terms, A,
to the guesses and the new set of joint variables is used in the next iteration to compute
a new set of error terms. The iterative process is continued until the absolute values
of all error terms are less than or equal to the desired accuracy limits. At ihis point the
displacements are determined only for the first position of the input link. To solve for
the displacements for a new position of the input link displacement, angle 67 is
increased by a small amount and the previously calculated displacements are used as
initial estimates for the next position. This process is continued for a complete rotation
of the input link, the crank.

Another input variable, i.e. length Sy, the axial displacement of the crank, can
be introduced in two following ways:

(1) it is constant throughout the complete rotation of the crank, i.e. the crank is
axially displaced to a certain distance and is then rotated.

(2) the crank is constantly moving to and fro in simple harmonic motion along
its own joint axis (the joint connecting the frame and the crank, i.e. joint 7). A new
parameter ¢ is introduced which can mathematically be defined as follows:

number of cycles the crank slides through along its own joint axis
a= .
number of complete rotations of the crank (27)

Hence relating the axial displacement of the crank to the rotation, translation
S1 can be written as
Sy = Sgysin(ady) (28)

where symbol Ss7 is the amplitude of the sliding cyclic motion of the crank.
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2.6.2 Plane Geometry Method for Initial Estimations of the Joint Variables:

Initial estimations of the joint variables 02, 772, 63, 113, S¢ have been done by following
simple plane geometry method. Fig. 4 shows planar slider crank with offset a4 only
when input crank angle is zero. From geometry the following formulas for the joint

variables can be written.
2 2 1
S4=[az—(agtay)"]2
a1+a4

92=n—tan_1[

93 =27 — 02
7,=0 and 73=0
2.7 Velocity Analysis:

The dual velocity of link 7 (i.e., the crank) relative to link 4 (i.e., the frame) with respect

to point  in terms of the unit vectors of system {1} is represented by the vector

~ 0
1A
Vig=4 0
6,+e8y (29)

where symbols &1 and 81 denote the rotational and translational velocities about k1 axis
at joint I respectively. There is no other velocity about the other two axes at this joint.

Similarly the vector equations for other links can be written as

~ 0
Vo = 2
0, (30)
where symbols 72 and 62 denote rotational velocities about the j2 and k2 axes at joint 2
respectively.
~ 0
Ve = 713

03 (31)
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where symbols #73 and 63 denote rotational velocities about the j3 and k3 axes at joint 3

respectively.
~ 0
Vig=1 0
e84 (32)

where symbol $4 denotes actually the slider velocity about the k¢ axis.
The dual velocity of point 2 on the crank relative to the frame in terms of the

unit vectors of system {2}, i.e. )44, can be derived by premultiplying equation (29)

by the transpose of equation (1):

22 201 25y _ AXRT
Vig=1M Yy ( M=0GM)" )
691—8S1S01 S01+8S1C91 0 0 0
= —501—-£S1c01 601—8S1S01 8a1 0 = 861191
86115‘01 —Ea1C01 1 91+8S1 91+851 (33)

The dual velocity of point 2 on the connecting rod relative to the frame in terms
of the unit vectors of the system {2} is determined by adding the equations (33) and
(30):

0,+&8, 6, 6, +6,+¢e3 (34)

The dual velocity of point 3 on the connecting rod relative to the frame in terms
of the unit vectors of the system {3} is determined by using this equation and the
transpose of equation (2):

373 _ 3722 37 _ 2\T
Vaa =2L V74 (2L=GL)" )

cOxcn, s6xc172 —57; 0
= | —50y+EayOyn,  cOyteaylyn,  eaxcn,|{ Nyt e0ia,
cOpsnp+eayl,  sOnsmy—€anch, ey | |B1+0,+€8y
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— (0140 51y +11250,cmy+£(B1a156,c11,~ 8 1577)

= 1'72c02+6[91(a1c92+a2c172)+92a2c172+7'72a2s02s172]

—

k(91+92)6772+772?029772+8(91‘113929’72“’7242092+S1C’72)‘ (35)

The matrix equation for dual velocity of point 3 on the connecting rod relative
to the frame in terms of unit vector of system {3} can also be formulated by using the
backward path of the loop. The procedure is as follows:

From equations (31) and (32) respectively,

Pal ey 0
Vs ===~
—03 (31a)
~ ~ 0
4 4
V§4 =-—Vg=1 0
—e8,4 (32a)
373 _ 374 2 g
Vaa= 3L V34 + V3
cOzcns  cOzsmy 503 0 0 —£8,4565
= |sO3cn3 sO3smz —cb3|y 0+ 1-N3t = ~H3+eSuchs
—sn3 cny 0 || —ed, —03 —03 (36)

[ This has been obtained using equations (3), (31a) and (32a)]
Equating the two expressions (35) & (36) yields
""(91‘*‘92).5'772+7.]2?62C772+8(91a1S02C7]2—S1S772) ] ( _8S4S03

J 172c92+8[91(a1692+a26172)+92a267]2+772a2s92s172] b = { —773+8S4603 \

|O1+0y)cny+iipsOpsmy+e(B1a 150y =ipaxctp+Sien)| | =03 | (37)
This matrix equation actually contains six linear equations ( 3 primary and 3
dual) with five unknowns. The next step is to rewrite equation (37) as a system of linear

equations as follows:

~(B1+0 )15+ p505c1, = 0 (372)



O1a150,c11p— 81517 = —84503

12c6 = =13

01(a1¢0,+aycn)+00aycny+ilpass05m, = S4cO3

(01+62)cno+i1psOasmy = —03

014150251, ~71pa5c0,+ 81017, = 0

31
(37b)
(37¢)
(37d)
(37¢)
(371)

Now separating the unknowns to form a column matrix and a coefficient matrix,

the product of these two matrices must be equal to some column matrix as shown below:

(—s1, 0 sOxy
0 0 0
0 0 cl,
axny 0 a0,
ey 1 sOymp
i 0 0 —axt,

0

0
1
0
0
0

0

(6,
565 92
0 |2 _
_693 ) 7,72 (=
0 73
S
o |74

[ 915772

—01a150,c1+ 8551,
0
—t1(a1c0z+axn,)
~01cm;

~61a156,~81c1,
L J

(38)

The coefficient matrix is 6 X5 and the column matrix of the unknowns is 5X1,

therefore it is a system of six equations with five unknowns. Since rank of the coefficient

matrix equals 5, the number of columns, a unique solution can be obtained. The final

solutions for all the unknowns are as follows:

b = $160357791m7—ay (B150,c03+01c0,503c75) — a5

2

a2963

b = a1(01c07503+0150,c03c15) — 810357,

3

a0,

 =nolay(B1c0p503+0150,c03cn) —S1575¢65]

mn=

. cOx5m[011 (502031, +CB2503) —S157,¢63]

73

S4

56,565

_ Sysm9—61a1502cm,

565

(39)

(40)

(41)

(42)

(43)
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All these equations involve the sliding velocity of the crank along its own joint
axis (the joint connecting frame and crank, i.e. joint 1), which is given by either
$,=0 [ when S; = constant
or
81 = aSgicos(a6y)9; [ when Sy is sinusoidal | (28a)
[ equation (28a) is obtained by differentiating equation (28) with respect to time when
S7is variable ]

For dynamic analysis, equations (33) and (35) which respectively formulate the
dual velocities of point 2 on the crank relative to the stationary frame in terms of the
unit vectors of the system {2} and of point 3 on the connecting rod relative to the
stationary frame in terms of the unit vectors of the system {3}, will be used. In addition

to that, the dual velocity of point 4 on the slider relative frame in terms of the unit

~
vectors of the system {4}, ie. 144 s also needed. The derivation of that velocity

vector is obtained by adding equations (31) & (35)

A A

VaN
3,3 _313 .33
V34 ="Vt V3

71250515 — (61+0)s1,+£(B1a15600cm,—S151,) ]

Y

=1 e+ +e[01a1c0,+75ans0,575+ (01 +65)ascn,]

L(91+92)C’72+’729929’72+93+8(510'72*"“191392?’72"7'72“2662)‘ (44)

using equations (3) & (44) ha = 413734
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cB3cn3(72502cm2—(01+02)sm2) +s03cm3(2c02+173) —sn3((B1+62)ca+
7125025m2+63) +e[cO3cn3(01a1502cn2—S1512) +503cn3(01a1c02 + 720256025872+
(01+62)azen2)—sn3(S1cn2+a101502sm2—12a2c62)]
cO3573(172502cm2— (01+02)5m2) +s035m3(7pc02+73) +en3((B1+62)cma+ |
N2562sm2+63) _+£[9039173(01a1592c172—S1s772)_+st93m3(91a1c02+7'72a2502s772+
(61+602)azcn2) +cn3(S1cn2+a1015m2s62—72a2062))
s03(f2s02cn2— (O1+02)5m2) —cO3(ip2cB2+73) +els603(61a1502cn2—S1572)
—c03(01a1c02+i2a25025m2-+(01+62)azcn2)] | 9

2.8 Dynamic Force and Torque Analysis:

STEP (1) Formulation of inertia binors:

Assuming that the links are symmetrical about their respective lengths, the location of
centers of mass of link 7 in terms of frame {2}, of link 2 in terms of frame {3} and of

link 3 in terms of {4} can be represented by the vector forms as follows:

&1 2| o &3
2G,=10 3G,=10 Gy=10
0 0 0

where symbols g1, g2 and g3 are respectively the distances along the lengths of links I,
2 and 3 from their distal joints to their centers of mass. If symbols mj, m2 and m3
represent their respective masses, then the inertia matrices of link I in terms of frame

{2}, of link 2 in terms of frame {3}, of link 3 in terms of frame {4} can be written as

00 O 00 0 00 0
[251:1 =mq|00 =g [35'2] =my|00 =g [4S3] =m5(00 —g3
0gy O Ogr, O 0g3 0

Assuming that the principal axes of each link are oriented the same as the frame

fixed upon it, the mass moments of inertia for each link can be written as
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2 2 2
K 0 0 K 0 0 B 0 0
2 3 4 2
[J'l]=m1 0 Ki, 0 [Jz]=m2 0 K3 0 [J3}=m3 0 K3 0
0 0 K 0 0 K& 0 0 K5

where symbols Kax, Kay and Kgz represent the radii of gyration of link a in terms of frame
{a+1} fixed on that link (a=1, 2 and 3).
The general form of the inertia binor of link a in terms of frame {B} is written

as

By T B
[Jal | ["S4l
This is a 6 X6 matrix where symbol mg is the mass of link g, [BJ a] 1s the mass moment

of inertia as described above and [/] is identity matrix,

100
=101 0
001

and matrix [B Sa] is the first moment of mass matrix of link ‘@’ in terms of frame {B},

which can be generalized as

0 —&z gy
B _ 0 —
[ Sa] - ma gz gx
—gy 8x 0

Therefore the inertia binors of link 7 in terms of frame {2}, of link 2 in terms of

frame {3}, of link 3 in terms of frame {4} can be formulated as follows:
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O 0 0 | 1 o
0 0 g1 |
& 0 | 0 1
Cord =my| —=— ~—= = [ —-
K, 0 0 | 0
0 Kj 0 | 81
0 0 K | g 0 (46)
i 0 0 | 0 ]
0 & |
—& 0 | 0
Posl =my| === ——— ——— | === ——= ——-
B 0 0 | 0 0
0 K, 0 | —g,
00 Ky | g 0 (47)
[ 0o 0 | 0 —
0 & | 1
-8 0 | 0
(ps] = my|——— ——- el -
K 0 0 | 0
0 K, 0 | &3
|0 0 K, | 0 g 0 | (48)

STEP (2) Formulation of dual momentum vectors:

In this step, some of the velocity vector equations are used to formulate the
momenta of the moving links. In order to do that we can either use the velocity
equations formulated through the forward path only or some velocity equation ob-

tained through the backward path and some through the forward path. In either case,
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the same numerical results are obtained, but mixed path equations set is much simpler
than only the forward path equations set.

First the forward path equations are used to formulate the momenta. Equations
(33), (35) and (45) can respectively be written in the form of 6 X1 column matrices by

separating primary and dual components as shown below (equations (33), (35) and (45)
are obtained from the forward path only):

(Vi | 0 ]
Viyp (;]
~ V.
R ) lpl 7
4=y =1 0 |
Viya|  |a101
Via) | 51 | (33a)
(Vop) 719502c1,—(01+02)s71,
Vap o 1t
e J Vo | _ (01+02)cny+ipsbs,
27 W | 01150262~ 51812
Voya 010160 +i15a50515+ (01 02)ascr,
Vaa| | Siomtaldsbysn—inaxt, | (352)




37

cO3cn3lips0acr, = (9}+92)Sﬂ2] +s583¢13(712002+173)
—sn3[(61+0;)cno+1150,5m5+03]
cO3s113[i150212— (9;+92)802] +5035173(72662+1)3)

S
Vay 563[11556,015— (61 +02)5m2]—c03(7) 20, +173)

~ V __________

4V4 = < 34’ > == < . . . r

37 Vara| | cO3cm3(61a15626m—81512) +503¢713]@101¢07+ agipsOpsny
Vaya +(01+0)ancn] —sna(81cr15+a10150551,— axf1oc6s)
LV3zd __________

cO3513(a1015056m;—815712) +5035713[a101602+ 512505772
+(0140)axcn ] +cna(S1cnp+a10150,5m—agich,;)
563(a101s 6’20’72"5’1{772) “_693[01910924'6‘2"72992”72

+(01+02)azcn,] | (452)

Premultiplying equation (33a) by equations (46), (35a) by (47) and (452) by (48)

the following column matrices are obtained

0
g101+a16;
_ Sl

°H; = [2901] 22, = my] 0 f

~8181
2 . .
K101 1819191 (49)

31}2 = [3<P2] 31}%4




= m24

O1a1562cn2— 81572

ma3

LK%Z(91+92)6772+K%z7'728925‘772+g291a1€02+g?)72ﬂ2s029772+g2(91+92)a2£772‘
47 4 | 4;4
Hjy = l:€P3] Vi

c03c773(a191s02c772— S1sm2) +s93cn3[a191c92+a27'72592s772
+(01402)a2cn2] —sn3(S1cn2+a101562sn2—aiach?)
g3[s03[72s02cm2— (B1+02)s72] ~cO3(72c02++13)] +¢O35773
(a191s92c172~ S15m2) +503sm3[a101c02+a2ij2s62sm2+
(01+02)azcn2] +en3(S1cn2+a1b1s62sn2—azyaco2)
—g3[cO3snaliasOacn2—(O1+62)sm2] +s6035m3(72c02+413) +
ena[(01+02)cn2+2502sn2+03]1+503(a161562cn2—S1572)
—c03[a101c02+ax2as62sn2+ (01+62)azcn?2]
K&{cO3cna[fastacn2—(81+62)sm2] +s63cn3(iach2-+13)
—sn3[(91+02)cn2-+725625m2+63]]
K3)[cO3sm3[as02cn2— (01+02)sn2] +503sm3(2c62+13)+
en3[(91+62)cn2+125025m2+03]]—g3[s63(a191s62cm2— S1572)
—cO3[a101c02+a2as2sn2+ (O1+62)azcn2]]
K3:[s03[i2s02cn2— (B1+02)sm2]—cO3(frac02-+73)] +
g3[c03s73(a101s02cn2—S1572) +s035n3[a101c02+azasOasn2+
L (B1+02)axcn2] +en3(S1cn2+aifisbasm—aact?)]

38

(50)

(51)
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Formulations for the dual momentum of link 1, i.e. the crank in terms of frame

{2}, of link 2, i.e. the connecting rod, in terms frame {3} and of link 3, i.e. the slider, in

terms of frame {4}, can respectively be obtained by modifying equations (49), (50) and

(51) to 3X1 dual-number matrix equations as shown below

N I/{\]x Hllp + SH]xd\
°Hy = {Hiyt = {Hyp + eHyy
le lep + Eled

~ |z
Hy = 1Hyy =1

r

= m2<

N
Ha

a191562cn2— S1sm2-+ £[KoiasOacnz— Ku(G1+02)sm2]

[(gacn2-+axcn2)(B1+02) +(g2+a2)(712502572) +01a1c62)
+8[(K%y +g2a2)72c02~g2S1cn2—g2a1015625772]

[81c2+ a191s€2,9772-— (a2+g2)n2c62] +8[(ngc172 +g2a2cn2)
(91-&-92) + (Kﬁ +g2a2)1'72,s62s772+a13291c92]

0
b=myl By(agre)—egi$h
$y+e(KT.0:+813:10) (492)
[Hzg, + eHy
= {Hpy, + eHyyy
~H22p + eHy,,
(50a)

Hiirp + 8H3X’d

47y _ _
Hy =1 Hayr = (Hayy + el

H 3z

H3Zp + 8H3Zd
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ct3c3(@rd1s020m-S1572) +sOs0m3lardcta+aviasOasya+ (Br+6s)
azen2] —sn3(S1cn2-+a191s6asma—aziact?) +e[Kalchcnalisbacna—
(B1+02)sm2]+5603cn3(2c02+13)—sn3[(01+62)cn2+725025m2+63]]]
g3[s63[72502cm2— (01+02)s72] —cO3(712c62+73) ]+ [cO3573(a101502c2
—81512) +563sn3[a101c62+azas02sm2+(O1+62)axcn2] +c03(S1cn2
+a101562sm2—a22c02)] +e [K%y[6039’73[772502c’72— (B1+62)s72]
=m3)  +s03sy3(f2cO2+43) +cya[(O1+02)cn2+iasO2sma-+03]] —g3[s63 ¢
(a101562c172—S15m2) —(;93[a161c02+a2f72592s772+ (01+62)azcm2]]]
—g3[cO3smalias0acn2— (01+02)sm2] +s63s73(act2-+3) +p3
[(01+62)cn2+72s025m2+03]] +[563(a101502cm2—S15712) —cf3]a161c02
+ax2sO2sn2+(B1+62)azcn2] |+ e[Ks63lnas02cna~ (B1-+62)sn2)]
—cO3(12c02+13)]+g3[cO3sm3(a101562cn2—S1sm2) +s0353[a161c02-+
aziastasn-+(01+02)axcnz] +on3(Sienz+arbisOasnz—aziact2)]] (51a)

Dual momentum equations (492), (50a) and (51a) are purely forward path
equations, since all the velocity equations ( 33a, 35a and 45a ) used to derive these
equations are forward path velocity equations. Out of these three momentum equa-
tions, two equations (50a) and (51a) are very large consisting of many sine and cosine
functions and their derivatives, which may cause inaccurate results. In order to have
more concise equations and better accuracy, two backward path velocity equations are
used to derive two momentum equations as the alternative to equations (50a) and (51a).

Now, the backward path velocity equations (36) and (32a) can be written in the
form of 6 X 1 column matrices by the same method as before, and going through exactly
the same procedure, simpler and concise equations are obtained which can be used as

replacements for the above-mentioned large equations.



41

Vi 0 )
Vaw 73
Vayd S4c64
Vo) | 0] (362)
Vil [ 0]

N Z}yp g

Vai= VZ’ 1o |
Vaya 0
Via| | =S4 (32b)

Premultiplying equation (36a) by equation (47) and (32b) by (48) the following

column matrices are obtained.

—‘S4S93
—82 03 + $,c05
~ 3 i 8213
*Hy = [ 802] Voa =my ] 0 g
~K3, 3
2 .
| —K3, 03 + 8284¢63 (52)
[0 )
0
477 4,7 474, = -84
Hy = [ 903] =My o1
8334
0 (53)

Now, alternative expressions for (50a) and (51a) using the backward path are

respectively

3 n . . .
Hy = {Hoyr = {Hoyp + eHppq = myi (—gof3 + 84c03) — SK%y?B
Hy, Hozp * eHozd g3 + 68284003 — K5,05) (52a)
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~ Ii:),x H?“? + EHaxd 0
*Hy = {Hayt = {Hayp + eHyygt = ms {68354
Hs, Hyyp + eHyyy —84 (53a)

In the next steps and in the computer program either equations set { (33a), (35a),
(45a), (49a), (50a) and (S1a) } or set { (33a), (36a), (32b), (49a), (52a) and (53a) } can
be used. The first set consists of purely forward path equations and the second set
consists of mixed path equations; equations (33a) and (49a) are forward path equations
and rest of the equations in the second set are backward path equations. Both the sets
were tested by the program for anumber of cases and resulted in same outcome. Finally
the second set is used in the program to have better accuracy.
STEP (3) Time derivatives of dual momentum Equations:

Differentiating forward path equations (49a), (50a) and (51a) with respect to

time the following equations are obtained respectively:

P P Hyyp+eHyg °
°Hy = JHly r = (HypreHyg =mq3 0i(ag+g1)—e818
- HyyyteHy, .'5"1+£(K%zt9'1+g161151)
L led | (54)

A A I—I:ZXP_*-SI—I:ZM

Hy = {Hyyt = {HyypteHpy,

- HZZP+EH2Zd

&3
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a10156,¢15+a1010260,c1,— 101750515~ 81512~ 811267
+€[K5,(325926m0-+712020050m0— 7350 2512) — Ko (61 +63)omy
—K5(B1+0)fpcn;]
[(~g2125M2—a212512) (01 +02) +(gacmp+ancn) (61 +02) + (g2 +az)
(5057571507005, +735090m2) +a16100,— 21010565+
=my|  el(Kytgam)iixcty—10x50)—gxS1em—Svim)— ¢
8201(0150,512+610,c0,575+0171250,¢11)]
[81c12— 8118t +a1(615625m9+010,c0,5m5+0171950,¢117)
—(a+82) (1209 — 119050, +€[(— Ko 125My— 8ot osn2) (B1 +02) +
(K3,c110-+82850m7) (81 +02)+ (K3, +8002) (2502512 +1120 5657

+75502000) + g (Brc0r—010256)] J 9
(Hy| .
A A Hap+ etz
Hy = Hay = Hyyptetyy,
A H3zp+8H3zd
Ha | (56)

where

Hyy, = m[(—03503cm3~715c03573)(a101502m,— S1579) +cO3cm3(ar0350,0m,+
101026015 —a10171256,575~ 815m=81i19619) + (030373~ 113503573)
2101600+ axio5051,+ (81 +65)azeno] +s05cm3[aq01c0,—a1 010550,
a7 25025727+ A oSty + agiasOaca—(1+0)az st o+ (01 +62)azen,)]
~ 73738167+ a101565M7—ayf12602) —sn3(S1cn2— S 112577
+a101505m7+10105c055m5+a101i1250,cm2 — nfincOy+ axf002502)]  (S6a)

Hayg = malKal(—03503c113—~113c03513)[12500cm,— (B3 +82)5m,]+cO3cn3[iips0c7,
+1190202my= 7550552~ (B1+62Yipco— (B +0)sm5)+ (OacO3cm3—
113563573) (11260, +13) +563¢13(1j9c0, 1120250, +13)
—113en3[(81+02)cn+ 71950515+ 051 —sm3[ (B +8)cny~
O+ 0)1 515+ 80251 +i1502002500 + 755020775+ B3] (56b)
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Hay, = miga[63c83[11250c1p— (81 +0)sm5] +505[iiasOocmy +i102c0cm,
.2 . . . . - . . .
11350515 = (01+02)575~1120719(61 +62)] +03503(7 205 +1713) — B3
(1900571702502 +i3)1+ [(113c713c03 - 035035713) (@101502c112— S1512)
+035m3(a1015050m,7+ 101050505~ 18171250551, =S 1512~ S1712¢2)
+(03c035m3+713503c3) (101007 + Ay 5055+ (61 +05)azcn o] +503573
. [{1151692—a1_91ézf92+0257'2992”72+02’72920929’22+az77%?62¢ﬂz+
(91+92)a_2c’72—(91+92)a27'72f772]—"739773(316772+01913929772j‘az7'72092)+
6773(310772‘31"729772""“19192692?’7;‘*’4191’729926772+a1913929772
—ayijpc0y+as0,11256,)]] (56¢)

Hapy = m3[K3,[(13003c13—635635773)
(172502612 — (01 +02)s15] +cO35m3li s 60y +i1gc00m,— 7350257,
—(01+0)smy=(61102)5c72] + (03603573 +713503c3) (71906, +713) +
563573(7j3+712c0p—110250) +cnal (61 +67)cmy— (61 +02 )75,
11250 15712+ yB o011+ 3500m, + B3] =383l (B1+0 )2+ 15055, + B3]
—gals63(a10:102¢0561+a1015050m,—a101 502512 = S15m2 = Siiena]
+ 93c03(a161502c1_7.2— S 15772) +'03,s93[a191c02+a27'72s023‘.772+ (01+0)aqcn,]
—cb3[a101c0,—a1010256,+asijas0xsmp+agi02c05m+
. 2 . e . . .
a0,y + (01 +02)axcny— (01 +02)ax257]1] (56d)

Hs,, = ma[ —g3[(713c03c113~03503513) 25050 — (01 +02)sm2] + 03573 256,0m7 +
7'72926926772‘77%592”72“ ¢ 1+92).772€772‘ (51*‘92)572] 4:.(930939’7;“7_35930’73)
(719€0p+113) +5035m3(H 202 —1120250, +ij3) +cn3[(61+60)cnp— (01 +02)172572
'*'ﬁ2¥929ﬂ2_+7729209¢¥ﬂ2+7'7%5920172+g3] “'7'73973[(91+é2)¢’22'_“72Y92”72+93]]

-+ [03C03(a191S9267]2—S1S772) +S63(.a1915926.772+(110102602C772
— 101795051, — 8 1515 — 81712¢112) +03563[a101c0,+an 25051, +
(61+02)azcns)] '693[41510_92j015192?92fazﬁg992902+azﬁ292092?ﬂ2+azﬁgsezcﬂz"'
(01 +8x)axcny— (01 +62)azsm,]l] (56¢)
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H,y = mlKa[03003]71250,0m,—(01+0)sm,]+
L sBsliiasOyematibcbaemy—igstosny— (B1+6 )5,
(61+02)12612]+03565(115c0p +113) —cO(i12c65 1120550, +j3)]+83[ (13033~
 O3503m3)(a10150,0m,— S15712) +cO35m3(a10156x0m2+a1610500,0m—
1011505121815~ S1i15c712) + (9303571 3-+38030m3)[a101c0p +aripsOosto +
(B1+65)axcn7) +s035113(a161c0,— 0101050y +ariips0ps7 5+
azﬁ%“920772+{1277292092¥772+(§1+é2)42_6772"(91"'92)“2’729’?2]—
N3513(S16m2+a1015055m,—agc0)+cn(S iy =S 1oty +a161655m,
+a10102c05515 010171550212~ a1 2c02 +ax120,565)1] (56f)

Now, backward path equations (52a) and (53a) are differentiated with respect

to time. The following equations are replacements for equations (55) and (56) respec-

tively.
Hy| .
P P Hop+EH oy
3H2 = sz L = H2yp+8H,2yd
A H22p+£HZZd
2]

—34,963—S460393
=myy  (84c03-5450303—g,05) — EK%yﬁ?,

87713 + &( 8284003 — 828450303 — K5,03) (57)
A A Hygy+eHay 0
*Hy = {Hayt = Hyp+eHayar = my1 6855
PN H3zp+8H32d "34
| (58)

In the program either forward path equations set { (54), (55) and (56) } or mixed
path equations set { (54), (57) and (58) } canbe used. To have better results the second

set is used.



STEP (4) Formulation of the Dual-Euler equations:
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In this step, equations for the inertia forces of link 1 (i.e. the crank) relative to

frame {2}, for link 2 (i.e. the connecting rod) relative to frame {3} and for link 3 (i.e.

the slider) relative to frame {4} are derived. The derivations are shown as follows:

(Hy ~ Vi Hyy+ VigHy,

’fy = { Hiy=Vi,Hy,+ViHy,

v

~H12_V1yH]x+ leHly}

Expanding both sides,

Jip+efixd

Jfop+efyapy = S

fizp+efiza

( (HLP —VizpH1iyp+ViypH1zp)+e (Hixd— VizpH1yd—Vi1zaH1yp + ]
ViypH1zd+ViyaH1zp)

(Hhyp—V 1pH15p+VizpH1p) +€(Fhya—VipH12a— VixaH1zp+
VigpH1ixa+V1zaH1xp)

(Hizp—ViypHup+VigpHayp) +e(Hizd—ViypHra—ViyaHp +

VipH1ya+VixaH1yp)
(H Vo Hoy+ Vo Hy, |

Y

3f2 ER HZy_VZVH&+VZZH2r

\H&"—VZyHZr*'VQxHZy‘

Expanding both sides,

fop+efou

Taptefydr = |

fozp+efazd

((Erp—VazpHop+VaypHop) +&(Fbxa—VaspHaya—VazaFoyp +
VoypH22d+V2ydH2zp)
VaspHoxd+VazaH2xp)

(bap—VaypHaep+ VapHoyp) + £(Ebza—VaypHava—VayaHoxp+
VapH2yd+V2xdH2yp)

(Boyp—VaspHasp +Vosp )+ (Foya—Vaspiaa—V nabozp't |

(59)

(60)



Expanding both sides,
[ (fbxp— V3pH: 3pt V3ypH 3zp) +& (fi&xd— VazpH3yd—V3zaH3yp+ ‘
VaypH3zd+V3yaH3zp)
+ . .
Toptefsa| | (g Y Hpt Vi) e(Bya—VaspHza— Vi +
Toptefyar = VagpHard+VazaHap) [
fip+efia P 3"1’
(Fhzp—VaypHiiep-+VapHayp) +8(Ehza—VaypHaxa—VayaHap+
| VaxpH3ya+VaxaH3yp) )
STEP (5) Application of D’Alembert’s principles:

Ha,~V3,Hay+Va Ha, |

Y

%5 = { Hyy~Va Hy, + Vo, Ha,

| Ha, =V + V3 |

The force equations for links 1, 2 and 3 are respectively as follows:

Dual forces acting on each joint can be written in vector form as follows:

M + 2P+, =0
SL2Fy+Fy+ %, =0
§L3F3 + 4F4+4f3 = 0
) ;
1F]J + 81T11

10 _J1 1
F]_ =< Fl] + £ T]_]
LlFlk + 1Ty,

—~—

2F2j + 82T2j
2F =< 2F2j+82T2j 4
L2F2k + 82T:)k
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(61)

(62)
(63)

(64)

(65)

(66)

where torques 2y =2 T2 =Ty = 0, since an intermediate ball joint cannot support

torque.
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3y + Ty
31% = 3F3]- + 83T3j
3Py + €Ty (67)
where torques 373 = 3T3j =3T3 =0, since an intermediate ball joint cannot support
torque.
R Yy + 'y,
Fy= Py + Ty
Fu+ 6Ty (68)
Expanding equations (62), (63), (64) and separating primary and dual parts, the

following equations are obtained:

11+ Fyys0, + 7Py tfy, = 0 (62a)

(MTyy00; — "Fy;81501+ FyS1c61+ Tyjs03+f10) = 0 (62b)
— P01+ Fyjcb1+ Foitfry, = 0 (62¢)
(="T501 =" F ;8161 + ' Tyjc61 =" FyS1561 +ay Fyy+fyyg) = 0 (62d)
Pyt P tf 1p =0 (62¢)
(‘Fiass01—"Fyjarchy+ Tyfipg) = 0 (62f)
2Fyc0pcmy+ 2 FgjsOpcny—"Fysty+ Fai+fogy = 0 (63a)
f2a=0 (63b)

—F 505+ Fyc0y+ Faitfa,, = 0 (63¢)
(CFia0055+  FysOosty+ Foyancy o) = 0 (63d)
2P yc08115+ Fos0psmy+ Fogcny "oy fagyy = 0 (63¢)
(ZFmﬂzfez‘zejﬂzcoz+f 24) =0 (63f)

4
3F3fCG3C7]3+3F3f§‘03C?]3""3F3kS773+ F4i +f31p =( (64a)
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(Tytfaea) = 0 (64b)
3F3i093"73+3F3j593?’73+3F3kC773+4F4j+f3yp =0 (64¢)
(“Taj+fya) = 0 (64d)
2Fyi503—F3c03+ Fytfag, = 0 (64¢)
(Ta+fa) = 0 (64£)

There are eighteen equations out of which one does not give any solution
(equation (63b)), since it is of the form 0=0; confirmation of this was done by
evaluating it in the computer program. The known force and torque are respectively
TF 1% and 1T which are the crank inputs. Axial force TF1x acts on the crank at joint 1
and equals mass of the crank times its axial acceleration, and torque Tk is applied

constantly. Force TF 1k can be written mathematically as either
r =0 [ when S1 = constant ]
or
Ip =mi$;
where symbol m; = mass of the crank and
81 = aSsy [cos(ady)f;—asin(ab;)67 | (28b)

[ equation (28b) is obtained by differentiating equation (28a) with respect to time when
S7is sinusoidal ]
STEP (6) Solution of the dynamic equations:

There are sixteen unknowns, including both forces and torques and seventeen
equations. Although one equation is redundant, all seventeen equations have been
used to avoid sine or cosine functions in the denominator as much as possible, because

small sine or cosine terms in the denominator sometimes results in inaccurate division.

The details of the solution procedure are as follows:
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From equation (62¢),

2 1
Foy = —(Frtf1zp) (69a)
Multiplying equation (63c) by parameter a2, adding equation (63f) and then
keeping the known terms on the right hand side,

3p. — _f 4120
F3i = ~(fppt az) (69)

Multiplying equation (63e) by parameter a2, subtracting that from equation

(63d) and then keeping the known terms on the right hand side,

3 Foya
Faj = ———
3k ay fQZp (69C)
From equation (64b),
Ty = ~faua (69d)
From equation (64d),
4
T4 = ~faya (69¢)
From equation (64f),
Ty = ~fu (699

Multiplying equation (62c) by parameter a1, adding that to equation (62f) and
then keeping the known terms on the right hand side,

fiza + Tax

2
Py = —fy —
Yy flyp a, (69g)

From equation (63f),

2
2 T2~ fou
o a6, (69h)

The denominator of the right hand side of this equation involves the sine
function. This, in fact, resulted in some abnormal outcomes when values of angle 62

were very close to zero, while running the program. So, the results obtained from this
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equation need to be modified. The modification is done by a numerical method as
follows.

Multiplying equation (62f) by the term 561, multiplying equation (62a) by the
term aic01, adding both the results and then keeping the known terms on the right hand
side,

Py = —CFy+f 1p)c01— (Tt 1zd)§l .
1 (69i)

Multiplying equation (62f) by the term c67, multiplying (62a) by the term as8],

subtracting one from another and then keeping the known terms on the right hand side,
"7y = —CPoy+fug)s1+( Tyt 1zd)£a?'1 .
1 (69))

Both the equations (69i) and (69j) contain the previously-found value of force
2Fyi from equation (69h). Moreover the value for %P may not be correct because of
the reason described before. If that value is incorrect, equation (62a) involving with
the terms 'F 1i, IF 1j and 2Fi will not be satisfied by the values obtained from equations
(69h), (69i) and (69j). The computer program is written in such a way that it checks
whether equation (62a) is satisfied by those values or not. If that equation is satisfied,
the program goes to the next equation for the next unknown. If not satisfied, then a
better value of the force “F; is found from the following equation (69k), using
previously found values of the terms TFyi and 'F 1j from the eqations (69i) and (69j)
respectively. The program then goes to equations (69i) and (69j) respectively to
improve the values of the terms TFiiand 1F1j, using the better value of the term ’Fyi
obtained from equation (69k). This modification operation is continued until equation
(62a) is approximately satisfied (since it is a numerical technique, it is not expected to

satisfy exactly). Equation (69k) is obtained from (62a).

2 1
Foi=— anerlﬂjf@rf]xp (69k)

From equation (632),
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3 2 2 2
F3; = = FpcOcny—FsOxcny+ Fystiy—fog (691)
From equation (64e),
4 3 3
Fay = "F3ic03—"F3503~f3p (69m)
From equation (64c¢),
4 3
Fy = —CF3c03m3+ Fys035n3+ Faycns+fa,p) (69n)
From equation (64a),
4F4i = —(3F3,c93c773+3F3,'593C773"3F3Ic5"73+f3xp) (690)

Multiplying equation (62b) by the term 61, multiplying equation (62d) by the
term c01, adding them together and then keeping the known terms on the right hand

side,

1 1 1
Tyj = "FS1—frxas01—~ CFuar tfiya)cbs (69p)
Multiplying equation (62b) by the term cf3, multiplying equation (62d) by the
term s61, adding them together and then keeping the known terms on the right hand

side,

Ty = “1F1j51—f1xd691+(1F w1+ 1ya)sty (699)
Equations (69a) through (69q) involve acceleration terms which are obtained
by differentiating equations (38) through (42) with respect to time. Hence the five
acceleration equations are as follows:
ap$03[81035m,c1y~ 818550 3820my+ S e3¢y~ S o003,
—a1(0156,003+0,10,00,c03—010350505+810,503¢15—010,56,505¢1

+010305c03c19 011120250 3572) —as01503~a,0103¢63) ~
a293C93[S1C035’772C7]2—al(91S02C03+01C92§'93C7]2) —a291s03]

G- =
2 (ax563)° (38a)
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01502c03cny+610,c0c03c1,— 061035055030, —
O171p5050035715)~S16035115-+810350 357, =S 1712603151~
b - ax03¢03]a1 (610,503 +0150,c05c17) ~81cB357,]
37 2
(ay563) (39a)

550,503 ~715c1o[a1 (810,563 +0156,c05c72) —
81575c03] —sm[a1(610503—010,50,503+0103c0,c03+8150,c04c15
+9192c62c03cn2—9193y02903cn2—911'72;02(:939172)
—3'18772693—51"726772‘-‘93*‘51“935772_\?93]]+a2Y’_72[al(91€92Y93+918926930772)
—815179c03)(65c0,505+050,05)

(ax50563)* (402)

57'2':

50503 (— 02505775 +7c02677) (011 (56 2605¢1, +cO2563)
—81517c03]+cOp5m,[01a1 (50 5c05cm+cOp503) +01a4
(82c02c03c1, — 03505031, ~T1p50pc03579 +03c0,c03— 056,565)
= 81519603 8171261,03+ 81035750511 —arcO57,
[61a1(502c03cmp+c0,503) — 815112c031(0c0,503+0350,¢63)

(axs0565)° (41a)

"’73=

50381815+ 171261y a1 (F150,015+ 010500501, =017 s055717)]
= — (515772 01a1505¢712)03c05
y =

(s65)° | (422)
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ILLUSTRATIVE EXAMPLES, RESULTS AND CONCLUSIONS
3.1 Example
Inorder torun the program and check the feasibility of the method a number of physical
examples are considered, one of which has been illustrated here. The known link-joint
parameters, dimensions, other known parameters and some basic formulas used in the
computer program are as follows:
Crank length az =12 inches,
Connecting rod length a2 =50 inches,
Offset a¢=0, 10, 20, 30 inches,
Offset ag=232,270, 310 degrees,
Axial displacement of the crank §1=0, 3, 6, 9 inches,
Rotation of crank 61 =from 0 to 360 degrees,
The cross-section of crank is a circle of radius r7 = 1.5 inches,
The cross-section of connecting rod is a circle of radius r2=1 inch,
The slider is a cube of each side r3=3 inches,
Specific gravity of the material ( mild steel is used for all the links ) d =0.28,
Acceleration due to gravity g =386.4 inches per square second,
Crank RPM =50,

Rotational acceleration of the crank 61 is taken to be zero assuming that it is rotating

at constant RPM,

Torque acting in the crank IT=100 pound-inch,

Parameter a = 0, since the axial displacement of the crank is considered to be constant.
Parameter a will have some positive value if sinusoidal axial displacement of crank is

considered.

- a
Location of center of the crank g1 = —21,



. . a
Location of center of mass of the connecting rod g2 = EL

Location of center of mass of the slider g3=0,

atr%a 1d

b

Mass of the crank m1 =

riand

Mass of the connecting rod m2 = 7

Mass of the slider m3 = —g—,

Radii of gyration are formulated as written below:
r

Kix = v

2 ﬁf

Ky =K1z = I:——+—

4 3
K2x=7r%-,
1
2
Koy = K2, = %%--i-%i] ,

K3x = K3y = K3; = 7’%—

3.2 Discussions of results:
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The results obtained as computer output are the slider displacements, dynamic forces

and torques acting at each of the four joints for each position of the crank from 0 through

360 degrees. The program was first tested for the planar case and the results found to

be same as that obtained by the complex algebra method, a widely used procedure for

analyzing planar mechanisms. This verifies the feasibility of the method. Then the

program was run for different spatial cases. All the results have been graphed against

input crank angle as shown in figs. 5-38. In figs. 5, 8, 11, 14, 16, 18, 21, 24, 27, 30, 33,
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36, slider displacements, different joint forces and torques are shown for variable offset
distance a4 (varying from 10" to 30"), constant crank axial offset S7 (=3.5") and ideal
offset angle a4 (=270 degrees, i.e. the crank shaft is perpendicular to the cylinder). In
figs. 6,9, 12, 15, 17, 19, 22, 25, 28, 31, 34, 37, slider displacements, different joint forces
and torques are shown for variable crank axial offset S7 (varing from 3" to 9"), constant
offset distance a4 (=30") and ideal offset angle a4 (=270 degree). In figs. 7, 10, 13, 20,
23, 26, 29, 32, 35, 38, slider displacements, different joint forces and no torques are
shown for variable offset angle a4 (varing from 232 degrees to 310 degrees), constant
offset distance a¢ (=20") and no crank axial offset (ideal). In each of the graphs
different spatial cases have been compared with the ideal case.

Although all the dynamic equations ( (68a) through (68g) and (68i) through
(68q) ) are free from sine or cosine terms in the denominator, the expressions for
acceleration ( equation (38a) through (42a) ) are not free from sine terms which
become very very close to zero at some particular positions of the crank, i.e. near 100
degrees and 300 degrees. Using the computer program it has been observed that near
those particular values for input crank angle, the joint angle 62 goes very close to zero
degrees and thus the calculated values of the acceleration terms, at those particular
positions, go abnormally high on account of roundoff errors in the computer calcula-
tions, which is clearly inaccurate. Therefore, in order to draw graphs, those particular
values have been discarded, otherwise those points would have taken most of the space
and the valid details of the graph would have been diminished.

All the torque components at joint 4, i.e. 4T4i, 4T4j, and “T4 and the force
components along joint axis (k) at joint 2, i.e. 2Fox are found to be zero throughout one
complete revolution of the crank at any offset. Interestingly, by manual manipulation
of the equation those components are also found to be zero. Another force component

along the j-axis of joint 2, i.e. 2F2j is constant (-8.33 Ibs) throughout one complete
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rotation of the crank at any offset. By manual manipulation that force component is
found to be negative of the ratio of input torque ( 100 Ib-in ) and the crank length (12
inches ). Two torque components at joint 7, i.e. 1 T1iand 1 Tijreduce to zero, when there
is no crank axial offset S;. By manual manipulation it is found that
Iy = - 1F1jS1 and 1T1j = 1Fyi81.

For the particular link lengths as mentioned before, when offset a4 is zero, the
program fails to converge if the term S7 is greater than 1.5 inches. When offset is
increased to 10 inches or greater, the program fails to converge if the term Sy is greater
than 3.5 inches and when offset a« is 30 inches, the program converges as long as the
term S7 is less than or equal to 9 inches. From this observation it can be inferred that
in order for the mechanism to work, with the increase of crank axial shift, offset a«
should be increased. In the case of mechanism failure, it will either lose closure, i.e.
one link or more will get detached from another at the joint or the slider will go to the
opposite side. When offset a4 is 20 inches and crank axial displacement S7 is zero, the
program converges as long as offset a4 is between 232 and 310 degrees.

3.3 Conclusions

Slider displacement curves are almost semi-sinusoidal type of graphs which seem to be
quite reasonable. When crank is placed at higher level than the plane on which slider
is moving by providing positive offset distance ay, the stroke of the engine is reduced.
So in that case, while consuming less power the same RPM of the engine can be
obtained. But with the increase of offset distance a4, joint forces and torques also
increase. Soproper design is necessary for the safe operation of the engine, considering
that factor. In most of the joint force and torque graphs (except for 3F3j with no spike,
3F3x with one spike and *F 4 with one spike) two spikes are seen, one near 100 degrees
and other near 300 degrees. Hence it is very obvious that with the increase of offset

the chance of fatique failure of the links at high speed is very large. In the presence of
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offset distance Sz, two extra torque components T and 1T1j are acting at joint 1. So
extra precaution should be taken by designer, so that engine does not fail, and the
manufacturer should pay special attention to minimize this tolerance error.

Since the present work investigates dynamic forces and torques at each joint of
a slider crank with all kinds of manufacturing tolerances, the results provide informa-
tion needed for the sizing and dynamic balancing of a high speed slider crank in the
design stage. This analysis can be used to determine the effect and significance of the
inertia forces acting on each link due to its own mass and mass moment of inertia. It
is expected that this investigation will enable designers to have better insight into the
designing and testing of high speed spatial mechanisms and robot manipulators.

The main disadvantage of this method is that if we can not make good initial
estimates for joint displacements, ( which is normally done by using the direct formulas
for kinematic displacements, derived either by using plane geometry rules as shown
before in section 2.4.2 or by using the complex algebra method or by the dual-number
method, considering that there is no offset at all, i.e. the planar case ) the method will
not converge. Usually the process converges in 3 to 6 iterations if estimates are within
20 degrees, which is quite possible by using the direct formula for the planar case.
Another great disadvantage is that matrix A may become singular. Fortunately it never
happened while running the program. Since this method is well adapted for digital
computation, any complex system can be analyzed using this analytical tool. The main
advantages of this method are its generality and that all calculations can be performed
on digital computer. Other advantages are that this method is concise, flexible,

economical and its analytical approach is independent of visualization.
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Displacement Curve
(a4 =30", except for ideal)
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Displacement Curve
(a4 =20", except for ideal)
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Joint Force Curve
(S1=3.5", except for ideal)
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Joint Force Curve
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Joint Torque Curve
(a4 =30", except for ideal)
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Joint Force Curve
(a4 =30", except for ideal)
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