Deposition of suspensions in convergent channels due to electrostatic image forces

Kwok Wah Hui
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Mechanical Engineering Commons

Recommended Citation
Hui, Kwok Wah, "Deposition of suspensions in convergent channels due to electrostatic image forces" (1986). Dissertations. 1211.
https://digitalcommons.njit.edu/dissertations/1211

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation.

Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen.
The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.
INFORMATION TO USERS

This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed.

The following explanation of techniques is provided to help clarify notations which may appear on this reproduction.

1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this.

2. When copyrighted materials are removed from the manuscript, a note appears to indicate this.

3. Oversize materials (maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format.*

4. Most photographs reproduce acceptably on positive microfilm or microfiche but lack clarity on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white standard 35mm slide format.*

*For more information about black and white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department.

UMI Dissertation Information Service
University Microfilms International
A Bell & Howell Information Company
300 N. Zeeb Road, Ann Arbor, Michigan 48106
Hui, Kwok Wah

DEPOSITION OF SUSPENSIONS IN CONVERGENT CHANNELS DUE TO ELECTROSTATIC IMAGE FORCES

New Jersey Institute of Technology

University Microfilms
International 300 N. Zeeb Road, Ann Arbor, MI 48106

D.Eng.Sci. 1986
PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark ✓.

1. Glossy photographs or pages
2. Colored illustrations, paper or print
3. Photographs with dark background
4. Illustrations are poor copy
5. Pages with black marks, not original copy
6. Print shows through as there is text on both sides of page
7. Indistinct, broken or small print on several pages
8. Print exceeds margin requirements ✓
9. Tightly bound copy with print lost in spine
10. Computer printout pages with indistinct print
11. Page(s) _______ lacking when material received, and not available from school or author.
12. Page(s) _______ seem to be missing in numbering only as text follows.
13. Two pages numbered _______. Text follows.
14. Curling and wrinkled pages
15. Dissertation contains pages with print at a slant, filmed as received
16. Other __
 __

University
Microfilms
International
DEPOSITION OF SUSPENSIONS IN CONVERGENT CHANNELS
DUE TO ELECTROSTATIC IMAGE FORCES

BY

HUI, KWOK WAH

A DISSERTATION
PRESENTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE
OF
DOCTOR OF ENGINEERING SCIENCE
IN
MECHANICAL ENGINEERING
AT
NEW JERSEY INSTITUTE OF TECHNOLOGY

THIS DISSERTATION IS TO BE USED ONLY WITH DUE REGARD TO THE
RIGHTS OF THE AUTHOR. BIBLIOGRAPHICAL REFERENCES MAY BE
NOTED, BUT PASSAGES MUST NOT BE COPIED WITHOUT PERMISSION
OF THE INSTITUTE AND WITHOUT CREDIT BEING GIVEN IN
SUBSEQUENT WRITTEN OR PUBLISHED WORK.

NEWARK, NEW JERSEY, U.S.A.
1986
To my parents, my beloved wife and my 2 daughters, for their patience and encouragement these years
The deposition of suspensions for uniform flow in convergent channels under the combined influences of inertia, viscous and electrostatic image forces was studied theoretically. The fluid phase was assumed to be two-dimensional, steady, uniform, incompressible and laminar while the particle phase was assumed to be uniform, steady, dilute and with negligible gravity effects.

Since the image force equations for convergent channels have not been derived, it becomes one of the main purposes of this study to perform the derivation of the image force equations. The lengths of the channels were chosen in a way that the exit area is only 20% of the inlet.

The governing equations were solved numerically (with Runge-Kutta fourth order algorithm) using the trajectory method to calculate the deposition of the solid particles.

Derivation and analysis of the image force equations for convergent channels revealed that the images are confined on an Image Circle and that both X and Y components of image forces are experienced. For zero angle of convergence ($\theta = 0^\circ$), the image force equations reduce to that of the parallel-plate channel.
It was found that, for a given \(\text{St} \) (100 \(\Rightarrow \) \(\text{St} \) \(\Rightarrow \) 0) and \(\text{Q} \) (100 \(\Rightarrow \) \(\text{Q} \) \(\Rightarrow \) 0), the particle deposition is higher for higher convergent angles. At a fixed convergent angle (7.5° \(\Rightarrow \) \(\Theta \) \(\Rightarrow \) 0°), particle deposition increases with both \(\text{St} \) and \(\text{Q} \). When \(\text{St} \) and \(\text{Q} \) are both = 0, no deposition occurs. When \(\text{St} \leq 0.01 \) and \(\text{Q} < 1 \), the inertia effects may be neglected.

It was also observed that, for a constant convergent angle and \(\text{St} \), particle deposition increased with increasing \(\text{Q} \). For high \(\text{Q} \) (\(\text{Q} \Rightarrow 10 \)) even with moderate \(\text{St} \) (10 > \(\text{St} \) \(\Rightarrow \) 0.01), more than 80% of the deposition rate takes place within \(X < 2 \). For small \(\text{St} \) and small \(\text{Q} \) (\(\text{St} < 1 \) and \(\text{Q} < 0.01 \)) the fraction of deposition near the entrance of the channel (\(X < 0.3 \)) increased from 0 to about 0.1 and then remained relatively constant.
APPROVAL OF DISSERTATION

DEPOSITION OF SUSPENSIONS IN CONVERGENT CHANNELS
DUE TO ELECTROSTATIC IMAGE FORCES

BY

HUI, KWOK WAH

FOR

DEPARTMENT OF MECHANICAL ENGINEERING
NEW JERSEY INSTITUTE OF TECHNOLOGY

BY

FACULTY COMMITTEE

APPROVED: ___________________________ Chairman

NEWARK, NEW JERSEY
APRIL, 1986
ACKNOWLEDGEMENTS

The author would like to express his sincere gratitude to his advisor, Dr. Rong-Yaw Chen, who provided many valuable suggestions, magnificent guidance and continuous encouragement throughout the course of the entire investigation.

The author wishes also to express his sincere gratitude to Dr. J. S. Hsieh, Dr. R. P. Kirchner, Dr. H. E. Pawel and Dr. R. Andrushkiw I, who have kindly read through the original manuscript and provided valuable suggestions.

Further acknowledgement is given to the Mechanical Engineering Department of the New Jersey Institute of Technology for the teaching fellowship appointment during the summer of 1983, and the research assistantship during the 1982-1983, 1983-1984 academic years.

The author is also grateful to Borg-Warner Air-conditioning, Inc., York, Pennsylvania, for using their computer and other accessories.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>APPROVAL PAGE</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xix</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. LITERATURE SURVEY ON THE DEPOSITION OF PARTICLES IN CHANNELS</td>
<td>6</td>
</tr>
<tr>
<td>3. THEORECTICAL ANALYSIS OF IMAGE FORCE EQUATIONS</td>
<td>22</td>
</tr>
<tr>
<td>3.1 IMAGE FORCE EQUATION FOR PARALLEL-PLATE CHANNELS</td>
<td>24</td>
</tr>
<tr>
<td>3.2 MODIFICATION OF THE IMAGE FORCE EQUATION</td>
<td>25</td>
</tr>
<tr>
<td>3.3 THE IMAGE CIRCLE</td>
<td>28</td>
</tr>
<tr>
<td>3.4 IMAGE FORCE EQUATIONS IN CONVERGENT CHANNELS</td>
<td>32</td>
</tr>
<tr>
<td>4. FLOW OF SUSPENSIONS IN CONVERGENT CHANNELS WITH INERTIA, ELECTROSTATIC IMAGE FORCES AND VISCOUS EFFECTS</td>
<td>40</td>
</tr>
<tr>
<td>4.1 GOVERNING EQUATIONS</td>
<td>42</td>
</tr>
<tr>
<td>4.2 BOUNDARY CONDITIONS</td>
<td>50</td>
</tr>
</tbody>
</table>
4.3 METHOD OF SOLUTION ... 53

5. RESULTS AND DISCUSSION ... 59
 5.1 FLUID PHASE ... 59
 5.2 PARTICLE PHASE .. 60
 5.2.1 PARTICLE TRAJECTORY 61
 5.2.2 PARTICLE VELOCITY DISTRIBUTION 62
 5.3 ELECTROSTATIC IMAGE FORCE DISTRIBUTION 63
 5.4 ANGLE OF CONVERGENCE EFFECT ON PARTICLE
 DEPOSITION .. 65
 5.5 DEPOSITION DUE TO VISCOUS AND
 ELECTROSTATIC IMAGE FORCES 67
 5.6 DEPOSITION DUE TO VISCOUS AND INERTIA
 FORCES .. 69
 5.7 DEPOSITION DUE TO VISCOUS, INERTIA, AND
 ELECTROSTATIC IMAGE FORCES 71

6. CONCLUSIONS .. 75

7. RECOMMENDATIONS ... 78

REFERENCES ... 80

APPENDICES ... 85

A APPLICATION OF THE RUNGE-KUTTA SOLUTION IN
 PARTICLE DEPOSITION ANALYSIS 85

B DIMENSIONLESS QUANTITIES AND PARAMETERS—PHYSICAL
 MEANING AND ORDER OF MAGNITUDE 89
C COMPUTER PROGRAM FOR PARTICLE CHARGE PARAMETERS
CALCULATION 95
D COMPUTER PROGRAM FOR PARTICLE FLOW
CHARACTERISTIC ANALYSIS 97

TABLES ... 110
FIGURES .. 127
VITA ... 176
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Comparison of the Infinite Terms of Image Force $(n \to \infty)$ and the result from the Modified Formula; $\Theta = 0^\circ$, $L = 12.5$, $Q = 1$, $St = 0$.</td>
<td>110</td>
</tr>
<tr>
<td>5.1</td>
<td>Particle Trajectory along a Convergent Channel; $Y_0 = 0.9$, $\Theta = 7.5^\circ$, $L = 6.07$, $Q = 10$, $St = 10$.</td>
<td>111</td>
</tr>
<tr>
<td>5.2</td>
<td>Particle Trajectory along a Convergent Channel; $Y_0 = 0.5$, $\Theta = 7.5^\circ$, $L = 6.07$, $Q = 10$, $St = 10$.</td>
<td>112</td>
</tr>
<tr>
<td>5.3</td>
<td>Particle Trajectory along a Convergent Channel; $Y_0 = 0.1$, $\Theta = 7.5^\circ$, $L = 6.07$, $Q = 10$, $St = 10$.</td>
<td>113</td>
</tr>
<tr>
<td>5.4</td>
<td>Image Charge Distribution at various Particle Vertical Positions; (a) $\Theta = 7.5^\circ$, (b) $\Theta = 5^\circ$, (c) $\Theta = 2.5^\circ$.</td>
<td>114</td>
</tr>
<tr>
<td>5.5</td>
<td>Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\Theta = 7.5^\circ$, $L = 6.07$, $St = 100$.</td>
<td>117</td>
</tr>
<tr>
<td>5.6</td>
<td>Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\Theta = 7.5^\circ$, $L = 6.07$, $St = 10$.</td>
<td>117</td>
</tr>
<tr>
<td>5.7</td>
<td>Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\Theta = 7.5^\circ$, $L = 6.07$, $St = 1$.</td>
<td>118</td>
</tr>
</tbody>
</table>
5.8 Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 7.5^\circ$,
L = 6.07, St = 0.1 118

5.9 Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 7.5^\circ$,
L = 6.07, St = 0.01 119

5.10 Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 7.5^\circ$,
L = 6.07, St = 0 . 119

5.11 Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 5^\circ$,
L = 9.14, St = 100 120

5.12 Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 5^\circ$,
L = 9.14, St = 10 . 120

5.13 Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 5^\circ$,
L = 9.14, St = 1 . 121

5.14 Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 5^\circ$,
L = 9.14, St = 0.1 . 121

5.15 Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 5^\circ$,
L = 9.14, St = 0.01 . 122
5.16 Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 5^\circ$, $L = 9.14$, $St = 0$ 122

5.17 Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 2.5^\circ$, $L = 18.3$, $St = 100$ 123

5.18 Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 2.5^\circ$, $L = 18.3$, $St = 10$ 123

5.19 Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 2.5^\circ$, $L = 18.3$, $St = 1$ 124

5.20 Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 2.5^\circ$, $L = 18.3$, $St = 0.1$ 124

5.21 Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 2.5^\circ$, $L = 18.3$, $St = 0.01$ 125

5.22 Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 2.5^\circ$, $L = 18.3$, $St = 0$ 125

5.23 Particle Deposition along a Parallel Plate Channel for various Charge Parameter Q; $\theta = 0^\circ$, $L = 12.5$, $St = 0$ 126
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Coordinate System in a Parallel Plate Channel with Charged Particle and Image Pairs</td>
<td>127</td>
</tr>
<tr>
<td>3.2</td>
<td>Coordinate System in a Convergent Channel with Charged Particle and Image Pairs</td>
<td>128</td>
</tr>
<tr>
<td>3.3</td>
<td>Distribution of Image Pairs on Image Circle of a Convergent Channel of 90 Degrees</td>
<td>129</td>
</tr>
<tr>
<td>3.4</td>
<td>Distribution of Image Pairs on Image Circle of a Convergent Channel of 60 Degrees</td>
<td>130</td>
</tr>
<tr>
<td>3.5</td>
<td>Distribution of Image Pairs on Image Circle of a Convergent Channel of 45 Degrees</td>
<td>131</td>
</tr>
<tr>
<td>3.6</td>
<td>Distribution of Image Pairs on Image Circle of a Convergent Channel of 42 Degrees</td>
<td>132</td>
</tr>
<tr>
<td>3.7</td>
<td>Distribution of Image Pairs on Image Circle of a Convergent Channel of 30 Degrees</td>
<td>133</td>
</tr>
<tr>
<td>3.8</td>
<td>Limiting Case of a Convergent Channel of 180 Degrees</td>
<td>134</td>
</tr>
<tr>
<td>3.9</td>
<td>Distribution of Image Pairs on Image Circle of a Convergent Channel of 15 Degrees</td>
<td>135</td>
</tr>
</tbody>
</table>
3.10 Distribution of Image Pairs on Image Circle of a Convergent Channel of 10 Degrees 136

3.11 Distribution of Image Pairs on Image Circle of a Convergent Channel of 5 Degrees 137

3.12 Scheme of Images Pairs on Image Circle of a Convergent Channel of 45 Degrees 138

5.1 Axial Velocity of Fluid along a Convergent Channel; $\theta = 7.5^\circ$, $L = 6.07$, $Q = 10$, $St = 10$ 139

5.2 Vertical Velocity of Fluid along a Convergent Channel; $\theta = 7.5^\circ$, $L = 6.07$, $Q = 10$, $St = 10$ 140

5.3 Particle Trajectory along a Convergent Channel; $\theta = 7.5^\circ$, $L = 6.07$, $Q = 10$, $St = 10$ 141

5.4 Particle Axial Velocity along a Convergent Channel; $\theta = 7.5^\circ$, $L = 6.07$, $Q = 10$, $St = 10$ 142

5.5 Particle Vertical Velocity along a Convergent Channel; $\theta = 7.5^\circ$, $L = 6.07$, $Q = 10$, $St = 10$ 143

5.6 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 7.5^\circ$, $L = 6.07$, $St = 100$ 144

5.7 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 7.5^\circ$, $L = 6.07$, $St = 10$ 145
5.8 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 7.5° \), \(L = 6.07, \ St = 1 \) 146

5.9 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 7.5° \), \(L = 6.07, \ St = 0.1 \) 147

5.10 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 7.5° \), \(L = 6.07, \ St = 0.01 \) 148

5.11 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 7.5° \), \(L = 6.07, \ St = 0 \) 149

5.12 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 5° \), \(L = 9.14, \ St = 100 \) 150

5.13 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 5° \), \(L = 9.14, \ St = 10 \) 151

5.14 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 5° \), \(L = 9.14, \ St = 1 \) 152

5.15 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 5° \), \(L = 9.14, \ St = 0.1 \) 153
5.16 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 0.01$ 154

5.17 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 0$ 155

5.18 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 100$ 156

5.19 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 10$ 157

5.20 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 1$ 158

5.21 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 0.1$ 159

5.22 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 0.01$ 160

5.23 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 0$ 161
5.24 Effect of Charge Parameter \(Q \) on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 2.5^\circ \),
\(L = 18.3, \ St = 100 \) 162

5.25 Effect of Charge Parameter \(Q \) on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 2.5^\circ \),
\(L = 18.3, \ St = 10 \) 163

5.26 Effect of Charge Parameter \(Q \) on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 2.5^\circ \),
\(L = 18.3, \ St = 1 \) 164

5.27 Effect of Charge Parameter \(Q \) on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 2.5^\circ \),
\(L = 18.3, \ St = 0.1 \) 165

5.28 Effect of Charge Parameter \(Q \) on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 2.5^\circ \),
\(L = 18.3, \ St = 0.01 \) 166

5.29 Effect of Charge Parameter \(Q \) on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 2.5^\circ \),
\(L = 18.3, \ St = 0 \) 167

5.30 Effect of Charge Parameter \(Q \) on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 2.5^\circ \),
\(L = 18.3, \ St = 100 \) 168

5.31 Effect of Charge Parameter \(Q \) on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 2.5^\circ \),
\(L = 18.3, \ St = 10 \) 169
5.32 Effect of Charge Parameter Q on Deposition for Uniform flow in a Convergent Channel; $\theta = 2.5^\circ$, $L = 18.3$, $St = 1$ 170

5.33 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 2.5^\circ$, $L = 18.3$, $St = 0.1$ 171

5.34 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 2.5^\circ$, $L = 18.3$, $St = 0.01$ 172

5.35 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 2.5^\circ$, $L = 18.3$, $St = 0$ 173

5.36 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Parallel Plate Channel; $\theta = 0^\circ$, $L = 12.5$, $St = 0$ 174

5.37 Comparison of Deposition in a Parallel Plate Channel with Yu and Chandra's Result; $\theta = 0^\circ$, $St = 0$ 175
NOMENCLATURE

Symbol

\(a \)
particle radius

\(D \)
Brownian diffusion coefficient

\(D_p \)
particle diameter

\(f \)
Stoke's drag force

\(F_x, F_y \)
image force per particle in the axial and vertical components

\(F'_x, F'_y \)
dimensionless image force per particle in the axial and vertical components

\(h_0 \)
half the convergent channel inlet width

\(h \)
half the convergent channel width

\(h_n \)
h value at location of the \(n \)th image (\(n=1,2,\ldots \))

\(h'_n \)
h value at location of the \(n' \)th image (\(n=1,2,\ldots \))

\(H \)
ratio of the local convergent channel width to the channel inlet width

\(k \)
Boltzmann's constant

\(K_n \)
Knudsen number

\(L \)
mean free path of gas given in Chapter two

\(L \)
dimensionless convergent channel length

\(m \)
mass of a particle

\(n \)
charge-inertia parameter defined in chapter 2

\(N \)
total number of image pairs

\(q \)
electric charge per particle

\(q'' \)
penetration parameter defined in chapter 2

\(q_n \)
distance between the particle and the \(n \)th image above the upper channel wall (\(n = 1,2,\ldots \))
qn' distance between the particle and the n'th image below the lower channel wall (n = 1,2...,)
Q dimensionless electrostatic charge parameter
Qn dimensionless distance between the particle and the nth image above the upper channel wall
Qn' dimensionless distance between the particle and the n'th image below the lower channel wall
qnx,qny axial and vertical components of qn (n = 1,2...,)
qn'x,qn'y axial and vertical components of qn' (n = 1,2...)
QnX,QnY dimensionless axial and vertical components of Qn (n = 1,2...,)
Qn'X,Qn'Y dimensionless axial and vertical components of Qn' (n = 1,2...,)
Re Reynolds number based on half convergent channel inlet width
St Stoke's number or particle inertia parameter
t time variable
T dimensionless time variable
u,v axial and vertical component of fluid velocity
up,vp axial and vertical component of particle velocity
uo inlet velocity of fluid (uniform)
upo inlet velocity of particle
U,V dimensionless axial and vertical component of fluid velocity
Up,Vp dimensionless axial and vertical component of particle velocity
Uo dimensionless inlet velocity of fluid (uniform)
Upo \quad \text{dimensionless inlet velocity of particle}

V_g \quad \text{settling velocity of particle}

V_s \quad \text{terminal settling velocity}

x, y \quad \text{axial and vertical coordinates}

X, Y \quad \text{dimensionless axial and vertical coordinates}

\overline{Y} \quad \text{dimensionless vertical coordinate} = \frac{Y}{H} \ (\text{always unity at convergent channel wall})

y_u, y_l \quad \text{critical values of } y \text{ defined in equation (4-7)}

Y_u \quad \text{dimensionless critical values of } Y \text{ defined in equation (4-21)}

\textbf{Greek Letters}

\varepsilon_0 \quad \text{permittivity of free space}

\theta \quad \text{half the convergent channel angle}

\theta_n \quad \text{angle between } q_n \text{ and the vertical axis}

\theta_{n'} \quad \text{angle between } q_{n'} \text{ and the vertical axis}

\mu \quad \text{viscosity of the fluid of suspension}

\nu \quad \text{kinematic viscosity of the fluid of suspension}

\pi \quad 3.14159 \ldots

\rho \quad \text{density of the fluid phase}

\rho_p \quad \text{density of the particle cloud (concentration)}

\sigma \quad \text{sticking probability}

\sigma_w \quad \text{sticking probability at wall}
Superscripts

'dimensionless quantities as defined

Subscripts

n for the nth image (n = 1,2,...)
n' for the n'th image (n = 1,2,...)
o initial or inlet condition
p for particle phase
w for wall condition
x,y axial and vertical components
X,Y dimensionless axial and vertical components
1. INTRODUCTION

The flow of a two-phase fluid-solid particle suspension in conduits is of extreme importance because it is closely related to a variety of practical situations and many engineering and scientific applications. Examples of such technological problems are turbomachines --- compressors and turbines, dust collectors, furnace exhausts, fluid scrubbers, pneumatic conveyors, aerosol and paint sprays, blood flow, respiratory tracts, and rocket and missile exhaust systems. The primary cause of fluidic contamination and air pollution is the flow of suspensions which results in deposition. Therefore, reliable prediction is based on thorough understanding of the contamination process itself whereby changes in plugging characteristics and performance can be expected for better fluidic control.

Recently, investigation has concentrated on the significance of parameters that affect the deposition process in laminar flow in symmetrical channels. Since the flow was assumed to be perfectly symmetric, gravitational effects were neglected. In a variety of cases of practical importance, the particle cloud with a high concentration of particles was treated as a continuum so that the flow of suspensions can be regarded, at least for the purposes of analysis, as a mixture of two interpenetrating continuous
fluids. Thus it was found that an appreciable amount of particle deposition can result because of the electrostatic charge effect on the particles. However, most of the investigators in this field of particle depositions concentrated only on fully developed laminar flows, turbulent flows, or symmetrical laminar entrance flows in a constant area horizontal or vertical channel. Although the convergent channels and/or diffusers had also been investigated, they were restricted to a high particle concentration flow in the entrance regions of the channels.

The electrostatic force due to the charges fall into two categories: (1) caused by the mutual electrostatic repulsion between particles, the so called field force, and (2) caused by the image force exerted on the particles induced on the electrostatic. Investigations have shown that when the particle number density is sufficiently low, i.e. less than ten to the minus five power (1.0E-5) per cubic centimeter, the predominant effect is mainly due to the image force. Many practical problems involving suspension of particles are relatively low particle number density and fall into the image force domain. Thus, in this study, it is assumed that the particle mass density or the particle concentration in the channels is low enough that the image force becomes the dominant effect on deposition.

The image force acting on a particle in a conduit is a
function of its position with respect to the conduit wall and the shape of the conduit. The image force equation for constant area parallel-plate and cylindrical channels have been given, but not for convergent channels and diffusers. It thus becomes an important but essential objective of this study to derive and analyze the image force equations for convergent channels. The consequence of this theoretical analysis leads to utilizing the image force equations derived in investigating numerically the symmetrical uniform flow of suspensions in convergent channels under the influences of inertia force of the particle, electrostatic image force due to charges on the particle, and viscous force of the fluid.

The characteristics of the deposition curve for different flow parameters like the inertia parameter and image forces will be considered. In particular, the effect of the angle of convergence (θ) together with the inertia force and image force on the fraction of deposition of the solid particles will be fully investigated. Since no gravitational influences are considered, a symmetrical fraction of deposition of particles on both the top and bottom walls of the convergent channels (or diffuser) is expected. Thus the particle phase together with the fluid phase, and the convergent channel, will follow a symmetrical pattern, and consequently only one half of the convergent channels need be considered.
The fluid phase is assumed to be two-dimension, steady, uniform, incompressible, and viscous throughout the entire flow field. Based on Newton's Second Law of Motion, which states that the product of mass and acceleration of a particle in any direction is proportional to the force acting on the particle in that direction, a mathematical model is developed for the motion of the particle. The resulting governing equations and boundary conditions are solved numerically using the Runge-Kutta (of fourth order) algorithm. A brief description on the application of the Runge-Kutta solution in particle deposition analysis is contained in Appendix A.

In chapter two, a concise literature survey on the deposition of particles in multiphase flow is reported. Analysis and derivation of the image force equation in convergent channels is studied in chapter three. The flow of suspensions in convergent channels under the influence of the inertia force, the electrostatic image force, and the viscous force is included in chapter four. As described in Appendix B, dimensionless parameters Q (Electrostatic image charge parameter; of values 100, 10, 1, 0.1, 0.01, and 0), and St (Stoke's number or inertia parameter; of values 100, 10, 1, 0.1, 0.01, and 0) will be investigated. The Reynold's number Re considered is around 400. Consequences of investigation are given and fully discussed in chapter five while the numerical results are tabulated in Tables.
4.1, 5.1 to 5.23 and plotted in Figures 5.1 to 5.37. All of the numerical work was carried out on an IBM 370 computer, while most of the analytical results were plotted with a Nicolet ZETA 1453SX plotter. Computer programs for particle charge parameters calculation and for particle flow characteristic analysis are included in Appendices C and D, respectively. Conclusions and recommendations for further investigation are given in chapters six and seven, respectively.
2. LITERATURE SURVEY ON THE DEPOSITION OF PARTICLES IN CHANNELS

The main purpose of our investigation is to derive the image force equations for convergent channels so as to study the flow of suspensions in such channels under the influence of the electrostatic image force in addition to the inertia force of the particle and the viscous force of the fluid. In order to have some theoretical background and understanding on the investigation results thus far obtained, a literature survey on previous research of this topic is required. The survey will mainly focus on the particle deposition in two-dimensional parallel-plate channel due to image force.

Many scholars have studied and investigated the internal flow of suspensions and deposition of suspended particles from laminar and turbulent flows. As early as 1938, the transport of suspended particles by turbulent streams of water was studied by Kalinske and Van Driest (1)*. In 1953, Longwell and Weiss (2), studied the mixing and distribution of liquid droplets in high velocity gas streams.

* { } : Numbers in brackets designate References used
It is important to understand the behavior of particles in flows in order to control it. Theoretically, particles as small as several molecules can exist; however, the practical lower limit for control is about 0.01 micrometer. Therefore, it is important to recognize the diameter and size of particles since they may be affected by diffusion, gravity, electrostatic charge, inertia, acoustic, phoretic, magnetic and other forces (3). In situations where gravitational or inertia forces act on a particle proportional to its mass, a "pseudo" particle size called aerodynamic diameter specifies its motion. This aerodynamic diameter is defined by Stober (4) as the diameter of a sphere of unit density (1 gm/cc) that attains the same terminal settling velocity (Vs) at low Reynolds number in still air as the actual particle under consideration. In this way, not only particles of circular or spherical shape, but also of irregular geometry can be defined as long as they are of unit density.

Particle behavior often depends on the ratio of particle size to some other characteristic length. The mechanisms of heat, mass, and momentum transfer between particle and carrier gas depend on the Knudsen number, Kn = 2L/Dp, where L is the mean free path of the gas. This mean free path or mean distance traveled by a molecule between successive collisions can be calculated from the kinetic theory of gases. As a good approximation for a gas composed
of molecules that act like rigid elastic spheres, Friedlander (5) uses the following expression:

\[L = \nu \left(\frac{\pi m}{2kT} \right)^{1/2} \]

In the expression above, \(\nu \) is the kinematic viscosity of the gas, \(m \) is the molecular mass, \(k \) is the Boltzmann's constant, and \(T \) is the absolute temperature. At standard temperatures and pressures, the mean free path in air is about 0.065 micrometer.

The particle size of interest in aerosol behavior range from molecular clusters of 10 Å to as large as 100 micrometer for droplets and dust particles. Because it is difficult to define terms exactly and because many real systems composed of mixtures of particles are so complex, only some common classifications for the clouds of particles are specified by the following categories (3).

- **MIST** - represents fine particles that have diameters of 5 micrometer and larger
- **DUST** - consists dispersion aerosols of solid particulate matter up to several hundred micrometer in diameter
- **AEROSOLS** - implies particles less than 50 micrometer in diameter
Stukel and Soo (6) studied and investigated experimentally the hydrodynamics of a suspension with particles suspended in turbulent flow over the inlet of a channel formed by two parallel-plates made for various flow velocities, plate gap widths, and mass flow ratios of solids in air. Their purpose was to further the understanding of the aerodynamics of air pollution control equipment.

Testing was performed in a 12 inch by 12 inch subsonic wind tunnel with maximum tunnel speed of up to 120 ft/sec. Mass flow ratios of particles to air varied from 0.01 to 0.1 pound particles per pound air and with plate gap widths of 1/4, 1, and 2 inches. They determined the particle and air velocities, the particulate mass flow and density distributions, and the particle size distribution as affected by the flow response.

Observations were obtained on the nature of the developing turbulent boundary layer for dilute suspensions that the density of particles is higher at the wall than at the core because of the presence of charge on the particles induced by surface contacts. Furthermore, as analogous to rarefied gas motions, a particle slip velocity brought about by the lack of particle-to-particle collisions in the suspension at the wall was also observed. They thus concluded that similarity laws for the scaling of equipment for air pollution control should include the momentum
transfer parameter and the electroviscous parameter in addition to the Reynolds number. The electroviscous number is especially important when the particles possess large charge-to-mass ratios.

Friedlander and Johnstone (7) discovered that when a stream of gas carrying suspended particles flows in turbulent motion past a surface, the particles are deposited due to the radial fluctuating component of velocity. By performing an experimental study of the deposition of dust particles on the walls of tubes with an analysis of the mechanics of transport of particles in a turbulent stream, they found that the net rate of deposition depends on both the rate of transport of the particles to the wall and the rate of re-entrainment. The latter effect can be reduced to a minimum if they allow only a single layer of particles to accumulate on the surface and taking precautions to ensure adherence of all particles that struck the wall.

The occurrence of particle deposition due to field forces was studied by Soo and Rodgers (8). They defined a sticking probability, \(\sigma \), which depends on the material properties and also relates to the force of adhesion of particles to a surface. When all particles drifting to the wall stick to or settle at the wall \(\sigma = 1 \); and \(\sigma = 0 \) for complete re-entrainment.
Corn (9) showed that adhesive forces are either
electrical or liquid (viscosity and surface tension) in
origin. Contact potential and dipole effect, space charge
and electronic structure are included in the electrical
forces. He also found that the effect of gravity alone
produces settling, but the fact that a particle may again
become re-entrained gives $\sigma < 1$. There is another sticking
probability σ_w which concerns adhesion of particles at the
immediate vicinity of the wall. Opposite to settling is the
lifting of a particle in the shear flow of a fluid. This
leads to a redistribution of density of particle clouds and
erosion of a bed of deposited particles.

In 1971, a continuum theory of solid-fluid suspensions
including solid-phase viscosity was discussed by Yang and
Peddieson (10). They applied this theory to the solution of
uni-directional, plane, parallel-flow problems. Their
assumptions included: (1) no-slip condition for the
dispersing phase, (2) slip condition for the dispersed phase
at a solid surface, (3) Stokes drag formula that governed
the interphase force, and (4) both components obeyed
Newton's law of viscosity. The resulting equations were
used to solve three steady state flow problems: (1) plane
Poiseuille flow, (2) plane Couette flow, and (3) vertical
film flow. They further assumed an incompressible Newtonian
fluid with indeterminate pressure, whereas the solid phase
contributed nothing to the pressure of the mixture.
Closed-form solutions were obtained for these problems and were used to evaluate the velocity profiles, skin friction coefficients, and flow rates of both phases for a variety of numerical values of the parameters arising in the problem.

Their results showed that the inclusion of solid-phase viscosity and the amount of particle slip allowed at the channel walls have important consequences in the problems solved. Some preliminary results for an unsteady parallel-flow problem of the boundary layer type (Stokes' first problem) were also included. Since they treated the particle cloud in their analysis as a continuum, the suspension can be regarded as a mixture of two interpenetrating continuous fluids.

Thomas (11) has determined the minimum transport velocity for flocculated thorium oxide and kaolin suspensions flowing in glass pipes. The minimum transport velocity was defined as the mean stream velocity required to prevent the accumulation of a layer of stationary or sliding particles on the bottom of a horizontal conduit. As the pipes ranged from 1 to 4 inches in diameter and the concentration varied from 0.01 to 0.17 volume fraction solids, two flow regimes were observed depending on the concentration of the suspension. In the first case, the suspension was sufficiently concentrated to be in the
compaction zone and hence had an extremely low settling rate. The second regime was observed with more dilute suspensions which were in the hindered-settling zone and settled ten to one-hundred times faster than slurries which were in the compaction.

The concentration for transition from one regime to the other was dependent on both the tube diameter and the degree of flocculation; and when the suspension particles were smaller than the thickness of the laminar sublayer, they settled according to Stokes' drag law. Under these circumstances the relation obtained for dilute suspensions was found to be consistent with particle transfer in the radial direction according to Bernoulli forces on the particle and the action of turbulent fluctuations which penetrate the laminar sublayer. For the case of a concentrated suspension in compaction, the minimum transport velocity was given by a characteristic critical Reynolds number.

The general case of a fully developed turbulent flow in a pipe with electrically charged particles or with significant gravity effect, or both, and for any inclination of the pipe was fully analyzed by Soo and Tung (12). The influencing parameters that defined the state of motion include: pipe flow Reynolds number, Froude number, diffusion-response number, electro-diffusion number, momentum-transfer number and particle Knudson number.
Comparison with experimental results was made for both gas-solid and liquid-solid suspensions. The result showed that the gravity effect becomes significant in the case of large pipe diameters and large particle concentrations.

Soo and Tung (13) further included the effect of sedimentation into their previous studies of fully developed turbulent flow particles in a turbulent fluid. Additional considerations from their previous studies were the diffusion and settling under field forces, the sticking probability of a particle at the wall, and that to a bed of similar particles. The rate of deposit build-up at the wall was also studied.

Robinson (14), Van Deemter and Van Der Laan (15), Hinze (16), Marble (17), Murray (18), Pigford and Baron (19), Anderson and Jackson (20), and Soo (21) have significantly contributed to this field of study by proposing their own sets of hydromechanical equations for the analysis of two-phase solid-fluid flows. Among them, Soo's work seems to be the most general in that he begins with the equations of the general theory of mixtures discussed by Truesdell and Toupin (22), and Truesdell and Noll (23). The equations given by these authors have similar forms but are not in complete agreement. However, one of the best understood situations appears to be the case of negligible volume concentration of particles (i.e., a
dilute suspension). Marble (24), in his review article, has discussed equations that are appropriate to this typical condition.

The motion of a two-phase (dust-carrier gas) suspension in the vicinity of a sphere or a circular cylinder was studied by Peddieson (25). The problem of analyzing the flow of a fluid containing solid particles or droplets past such bodies has been of interest for a long time because such flows exist in several situations of engineering interest. These include the formation of ice on airplane wings, the erosion of missile surfaces due to high-speed raindrop impacts, and the collection and sampling of dust for the purposes of monitoring and controlling air pollution.

Comparin et al. (26) and Eldighidy et al. (27) performed some theoretical analysis and investigations on deposition in the entrance of a channel and in a diffuser. In these analyses, effects of diffusion, electrostatic charge repulsive force and adhesive force were considered and the results showed that the electrostatic charge effect played an important role in the deposition of particles. Eldighidy et al. (27) further found that the surface adhesion has a smaller effect on the rate of deposition than the electric charge. Moreover, it was found that the rate of deposition was greatly affected by the divergence angle
in a diffuser flow. The pressure gradient as well as the rate of deposition increases as the diffuser angles increase. However, because the separation occurs earlier at larger diffuser angles, the rate of deposition increases rapidly in the presence of electric charge. In the limiting case of the absence of electric charge, the rate of deposition decreases rapidly with increasing diffuser angle. The effect of electrostatic image force was not investigated in these analyses.

Ingham (28,29) investigated theoretically the simultaneous diffusion and sedimentation of aerosol particles in two dimensional channels. Both plug (uniform) and fully developed (Poisouille) flow were considered with the emphasis on the case when diffusion effects are larger than or are of the same order of magnitude as sedimentation effects due to gravity.

A similar investigation for both slug and Poisouille flow was conducted by Taulbee and Yu (30). They found that the fractional penetration depends on a parameter \(q'' = h*V_g/D \) where \(h \) is the channel half height, \(V_g \) is the settling velocity of a particle and \(D \) is the Brownian diffusion coefficient. The result shown that for \(q'' < 0.1 \), the particle loss was practically due to diffusion alone while for \(q'' > 200 \), the deposition was mainly due to settling. The deposition due to the combined mechanism in
the range $0.1 < q'' < 200$ was significantly smaller than the algebraic sum of deposition due to two independent mechanism.

A new approach based on the concepts of the particle trajectory function and the limiting trajectory is developed by Wang (31) for calculating the precipitation efficiency of channels of different cross-section. The trajectory function he used is equivalent to the stream function of a virtual flow field where the motion of particles are considered. His analyses was limited to two-dimensional motions of small particles and solutions were derived for gravitational deposition of particles from laminar flows in inclined flat channels and circular tubes. According to Wang, the use of the trajectory function provides a simple way for calculating the flow rate of particles through any area. This is particularly useful in the analysis of the deposition in the inclined channels of which the inlet and outlet cross-sections are not vertical.

Precipitation of charged particles under the influence of image force from laminar flows in rectangular and cylindrical channels was investigated theoretically by Yu and Chandra (32). They neglected the gravity, inertial and diffusion (Brownian motion) effects of particles and studied the effect of electrostatic image force on the deposition of particles from laminar flows in a rectangular (parallel-plate) channel and that in a circular tube. The equation of
image force for rectangular channel is introduced in the following chapter on which the derivation of the equation of image force for a convergent channel is based.

Yu and Chandra's numerical calculations were based on the analysis of limiting trajectories of particles that enabled the determination of the precipitation efficiency for channels of different dimensions. The results for cylindrical tubes are applicable to the deposition of charged particles in human lung airways.

Yu {33} further analyzed the precipitation of unipolarly charged particles of uniform size in cylindrical and spherical vessels by their own space charge. When the particle number density is high and particle-to-particle interaction is important, particle loss to the wall is due to mutual electrical repulsion. On the other hand, if the particle number is low, the image force acting on the particle due to the presence of the wall is the principal force responsible for particle deposition. Yu derived expressions for the fractional deposition of particles to the wall in both cases in order to calculate charged particle deposition in the lung airways.

Chen {34} studied the deposition of aerosols in a long channel due to diffusive and electrostatic charge effects. The diffusion equation and the Poisson equation for flow of
aerosol particles with electrostatic charge field force were solved with integral method based on flow of liquid with a uniform or parabolic velocity profile. He found that the inverse of the centerline particle density increased linearly with the product of the electrostatic parameter and the axial distance for the flow near the channel inlet. The centerline particle density, the penetration and the electric field force decreased exponentially with the axial distance for flow far from the channel inlet.

Ingham (35) considered the deposition of a steady flow of suspensions due to electrostatic charge field force near the entrance of a cylindrical tube. Neglecting axial diffusion and with zero radial velocity, his governing equations included the steady state transport equation and Poisson's equation for electrostatic field. He solved these equations analytically.

Laminar flow of particle in a parallel-plate channel with electrostatic charge field force, diffusion, and gravitational effects was studied by Chen and Gelber (36). Variations in deposition were determined using a dimensionless parameter (charge-diffusion parameter) which is a ratio of the space electrostatic charge effect to the diffusion effect. They found that when this parameter was greater than 50, the diffusion effect may be neglected. When gravity acting in the direction of flow was considered,
a velocity ratio (terminal velocity of the particle to the mean velocity of the fluid flow) was introduced. The space electrostatic charge field force effect and the gravity effect were considered in this case, and the velocity profile was either uniform or fully-developed.

In the theoretical investigations on deposition in channels carried out by Yu (33), Chen (34), Ingham (35) and Chen and Gelber (37), the axial diffusive term in the continuity equation was neglected in the analyses and, thus, the axial velocity of the fluid was considered to be the same as that of the particle. In other words, the inertia of the particle was totally neglected.

Chen et al (38) extended the study to include the effect of particle inertia on the deposition of aerosol in a parallel-plate channel. Highly charged fine particles of sizes less than 20 micrometer had been analyzed numerically for both uniform and fully-developed flows using a trajectory method. They considered the deposition to be primarily due to space charge alone and the image and gravity forces were not included in the analysis. They also defined a charge-inertia parameter \(n \) (ranging from 0 to 1) to characterize the flow deposition phenomena. They found that for \(n \) less than 0.1, the effect of inertia forces may be neglected and that the fraction of deposition near the entrance of the channel deviated substantially from the result that neglected the inertia effect.
The following analysis will investigate the electrohydrodynamic flow system of diluted suspensions of charged solid particles of constant mass and electrostatic charge penetrating between convergent channel plates. Viscous effect will be encountered in addition to the two dimensional subsonic flow field. Thus, the electrostatic force that attracts the particle towards the wall are solely due to the image charge forces of the conducting walls. Inertia effect will also be considered and dimensionless parameters will be introduced in the analysis.
3. THEORECTICAL ANALYSIS OF IMAGE FORCE EQUATIONS

The problem of internal flow of suspensions and deposition of suspended particles in two-dimensional parallel-plate channels have been extensively studied theoretically by many investigators as mentioned in the previous chapter. The interest in such studies stems from the fact that aerosol deposition experiments often yield higher deposition than could be accounted for by normal mechanisms such as gravitational settling, Brownian diffusion and impaction; the increased precipitation could be due to the particle charge.

As stated in Chapter one, the force due to charge may arise in two ways: (1) by the mutual electrostatic repulsion between particles, the so-called field force, and (2) by the charge induced on the walls, the so-called image force. It has been demonstrated by Yu (33) that when the particle number density is sufficiently low, the predominant effect is due to the image force.

The image force equation have been given by Yu and Chandra (32) and Yu (33) in parallel-plate and cylindrical channels. Yu and Chandra (32) used this equation in studying the precipitation from aerosol flows due to the image force alone neglecting sedimentation and concluded
that the charge could significantly affect the particle deposition in the farthest human airways.

Later, Thiagarajan and Yu (39) utilized the image equation in the study of precipitations from aerosol flows in parallel-plate and cylindrical channels due to the simultaneous effect of gravitational and electrostatic image forces. They found that the penetration efficiencies are a function of several non-dimensional parameters.

Although the image force equation has been extensively used in particle deposition analysis in addition to the influences of inertia, viscous and gravitational forces, it is restricted to constant area parallel-plate (40) and cylindrical channels (41) studies only. Image force equations in convergent channels and diffusers have not been derived for further analysis yet. In this chapter, a detailed study on the image force equation for constant area parallel-plate channels is presented first. Then, an in-depth derivation and analysis of the image force equations for convergent channels together with the theoretical analysis on the Image Circle are given.

The derivation of the image force equations for convergent channels is based on that given for parallel-plate channels with the assumption that both channel plates are conducting and grounded.
3.1 IMAGE FORCE EQUATION FOR PARALLEL-PLATE CHANNELS

In this section, the original image force equation for parallel-plate channels is given. In order that the derivation of the image force equations for convergent channels can be easily based on, the original equation is modified to be expressed in a way that all the images above the upper channel wall and below the lower channel wall are grouped together separately.

The coordinate system for parallel-plate channels is shown in Figure 3.1. The flow is along the x-direction. Let \(2h_0 \) be the width of the long parallel-plate channel where \(y = h_0 \) and \(-h_0 \) correspond to the upper and lower walls of the channel, respectively. Based on Coulomb's Law (43) of Electromagnetic Theory and with the assumption that the walls are conducting and grounded, the image force equation for a charged particle between two parallel-plates is given by Yu and Chandra (32) as:

\[
\begin{align*}
F_x &= 0 \\
F_y &= \frac{q h_0 y}{4 \pi \epsilon_0} \left\{ \frac{1}{2} \frac{2}{2} \frac{2}{2} \right. \\
&\quad \left. + \sum_{n=1}^{\infty} \frac{2n+1}{2} \frac{2}{2} \frac{2}{2} \right. \\
&\quad \left. \frac{1}{2} \frac{2}{2} \frac{2}{2} \right. \\
&\quad \left. (2n+1) h_0 - y \right\} \\
&\quad \left. \sum_{n=1}^{\infty} \frac{2n+1}{2} \frac{2}{2} \frac{2}{2} \right. \\
&\quad \left. ((2n+1) h_0 - y \right) \\
&\quad \left. 2n+1 \right\} \\
&\quad \left. 2nd \ pair \ on \right. \\
&\quad \left. 3rd \ pair \ on \right. \\
&\quad \left. 4th \ pair \ on \right.
\end{align*}
\]
where

\[q: \text{ particle charge} \]
\[h_0: \text{ half channel width} \]
\[\varepsilon_0: \text{ free space permittivity} \]

The first term in Equation (3-1) represents the image force on the particle due to the first pair of images. The second term is a summation of the image force due to the second pair up to infinite pair of images; i.e. \(n = 1 \) represents the second pair, \(n = 2 \) represents the third pair and so on.

The image pairs in Figure 3.1 are indicated by 1 and 1' for the first pair, 2 and 2' for the second pair and so on, where 1, 2, 3...... are images located above the upper channel wall and 1', 2', 3'..... are images located below the lower channel wall. It is noticed that the images are all along the y-direction, no image force contributes in the x-direction.

3.2 MODIFICATION OF THE IMAGE FORCE EQUATION

The image force terms in Equation (3-1) are summed up in pairs. It can be expressed out to be summation of individual pair of images as,

\[
F_x = 0
\]

\[
F_y = \frac{q}{4\pi \varepsilon_0} \left\{ \frac{\text{ho} \ y \ \text{2 ho y}}{2 \ 2 \ 2} + \frac{3\text{ho} \ y \ \text{(3ho) - y}}{2 \ 2 \ 2} \right\}
\]

1st pair 2nd pair (n=1)
\[
\begin{align*}
& \frac{5\lambda y}{2} + \frac{7\lambda y}{2} \\
& \{ (5\lambda) - y \} + \{ (7\lambda) - y \} \\
& \text{3rd pair (n=2)} \quad \text{4th pair (n=3)} \\
& \left\{ \text{upper side lower side} \right\} \\
& \{ (5\lambda) - y \} + \{ (7\lambda) - y \} \\
& \text{3rd pair (n=2)} \quad \text{4th pair (n=3)} \\
& \left\{ \text{upper side lower side} \right\} \\
& \text{5th pair on (n=4, ...)} \\
& \right. \\
\end{align*}
\]

where the first, second, third, terms represent image force due to the first, second, third, pair of images, respectively.

Equation (3-2) can be further expressed out as summation of image force due to individual single particle images as,

\[F_x = 0 \]

\[F_y = \frac{q}{4 \pi \varepsilon_0} \left\{ \frac{1}{2} + \frac{-1}{2} \right\} \\
\{2(\lambda - y)} \quad \{2(\lambda + y)\} \\
\text{upper side lower side} \quad \text{1st pair (n=0)} \\
\left\{ \text{upper side lower side} \right\} \\
\{2(3\lambda - y)} \quad \{2(3\lambda + y)\} \\
\text{lower side upper side} \quad \text{2nd pair (n=1)} \]
where the first term on each pair of images represents the particle image which produces a positive force to the particle (particle will thus be moving in the positive y-direction towards the upper channel wall); and the second term represents the particle image which produces a negative attraction force to the particle (particle will thus be moving in the negative y-direction towards the lower channel wall).

If all the images that produce positive force to the particle, and all the images that produce negative force to the particle are grouped together separately, Equation (3-3) becomes,

$$F_x = 0$$

$$F_y = \frac{q}{4\pi\varepsilon_0} \sum_{n=0}^{\infty} \frac{1}{(2((2n+1)\delta - y))^2}$$

due to positive force production images
where the first term is a summation force due to all the images that produce positive force to the particle and the second term is a summation force due to all the images that produce negative force to the particle.

It can be easily obtained, as a cross check by setting \(n = 0 \) in Equation (3-4), the image force Equation (3-1) which due only to the first pair of images as,
convergent channels, it is necessary to understand the characteristics of the system of images due to conducting and grounded walls of convergent channels; so that appropriate assumptions may be applied in the derivations.

The coordinate system for convergent channels is shown in Figure 3.2. The flow is along the x-direction. Let $2h_0$ be the entrance width of the convergent channel where $y = h_0$ and $-h_0$ refer to the upper and lower walls of the channel at entrance, respectively. When $x > 0$, the channel half width $h (< h_0)$ is not a constant but a function of x. The channel walls are also assumed to be conducting and grounded.

A convergent channel can be thought of as a parallel-plate channel with its lower and upper walls tilted at an angle θ and $-\theta$ with respect to the x-axis, respectively, as shown in Figure 3.2.

It is because of this tilted angle of the channel walls, that the images to a point particle between this convergent channel walls which are conducting and grounded are no longer two infinite sequences as that shown in Figure 3.1. The first pair of images (1 and 1' in Figure 3.2) of the particle are shifted ahead of the point particle through an angle θ. The second pair of images (2 and 2'), which are actually resulted from the first pair, are now shifted
further ahead of the first pair of images also through an angle θ. The third and fourth pair of images (3 and 3', 4 and 4') and so on can then be obtained in a similar manner until the nth pair of images is reached.

From basic electromagnetic theory (42,43,44), it is noted that for two conducting planes intersect at an angle 2θ, the system of images of a point charge (particle) is finite and confined on a circle --- THE IMAGE CIRCLE. This image circle is defined by having its center at the intersecting point of the two conducting planes, and the distance from this intersecting point to the point charge as radius.

The total number of pair of images, N, confined on the image circle is related to the intersecting angle of the two conducting planes --- the convergent channel angle, by the following equation (42,43,44),

$$
N = \frac{\pi}{2\theta} \quad (3-5)
$$

Obviously N in the above equation is inversely proportional to the convergent channel angle. Examples of image pairs confined on an image circle is given in Figures 3.3 to 3.7 for convergent angles of 90, 60, 45, 42, and 30 degrees, respectively. For instance, in Figure 3.4, there are a total number of 3 pairs of images confined on the image circle of a convergent channel of 60 degrees.
Based on Equation (3-5) and graphical analysis of these figures, the following assumptions are made in the present investigation.

1. For a particle with positive charge q within a convergent channel, its immediate (first) pair of images are of negative charge $-q$; and positive charge q for the second pair, negative charge $-q$ for the third pair and so forth.

2. If N in Equation (3-5) is an integer, there will be a total number of N pairs of images confined on the image circle. If N happens to be real, there will be a total number of the integer part of N plus one pairs of images on the image circle. For example, as shown in Figure 3.6, $N = 4.28$ for a convergent channel of 42 degrees, there is a total number of 4 plus 1 equals 5 pairs of images confined on the image circle.

3. Assumed that the two images of the last pair are coincide for simplicity.

4. For the limiting case of zero convergent channel angle, N becomes infinite. Actually, this becomes the case of a parallel-plate channel.
5. On the other hand, when the convergent channel angle is 180 degrees, \(N = 1 \) as seen in Figure 3.8. The channel becomes a plane mirror and is out of application in our channel flow analysis.

The image force under investigation in the present analysis are the cases with convergent channel angles 15, 10, and 5 degrees. The image circles together with the exact number of pairs of images correspond to these channel angles are shown in Figures 3.9 to 3.11 for reference.

3.4 IMAGE FORCE EQUATIONS IN CONVERGENT CHANNELS

In the previous section, the image force equation (3-3) for parallel-plate channels is given in a form of summation of forces due to individual images as,

\[
\begin{align*}
F_x &= 0 \\
F_y &= \frac{q}{4 \pi \varepsilon_0} \left\{ \frac{1}{2} \frac{1}{2(h_o - y)} + \frac{-1}{2} \frac{1}{2(h_o + y)} \right\} \\
&\quad \text{image 1 image 1'} \quad \text{1st pair(n=0)} \\
&\quad + \frac{1}{2} \frac{1}{2(3h_o - y)} + \frac{-1}{2} \frac{1}{2(3h_o + y)} \\
&\quad \text{image 2' image 2} \quad \text{2nd pair(n=1)}
\end{align*}
\]
It is worth noticing that for the first two terms, the value inside the bracket of the denominators in Equation (3-6) represent the distances between the point charge (particle) and the first pair of images of the point charge. For example, \(2(\text{h}_0 - y)\) in the first term is the distance between the point charge and the image 1 (first image of the point charge locating above the upper channel wall). For the nth pair of images, the value inside the bracket of the denominators represent the distance between the corresponding \((n-1)\)'th and \(n\)'th (or the \((n-1)\)'th and \(n\)'th) images, respectively. For instance, \(2(\text{h}_0 + y)\) in the sixth term is the distance between the images 2 and 3' \((n = 2)\).

For convergent channels, the same approach is applied to obtain the governing image force equations. As stated in the previous section, it is shown that the images of a point charge between a convergent channel confines on an image circle rather than two infinite sequences of images as for the case of a parallel-plate channel. In order to
apply Equation (3-6) onto a convergent channel, the following terms are geometrically defined as shown in Figure 3.12. For the first pair of images,

\[q_1 = \text{distance between the point charge and image 1} \]
\[= 2(h_o - y)\cos \theta \]
\[q_{1x} = \text{x-component of distance } q_1 \]
\[= 2(h_o - y)\cos \theta \sin \theta \]
\[= (h_o - y)\sin(2\theta) \]
\[q_{1y} = \text{y-component of distance } q_1 \]
\[= 2(h_o - y)\cos \theta \cos \theta \]
\[= (h_o - y)2\cos \theta \]

\[q_{1'} = \text{distance between the point charge and image 1'} \]
\[= 2(h_o + y)\cos \theta \]
\[q_{1'x} = \text{x-component of distance } q_{1'} \]
\[= 2(h_o + y)\cos \theta \sin \theta \]
\[= (h_o + y)\sin(2\theta) \]
\[q_{1'y} = \text{y-component of distance } q_{1'} \]
\[= 2(h_o + y)\cos \theta \cos \theta \]
\[= (h_o + y)2\cos \theta \]

and in a similar manner, for the second pair of images,

\[q_2 = \text{distance between the point charge and image 2} \]
\[= \sqrt{q_{2x}^2 + q_{2y}^2} \]
\[q_{2x} = \text{x-component of distance } q_2 \]
\[= (h_{1'} - y + q_{1'y})\sin(2\theta) + q_{1'x} \]
\[q_{2y} = y\text{-component of distance } q_2 \]
\[= (h_1' - y + q_1'y)^2 \cos^2 \theta - q_1'y \]

\(q_{2'} = \text{distance between the point charge and image } 2' \)
\[= \sqrt{q_{2x}'^2 + q_{2y}'^2} \]

\(q_{2x}' = x\text{-component of distance } q_{2'} \)
\[= (h_1' - y + q_1'y)\sin(2\theta) + q_1'x \]

\(q_{2y}' = y\text{-component of distance } q_{2'} \)
\[= (h_1 + y + q_1y)^2 \cos^2 \theta - q_1y \]

and so on until the nth pair of images,

\(q_n = \text{distance between the point charge and image } n \)
\[= \sqrt{q_{nx}^2 + q_{ny}^2} \]

\(q_{nx} = x\text{-component of distance } q_n \)
\[= (h(n-1)' - y + q(n-1)'y)\sin(2\theta) + q(n-1)'x \]

\(q_{ny} = y\text{-component of distance } q_n \)
\[= (h(n-1)' - y + q(n-1)'y)^2 \cos^2 \theta - q(n-1)'y \]

\(q_{n'} = \text{distance between the point charge and image } n' \)
\[= \sqrt{q_{nx}'^2 + q_{ny}'^2} \]

\(q_{nx}' = x\text{-component of distance } q_{n'} \)
\[= (h(n-1) + y + q(n-1)y)\sin(2\theta) + q(n-1)x \]

\(q_{ny}' = y\text{-component of distance } q_{n'} \)
\[= (h(n-1) + y + q(n-1)y)^2 \cos^2 \theta - q(n-1)y \]
Since \(h < h_0 \) is now a function of \(x \), \(h_r \) or \(h_{r'} \) \((r = 1, 2, \ldots, n)\) in the above expressions represents the local half channel width at the location of image \(r \) or \(r' \), which are at a distance \(qr_x \) or \(qr'_x \) away from the point charge horizontally.

Substituting the proper distances into Equation (3-6) will deduce the prototype image force equation for convergent channels as,

\[
F_x = 0
\]

\[
F_{y_{\text{local}}} = \frac{q^2}{4\pi\varepsilon_0} \left\{ \frac{1}{(q_1)} + \frac{-1}{(q_1')} + \frac{1}{(q_2)} + \frac{-1}{(q_2')} + \cdots + \left(\frac{1}{(q_n)} + \frac{-1}{(q_n')} \right) \right\}
\]

\((3-7)\)

Notice that the \(y \)-component image force in Equation (3-7) is a local value since the attraction or repulsion
forces acting between the point charge and its images are all in the direction of their distances q_1, q_1', q_2, q_2', $\ldots \ldots q_n$, and q_n', respectively. All these forces have to be resolved into the global x and y coordinates of the two phase flow field for analysis. From Figure 3.12, it can be deduced that the distances q_1, q_1', q_2, q_2', $\ldots \ldots q_n$, and q_n' are inclined with the y-axis through an angle θ_1, θ_2, θ_1', θ_2', $\ldots \ldots \theta_n$, and θ_n', respectively where these angles are defined as,

\[
\theta_1 = \tan \left(\frac{-1 q_1 x}{q_1 y} \right)
\]

\[
\theta_1' = \tan \left(\frac{-1 q_1' x}{q_1' y} \right)
\]

\[
\theta_n = \tan \left(\frac{-1 q_n x}{q_n y} \right)
\]

\[
\theta_n' = \tan \left(\frac{-1 q_n' x}{q_n' y} \right)
\]

From vector analysis, all the forces due to the images above the upper channel wall have to multiply by the corresponding $\sin \theta_n$ and $\cos \theta_n$ to be resolved into the global fluid flow coordinates. Similarly, the forces due to the images below the lower channel wall have to multiply by $-\sin \theta_n'$ and $\cos \theta_n'$ to transfer to the global coordinates.
Inserting these factors into Equation (3-7) and rearranging them in the x and y components separately yields,

\[
F_x = \frac{q}{4 \pi \varepsilon_0} \left\{ \frac{\sin \theta_1}{2} + \frac{\sin \theta_1'}{2} \right\} \quad \text{(3-8a)}
\]

image 1 image 1'
1st pair

\[
\sin \theta_2 \quad \sin \theta_2'
+ \frac{1}{2} \frac{1}{2}
(q_2) \quad (q_2')
\]

image 2 image 2'
2nd pair

\[
\sin \theta_n \quad \sin \theta_n'
+ \frac{1}{2} \frac{1}{2}
(q_n) \quad (q_n')
\]

image n image n'
nth pair

\[
F_y = \frac{q}{4 \pi \varepsilon_0} \left\{ \frac{\cos \theta_1}{2} - \frac{\cos \theta_1'}{2} \right\}
\]

image 1 image 1'
1st pair

\[
\cos \theta_2 \quad \cos \theta_2'
+ \frac{1}{2} \frac{1}{2}
(q_2) \quad (q_2')
\]

image 2 image 2'
2nd pair

\[
\cos \theta_n \quad \cos \theta_n'
+ \frac{1}{2} \frac{1}{2}
(q_n) \quad (q_n')
\]

image n image n'
nth pair

\[
\cos \theta_n \quad \cos \theta_n'
+ \frac{1}{2} \frac{1}{2}
(q_n) \quad (q_n')
\]

image n image n'
nth pair

\[
\cos \theta_n \quad \cos \theta_n'
+ \frac{1}{2} \frac{1}{2}
(q_n) \quad (q_n')
\]

image n image n'
nth pair
Equations (3-8a) and (3-8b) are the final image force equations for convergent channels. It is interested to know that θ_1 and θ_1' happen to be the half convergent channel angle θ. Also, for the limiting case of convergent channel angle equals 180 degrees, it becomes the case of a parallel-plate channel. The image force in the x-component will then be zero because of the sine function, and the image circle reduces to the two infinite image sequences.
4. FLOW OF SUSPENSIONS IN CONVERGENT CHANNELS WITH INERTIA, ELECTROSTATIC IMAGE FORCES AND VISCOUS EFFECTS

In this chapter, a numerical scheme is presented to study the uniform flow of suspensions in a two dimensional convergent channel including the fraction of deposition of solid particles on the channel walls due to the inertia force of the particle, electrostatic charge image force on the particle, and viscous force of the fluid. Due to dilute suspension assumption and since the solid particle are very small (size of order 2 micrometer diameter), the effect of gravity can be neglected. Furthermore, it is also assumed that the thickness of the layer of deposit is much smaller than the channel width, so that the effective reduction in channel width is not enough to change appreciably the fluid velocity distribution.

It is assumed that the suspension flow is uniform and incompressible, which is a good approximation for compressible flow at very low Mach numbers (i.e. $M < 0.1$). Moreover, the case of low particle concentration (i.e. dilute suspension) will be considered such that the particles have relatively no effect on the fluid phase.

As a result, assumptions are made as follows:

1. Incompressible, steady flow
2. Two-dimensional, uniform flow
3. Negligible gravitational effect
4. Fluid-particle interaction is negligible
5. Particle-particle interaction is negligible
6. Negligible diffusion force in comparison to image force
7. Convergent conducting channel walls are assumed to be grounded and may be extended to intersect at one point
8. Thickness of the layer of deposit is much smaller than the channel width
9. Negligible lift force on the particle
10. Material density of the fluid phase in comparison to that of the solid particles is negligible
11. No chemical reactions considered
12. Particle number density sufficiently low that mutual electrostatic repulsion (i.e. field force) between particles negligible
13. Electrostatic charge (intensity) is uniformly distributed on surface of particle only
14. Particles behave like a uniform sphere of radius a

Rectangular Cartesian coordinates will be applied in this analysis in a way that the positive x-axis will be placed in the streamwise direction along the centerline of the convergent channel and the positive y-axis in the vertical upward direction as shown in Figure (3.1).
4.1 GOVERNING EQUATIONS

Treating the fluid as a continuum and employing a field representation of fluid properties, we may express the principle of conservation of mass in rectangular coordinates for the fluid phase and particle phase under steady state as follows:

(a) Fluid Phase

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \] \hspace{1cm} (4-1)

\[u_0 = \frac{1}{2h_0} \int_{-h}^{h} u \, dy \] \hspace{1cm} (4-2)

\[v_0 = v = 0 \] \hspace{1cm} (4-3)

where \(u_0, v_0\) are the uniform fluid flow at the entrance of the convergent channel. Here, we have considered the case of connecting the convergent channel at the inlet to a constant area channel of width of \(2h_0\) where the uniform flow is from.

(b) Particle Phase

\[\frac{\partial (\rho_p u_p)}{\partial x} + \frac{\partial (\rho_p v_p)}{\partial y} = 0 \] \hspace{1cm} (4-4)

This continuity equation of the particle phase can be expanded in the form,
\[
\rho_p \frac{\partial u_p}{\partial x} + u_p \frac{\partial \rho_p}{\partial x} + \rho_p \frac{\partial v_p}{\partial y} + v_p \frac{\partial \rho_p}{\partial y} = 0
\]

which contains partial derivatives of the same order for \(u_p\), \(v_p\) and \(\rho_p\).

Based on Newton's Second Law of motion, which states that the product of mass and acceleration of a particle in any direction is proportional to the force acting on the particle in that direction, a mathematical model is developed for the particle deposition analysis.

In rectangular cartesian coordinate system and imposing the assumptions made above, the equations of motion for a particle in a uniform flow of a convergent channel under the influence of image charge, and viscosity based on results from Yu (32) and Chen (38) and also derived in the previous Chapter are:

\[
d \frac{u_p}{m} = f(u-u_p) + F_x \tag{4-5}
\]

\[
d \frac{v_p}{m} = -f(v-v_p) + F_y \tag{4-6}
\]

where

\(F_x = \text{image force per particle in } x\text{-direction}\)

\(F_y = \text{image force per particle in } y\text{-direction}\)

\(f = 6\pi \mu a : \text{Stoke's drag force}\)
\(m = \text{mass of particle} \)
\(t = \text{time unit} \)
\(u = \text{velocity of fluid in } \text{x-direction} \)
\(v = \text{velocity of fluid in } \text{y-direction} \)
\(u_p = \text{velocity of particle in } \text{x-direction} \ (= \frac{dx}{dt}) \)
\(v_p = \text{velocity of particle in } \text{y-direction} \ (= \frac{dy}{dt}) \)
\(a = \text{radius of particle} \)
\(\mu = \text{dynamic viscosity of air} \)

In Equation (4-5), the inertia term on the left hand side is the product of the particle mass and acceleration. On the right hand side is the sum of the viscous force which based on Stoke's law and valid at low Reynolds number, and the \(x \)-component image force which acts on the given charge \(q \) and is induced by its interaction with the conducting channel planes. In a similar fashion, the left hand side in Equation (4-6) is the inertia term while the right hand side is the sum of the viscous force and the \(y \)-component image force on the particle.

It is interesting to note that, when the convergent channel angle \(\theta \) is zero, it conforms to a parallel-plate channel and has no \(x \)-component image force. It should also be noted that the solid particles, although under the inertia effect, do not have to follow the streamline of the fluid, i.e. the particle lines (path lines) and streamlines of the fluid do not necessarily coincide.
The main purpose of solving these equations is to determine the fraction of deposition of the particles on the convergent channel wall due to electric image force (mainly) which can be obtained from equation of conservation of mass of the particle phase as follows:

Fraction of Deposition

\[\int_{-h_0}^{y_l} \rho_p u_p \, dy + \int_{y_u}^{h_0} \rho_p u_p \, dy = \]
\[\int_{-h_0}^{h_0} \rho_p u_p \, dy \] (4-7)

Following the concept of limiting trajectories by Pich (45), \(y_l \) and \(y_u \) in Equation (4-7) are two critical values of \(y \) at the channel entrance \(x = 0 \), such that the particles entering the channel between \(y = -h_0 \) and \(y_l \) will deposit on the lower channel wall; those entering between \(y = y_u \) and \(h_0 \) will deposit on the upper channel wall; and those entering between \(y = y_l \) and \(y_u \) will penetrate the convergent channel.

Since the particle density \(\rho_p \) is assumed to be constant and that the flow follows a symmetrical pattern because of the negligible of gravitational force, only one half of the convergent channel need be considered. With \(u_p \) represents the particle velocity in the \(x \)-direction at the channel inlet, equation (4-7) thus becomes,
Fraction of Deposition

\[
2 \int_{y_0}^{h_0} u_0 \, dy = \frac{\int_{-h_0}^{h_0} u_0 \, dy}{\int_{-h_0}^{h_0} \, dy} \quad (4-8)
\]

Equations (4-1) to (4-4) can be nondimensionalized as given in Appendix B as follows:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad (4-9)
\]

\[
\int_{-1}^{1} u \, dy = 2.0 \quad (4-10)
\]

\[
V_0 = V = 0 \quad (4-11)
\]

\[
\frac{\partial (\rho \, u \, p)}{\partial x} + \frac{\partial (\rho \, v \, p)}{\partial y} = 0 \quad (4-12)
\]

Substituting the dimensionless quantities into Equation (4-5), we have

\[
\frac{2}{\mu_0 \, d \, x} \sum_{n=1}^{N} \left\{ \frac{\sin \theta_n}{h_0 \, (Q_n^x + Q_n^y)} + \frac{\sin \theta_{n'}}{h_0 \, (Q_n'^x + Q_n'^y)} \right\} = f u_0 (U - \frac{d \, x}{d \, t}) + \frac{d \, x}{d \, t} \quad (4-13)
\]
if the whole equation is divided by \(f u_o \), it becomes

\[
\frac{m}{2} \frac{u_o}{f h_o} \frac{dX}{dT} = U - \frac{dx}{dT} + \frac{q}{4 \pi \epsilon_0 f u_o} \sum_{n=1}^{N} \left\{ \frac{\sin \theta_n}{\epsilon_0 (QnX + QnY)} + \frac{\sin \theta_n'}{\epsilon_0 (Qn'X + Qn'Y)} \right\}
\]

or

\[
\frac{m}{2} \frac{u_o}{f h_o} \frac{dX}{dT} = U - \frac{dx}{dT} + \frac{q}{4 \pi \epsilon_0 f u_o} \sum_{n=1}^{N} \left\{ \frac{\sin \theta_n}{QnX + QnY} + \frac{\sin \theta_n'}{Qn'X + Qn'Y} \right\}
\]

so that

\[
\frac{dX}{St} = U - \frac{dx}{dT} + \frac{Q}{2} Fx'
\]

(4-16)

In a similar way, when substituting the dimensionless quantities into Equation (4-6) yields
\[
\frac{2}{\omega_0} \frac{d^2 Y}{d\Theta^2} = f \frac{\omega_0 (V - \frac{dY}{dT})}{\delta T} + \frac{2}{\omega_0} \frac{d^2 Y}{d\Theta^2} + \frac{2}{\omega_0} \frac{d^2 Y}{d\Theta^2}
\]

\[
\frac{2}{\omega_0} \frac{d^2 Y}{d\Theta^2} = f \frac{\omega_0 (V - \frac{dY}{dT})}{\delta T} + \frac{2}{\omega_0} \frac{d^2 Y}{d\Theta^2} + \frac{2}{\omega_0} \frac{d^2 Y}{d\Theta^2}
\]

\[
\sum_{n=1}^{N} \frac{2}{4\pi \epsilon_0} \cos \theta_n \cos \theta_n' \left(\frac{Q_n X}{Q_n X + Q_n Y} + \frac{Q_n Y}{Q_n X + Q_n Y} \right)
\]

\[
\sum_{n=1}^{N} \frac{2}{4\pi \epsilon_0} \cos \theta_n \cos \theta_n' \left(\frac{Q_n X}{Q_n X + Q_n Y} + \frac{Q_n Y}{Q_n X + Q_n Y} \right)
\]

(4-17)

Further reduction leads to

\[
\frac{2}{\omega_0} \frac{d^2 Y}{d\Theta^2} = f \frac{\omega_0 (V - \frac{dY}{dT})}{\delta T} + \frac{2}{\omega_0} \frac{d^2 Y}{d\Theta^2} + \frac{2}{\omega_0} \frac{d^2 Y}{d\Theta^2}
\]

\[
\sum_{n=1}^{N} \frac{2}{4\pi \epsilon_0} \cos \theta_n \cos \theta_n' \left(\frac{Q_n X}{Q_n X + Q_n Y} + \frac{Q_n Y}{Q_n X + Q_n Y} \right)
\]

again, divided the whole equation by \(f \omega_0 \), we have

\[
\frac{2}{\omega_0} \frac{d^2 Y}{d\Theta^2} = V - \frac{dY}{dT} + \frac{2}{\omega_0} \frac{d^2 Y}{d\Theta^2} + \frac{2}{\omega_0} \frac{d^2 Y}{d\Theta^2}
\]

\[
\sum_{n=1}^{N} \frac{2}{4\pi \epsilon_0} \cos \theta_n \cos \theta_n' \left(\frac{Q_n X}{Q_n X + Q_n Y} + \frac{Q_n Y}{Q_n X + Q_n Y} \right)
\]

(4-18)
or

\[
\text{St} = V \frac{\frac{dY}{dT}}{2} + Q F_y'
\]

Equation (4-8) can also be nondimensionalized as:

\[
\frac{\text{Fraction of Deposition}}{2} = \frac{2 \int_{-1}^{1} U_{po} \, dY}{\int_{-1}^{1} U_{po} \, dY}
\]

where \(U_{po} = upo/uo \) = particle entrance velocity/fluid entrance velocity, and is assumed that \(U_{po} = U = 1 \), for uniform flow, at the channel entrance \((x = 0)\). So that, after integration, Equation (4-21) becomes,

\[
\text{Fraction of Deposition} = 1.0 - Yo
\]

where \(Yo \) is the positive y-location of the particle at the convergent channel inlet.

The physical meaning and order of magnitude of the dimensionless quantities and parameters are explained in Appendix B.
Note that from the above equations, the solution depends on the electrostatic charge parameter \(Q \), Stoke's number \(St \), convergent channel angle \(2\theta \), and the boundary conditions.

4.2 BOUNDARY CONDITIONS

In our analysis, we have considered the convergent channel to be connected at its inlet to a constant area channel of width \(2h_0 \).

Referring to Figure 3.2, the width of the convergent channel at entrance \(x = 0 \) is \(2h_0 \), the centerline is located at \(y = 0 \), so that the upper channel wall at entrance is at \(y = h_0 \) and the lower channel wall at entrance is at \(y = -h_0 \). At further downstream \(x > 0 \), the convergent channel half width \(h \) is less than \(h_0 \) and is a function of \(x \). Considering symmetrical flow through the convergent channel with uniform inlet conditions, the boundary conditions are:

At \(x = 0 \) (at convergent channel inlet) and for \(0 \leq y \leq h_0 \)

\[
\begin{align*}
 u &= u_p = u_0 \quad \text{(uniform flow)} \\
 v &= -(u_0 h_0 y \tan \theta)/(h_0 - x \tan \theta)^2 \\
 v_p &= 0 \quad \text{(no vertical particle velocity)} \quad (4-23)
\end{align*}
\]
\(h = h_0 \)

\(\rho_p = \rho_{po} \) (constant particle density)

At \(y = 0 \) (at centerline of the convergent channel) and for \(x > 0 \) (at further downstream)

\[\frac{\partial u}{\partial y} = \frac{\partial u_p}{\partial y} = 0 \] \hspace{1cm} (symmetry)

\[v = v_p = 0 \] \hspace{1cm} (4-24)

\[\frac{\partial \rho_p}{\partial y} = 0 \] \hspace{1cm} (symmetry)

At \(y = h \) (at upper wall of the convergent channel) and for \(x > 0 \) (at further downstream)

\[u = v = 0 \] \hspace{1cm} (no slip condition)

\[h = h_0 - x \tan \theta \] \hspace{1cm} (4-25)

At \(x > 0 \) and for \(0 \leq y \leq h_0 \)

\[u = u_0 \frac{h_0}{(h_0 - x \tan \theta)} \]

\[v = -(u_0 \frac{h_0 y \tan \theta}{(h_0 - x \tan \theta)^2} \] \hspace{1cm} (4-26)

here, the \(y \)-direction component of fluid velocity \(v \) is a function of \(u, y, \) and the convergent angle \(\theta \) to the \(x \)-axis.

It is worth noticing that since no gravity force is
considered, the \(y \)-component velocity at the centerline of the channel is equal to zero. Hence, a particle on the centerline will stay on the same horizontal level and, theoretically, will deposit at an infinite channel distance.

The above equations of the boundary conditions can be nondimensionalized as follows:

At \(X = 0 \) and \(0 \leq Y \leq 1 \)

\[
U = U_p = 1 \quad \text{(uniform flow)}
\]

\[
V = V_p = 0 \quad \text{(no \(y \)-component velocity)}
\]

\[
H = 1 \quad \text{(4-27)}
\]

\[
\rho_p = \rho_{po} \quad \text{(constant particle density)}
\]

At \(Y = 0 \) and \(X > 0 \)

\[
\frac{\partial U}{\partial Y} = \frac{\partial U_p}{\partial Y} = 0 \quad \text{(symmetry)}
\]

\[
V = V_p = 0 \quad \text{(4-28)}
\]

\[
\frac{\partial \rho_p}{\partial Y} = 0 \quad \text{(symmetry)}
\]

At \(Y = 1 \) and \(X > 0 \)

\[
U = V = 0 \quad \text{(no slip condition)}
\]
\[H = 1 - X \tan \theta \quad (4-29) \]

At \(X > 0 \) and \(0 \leq Y \leq 1 \)

\[U = \frac{1}{H} = \frac{1}{(1 - X \tan \theta)} \]

\[V = -U \cdot Y \cdot \tan \theta \quad (4-30) \]

where \(\bar{Y} = Y/H = (y/ho)/(h/ho) \); i.e. at \(\bar{Y} = 0, V = 0 \), and at \(\bar{Y} = 1, V = -U \cdot \tan \theta \).

4.3 METHOD OF SOLUTION

The governing equations (4-16) and (4-20) and boundary conditions (4-27) to (4-30) are integrated and solved with Runge-Kutta method. A description on the application of the Runge-Kutta solution in particle deposition analysis is given in Appendix A.

The second-order differential equations (4-16) and (4-20) can be rewritten in the form of two equivalent first-order differential equations as follows:

Let

\[A = \frac{dX}{dT} \quad (4-31) \]

be the particle velocity in the X-direction, so that
\[
\frac{dA}{dT} - \frac{d}{dT} \left(\frac{dX}{dT} \right) = -\frac{2}{dT} \quad (4-32)
\]

is the particle acceleration in the X-direction. Substituting these expressions into equation (4-16) yields,

\[
\frac{dA}{dT} \cdot St = U - A + Q Fx' \quad (4-33)
\]

or,

\[
\frac{dA}{dT} \cdot \frac{U - A + Q Fx'}{St} = \quad (4-34)
\]

In a similar manner, let

\[
\frac{dB}{dT} \cdot dy = \quad (4-35)
\]

be the particle velocity in the Y-direction, so that

\[
\frac{dB}{dT} - \frac{d}{dT} \left(\frac{dy}{dT} \right) = -\frac{2}{dT} \quad (4-36)
\]

is the particle acceleration in the Y-direction. Substituting these expressions into equation (4-20) yields,

\[
\frac{dB}{dT} \cdot St = V - B + Q Fy' \quad (4-37)
\]
The initial conditions are:

1. \(A = \frac{dX}{dT} = 1 \) at \(X = 0, T = 0 \), for uniform particle flow.
2. \(U = U_0 = 1 \) at \(X = 0, T = 0 \), for uniform inlet fluid flow.
3. \(B = \frac{dY}{dT} = 0 \) at \(X = 0, T = 0 \).

This implies that the convergent channel is connected to a constant area channel in a way that an incoming uniform flow can be assumed at the channel inlet. Moreover, it is also assumed that the particle has not exposed itself to the image force field yet prior to the entrance of the convergent channel.

The four modified equations (4-31), (4-34), (4-35), and (4-38) together with the initial conditions are solved by Runge-Kutta method. A Fortran computer program for this particular two-phase analysis is written and listed in Appendix D.

In the Runge-Kutta computer program, it is assumed that the particle has deposited on the channel wall when they reach a distance \(Y = 0.998 \). Initial particle positions

\[
\frac{dB}{dT} = \frac{V - B + Q F_y'}{St} \quad (4-38)
\]
of 0.98, 0.94, 0.9, 0.86, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, and 0.001 were originally set at X = 0, and T = 0 between 0 < Y < 1 to analyze the particle deposition distribution. Later, because of the wide scattering deposition distribution of the particle at certain particular conditions, more initial particle positions were added to complete and fill the fraction of deposition curve. The convergent channel angle 2θ is taken from 15, 10, and 5 degrees and later at zero degree (which is the case of a parallel-plate channel; and for St = 0 only) for comparison with previous investigation results. The electrostatic charge parameter Q as well as the Stoke's number (St) are both taken from 100 to 0.

Although an IBM 370 system was used throughout the investigation, the computational time could be very lengthy depending on the time step value used and the total number of image pairs considered. Thus, a time step dT from 10 to 0.000001 is specially selected in the program depending upon the magnitude of the Stoke's number. Normally, the time step value is positively proportional to the Stoke's number.

When the convergent channel angle equals zero, it becomes a parallel-plate channel flow, and the particle charge forms two infinite sequences of images. It can be noted that the infinite terms is a divergent series. To modify this, the total number of image pairs N in
equations (4-15) and (4-19), would be summed up to seven pairs only and a factor of 2.5 is then added. The result from this approximation is very close to the infinite terms of image force, so that the image force equations can be modified as follows: At $\theta = 0$, the force terms in equations (4-15) and (4-19) reduce to,

$$\begin{align*}
F_x &= 0 \\
F_y &= \frac{q}{4\pi \varepsilon_0 f u_0 h_o} \sum_{n=1}^{\infty} \left\{ \frac{2n+1}{2} \left(\frac{2}{2} \right)^2 \right\} \left(\frac{2}{2} \right)
\end{align*}$$

or

$$\begin{align*}
F_y &= \frac{q}{4\pi \varepsilon_0 f u_0 h_o} \left\{ \sum_{n=1}^{7} \left[\frac{2n+1}{2} \left(\frac{2}{2} \right)^2 \right] + 2.5 \left(\frac{2m+1}{2} \right)^2 \right\} \\
&\quad \left(\frac{2}{2} \right)
\end{align*}$$

where $m = 7$, such that the last term in Equation (4-40) is

$$\frac{15}{2} \left(\frac{2}{2} \right)^2 < 2.5 \left(\frac{2}{2} \right)^2 \left(\frac{15}{2} - 1 \right)$$

$$= 0.000747.$$
It is observed that the terms for \(n > 7 \) are very small. The comparisons between the 2 different types of expression for image forces are shown in Table 4.1. Since the results are very closed, the approximate expression equation (4-40) can then be justified.
5. RESULTS AND DISCUSSION

In this chapter, uniform flow of suspensions in convergent channels under the influences of the inertia, viscous, and electrostatic image forces will be discussed. The uniform velocity profile for the fluid phase in the convergent channel is examined briefly and then the particle trajectories for the particle phase are studied extensively to determine the effects of inertia, image force and viscous forces on the particle trajectories. As was mentioned in Chapter 1, the range of dimensionless parameters investigated in this analysis are 100, 10, 1, 0.1, 0.01, and 0 for both St (Stoke's number or inertia parameter) and Q (image charge parameter). Miller (46) states that a 7 degrees convergent nozzle has good performance since its discharge coefficient is approximately 0.96. Thus, the converging angles investigated in this study are 7.5, 5, 2.5 and 0 (for St = 0 only) degree(s). In this analysis, the flow characteristics for the suspensions in the convergent channels is analyzed from the inlet of the channel to the exit of the channel where the channel width is 20% of the width at the inlet.

5.1 Fluid Phase
Figures 5.1 to 5.2, and Tables 5.1 through 5.3 show the axial \((U)\) and vertical \((V)\) velocity distributions of the fluid phase at half convergent channel angle of 7.5 degrees and at initial particle positions of \(X = 0.\), \(Y_0 = 0.9, 0.5,\) and \(0.1,\) respectively. The initial dimensionless fluid velocity is unity.

From the continuity requirement for the fluid phase, \(U = 1\) and \(H = 1\) at \(X = 0,\) and \(H = 1 - X \times \tan \theta\) at \(X > 0,\) the axial velocity at \(X > 0\) is given by \(U = 1/H = 1/(1 - X \times \tan \theta).\) This is shown in Figure 5.1.

Again, from the continuity requirement, the vertical velocity of fluid is derived to be \(V = -U \times Y \times \tan \theta,\) as discussed in the previous chapter.

Figure 5.2 and Tables 5.1 to 5.3 also show this vertical velocity distribution. Here, the values of \(V\) are negative, which designates that the direction of motion of the fluid elements in the vertical direction is away from the channel wall.

5.2 Particle Phase

The objective of this section is to study the particle trajectory under the influences of viscous, inertia, and electrostatic image forces. The case of particle flow in a
convergent channel of 7.5 degrees at St = 10 and Q = 10 is discussed below as an typical example.

5.2.1 Particle Trajectory

Figure 5.3 illustrates the particle trajectory at St = Q = 10, convergent angle of 7.5 degrees, and at initial particle positions of X = 0, Yo = 0.9, 0.5, and 0.1, respectively. The numerical values of this particle trajectories --- the X and Y displacements are also shown in Tables 5.1 to 5.3 for reference. It is obvious to understand that, the closer the initial particle position is to the channel wall, i.e. at Yo = 0.9, the faster the particle will be attracted and moved to the channel wall due to inertia force and image force. At initial particle positions of Yo = 0.9, 0.5, and 0.1, the particles reach the wall at X = 5.226, 1.232, and 0.108, respectively.

It is noted that the channel wall itself is a streamline. For particles near the channel wall, the vertical component of the fluid phase has a tendency to apply viscous forces on the particles and push them away from the wall; resulting in less deposition. If there is no inertia and electrostatic image charge, the particles will simply move along with the fluid and exit the channel without hitting the channel wall.
Theoretically, for a particle starting at a centerline position, the particle will move horizontally along the centerline since there is no viscous force or image force to alter its flow direction. This is due to the fact that the gravitational force is not considered in this analysis.

5.2.2 Particle Velocity Distribution

Figures 5.4 to 5.5 and Tables 5.1 to 5.3 show the X and Y components of the particle velocity in the horizontal (Up) and vertical (Vp) directions. The initial axial velocity of the particle is assumed to be the same as the fluid velocity at the channel entrance while its initial vertical velocity is assumed to be zero. In general, as a particle moves from its initial position, its velocity components in both the X and Y directions will increase gradually due to the combined forces of inertia, viscous, and image charge on the particle.

It can be seen from Figures 5.4 and 5.5 as well as Tables 5.1 to 5.3 that the particle velocities are increased more at initial positions close to the channel wall than at initial positions away from it. For instance, at Yo = 0.9, the particle axial velocity component increases from its initial value of unity to its terminal value (X = 0.108) of 2.987, while the vertical component increases from zero to 2.485. At Yo = 0.1, the particle axial and vertical
velocities increases to its terminal values (at $X = 5.154$) of $U_p = 2.388$ and $V_p = 0.056$, respectively. This is due to the zero initial vertical velocity and the higher axial acceleration near the wall.

At smaller convergent angles, which implies a longer convergent channel, the particle will have to travel a longer distance before it reaches the channel wall. In such cases, the trajectory as well as the velocities may be different, but the flow pattern would be similar to the one discussed above.

5.3 Electrostatic Image Force Distribution

Table 5.4 gives the electrostatic image forces in the X and Y directions as well as its resultant values acting on particles at vertical positions from 0.1 (farthest from the channel wall) to 0.999 (closest to the channel wall) at half convergent channel angles of 7.5, 5, and 2.5 degrees, respectively. The total number of image pairs is also shown for reference.

As stated in Chapter 3, for a flow of particle in a convergent channel, the images confined on the Image Circle are all located ahead of the particle in the X-direction; and the total number of pair of images is related to the convergent channel angle as given in Equation (3-5). Hence,
depends on the convergent channel angle as well as the vertical position \((Y)\) of the particle, the total number of image pairs and the magnitude of the image forces in \(X\) and \(Y\) directions are defined.

As is listed in Table 5.4, the total number of image pairs are 12, 18, and 36 for half convergent channel angles of 7.5, 5, and 2.5 degrees, respectively. At a constant convergent angle, the image force increases with increasing \(Y\), that is, the closer the particle is to the channel wall, the larger the image force it will experience. The \(X\) and \(Y\) component image forces are of \(1.0E06\) to \(1.0E07\) times larger at \(Y = 0.999\) than that at \(Y = 0.1\).

It is also noted that, the \(X\) component image force is slightly greater than the \(Y\) component at \(Y = 0.1\) and 0.2 when the convergent angle is 7.5 degrees, and at \(Y = 0.1\) when the convergent angle is 5 degrees. For all cases investigated, force in \(Y\) direction is much greater than that in \(X\) direction for all particles located at \(Y > 0.3\).

Furthermore, at a constant \(Y\), results reveal that the larger the convergent angle is, the larger the image force the particle will experience. However, the order of this increment is moderate for the \(Y\) component force which implies that the change in \(Y\) component image force is less sensitive to convergent angles than that in \(X\) component.
It can thus be concluded that for a particle under the influence of an electrostatic image force, regardless of the convergent channel angle and at a certain vertical position, the particle will experience almost the same amount of image force in the Y direction. With increasing convergent channel angles, because of the corresponding larger increase in the X component image force, the particle will have a higher acceleration in the horizontal direction.

5.4 Angle of Convergence effect on Particle Deposition

As described in Chapter 4 the main purpose of this investigation is to determine the fraction of deposition of particles on the convergent channel wall at various convergent angles due to viscous, inertia, and electrostatic image forces. Results of this analysis on particle depositions are given in Figures 5.6 to 5.35 and Tables 5.5 through 5.22.

For each of these figures and tables, the fraction of deposition of a particle is shown for various axial displacements in the convergent channel which is at a constant convergent angle of 7.5°, 5°, or 2.5°, a Stoke's number St of 100, 10, 1, 0.1, 0.01, or 0 and six different electrostatic image charge parameters (Q) ranging from 100, 10, 1, 0.1, 0.01, to 0, respectively. The channel exit plane is located at an area that is 20% of the inlet area.
The lengths of the channel L are given in all figure titles. Theoretically all particles would have deposited on the wall at the convergent point where the upper wall and the lower wall meet together. Calculations were not carried out beyond L, but dashed lines were used to extend each curve to the point of channel convergent.

Figures 5.6 to 5.11 and Tables 5.5 to 5.10 are results at constant half convergent channel angle of 7.5 degrees and St of 100, 10, 1, 0.1, 0.01, and 0. Figures 5.12 to 5.17 and 5.24 to 5.29 together with Tables 5.11 to 5.16 and 5.17 to 5.22 are results at constant half convergent channel angle of 5 and 2.5 degrees, respectively, also for St ranges from 100 to 0. Figures 5.18 to 5.23 and 5.30 to 5.35 are just repeated plots of Figures 5.12 to 5.17 and 5.24 to 5.29, respectively, for X = 0 to X = 8 for comparison with the results from Figures 5.6 to 5.11.

It is observed that in all cases, the particle deposition increases with increasing X-displacement.

It is also observed from these figures and tables that, in general, for a fixed Stoke's number and electrostatic image charge parameter, the particle deposition is higher for larger half convergent channel angles. This is true for (1) all \(Q \) when \(St = 100 \), (2) \(Q = 10 \) or less when \(St = 10 \), and (3) \(Q = 1 \) or less when \(St = 1 \).
or less. However, for the cases when (1) St = 10 and Q = 100, and (2) St = 1 or less and Q = 100 as well as 10, the particle deposition is less for larger half convergent channel angles.

All of these cases are the result of the combination of forces considered. In general increase in convergent angle increases the axial image force (force in X-direction) and also increases the transverse (or Y-direction) viscous force which forces particles away from the wall. For example, when St = 10 and Q = 100, because of an increase in X component of acceleration for a smaller particle (i.e. smaller St), the particle may travel further downstream before it deposits on the wall. Results and effects of these combination of forces on particle depositions will be discussed more in the following sections.

5.5 Deposition due to Viscous and Electrostatic Image Forces

In this section the results on particle depositions due to viscous and electrostatic image forces alone will be discussed. This means that the Stoke's number is set to zero. Figures 5.11, 5.17 and 5.23, as well as 5.29 and 5.35 together with Tables 5.10, 5.16, and 5.22, show such results for half convergent channel angles of 7.5, 5 and 2.5 degrees, respectively.
It is revealed from these figures and tables that, at a constant convergent angle, the fraction of deposition of particle is increased with increasing electrostatic image charge Q. The deposition reaches its 80% within X = 1.5 (i.e. 1.5 times the half channel inlet width of its X direction displacement) for Q = 100 and 10 regardless of the convergent angles. For Q equals unity, the deposition also reaches its 50% within X = 1.7 and then increases moderately with increasing axial displacement. For Q = 0.1 and 0.01, 14% and 6%, respectively, are obtained within X = 0.25 but only 36% and 14% more depositions are obtained up to the end of the channel (80% of the total channel length). It is also obvious that with larger image force, the particle will be attracted to the channel wall easily.

It is observed from these figures and tables that no deposition is obtained in the channel for various convergent angles when there is no image force (Q = 0). This is true since no gravitational force is considered in this analysis.

The special case when the convergent angle equals zero, i.e. a horizontal channel of constant area, is also studied and the results are shown in Figure 5.36 and Table 5.23. Again, the fraction of deposition is increased with increasing electrostatic image charge Q. At Q = 100 and 10, particles (θ = 0°, St = 0) are so much attracted to the channel wall that essentially all particles are deposited on
the wall at \(X = 0.059 \) and 0.59, respectively. When \(Q \) is equal to unity, all particles deposit on the wall at \(X = 5.877 \). However less than 90% and 50% deposition in the parallel-plate channel exit (\(X = 12.5 \)) are observed for \(Q = 0.1 \) and 0.01, respectively. No particle deposition is obtained when there is no image charge (\(Q = 0 \)).

These results are also compared with that given by Yu and Chandra's \((32) \) as given in Figure 5.37 where the abscissa is \(QX \) and is 4 times the parameter \(QL \) used by Yu and Chandra. It is revealed that all the deposition curves in this study fall into one single curve and agree with that obtained by Yu and Chandra's. However, small discrepancies up to a maximum of about 2% are observed and the reasons may be arised from (1) different numerical method are used to solve the flow problem which results in different accuracies, and (2) figure in Yu's paper was directly interpreted to obtain the data for deposition calculations.

5.6 Deposition due to Viscous and Inertia Forces

The results on particle depositions due to viscous and inertia forces alone can be seen on all the figures and tables with \(Q = 0 \).

It is noticed from these results that at a fixed convergent angle, the particle deposition is increased with
increasing inertia forces, i.e. higher St values. Since the viscous force actually pushes the particle towards the channel centerline, a larger particle will have a tendency to move straight line and results in hitting the convergent wall. Thus in a convergent channel, higher inertia force will result in a higher deposition.

At half convergent channel angle of 7.5 degrees and for St = 100 and 10, the fraction of deposition increases monotonically with the particle X-displacement from zero to about 77% and 71%, respectively, at the channel exit (L = 6.07). When St = 1 and 0.1, only 40% and 6% of the particle are deposited on the wall at the channel exit. At lower St, i.e. St = 0.01, the inertia forces are so small that no particle deposition is observed. It is therefore felt that for St < 0.01, the inertia effect may be neglected.

At half convergent channel angle of 5 degrees, a similar trend as that of 7.5 degrees is observed except that at St = 1, 30% deposition in the channel of L = 9.14 is obtained (40% in 7.5 degrees).

For the cases of 2.5 degrees convergent angles and at St = 100, again, the fraction of deposition of the particle is increased monotonically with increasing X-displacement and reaches about 75% at its channel exit (L = 18.3). Only
about 62% and 20% depositions are obtained at the channel exit for \(St = 10 \) and \(1 \), respectively. For \(St < 0.1 \), no deposition is observed.

5.7 Deposition due to Viscous, Inertia, and Electrostatic Image Forces

The objective of this section is to discuss the results on the particle deposition due to all three forces --- viscous, inertia, and electrostatic image charge forces. The results are shown in Figures 5.6 to 5.30 and Tables 5.5 to 5.22.

It should be again noted here that the forces displayed in Tables 5.1 to 5.3 are summation forces of the viscous, inertia, as well as electrostatic image charge acting on the particle; while Table 5.4 contains the electrostatic image force only.

It is observed from the results that, at a constant convergent channel angle and a fixed Stoke's number, the particle depositions are increased with increasing \(Q \). At high \(St \) values, i.e. \(St = 100 \) as shown in Figure 5.6 and 5.12, because of the large inertia force particles tend to move straight forward and hit the wall thus result in a higher deposition at small \(Q \) (< 0.1). However at larger electrostatic image charge, i.e. \(Q > 1 \), the particle will be
attracted and moved to the channel wall even faster and results in a even higher fraction of deposition. In such cases, the deposition increases very rapidly near the inlet of the channel.

At small St values and with small or even no Q, that is, the inertia as well as the image forces acting on the particle are both small, the particle deposition will be decreased, and the deposition curves are relatively flat along the axial distance of the channel. On the contrary, if Q is high in this case, the image force dominates and will pull the particle further towards the channel wall, resulting in deposition curves with steeper slope near the inlet of the channel.

For example, as shown in Figures 5.6 to 5.11 at half convergent channel angle of 7.5 degrees and for $St = 100$, the particle depositions are increased almost linearly with the X-displacement at $Q = 0.01$ and 0 and have a terminal deposition of about 77% at the channel exit. As St decreases, the particle terminal depositions at $Q = 0.01$ and 0 also decrease and eventually reach the rates of 20% and 2%, respectively, for both $St = 0.01$ and 0. On the other hand, the particle deposition for $Q = 100$ reaches 90% at $X = 4.967$ for $St = 100$. As St decreases from 10, 1, 0.1, down to 0.01, the particle deposition for $Q = 100$ reaches 90% even at $X = 2.762, 1.719, 1.383$, and 1.283, respectively.
This trend of decreasing St results in (1) decreasing the particle deposition for small Q (0.1 and lower), and (2) increasing the particle deposition for large Q (1 and higher) is also observed for constant convergent angles of 5 and 2.5 degrees.

It should be noted that if all particles were to move in a horizontal direction as was in the given inlet condition, 80% deposition would have taken place at the exit of the channel. That is to say that if the viscous effects were to be neglected, 80% deposition would have taken place at the exit of the channel without any image force effects. In Figures 5.6, 5.12, and 5.24, the deposition at the channel exit, where $L = 6.07$, 9.14, and 18.32, for convergent angles of 7.5, 5, and 2.5 degrees, respectively, and $St = 100$ are only 77%. Clearly the viscous force exerted on the particle in the Y-direction does force the particle to move toward the centerline and thus reduces the fraction of deposition.

As discussed in Section 5.4, for a fixed value of St and Q, the general trend of increasing the convergent channel angle will result in increasing the particle deposition does not applied to cases when (1) $St = 10$ and $Q = 100$, and (2) $St = 1$ or less and $Q = 100$ or 10 up to a length of the convergent channel of about 3 to 4 times the half channel inlet width. This is because the viscous
effect on the particle close to the channel wall is greater in the negative Y direction for higher convergent angles. As a result, part of the inertia and/or the electrostatic image forces will be balanced out, causing a comparatively lower deposition when the convergent angle is higher.

This phenomenon may also be demonstrated by the particle velocity distributions shown in Figures 5.4 to 5.5 and the numerical values listed in Tables 5.1 to 5.3. First, it is noticed in Table 5.1 that a particle starting at $Y = 0.9$ has both the X and Y summation forces increasing with increasing time until $Y = 0.951$. Thereafter, the Y force starts decreasing, and so does the X force when $Y = 0.978$. In Tables 5.2, for a particle starting at $Y = 0.5$, the Y and X force starts decreasing at $Y = 0.533$ and 0.687, respectively. These are due to the fact that the vertical velocity $V = -U \cdot \bar{Y} \cdot \tan \theta$ for a uniform flow and therefore the vertical viscous force increases with increasing Y.

In Table 5.3 ($Y_0 = 0.1$, $\theta = 7.5^\circ$, $L = 6.07$, $Q = 10$, $St = 10$), the X force increases with time until $Y = 0.176$ and $X = 1.615$, but the Y force decreases once the particle movement begins. Notice that the particle starts at $Y = 0.1$ in this case is very far away from the channel wall as shown in Figure 5.5. Both the viscous and the image forces are small here (compare with that close to the channel wall), and thus the negative Y component viscous force dominates.
6. CONCLUSIONS

The characteristics of a two-phase fluid-solid particle flow in convergent channels are investigated and the conclusions reached are summarized as follows:

(1) The image force equations for convergent channels are derived and given as equation (3-8) in Chapter 3. For zero convergent angle, the equations reduce to that of the parallel-plate channel and is identical to that given by Yu and Chandra {32}.

(2) From the continuity requirement for the fluid phase, the dimensionless fluid velocity $U = 1$ at $X = 0$. At $X > 0$, the fluid velocity components are $U = 1/(1 - X \tan \theta)$, and $V = -U * \bar{Y} * \tan \theta$, respectively.

(3) It is revealed from the results that the closer the initial particle position is to the channel wall, the faster the particle will be attracted to the channel wall due to image forces and move horizontally to the convergent wall due to inertia effects of the particle.
(4) Since no gravitational force is considered in this analysis, a particle starting at a channel centerline position will move on horizontally because there is no viscous or image forces to change its motion.

(5) For all convergent angles investigated, it is observed that the image forces, induced by the particle images confined on an Image Circle, are much greater in the Y direction than the X direction for all particles located at \(Y > 0.3 \).

(6) Although the particle deposition increases with increasing X-displacement, at a constant \(St \) and \(Q \), the particle deposition is, in general, higher for larger convergent angles.

(7) When \(St = 0 \) and at a constant convergent angle, the particle deposition increases with increasing \(Q \). However, no deposition is obtained when \(Q = 0 \).

(8) When \(Q = 0 \) and at a fixed convergent angle, the particle deposition increases with increasing \(St \). Furthermore, it is shown that for all convergent angles considered, no particle deposition is
observed for $St < 0.01$. It is thus believed that the inertia effect may be neglected for $St < 0.01$.

(9) Results on particle deposition due to viscous, inertia, and image charge forces revealed that, at a constant convergent angle as well as a fixed St, particle deposition increases with increasing Q. For high Q ($Q \rightarrow 10$) and moderate St ($10 > St \rightarrow 0.01$) values, particles are quickly attracted and moved to the channel wall which results in more than 0.8 fraction of deposition near the entrance of the channel ($X < 2$) as shown in Figure 5.8. When both St and Q are small ($St < 1$ and $Q < 0.01$), particle deposition increased from 0 to about 10% close to the channel entrance (i.e. $X < 0.3$) and then remained relatively constant along the axial distance of the convergent channel.

(10) The special case of a parallel-plate channel, i.e. convergent angle = 0°, when $St = 0$ is also studied. Results agree with that of Yu and Chandra's (32) on flow in a horizontal channel of constant area.
7. RECOMMENDATIONS

The deposition of solid particles in a convergent channel due to inertia, viscous, and image charge effects was investigated under uniform steady flow in an incompressible fluid. Parabolic as well as other type of flows may be added for further understanding.

Since gravity is of great significance in various problems, the gravitational force parameter may be included for further studies. In such case, the whole channel has to be studied due to non-symmetric flow.

When solid particles are considerably small, the diffusion force effect may be significant and therefore, may be involved in the future analysis. The individual of these two forces --- gravity and diffusion, as well as their combined effect may be investigated to check their influences on solid particles.

Even for hermetic centrifugal chillers, dirts or particles may still exit within the circulation system. The vaneless diffuser as well as the diffusion system of a centrifugal compressor consist of diffuser type flow paths. Thus, all the investigations performed for a convergent channel may be modified to that of a divergent channel.
In this investigation, the situation of two phase flow in a convergent channel was considered whereby all configurations were assumed horizontal. However, in actual practice, i.e. a Venturi tube, the radial vaned diffuser of a centrifugal compressor etc. are all vertically oriented. Attempts should therefore be made to extend this study for any inclination of the channel with the direction of gravity.

Although many studies have been concerned with two-phase flow, a matter of further interest would be to investigate systems concerned with three, four, or more phase flow for cases such as a centrifugal compressor whereby, refrigerant, air, oil, and solid particles would constitute the four phases.

With the advent of the human material civilization and the space age, increased problems of air, water, and/or near sea pollution as well as interest of space shuttle external tank nozzle exhausts of solid-liquid propellants lead further analysis to even more multi-phase flow situations.
REFERENCES

(1) THE RUNGE-KUTTA METHOD

This method was devised by Runge (47) about the year 1894 and extended by Kutta (48) a few years later. The chief advantage of this method is that the successive increments in the functions are computed with a high degree of accuracy from a definite set of formulas, the same set of formulas being used for computing all the increments. It is particularly suitable in case when the computation of higher derivatives is complicated. The method used in this analysis is of order four. The calculations for the first increment, for example, are exactly the same as for any other increment.

Let \[y' = f(x, y) \]
\[y(x_0) = y_0 \]

denote any first order differential equation connecting the variables \(x \) and \(y \), and let \(h \) denote any increment \(\Delta x \) in the independent variable \(x \). Then if the initial values of the variables are \(x_0 \) and \(y_0 \), the first increment in \(y \) is computed from the formulas
\[k_1 = f(x_0, y_0)h, \]
\[k_2 = f(x_0 + h/2, y_0 + k_1/2)h, \]
\[k_3 = f(x_0 + h/2, y_0 + k_2/2)h, \]
\[k_4 = f(x_0 + h, y_0 + k_3)h, \]
\[\Delta y = (k_1 + 2k_2 + 2k_3 + k_4)/6, \]

taken in the order given. Then
\[x_1 = x_0 + h, \]
\[y_1 = y_0 + \Delta y. \]

The increment in \(y \) for the second interval is computed in a similar manner by means of the formulas
\[k_1 = f(x_1, y_1)h, \]
\[k_2 = f(x_1 + h/2, y_1 + k_1/2)h, \]
\[k_3 = f(x_1 + h/2, y_1 + k_2/2)h, \]
\[k_4 = f(x_1 + h, y_1 + k_3)h, \]
\[\Delta y = (k_1 + 2k_2 + 2k_3 + k_4)/6, \]

and so on for the succeeding intervals.

It will be noticed that the only change in the formulas for the different intervals is in the values of \(x \) and \(y \) to be substituted. Thus, to find \(\Delta y \) in the \(n \)th interval, one should have to substitute \(x(n-1), y(n-1) \) in the expressions for \(k_1, k_2, \) etc.
This process may be described in geometric terms. At the point \((x_n, y_n)\) we compute the slope \(k_1/h\) and using it, then go one-half step forward and examine the slope there. Using this new slope \((k_2/h)\), we again start at \((x_n, y_n)\), go one-half step forward, and again sample the slope. Using this latest slope \((k_3/h)\), we again start at \((x_n, y_n)\), but this time we go a full step forward where we examine the slope \((k_4/h)\). The four slopes are averaged, using weights 1/6, 2/6, 2/6, 1/6, and using this average slope, we make the final step from \(x_n, y_n\) to \(x(n+1), y(n+1)\). However, this method has an error term proportional to \(h^{**5}\).

(2) APPLICATION OF THE FOURTH-ORDER RUNGE-KUTTA SOLUTION

The Runge-Kutta solution can be applied to the initial value problem of our present particle deposition analysis. First, for our simultaneous governing equations

\[
\begin{align*}
x'' &= f(x', x, t), \\
y'' &= g(y', y, t)
\end{align*}
\]

we set \(x' = A\), \(y' = B\) and obtain the following system of simultaneous first-order equations,

\[
\begin{align*}
x' &= A(x, t), \\
y' &= B(y, t), \\
A' &= f(A, x, t), \text{ and} \\
B' &= g(B, y, t)
\end{align*}
\]
where x and y are function of t.

Then, to integrate it, we compute the increments in x and y for the first interval by means of the formulas

$k_1 = f(x_0, y_0, t_0) \Delta t,$

$k_2 = f(x_0 + k_1/2, y_0 + l_1/2, t_0 + \Delta t/2) \Delta t,$

$k_3 = f(x_0 + k_2/2, y_0 + l_2/2, t_0 + \Delta t/2) \Delta t,$

$k_4 = f(x_0 + k_3, y_0 + l_3, t_0 + \Delta t) \Delta t,$

$\Delta x = (k_1 + 2k_2 + 2k_3 + k_4)/6,$

and

$l_1 = g(x_0, y_0, t_0) \Delta t,$

$l_2 = g(x_0 + k_1/2, y_0 + l_1/2, t_0 + \Delta t/2) \Delta t,$

$l_3 = g(x_0 + k_2/2, y_0 + l_2/2, t_0 + \Delta t/2) \Delta t,$

$l_4 = g(x_0 + k_3, y_0 + l_3, t_0 + \Delta t) \Delta t,$

$\Delta y = (l_1 + 2l_2 + 2l_3 + l_4)/6.$

The increments for the succeeding intervals are computed in exactly the same way except that x_0, y_0, t_0 are replaced by x_1, y_1, t_1 etc. as the computation proceed, until x_n, y_n, t_n are achieved.
(1) DIMENSIONLESS QUANTITIES AND PARAMETERS

\[H = \frac{h}{h_0} = 1 - x \tan \theta \]

\[T = \frac{t}{u_0} \]

\[X = \frac{x}{h_0} \]

\[Y = \frac{y}{h_0} \]

\[\bar{Y} = \frac{y}{h} = \frac{y}{1 - x \tan \theta} = \frac{y}{H} \]

\[U = \frac{u}{u_0} \]

\[V = \frac{v}{u_0} \]

\[U_p = \frac{u_p}{u_0} \]
\[V_p = \frac{v_p}{u_0} \]

\[Q = \frac{v_2}{q q} \]

\[Q = \frac{2}{4\pi\varepsilon_0\ h_0\ f \ u_0} \]

\[S_t = \frac{m u_0}{h_0\ f} \]

\[Q_n = \frac{q_n}{h_0} \]

\[Q_{nX} = \frac{q_{nX}}{h_0} \]

\[Q_{nY} = \frac{q_{nY}}{h_0} \]

\[Q_n' = \frac{q_n'}{h_0} \]

\[Q_{n'X} = \frac{q_{n'X}}{h_0} \]

\[Q_{n'Y} = \frac{q_{n'Y}}{h_0} \]

\[F_{x'} = \sum_{n=1}^{N} \left\{ \frac{\sin \theta_n}{Q_{nX}^2 + Q_{nY}^2} + \frac{\sin \theta_{n'}}{Q_{n'X}^2 + Q_{n'Y}^2} \right\} \]
\[F_{y'} = \sum_{n=1}^{N} \left\{ \frac{\cos \theta_n}{Q_nX + Q_nY} - \frac{\cos \theta_{n'}}{Q'_{nX} + Q'_{nY}} \right\} \]

(2) PHYSICAL MEANING

\[Q = \frac{2}{\frac{4\pi \varepsilon_0 \rho_o f u_o}{\rho_o f u_o}} \]

Electrostatic Charge Parameter

\[= \frac{1}{\frac{4\pi \varepsilon_0 \rho_o f u_o}{\rho_o f u_o}} \]

which is the ratio of the electrostatic charge of the solid particle to the viscous force.

\[St = \frac{m u_o}{\rho_o f} \]

Stoke's Number

which is an inertia parameter and sometimes can be expressed as the ratio of stopping distance of a particle to the distance a particle must travel to be captured. (= 2Xs/D)

\[Re = \frac{u_o \rho_o}{\nu} \]

Reynolds Number

which is the ratio of inertia forces to viscous forces and based on half channel width.
\[H = \frac{h}{h_0} = 1 - X \tan \theta \]

which is the ratio of convergent channel width to the entrance value and is also equal to the ratio of the local half channel width \(h \) to the entrance half channel width \(h_0 \).

Focusing on the charge distribution, the ratio of the distance between the point charge and the \(n \)th image above the upper convergent channel wall to the channel entrance width is given by

\[Q_n = \frac{q_n}{h_0} \]

which is the ratio of distance between the point charge and the \(n \)th image above the upper convergent channel wall to the channel entrance width; \(Q_nX \) and \(Q_nY \) are the \(X \) and \(Y \) components of \(Q_n \), respectively.

Similarly, the ratio of the distance between the point charge and the \(n' \)th image below the lower convergent channel wall to the channel entrance width is given by

\[Q_{n'} = \frac{q_{n'}}{h_0} \]

which is the ratio of distance between the point charge and the \(n' \)th image below the lower convergent channel wall to the channel entrance width; \(Q_{n'}X \) and \(Q_{n'}Y \) are the \(X \) and \(Y \) components of \(Q_{n'} \), respectively.

(3) ORDER OF MAGNITUDE

Most of the parameters and dimensionless quantities can be calculated, while the others can be estimated and taken from previous experimental results (49, 50).
For an actual fluidic device, a half entrance channel width can be of \(h_0 = 0.05 \) cm. Assume \(h_0 = 2 \) cm as was used in \((38) \), and with air as a fluid phase with a pressure of 1 atm. and a temperature of 20 degrees C. Based on the half entrance channel width and assuming a uniform inlet velocity of \(u_0 = 30 \) cm/sec, the Reynolds number can be estimated to be,

\[
Re = 400.
\]

Considering solid particle of diameters

\[
2a = 0.33 \text{ micrometer,}
\]
\[
2a = 2 \text{ micrometer,}
\]
\[
2a = 6 \text{ micrometer,}
\]
\[
2a = 10 \text{ micrometer, and}
\]
\[
2a = 20 \text{ micrometer.}
\]

As is given in \((35) \), consider a particle concentration of \(1.0 \times 10^6 \) particles per cubic centimeter and a charge electron density of 1 electron per \(1.18 \times 10^{-10} \) square centimeter, i.e. 29 electrons on a 0.33 micrometer particle.

Thus, for a \(2a = 10 \) micrometer diameter size solid particle, the mass can be calculated as

\[
m(10 \text{ micrometer}) = 5.2589 \times 10^{-10} \text{ gram}
\]

so that its electrostatic charge per unit mass is
\[q = 8.1 \times 10^{-6} \text{ Coulomb/gram} \]

and is of the same order of magnitude as those measured by Cheng and Soo \((49)\).

With the Stoke's drag force estimated to be

\[f = 6\pi \mu a = 3.43816 \times 10^{-10} \text{ Newton-Second} \]

and free space permittivity

\[\epsilon_0 = 8.85434 \times 10^{-12} \text{ Coulomb }/\text{Newton-Meter}^2 \]

we have

\[Q = \frac{q^2}{4\pi \epsilon_0 \kappa_0 f \omega_0} = 7.90586 \times 10^{-7} \]

\[S_t = \frac{m \omega_0}{\kappa_0 f} = 4.589 \times 10^{-3} \]

A Fortran computer program for these particle charge parameters calculation is written and displayed in Appendix C for reference.
PROGRAM TO CALCULATE THE PARTICLE CHARGE PARAMETERS
BY K. W. HUI

DIMENSION DIA(20), AMASS(20), Q(20), STOKE(20)

NO : NO OF PARTICLES TO BE CALCULATED

NO = 18
DO 5 J = 1, NO
DIA(J) = 0.
5 CONTINUE

AMASS: MASS OF SOLID PARTICLES (KG)

AMASS(1) = 1.8899E-17
AMASS(2) = 4.2071E-15
AMASS(3) = 1.1359E-13
AMASS(4) = 5.2589E-13
AMASS(5) = 4.2071E-12
PI = 3.1415926536

U0: INLET VELOCITY (METER/SEC)
U0 = 3

H(OR HO): HALF CHANNEL WIDTH AT INLET (METER)
H=.02
C EPSLON: FREE SPACE PERMITTIVITY
C \{COULOMB**2/(NEWTON*METER**2)}
EPSLON=8.854E-12
C AMU: DYNAMIC VISCOSITY OF AIR \{(NEWTON*SEC)/METER**2}
AMU=1.824E-05
C RHO: CHARGE PER UNIT MASS \{COULOMB/KG}
RHO1=8.1E-03
C RHO=RHO1
C TRY A DOUBLE CHARGE DENSITY PARTICLE CASE
RHO=RHO1*RHO1
C 29 ELECTRONS ON A 0.33 \{MICROMETER\} PARTICLE EQUALS
C 1 ELECTRON PER 1.18E-14 \{METER**2\}
C
AMASS(4)=PI*DIA(4)**2*1.6E-19/(RHO*1.18E-14)
C
DO 10 I=1,NO
IF(I.EQ.4) GO TO 9
AMASS(I)=AMASS(4)*(DIA(I)/DIA(4))**3
9 CHARGE=AMASS(I)*RHO
DRAG=3.*PI*AMU*DIA(I)
Q4PI=CHARGE*CHARGE/(4.*PI*EPSLON)
Q(I)=Q4PI/(H*H*DRAG*U0)
STOKE(I)=AMASS(I)*U0/(H*DRAG)
10 CONTINUE
C WRITE(6,20)
20 FORMAT(/2X,'DIA(METER) MASS(KG) Q STOKES NO.'/)
WRITE(6,30)
30 FORMAT(/2X,'DIA(METER) MASS(KG) Q*Q STOKES NO.'/)
C DO 50 I=1,NO
50 WRITE(6,60) DIA(I),AMASS(I),Q(I),STOKE(I)
60 FORMAT(2X,6E13.6)
STOP
END
APPENDIX D

COMPUTER PROGRAM FOR PARTICLE FLOW
CHARACTERISTIC ANALYSIS

COMMON G,Q,Q1,TIME,RAD
COMMON N,NO,NCHAN
DIMENSION XX(200),YY(200),ZZ(200),AYY(200),PY(200)
DIMENSION TT(200),INN(200),DEPO(200)
DIMENSION UPAR(200),VPAR(200),WALL(200)
DIMENSION ACX(200),ACY(200),FOX(200),FOY(200)
DIMENSION QX(100),QY(100),QXP(100),QYP(100)
DIMENSION THE(100),THEP(100),HQX(100),HQXP(100)

INPUT DATA

THETA: CONVERGENT ANGLE (<= 7.5 DEGREE)
N : FLOW TYPE (UNIFORM FLOW)
TIME : PARTICLE FLOW TIME STEP
Q : PARTICLE CHARGE PARAMETER
ST : STOKE'S NUMBER

NCHAN=0
THETA=0.0
N=0
G=0.0
Q=1.0
ST=0.00

DEGREE TO RADIUS

IF(THETA.EQ.0.) GO TO 980
RAD=THETA*3.14159/180.0
RAD2=RAD*2.
XMAX=1./TAN(RAD)
XMAX2=XMAX*2.
XMAX8=XMAX*0.8

CALCULATION OF NO. OF IMAGE PAIRS
VALUE = 180.0 / (2.0 * THETA)

C CHECK IF "VALUE" IS AN INTEGER AND MAKE
C ADJUSTMENT ON "NO"

NO = IFIX(VALUE)
VALUE1 = FLOAT(NO)
IF ((VALUE - VALUE1) .NE. 0.) NO = NO + 1

GO TO 981
C980 XMAX = 1249.9875
980 XMAX = 12.5
XMAX2 = XMAX * 2.
XMAX8 = XMAX * 0.8
RAD = 0.0
RAD2 = RAD * 2.
NO = 9999
CONTINUE

NTOT = NO
IF (THETA .EQ. 0. .AND. NO .GT. 7) NTOT = 7
S2T = SIN(RAD2)
S2T2 = S2T * S2T
CT2 = COS(RAD) * COS(RAD)

WRITE (9, 110) G, ST, THETA, XMAX

110 FORMAT (/ 'UNIFORM FLOW IN CONVERGENT CHANNEL: /
1 G = ', E12.5, 2X, 'ST = ', E12.5, 2X, /
23X, ' THETA = ', F8.2, 2X, 'MAX X = ', F8.4)////)

C JQTO : TOTAL NO. OF DIFFERENT CHARGE VALUE Q

JQTO = 6
WRITE (10, *) XMAX8, JQTO, THETA
DO 3000 JQ1 = 1, JQTO
DO 696 K = 1, 200
XX(K) = 0.
YY(K) = 0.
ZZ(K) = 0.
AYY(K) = 0.
PY(K) = 0.
TT(K) = 0.
INN(K) = 0.
DEPO(K) = 0.
UPAR(K) = 0.
VPAR(K) = 0.
WALL(K) = 0.
ACX(K) = 0.
ACY(K) = 0.
FOX(K) = 0.
FOY(K) = 0.

696 CONTINUE

C
GO TO (701,702,703,704,705,706) JQ1

701 Q1=100.
 GO TO 720

C

702 Q1=10.
 GO TO 720

C

703 Q1=1.0
 GO TO 720

C

704 Q1=0.10
 GO TO 720

C

705 Q1=0.01
 GO TO 720

C

706 Q1=0.00
 GO TO 720

C

720 CONTINUE
 L=0

C

C YO : INITIAL PARTICLE POSITION
 => -1.0 (LOWER CHANNEL WALL)
 <= 1.0 (UPPER CHANNEL WALL)
C

DO 1000 I=1,15
 GO TO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15), I
1
 YO=0.98
 GO TO 25

C

2 YO=0.94
 GO TO 25

C

3 YO=0.90
 GO TO 25

C

4 YO=0.86
 GO TO 25

C

5 YO=0.80
 GO TO 25

C

6 YO=0.70
 GO TO 25

C

7 YO=0.60
 GO TO 25

C

8 YO=0.50
 GO TO 25

C

9 YO=0.40
GO TO 25
C
10 YO=0.30
GO TO 25
C
11 YO=0.20
GO TO 25
C
12 YO=0.10
GO TO 25
C
13 YO=0.05
GO TO 25
C
14 YO=0.01
GO TO 25
C
15 YO=0.001
GO TO 25
C
C FI=FLOAT(I)
25 YOO=YO
IF(ST.EQ.0.) GO TO 26
STDT=ST
IF(ST.GT.10.) STDT=10.
C IF(ST.LT.0.01) STDT=0.01
DT=(1.-YO)*0.02*STDT
IF(ST.LT.0.01) DT=0.000001
GO TO 6226
26 DT=0.002
C26 DT=0.000001
6226 XDUM=0.
C
C ..
C
C CHECK FOR TIME STEP VALUE
C ..
C
C IF(ABS(YO) .GT. 0.96) DT=DT/10.0
IF(YO .LT. (-0.8)) DT=DT/4.0
Z=1.0
IN=0
C
C SET UP PARTICLE INITIAL CONDITIONS AT T=0 & X=0
C
C X=0.0
XP=X
Y=YO
YP=Y
H=1.0
YB=Y/H
A = DX/DT : PARTICLE VELOCITY IN X-DIRECTION
B = DY/DT : PARTICLE VELOCITY IN Y-DIRECTION
AP : PREVIOUS PARTICLE VELOCITY OF A
BP : PREVIOUS PARTICLE VELOCITY OF B

PARTICLE INITIAL VELOCITY (A=0.0 OR =1.0)

A = 1.0
YSQ = Y*Y
AP = A
PAP = AP
B = 0.0
BP = B
T = 0.0

FLOW FIELD VELOCITY (ORIGINAL INLET VELOCITY)
FOR UNIFORM FLOW

U1 = 1.0/H
U, V : X, Y-COMPT. OF FLOW VELOCITY

U = U1
IF (THETA.EQ.0.) GO TO 480
V = U*YB*TAN(RAD)
IF (YO.GT.0.) V = -V
GO TO 481

480 V = 0.
481 DADT = 0.
DBDT = 0.
FX = 0.
FY = 0.

CALCULATION OF THE COEFFICIENTS OF THE 4TH ORDER RUNGE-KUTTA METHOD

WRITE (9, 492) THETA, NO
492 FORMAT (/6X, 'CONVERGENT ANGLE=', F8.4, 4X, 'NO. OF IMAGE Pairs=', I6/)
495 WRITE (9, 496)
INDEX = 0
WRITE (9, 497) T, DT, X, Y, A, B, DADT, DBDT, FX, FY, U, V, H, X/Q1
497 FORMAT(I8, E10.2, F8.3, F10.3, 2F9.3, 4F10.3,
1F7.3, F8.3, 2F7.3, ' | ')
C
GO TO 2000
C
510 X1=A*DT
Y1=B*DT
A1=DADT*DT
B1=DBDT*DT
C
X=XP+0.5*X1
Y=YP+0.5*Y1
A=AP+0.5*A1
B=BP+0.5*B1
C
GO TO 2000
C
520 X2=A*DT
Y2=B*DT
A2=DADT*DT
B2=DBDT*DT
C
X=XP+0.5*X2
Y=YP+0.5*Y2
A=AP+0.5*A2
B=BP+0.5*B2
C
GO TO 2000
C
530 X3=A*DT
Y3=B*DT
A3=DADT*DT
B3=DBDT*DT
C
X=XP+0.5*X3
Y=YP+0.5*Y3
A=AP+0.5*A3
B=BP+0.5*B3
C
GO TO 2000
C
540 X4=A*DT
Y4=B*DT
A4=DADT*DT
B4=DBDT*DT
C
SUMMING UP OF THE 4 COEFFICIENTS
C
DX=(X1 + 2.*X2 + 2.*X3 + X4)/6.
DY=(Y1 + 2.*Y2 + 2.*Y3 + Y4)/6.
DB=(B1 + 2.*B2 + 2.*B3 + B4)/6.
XP=XP+DX
X=XP
YP=YP+DY
Y=YP
AP=AP+DA
A=AP
BP=BP+DB
B=BP
T=T+DT

C GO TO 600

C ALTERNATE LOOP FOR ST = 0
C (SINCE G.E. BECOMES 1ST ORDER D.E.)
C
5100 X1=A*DT
 Y1=B*DT
C X=XP+0.5*X1
 Y=YP+0.5*Y1
 A=FX+U
 B=FY+V-G
C GO TO 2000

C 5200 X2=A*DT
 Y2=B*DT
C X=XP+0.5*X2
 Y=YP+0.5*Y2
 A=FX+U
 B=FY+V-G
C GO TO 2000

C 5300 X3=A*DT
 Y3=B*DT
C X=XP+0.5*X3
 Y=YP+0.5*Y3
 A=FX+U
 B=FY+V-G
C GO TO 2000

C 5400 X4=A*DT
 Y4=B*DT
C SUMMING UP OF THE 4 COEFFICIENTS
C
DX=(X1 + 2.*X2 + 2.*X3 + X4)/6.
DY=(Y1 + 2.*Y2 + 2.*Y3 + Y4)/6.
\[\text{XP} = \text{XP} + \text{DX} \]
\[\text{X} = \text{XP} \]
\[\text{YP} = \text{YP} + \text{DY} \]
\[\text{Y} = \text{YP} \]
\[\text{A} = \text{FX} + \text{U} \]
\[\text{B} = \text{FY} + \text{V} - \text{G} \]
\[\text{T} = \text{T} + \text{DT} \]

\[\text{GO TO 600} \]

\[\text{2000 INDEX} = \text{INDEX} + 1 \]
\[\text{IF(THETA.EQ.0.) GO TO 550} \]

\[\text{CONTINUITY REQUIREMENT} \]
\[H: \text{RATIO OF CHANNEL LOCAL AREA TO INLET AREA} \]
\[= 1.0 - X \times \text{TAN(THETA)} \]

\[\text{XTAN} = X \times \text{TAN(RAD)} \]
\[\text{GO TO 551} \]

\[\text{550 XTAN=} 0. \]

\[\text{551 H=} 1.0 - \text{XTAN} \]
\[\text{YB=} Y/H \]
\[\text{U=} U/H \]
\[\text{IF(THETA.EQ.0.) GO TO 552} \]
\[\text{V=} U \times \text{YB} \times \text{TAN(RAD)} \]
\[\text{IF(YO.GT.0.) V=} -V \]
\[\text{GO TO 553} \]

\[\text{552 V=} 0. \]

\[\text{553 CONTINUE} \]

\[\text{SUMMATION OF THE IMAGE FORCES} \]
\[\text{FX: IMAGE FORCE IN THE X-DIRECTION} \]
\[\text{FY: IMAGE FORCE IN THE Y-DIRECTION} \]

\[\text{FX=} 0. \]
\[\text{FY=} 0. \]

\[\text{FORCE DUE TO THE FIRST PAIR IMAGES} \]
\[\text{YB=} Y/H \]

\[\text{SET THE STORAGE TO ZERO} \]
DO 767 KI=1,NTOT
QX(KI)=0.
QY(KI)=0.
QXP(KI)=0.
QYP(KI)=0.
HQX(KI)=0.
HQXP(KI)=0.
CONTINUE

C
QX(1)=S2T*H*(1.0 - YB) + X
QY(1)=2.0*CT2*H*(1.0 - YB)
QXP(1)=S2T*H*(1.0 + YB) + X
QYP(1)=2.0*CT2*H*(1.0 + YB)

C
THE(1)=ATAN(QX(1)/QY(1))
THEP(1)=ATAN(QXP(1)/QYP(1))
STH1=SIN(THE(1))
CTH1=COS(THE(1))
STHP1=SIN(THEP(1))
CTHP1=COS(THEP(1))
QXQY=QX(1)*QX(1) + QY(1)*QY(1)
QXPQYP=QXP(1)*QXP(1) + QYP(1)*QYP(1)

C
IF(THETA.NE.0.) GO TO 75
FX=0.
GO TO 76

75 FX=FX + STH1/QXQY + STHP1/QXPQYP
76 FY=FY + CTH1/QXQY - CTHP1/QXPQYP

C
SUM UP FROM THE SECOND PAIR OF IMAGES ON

DO 560 J=2,NTOT
HQX(J-1)=1.0 - QX(J-1)*TAN(RAD)
HQXP(J-1)=1.0 - QXP(J-1)*TAN(RAD)
HMYPQ=HQXP(J-1) - H*YB + QYP(J-1)
HPYPQ=HQX(J-1) + H*YB + QY(J-1)
QX(J)=S2T*HMYPQ + QXP(J-1)
QY(J)=2.0*CT2*HMYPQ - QYP(J-1)
IF(J.EQ.NTOT .AND. QY(J).LT.0.) QY(J)=-QY(J)
QXP(J)=S2T*HPYPQ + QX(J-1)
QYP(J)=2.0*CT2*HPYPQ - QY(J-1)

C
THE(J)=ATAN(QX(J)/QY(J))
THEP(J)=ATAN(QXP(J)/QYP(J))
STHJ=SIN(THE(J))
CTHJ=COS(THE(J))
STHPJ=SIN(THEP(J))
CTHPJ=COS(THEP(J))
QXQY=QX(J)*QX(J) + QY(J)*QY(J)
QXPQYP=QXP(J)*QXP(J) + QYP(J)*QYP(J)
IF(THETA.EQ.0.) GO TO 78
FX=FX + STHJ/QXQY + STHPJ/QXPQYP
78 FY=FY + CTHJ/QXQY - CTHPJ/QXPQYP
CC K=J-1
CC K21=K*2+1
CC XSUM1=K21*K21+YB*YB
CC XSUM2=(K21*K21-YB*YB)**2
CC YSUM1=K21/XSUM2
CC FX=FX + XSUM1/XSUM2
CC FY=FY + YSUM1
560 CONTINUE
C
C COMPENSATION OF THE EXTRA TERMS OF THE SUMMATION
C
IF(THETA.NE.0. .OR. NO.LE.7) GO TO 581
CC IF(NO.LE.7) GO TO 570
CC IF(NO.GE.100) FACTOR=2.5
CC IF(THETA.EQ.0.) GO TO 567
567 FX=FX + FACTOR*(STHJ/QXQY + STHPJ/QXPQYP)
CC FY=FY + FACTOR*(CTHJ/QXQY - CTHPJ/QXPQYP)
CC FX=FX + FACTOR*XSUM1/XSUM2
CC FY=FY + FACTOR*YSUM1
CC IF(THETA.EQ.0.) GO TO 580
CC570 XANGLE=0.5*SIN(RAD)/COS(RAD)**2
CC IF(NCHAN.EQ.1) XANGLE=-XANGLE
CC YANGLE=1.0/COS(RAD)
CC GO TO 581
CC580 XANGLE=0.
CC YANGLE=1.
CC581 FX=FX*Q1*XANGLE/H**2
CC FY=FY*Q1*YB*YANGLE/H**2
C
581 FX=FX*Q1
 FY=FY*Q1
IF(ST.EQ.0.) GO TO (5100,5200,5300,5400), INDEX
DADT=(FX+U-A)/ST
DBDT=(FY+V-B-G)/ST
GO TO (510,520,530,540), INDEX
C
C ..
C CHECK IF THE PARTICLE HAS HIT THE WALL AND MAKE
C ADJUSTMENTS ON THE TIME STEPS
C
C ..
C 600 AY=ABS(Y)
 ADY=ABS(DY)
C
C CHECK FOR CONVERGENT OR DIVERGENT CHANNEL
C AND MAKE ADJUSTMENTS ON CHANNEL WIDTHS
C
CC XTAN=X*TAN(RAD)
CC IF(NCHAN.EQ.1) GO TO 608
H=1.0-XTAN
ADJ=.996*H
ADJST=.998*H
GO TO 609

608 H=1.0+XTAN
ADJ=.996*H
ADJST=.998*H

609 IF(AY+4.*ADY .GT. ADJ) GO TO 2500

C CHECK IF THE PARTICLE HAS MOVED OUTSIDE OF THE
C CONVERGENT CHANNEL. STOP, IF IT IS, EVEN IF
C IT STILL DOESN'T HIT THE CHANNEL WALL
C
IF(NCHAN.EQ.0 .AND. X.GE.XMAX8) GO TO 2500

610 CONTINUE
IF(B.EQ.0.) GO TO 615
DBB=DB/B
GO TO 616

615 DBB=DB
616 IN=IN+1
IF(DX.LT. 0.0001 .AND. DBB.GT.0.09) GO TO 620
IF(ADY.LT.0.0001) DT=DT*2.0

620 IF(X.LT.2. .AND. DX.GT.0.01) DT=0.01/A
IF(ADY.GT.0.0025) DT=DT*0.002/ADY
IF(X.LT.XMAX2 .AND. DT.GT.1.0) DT=1.0
IF(NCHAN.EQ.0 .AND. X.GE.XMAX8) GO TO 1000
IF(AY.LT.ADJST) GO TO 500

C END OF THIS PARTICLE MOTION, GO ONTO NEXT WITH
C DIFFERENT INITIAL CONDITIONS
GO TO 1000

2500 IF(AY.GT.ADJST) GO TO 2600
IF(NCHAN.EQ.0 .AND. X.GE.XMAX8) GO TO 2600
IF(X.NE.0 .AND. XDUM.GT.X) GO TO 2600
IF(DT.GT.0.05) DT=DT-0.01

XX(200)=X
TT(200)=T
AYY(200)=AY
ZZ(200)=Z
YY(200)=YO
GO TO 610

2600 L=L+1
TT(L)=T
XX(L)=X
YY(L)=YO
AYY(L)=AY
ZZ(L)=Z

"YO" CANNOT BE EXACTLY ZERO DUE TO TRUNCATING
ERROR USE YO.LT.0.00001 INSTEAD OF YO.EQ.0.
IF(G.EQ.0.0 .AND. YO.LT.0.00001) GO TO 938
TOTAL=((AYY(L)-ZZ(L))*TT(200)-(AYY(200)-ZZ(200))
**TT(L))/(ZZ(200)-ZZ(L)-AYY(200)+AYY(L))
SL=(TOTAL-TT(200))/(TT(L)-TT(200))
IF(G.NE.0. .AND. YO.NE.0.) XX(L)=XX(200) + SL
**(XX(L)-XX(200))
AYY(L)=AYY(200) + SL*(AYY(L)-AYY(200))
ZZ(L)=ZZ(200) + SL*(ZZ(L)-ZZ(200))

938 PY(L)=Y
 INN(L)=IN

TO STORE THE PARTICLE INFORMATIONS --- VELOCITY,
ACCELERATION, FORCES AND CHANNEL WALL LOCATION

WALL(L)=H
UPAR(L)=A
VPAR(L)=B
ACX(L)=DADT
ACY(L)=DBDT
FOX(L)=FX
FOY(L)=FY

CALCULATION OF THE PARTICLE DEPOSITION

FOR UNIFORM FLOW (COUNT ON THE WHOLE CHANNEL)
DEPO(L)=(1.+YO)
IF(Y.GT.0.) DEPO(L)=(1.-YO)
IF(L.EQ.1) GO TO 610
IF(X.GE.XMAX8) GO TO 1199
GO TO 610

1000 CONTINUE

PRINT OUT OF OUTPUT DATA

1199 IF(JQ1.NE.1) GO TO 1198
WRITE(9,50)
50 FORMAT(132(' - '))
WRITE(9,57)
WRITE(9,49)
WRITE(9,58)
WRITE(9,49)
49 FORMAT(' | ',9X,' | ',120('-'),' | ')
WRITE(9,51) DEPO(1), DEPO(2), DEPO(3), DEPO(4), DEPO(5)
DEPO(6), DEPO(7), DEPO(8), DEPO(9), DEPO(10), DEPO(11)
DEPO(12), DEPO(13), DEPO(14), DEPO(15)
51 FORMAT(' | ',9X,' | ',F7.3,14F8.3,' | ')
WRITE(9,50)
CONTINUE
WRITE(9,52) Q1,XX(1),XX(2),XX(3),XX(4),XX(5),XX(6),
1XX(7),XX(8),XX(9),XX(10),XX(11),XX(12),XX(13),XX(14)
2,XX(15)
52 FORMAT(' ',E7.1,' | ',F6.3,14F8.3,' | ')
59 WRITE(9,56)
IF(JQ1.NE.JQTO) GO TO 55
WRITE(9,50)

C C GENERATE THE PLOTFILE DATA
C (DEPOSITION RATE VS X-DISPLACEMENT)
C
55 DO 54 KPLOT=1,15
WRITE(10,53) XX(KPLOT),DEPO(KPLOT)
53 FORMAT(1X,2(3X,F8.4))
54 CONTINUE
56 FORMAT(' ',9X,' | ',120X,' | ')
57 FORMAT(' | ',6X,' | ',120X,' | ')
58 FORMAT(' | ',53X,'X-DISPLACEMENT',53X,' | ')
59 FORMAT(' | ',49X,'FRACTION OF DEPOSITION'
1,49X,' | ')
3000 CONTINUE
STOP
END
Table 4.1

Comparison of the Infinite Terms of Image Force ($n \rightarrow \infty$) and the Result from the Modified Formula; $Q = 0$, $L = 12.5$, $Q = 1$, $St = 0$

<table>
<thead>
<tr>
<th>n</th>
<th>IMAGE FORCE</th>
<th>PARTICLE LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.1 0.3 0.5 0.7 0.8 0.9 0.95</td>
</tr>
<tr>
<td>7</td>
<td>0.10709 0.37768 0.91533 2.73000 6.21840 24.98369 99.99118</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.10716 0.37787 0.91565 2.73045 6.21892 24.98425 99.99178</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.10720 0.37801 0.91588 2.73078 6.21929 24.98462 99.99217</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.10721 0.37805 0.91594 2.73086 6.21939 24.98462 99.99217</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.10721 0.37805 0.91594 2.73086 6.21939 24.98462 99.99217</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.10721 0.37805 0.91594 2.73086 6.21939 24.98462 99.99217</td>
<td></td>
</tr>
<tr>
<td>7*</td>
<td>0.10721 0.37802 0.91590 2.73080 6.21932 24.98471 99.99228</td>
<td></td>
</tr>
</tbody>
</table>

* Modified Value
Table 5.1

Particle Trajectories along a Convergent Channel; $\gamma = 0.9$, $\theta = 7.5^\circ$, $L = 6.07$, $\theta = 10$, $St = 10$

<table>
<thead>
<tr>
<th>T</th>
<th>ΔT</th>
<th>X</th>
<th>Y</th>
<th>U_p</th>
<th>V_p</th>
<th>α_p</th>
<th>α_p</th>
<th>F_X</th>
<th>F_Y</th>
<th>U</th>
<th>V</th>
<th>H</th>
<th>X/Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.28E-01</td>
<td>0.000</td>
<td>0.900</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>3.491</td>
<td>25.181</td>
<td>1.000</td>
<td>-0.118</td>
<td>1.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>0.0200</td>
<td>0.29E-01</td>
<td>0.000</td>
<td>0.904</td>
<td>1.095</td>
<td>0.176</td>
<td>5.147</td>
<td>26.535</td>
<td>51.517</td>
<td>265.735</td>
<td>1.001</td>
<td>-0.119</td>
<td>0.997</td>
<td>0.002</td>
</tr>
<tr>
<td>0.0228</td>
<td>0.29E-01</td>
<td>0.000</td>
<td>0.910</td>
<td>1.164</td>
<td>0.763</td>
<td>8.797</td>
<td>29.326</td>
<td>88.014</td>
<td>294.000</td>
<td>1.004</td>
<td>-0.120</td>
<td>0.996</td>
<td>0.003</td>
</tr>
<tr>
<td>0.0315</td>
<td>0.28E-01</td>
<td>0.000</td>
<td>0.919</td>
<td>1.513</td>
<td>1.933</td>
<td>10.158</td>
<td>39.742</td>
<td>101.750</td>
<td>397.420</td>
<td>1.006</td>
<td>-0.121</td>
<td>0.994</td>
<td>0.003</td>
</tr>
<tr>
<td>0.0357</td>
<td>0.27E-01</td>
<td>0.000</td>
<td>0.924</td>
<td>1.851</td>
<td>2.760</td>
<td>12.944</td>
<td>43.073</td>
<td>144.470</td>
<td>430.730</td>
<td>1.007</td>
<td>-0.122</td>
<td>0.994</td>
<td>0.004</td>
</tr>
<tr>
<td>0.0399</td>
<td>0.26E-01</td>
<td>0.000</td>
<td>0.930</td>
<td>2.189</td>
<td>3.412</td>
<td>15.745</td>
<td>46.404</td>
<td>187.490</td>
<td>464.040</td>
<td>1.008</td>
<td>-0.123</td>
<td>0.994</td>
<td>0.005</td>
</tr>
<tr>
<td>0.0441</td>
<td>0.25E-01</td>
<td>0.000</td>
<td>0.937</td>
<td>2.527</td>
<td>4.006</td>
<td>18.545</td>
<td>49.735</td>
<td>230.510</td>
<td>497.350</td>
<td>1.009</td>
<td>-0.124</td>
<td>0.994</td>
<td>0.005</td>
</tr>
<tr>
<td>0.0492</td>
<td>0.24E-01</td>
<td>0.000</td>
<td>0.944</td>
<td>2.865</td>
<td>4.536</td>
<td>21.345</td>
<td>52.065</td>
<td>273.530</td>
<td>520.650</td>
<td>1.010</td>
<td>-0.125</td>
<td>0.994</td>
<td>0.006</td>
</tr>
<tr>
<td>0.0535</td>
<td>0.23E-01</td>
<td>0.000</td>
<td>0.951</td>
<td>3.203</td>
<td>5.016</td>
<td>24.145</td>
<td>54.395</td>
<td>316.550</td>
<td>543.950</td>
<td>1.011</td>
<td>-0.126</td>
<td>0.994</td>
<td>0.006</td>
</tr>
<tr>
<td>0.0578</td>
<td>0.22E-01</td>
<td>0.000</td>
<td>0.958</td>
<td>3.541</td>
<td>5.456</td>
<td>26.945</td>
<td>56.725</td>
<td>359.570</td>
<td>567.250</td>
<td>1.012</td>
<td>-0.127</td>
<td>0.994</td>
<td>0.007</td>
</tr>
<tr>
<td>0.0621</td>
<td>0.21E-01</td>
<td>0.000</td>
<td>0.965</td>
<td>3.879</td>
<td>5.896</td>
<td>29.745</td>
<td>59.055</td>
<td>402.590</td>
<td>590.550</td>
<td>1.013</td>
<td>-0.128</td>
<td>0.994</td>
<td>0.007</td>
</tr>
<tr>
<td>0.0664</td>
<td>0.20E-01</td>
<td>0.000</td>
<td>0.972</td>
<td>4.217</td>
<td>6.336</td>
<td>32.545</td>
<td>61.385</td>
<td>445.610</td>
<td>613.850</td>
<td>1.014</td>
<td>-0.129</td>
<td>0.994</td>
<td>0.008</td>
</tr>
<tr>
<td>0.0707</td>
<td>0.19E-01</td>
<td>0.000</td>
<td>0.979</td>
<td>4.555</td>
<td>6.776</td>
<td>35.345</td>
<td>63.715</td>
<td>488.630</td>
<td>637.150</td>
<td>1.015</td>
<td>-0.130</td>
<td>0.994</td>
<td>0.008</td>
</tr>
<tr>
<td>0.0750</td>
<td>0.18E-01</td>
<td>0.000</td>
<td>0.986</td>
<td>4.893</td>
<td>7.215</td>
<td>38.145</td>
<td>66.045</td>
<td>531.650</td>
<td>660.450</td>
<td>1.016</td>
<td>-0.131</td>
<td>0.994</td>
<td>0.009</td>
</tr>
<tr>
<td>0.0793</td>
<td>0.17E-01</td>
<td>0.000</td>
<td>0.993</td>
<td>5.231</td>
<td>7.655</td>
<td>40.945</td>
<td>68.375</td>
<td>574.670</td>
<td>683.750</td>
<td>1.017</td>
<td>-0.132</td>
<td>0.994</td>
<td>0.009</td>
</tr>
<tr>
<td>0.0836</td>
<td>0.16E-01</td>
<td>0.000</td>
<td>0.999</td>
<td>5.570</td>
<td>8.095</td>
<td>43.745</td>
<td>70.705</td>
<td>617.690</td>
<td>707.050</td>
<td>1.018</td>
<td>-0.133</td>
<td>0.994</td>
<td>0.009</td>
</tr>
</tbody>
</table>
Table 5.2

Particle Trajectory along a Convergent Channel; \(\gamma_0 = 0.5, \theta = 7.5^\circ, L = 6.07, Q = 10, St = 10 \)

<table>
<thead>
<tr>
<th>T</th>
<th>(\Delta T)</th>
<th>X</th>
<th>Y</th>
<th>(U_p)</th>
<th>(V_p)</th>
<th>(A_pX)</th>
<th>(A_pY)</th>
<th>(F_X)</th>
<th>(F_Y)</th>
<th>U</th>
<th>V</th>
<th>H</th>
<th>X/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.10E+00</td>
<td>0.000</td>
<td>0.500</td>
<td>1.000</td>
<td>0.000</td>
<td>0.366</td>
<td>0.914</td>
<td>1.000</td>
<td>-0.066</td>
<td>1.000</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1255</td>
<td>0.51E-02</td>
<td>0.128</td>
<td>0.506</td>
<td>1.047</td>
<td>0.114</td>
<td>0.455</td>
<td>0.912</td>
<td>4.583</td>
<td>9.305</td>
<td>1.017</td>
<td>-0.069</td>
<td>0.783</td>
<td>0.013</td>
</tr>
<tr>
<td>0.1562</td>
<td>0.51E-02</td>
<td>1.100</td>
<td>0.510</td>
<td>1.061</td>
<td>0.142</td>
<td>0.497</td>
<td>0.915</td>
<td>5.014</td>
<td>9.360</td>
<td>1.021</td>
<td>-0.070</td>
<td>0.770</td>
<td>0.016</td>
</tr>
<tr>
<td>0.1970</td>
<td>0.51E-02</td>
<td>0.204</td>
<td>0.517</td>
<td>1.083</td>
<td>0.180</td>
<td>0.557</td>
<td>0.918</td>
<td>5.628</td>
<td>9.425</td>
<td>1.027</td>
<td>-0.072</td>
<td>0.773</td>
<td>0.020</td>
</tr>
<tr>
<td>0.2379</td>
<td>0.51E-02</td>
<td>0.249</td>
<td>0.525</td>
<td>1.107</td>
<td>0.217</td>
<td>0.622</td>
<td>0.918</td>
<td>6.291</td>
<td>9.470</td>
<td>1.033</td>
<td>-0.074</td>
<td>0.776</td>
<td>0.025</td>
</tr>
<tr>
<td>0.2736</td>
<td>0.51E-02</td>
<td>0.289</td>
<td>0.533</td>
<td>1.131</td>
<td>0.250</td>
<td>0.682</td>
<td>0.916</td>
<td>6.913</td>
<td>9.500</td>
<td>1.039</td>
<td>-0.076</td>
<td>0.782</td>
<td>0.029</td>
</tr>
<tr>
<td>0.3145</td>
<td>0.51E-02</td>
<td>0.336</td>
<td>0.544</td>
<td>1.160</td>
<td>0.287</td>
<td>0.756</td>
<td>0.908</td>
<td>7.671</td>
<td>9.541</td>
<td>1.046</td>
<td>-0.078</td>
<td>0.787</td>
<td>0.034</td>
</tr>
<tr>
<td>0.3553</td>
<td>0.51E-02</td>
<td>0.384</td>
<td>0.557</td>
<td>1.193</td>
<td>0.324</td>
<td>0.834</td>
<td>0.892</td>
<td>8.473</td>
<td>9.582</td>
<td>1.053</td>
<td>-0.081</td>
<td>0.794</td>
<td>0.038</td>
</tr>
<tr>
<td>0.3911</td>
<td>0.51E-02</td>
<td>0.427</td>
<td>0.569</td>
<td>1.224</td>
<td>0.356</td>
<td>0.904</td>
<td>0.870</td>
<td>9.260</td>
<td>9.613</td>
<td>1.059</td>
<td>-0.084</td>
<td>0.794</td>
<td>0.043</td>
</tr>
<tr>
<td>0.4268</td>
<td>0.51E-02</td>
<td>0.471</td>
<td>0.582</td>
<td>1.258</td>
<td>0.386</td>
<td>0.974</td>
<td>0.839</td>
<td>9.932</td>
<td>9.656</td>
<td>1.066</td>
<td>-0.087</td>
<td>0.833</td>
<td>0.047</td>
</tr>
<tr>
<td>0.4626</td>
<td>0.51E-02</td>
<td>0.517</td>
<td>0.596</td>
<td>1.294</td>
<td>0.415</td>
<td>1.043</td>
<td>0.796</td>
<td>10.467</td>
<td>9.702</td>
<td>1.072</td>
<td>-0.090</td>
<td>0.932</td>
<td>0.053</td>
</tr>
<tr>
<td>0.4983</td>
<td>0.51E-02</td>
<td>0.564</td>
<td>0.612</td>
<td>1.332</td>
<td>0.443</td>
<td>1.166</td>
<td>0.741</td>
<td>11.313</td>
<td>7.940</td>
<td>1.080</td>
<td>-0.094</td>
<td>0.926</td>
<td>0.056</td>
</tr>
<tr>
<td>0.5392</td>
<td>0.51E-02</td>
<td>0.619</td>
<td>0.630</td>
<td>1.379</td>
<td>0.471</td>
<td>1.168</td>
<td>0.662</td>
<td>11.969</td>
<td>7.191</td>
<td>1.088</td>
<td>-0.098</td>
<td>0.919</td>
<td>0.062</td>
</tr>
<tr>
<td>0.5790</td>
<td>0.41E-02</td>
<td>0.675</td>
<td>0.650</td>
<td>1.427</td>
<td>0.496</td>
<td>1.213</td>
<td>0.571</td>
<td>12.456</td>
<td>6.396</td>
<td>1.097</td>
<td>-0.103</td>
<td>0.911</td>
<td>0.067</td>
</tr>
<tr>
<td>0.6116</td>
<td>0.41E-02</td>
<td>0.722</td>
<td>0.666</td>
<td>1.467</td>
<td>0.513</td>
<td>1.234</td>
<td>0.489</td>
<td>12.760</td>
<td>5.511</td>
<td>1.105</td>
<td>-0.107</td>
<td>0.905</td>
<td>0.072</td>
</tr>
<tr>
<td>0.6522</td>
<td>0.41E-02</td>
<td>0.783</td>
<td>0.687</td>
<td>1.517</td>
<td>0.530</td>
<td>1.249</td>
<td>0.382</td>
<td>12.798</td>
<td>4.461</td>
<td>1.114</td>
<td>-0.112</td>
<td>0.897</td>
<td>0.078</td>
</tr>
<tr>
<td>0.6948</td>
<td>0.41E-02</td>
<td>0.833</td>
<td>0.705</td>
<td>1.557</td>
<td>0.541</td>
<td>1.227</td>
<td>0.296</td>
<td>12.766</td>
<td>3.618</td>
<td>1.123</td>
<td>-0.117</td>
<td>0.890</td>
<td>0.083</td>
</tr>
<tr>
<td>0.7174</td>
<td>0.41E-02</td>
<td>0.884</td>
<td>0.722</td>
<td>1.597</td>
<td>0.549</td>
<td>1.261</td>
<td>0.214</td>
<td>12.477</td>
<td>2.807</td>
<td>1.131</td>
<td>-0.122</td>
<td>0.884</td>
<td>0.088</td>
</tr>
<tr>
<td>0.7458</td>
<td>0.41E-02</td>
<td>0.930</td>
<td>0.738</td>
<td>1.639</td>
<td>0.554</td>
<td>1.169</td>
<td>0.147</td>
<td>12.179</td>
<td>2.146</td>
<td>1.139</td>
<td>-0.126</td>
<td>0.873</td>
<td>0.093</td>
</tr>
<tr>
<td>0.7743</td>
<td>0.41E-02</td>
<td>0.977</td>
<td>0.754</td>
<td>1.663</td>
<td>0.557</td>
<td>1.130</td>
<td>0.095</td>
<td>11.810</td>
<td>1.544</td>
<td>1.147</td>
<td>-0.130</td>
<td>0.871</td>
<td>0.098</td>
</tr>
<tr>
<td>0.8028</td>
<td>0.41E-02</td>
<td>1.025</td>
<td>0.770</td>
<td>1.695</td>
<td>0.559</td>
<td>1.065</td>
<td>0.032</td>
<td>11.389</td>
<td>1.011</td>
<td>1.155</td>
<td>-0.135</td>
<td>0.865</td>
<td>0.102</td>
</tr>
<tr>
<td>0.8354</td>
<td>0.41E-02</td>
<td>1.080</td>
<td>0.788</td>
<td>1.727</td>
<td>0.559</td>
<td>1.061</td>
<td>0.021</td>
<td>10.870</td>
<td>0.868</td>
<td>1.155</td>
<td>-0.141</td>
<td>0.858</td>
<td>0.108</td>
</tr>
<tr>
<td>0.8639</td>
<td>0.41E-02</td>
<td>1.130</td>
<td>0.804</td>
<td>1.753</td>
<td>0.558</td>
<td>0.982</td>
<td>0.060</td>
<td>10.401</td>
<td>0.666</td>
<td>1.174</td>
<td>-0.146</td>
<td>0.851</td>
<td>0.113</td>
</tr>
<tr>
<td>0.8923</td>
<td>0.41E-02</td>
<td>1.180</td>
<td>0.820</td>
<td>1.785</td>
<td>0.556</td>
<td>0.933</td>
<td>0.092</td>
<td>9.933</td>
<td>0.561</td>
<td>1.193</td>
<td>-0.151</td>
<td>0.845</td>
<td>0.118</td>
</tr>
<tr>
<td>0.9208</td>
<td>0.41E-02</td>
<td>1.232</td>
<td>0.836</td>
<td>1.811</td>
<td>0.553</td>
<td>0.886</td>
<td>0.118</td>
<td>9.477</td>
<td>0.468</td>
<td>1.219</td>
<td>-0.156</td>
<td>0.838</td>
<td>0.123</td>
</tr>
</tbody>
</table>
Table 5.3

Particle Trajectory along a Convergent Channel: \(Y_0 = 0.1, \theta = 7.5^\circ, L = 6.07, Q = 10, St = 10 \)

<table>
<thead>
<tr>
<th>T</th>
<th>(\Delta T)</th>
<th>X</th>
<th>Y</th>
<th>(U_x)</th>
<th>(V_y)</th>
<th>(A_{px})</th>
<th>(A_{py})</th>
<th>(F_x)</th>
<th>(F_y)</th>
<th>U</th>
<th>V</th>
<th>H</th>
<th>X/Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.225</td>
<td>0.186</td>
<td>1.000</td>
<td>0.013</td>
<td>1.000</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3483</td>
<td>0.91E-02</td>
<td>0.363</td>
<td>1.098</td>
<td>0.036</td>
<td>0.344</td>
<td>0.100</td>
<td>3.403</td>
<td>1.049</td>
<td>1.050</td>
<td>-0.015</td>
<td>0.992</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>0.5169</td>
<td>0.05E-02</td>
<td>0.554</td>
<td>1.161</td>
<td>0.052</td>
<td>0.399</td>
<td>0.092</td>
<td>4.076</td>
<td>0.993</td>
<td>1.078</td>
<td>-0.017</td>
<td>0.927</td>
<td>0.055</td>
<td></td>
</tr>
<tr>
<td>0.6762</td>
<td>0.41E-02</td>
<td>0.744</td>
<td>1.229</td>
<td>0.066</td>
<td>0.446</td>
<td>0.081</td>
<td>4.577</td>
<td>0.995</td>
<td>1.089</td>
<td>-0.020</td>
<td>0.992</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td>0.8268</td>
<td>0.79E-02</td>
<td>0.934</td>
<td>1.299</td>
<td>0.077</td>
<td>0.480</td>
<td>0.066</td>
<td>4.962</td>
<td>0.761</td>
<td>1.139</td>
<td>-0.023</td>
<td>0.977</td>
<td>0.093</td>
<td></td>
</tr>
<tr>
<td>0.9768</td>
<td>0.73E-02</td>
<td>1.134</td>
<td>1.373</td>
<td>0.086</td>
<td>0.504</td>
<td>0.049</td>
<td>5.238</td>
<td>0.590</td>
<td>1.175</td>
<td>-0.026</td>
<td>0.951</td>
<td>0.113</td>
<td></td>
</tr>
<tr>
<td>1.1189</td>
<td>0.69E-02</td>
<td>1.335</td>
<td>1.445</td>
<td>0.091</td>
<td>0.516</td>
<td>0.031</td>
<td>5.394</td>
<td>0.433</td>
<td>1.212</td>
<td>-0.031</td>
<td>0.924</td>
<td>0.133</td>
<td></td>
</tr>
<tr>
<td>1.2935</td>
<td>0.65E-02</td>
<td>1.595</td>
<td>1.536</td>
<td>0.095</td>
<td>0.519</td>
<td>0.011</td>
<td>5.455</td>
<td>0.241</td>
<td>1.265</td>
<td>-0.037</td>
<td>0.900</td>
<td>0.159</td>
<td></td>
</tr>
<tr>
<td>1.4149</td>
<td>0.63E-02</td>
<td>1.785</td>
<td>1.636</td>
<td>0.095</td>
<td>0.514</td>
<td>0.001</td>
<td>5.431</td>
<td>0.127</td>
<td>1.306</td>
<td>-0.042</td>
<td>0.875</td>
<td>0.179</td>
<td></td>
</tr>
<tr>
<td>1.5256</td>
<td>0.60E-02</td>
<td>1.965</td>
<td>1.755</td>
<td>0.095</td>
<td>0.507</td>
<td>-0.010</td>
<td>5.374</td>
<td>0.041</td>
<td>1.348</td>
<td>-0.047</td>
<td>0.841</td>
<td>0.197</td>
<td></td>
</tr>
<tr>
<td>1.6278</td>
<td>0.56E-02</td>
<td>2.157</td>
<td>1.887</td>
<td>0.093</td>
<td>0.499</td>
<td>-0.017</td>
<td>5.301</td>
<td>-0.023</td>
<td>1.390</td>
<td>-0.052</td>
<td>0.819</td>
<td>0.214</td>
<td></td>
</tr>
<tr>
<td>1.7360</td>
<td>0.52E-02</td>
<td>2.324</td>
<td>1.917</td>
<td>0.091</td>
<td>0.489</td>
<td>-0.023</td>
<td>5.211</td>
<td>-0.075</td>
<td>1.439</td>
<td>-0.059</td>
<td>0.794</td>
<td>0.232</td>
<td></td>
</tr>
<tr>
<td>1.8441</td>
<td>0.48E-02</td>
<td>2.517</td>
<td>1.942</td>
<td>0.089</td>
<td>0.480</td>
<td>-0.027</td>
<td>5.114</td>
<td>-0.113</td>
<td>1.494</td>
<td>-0.066</td>
<td>0.769</td>
<td>0.252</td>
<td></td>
</tr>
<tr>
<td>1.9523</td>
<td>0.46E-02</td>
<td>2.716</td>
<td>1.964</td>
<td>0.085</td>
<td>0.471</td>
<td>-0.030</td>
<td>5.015</td>
<td>-0.140</td>
<td>1.555</td>
<td>-0.075</td>
<td>0.742</td>
<td>0.272</td>
<td></td>
</tr>
<tr>
<td>2.0604</td>
<td>0.44E-02</td>
<td>2.921</td>
<td>1.984</td>
<td>0.082</td>
<td>0.463</td>
<td>-0.033</td>
<td>4.917</td>
<td>-0.158</td>
<td>1.623</td>
<td>-0.085</td>
<td>0.716</td>
<td>0.292</td>
<td></td>
</tr>
<tr>
<td>2.1685</td>
<td>0.42E-02</td>
<td>3.130</td>
<td>2.003</td>
<td>0.079</td>
<td>0.456</td>
<td>-0.034</td>
<td>4.822</td>
<td>-0.170</td>
<td>1.699</td>
<td>-0.096</td>
<td>0.688</td>
<td>0.313</td>
<td></td>
</tr>
<tr>
<td>2.2767</td>
<td>0.40E-02</td>
<td>3.345</td>
<td>2.022</td>
<td>0.075</td>
<td>0.450</td>
<td>-0.036</td>
<td>4.731</td>
<td>-0.177</td>
<td>1.784</td>
<td>-0.110</td>
<td>0.658</td>
<td>0.335</td>
<td></td>
</tr>
<tr>
<td>2.3848</td>
<td>0.38E-02</td>
<td>3.565</td>
<td>2.041</td>
<td>0.071</td>
<td>0.447</td>
<td>-0.038</td>
<td>4.646</td>
<td>-0.186</td>
<td>1.882</td>
<td>-0.126</td>
<td>0.627</td>
<td>0.357</td>
<td></td>
</tr>
<tr>
<td>2.4930</td>
<td>0.36E-02</td>
<td>3.791</td>
<td>2.060</td>
<td>0.066</td>
<td>0.445</td>
<td>-0.039</td>
<td>4.566</td>
<td>-0.192</td>
<td>1.993</td>
<td>-0.145</td>
<td>0.591</td>
<td>0.379</td>
<td></td>
</tr>
<tr>
<td>2.6011</td>
<td>0.34E-02</td>
<td>4.022</td>
<td>2.084</td>
<td>0.062</td>
<td>0.446</td>
<td>-0.041</td>
<td>4.493</td>
<td>-0.192</td>
<td>2.121</td>
<td>-0.168</td>
<td>0.471</td>
<td>0.402</td>
<td></td>
</tr>
<tr>
<td>2.7093</td>
<td>0.32E-02</td>
<td>4.258</td>
<td>2.108</td>
<td>0.057</td>
<td>0.449</td>
<td>-0.044</td>
<td>4.425</td>
<td>-0.182</td>
<td>2.271</td>
<td>-0.197</td>
<td>0.459</td>
<td>0.426</td>
<td></td>
</tr>
<tr>
<td>2.8174</td>
<td>0.30E-02</td>
<td>4.499</td>
<td>2.132</td>
<td>0.053</td>
<td>0.456</td>
<td>-0.047</td>
<td>4.364</td>
<td>-0.181</td>
<td>2.447</td>
<td>-0.233</td>
<td>0.408</td>
<td>0.450</td>
<td></td>
</tr>
<tr>
<td>2.9256</td>
<td>0.28E-02</td>
<td>4.745</td>
<td>2.155</td>
<td>0.057</td>
<td>0.466</td>
<td>-0.051</td>
<td>4.310</td>
<td>-0.180</td>
<td>2.638</td>
<td>-0.281</td>
<td>0.375</td>
<td>0.475</td>
<td></td>
</tr>
<tr>
<td>3.0337</td>
<td>0.26E-02</td>
<td>4.997</td>
<td>2.178</td>
<td>0.042</td>
<td>0.462</td>
<td>-0.056</td>
<td>4.261</td>
<td>-0.178</td>
<td>2.815</td>
<td>-0.343</td>
<td>0.342</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>3.1298</td>
<td>0.24E-02</td>
<td>5.226</td>
<td>2.198</td>
<td>0.036</td>
<td>0.452</td>
<td>-0.063</td>
<td>4.224</td>
<td>-0.177</td>
<td>3.196</td>
<td>-0.417</td>
<td>0.312</td>
<td>0.523</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.4

Image Charge Distribution at various Particle Vertical Positions

(a) $\theta = 7.5^\circ$ (Total No. of Image Pairs = 12)

<table>
<thead>
<tr>
<th>Y</th>
<th>X-Force</th>
<th>Y-Force</th>
<th>Resultant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000</td>
<td>0.22512</td>
<td>0.10617</td>
<td>0.24890</td>
</tr>
<tr>
<td>0.2000</td>
<td>0.23182</td>
<td>0.22544</td>
<td>0.32336</td>
</tr>
<tr>
<td>0.3000</td>
<td>0.24460</td>
<td>0.37535</td>
<td>0.44802</td>
</tr>
<tr>
<td>0.4000</td>
<td>0.26682</td>
<td>0.58528</td>
<td>0.64323</td>
</tr>
<tr>
<td>0.5000</td>
<td>0.30581</td>
<td>0.91380</td>
<td>0.96361</td>
</tr>
<tr>
<td>0.6000</td>
<td>0.37949</td>
<td>1.49872</td>
<td>1.54602</td>
</tr>
<tr>
<td>0.7000</td>
<td>0.54035</td>
<td>7.73783</td>
<td>7.82972</td>
</tr>
<tr>
<td>0.8000</td>
<td>1.00135</td>
<td>6.25642</td>
<td>6.33604</td>
</tr>
<tr>
<td>0.8200</td>
<td>1.19605</td>
<td>7.73783</td>
<td>7.82972</td>
</tr>
<tr>
<td>0.8400</td>
<td>1.46826</td>
<td>9.80777</td>
<td>9.91706</td>
</tr>
<tr>
<td>0.8600</td>
<td>1.86530</td>
<td>12.82568</td>
<td>12.96061</td>
</tr>
<tr>
<td>0.8800</td>
<td>2.47702</td>
<td>17.47389</td>
<td>17.64857</td>
</tr>
<tr>
<td>0.9000</td>
<td>3.49149</td>
<td>25.18127</td>
<td>25.42218</td>
</tr>
<tr>
<td>0.9200</td>
<td>5.35895</td>
<td>39.36771</td>
<td>39.73077</td>
</tr>
<tr>
<td>0.9300</td>
<td>6.94689</td>
<td>51.43002</td>
<td>51.89708</td>
</tr>
<tr>
<td>0.9400</td>
<td>9.39345</td>
<td>70.01424</td>
<td>70.64154</td>
</tr>
<tr>
<td>0.9500</td>
<td>13.45095</td>
<td>100.83475</td>
<td>101.72792</td>
</tr>
<tr>
<td>0.9600</td>
<td>20.92026</td>
<td>157.57170</td>
<td>158.95439</td>
</tr>
<tr>
<td>0.9700</td>
<td>37.05769</td>
<td>280.14575</td>
<td>282.58594</td>
</tr>
<tr>
<td>0.9800</td>
<td>83.16460</td>
<td>630.36353</td>
<td>635.82568</td>
</tr>
<tr>
<td>0.9900</td>
<td>332.13770</td>
<td>2521.52490</td>
<td>2543.30542</td>
</tr>
<tr>
<td>0.9950</td>
<td>1328.05762</td>
<td>10086.26170</td>
<td>10173.31640</td>
</tr>
<tr>
<td>0.9990</td>
<td>33198.09770</td>
<td>252163.62500</td>
<td>254339.56200</td>
</tr>
</tbody>
</table>
Table 5.4 (cont.)

(b) $\theta = 5^\circ$ (Total No. of Image Pairs = 18)

<table>
<thead>
<tr>
<th>Y</th>
<th>X-Force</th>
<th>Y-Force</th>
<th>Resultant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000</td>
<td>0.16597</td>
<td>0.10659</td>
<td>0.19725</td>
</tr>
<tr>
<td>0.2000</td>
<td>0.17044</td>
<td>0.22624</td>
<td>0.28325</td>
</tr>
<tr>
<td>0.3000</td>
<td>0.17896</td>
<td>0.37638</td>
<td>0.41676</td>
</tr>
<tr>
<td>0.4000</td>
<td>0.19375</td>
<td>0.58627</td>
<td>0.61745</td>
</tr>
<tr>
<td>0.5000</td>
<td>0.21966</td>
<td>0.91419</td>
<td>0.94021</td>
</tr>
<tr>
<td>0.6000</td>
<td>0.26854</td>
<td>1.49732</td>
<td>1.52121</td>
</tr>
<tr>
<td>0.7000</td>
<td>0.37511</td>
<td>2.73379</td>
<td>2.75941</td>
</tr>
<tr>
<td>0.8000</td>
<td>0.68022</td>
<td>6.23446</td>
<td>6.27146</td>
</tr>
<tr>
<td>0.8200</td>
<td>0.80904</td>
<td>7.70903</td>
<td>7.75137</td>
</tr>
<tr>
<td>0.8400</td>
<td>0.98913</td>
<td>9.76933</td>
<td>9.81927</td>
</tr>
<tr>
<td>0.8600</td>
<td>1.25175</td>
<td>12.77308</td>
<td>12.83426</td>
</tr>
<tr>
<td>0.8800</td>
<td>1.65637</td>
<td>17.39928</td>
<td>17.47794</td>
</tr>
<tr>
<td>0.9000</td>
<td>2.32737</td>
<td>25.07016</td>
<td>25.17795</td>
</tr>
<tr>
<td>0.9200</td>
<td>3.56251</td>
<td>39.18915</td>
<td>39.35074</td>
</tr>
<tr>
<td>0.9300</td>
<td>4.61276</td>
<td>51.19411</td>
<td>51.40149</td>
</tr>
<tr>
<td>0.9400</td>
<td>6.23088</td>
<td>69.68987</td>
<td>69.96782</td>
</tr>
<tr>
<td>0.9500</td>
<td>8.91443</td>
<td>100.36340</td>
<td>100.75851</td>
</tr>
<tr>
<td>0.9600</td>
<td>13.85455</td>
<td>156.82991</td>
<td>157.44066</td>
</tr>
<tr>
<td>0.9700</td>
<td>24.52728</td>
<td>278.81934</td>
<td>279.89600</td>
</tr>
<tr>
<td>0.9800</td>
<td>55.02124</td>
<td>627.36719</td>
<td>629.77515</td>
</tr>
<tr>
<td>0.9900</td>
<td>219.68710</td>
<td>2509.51050</td>
<td>2519.10791</td>
</tr>
<tr>
<td>0.9950</td>
<td>878.35718</td>
<td>10038.16020</td>
<td>10076.51560</td>
</tr>
<tr>
<td>0.9990</td>
<td>21956.32420</td>
<td>250961.31200</td>
<td>251919.93700</td>
</tr>
</tbody>
</table>
Table 5.4 (cont.)

(c) $\theta = 2.5^\circ$ (Total No. of Image Pairs = 36)

<table>
<thead>
<tr>
<th>Y</th>
<th>X-Force</th>
<th>Y-Force</th>
<th>Resultant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1000</td>
<td>0.09734</td>
<td>0.10699</td>
<td>0.14465</td>
</tr>
<tr>
<td>0.2000</td>
<td>0.09958</td>
<td>0.22701</td>
<td>0.24789</td>
</tr>
<tr>
<td>0.3000</td>
<td>0.10384</td>
<td>0.37744</td>
<td>0.39146</td>
</tr>
<tr>
<td>0.4000</td>
<td>0.11123</td>
<td>0.58745</td>
<td>0.59789</td>
</tr>
<tr>
<td>0.5000</td>
<td>0.12417</td>
<td>0.91518</td>
<td>0.92357</td>
</tr>
<tr>
<td>0.6000</td>
<td>0.14855</td>
<td>1.49739</td>
<td>1.50474</td>
</tr>
<tr>
<td>0.7000</td>
<td>0.20165</td>
<td>2.73111</td>
<td>2.73854</td>
</tr>
<tr>
<td>0.8000</td>
<td>0.35356</td>
<td>6.22260</td>
<td>6.23264</td>
</tr>
<tr>
<td>0.8200</td>
<td>0.41768</td>
<td>7.69313</td>
<td>7.70446</td>
</tr>
<tr>
<td>0.8400</td>
<td>0.50731</td>
<td>9.74770</td>
<td>9.76089</td>
</tr>
<tr>
<td>0.8600</td>
<td>0.63803</td>
<td>12.74306</td>
<td>12.75902</td>
</tr>
<tr>
<td>0.8800</td>
<td>0.83939</td>
<td>17.35599</td>
<td>17.37627</td>
</tr>
<tr>
<td>0.9000</td>
<td>1.17328</td>
<td>25.00516</td>
<td>25.03267</td>
</tr>
<tr>
<td>0.9200</td>
<td>1.78793</td>
<td>39.08395</td>
<td>39.12483</td>
</tr>
<tr>
<td>0.9300</td>
<td>2.31057</td>
<td>51.05475</td>
<td>51.10701</td>
</tr>
<tr>
<td>0.9400</td>
<td>3.11580</td>
<td>69.49780</td>
<td>69.56758</td>
</tr>
<tr>
<td>0.9500</td>
<td>4.45119</td>
<td>100.08385</td>
<td>100.18277</td>
</tr>
<tr>
<td>0.9600</td>
<td>6.90953</td>
<td>156.38919</td>
<td>156.54175</td>
</tr>
<tr>
<td>0.9700</td>
<td>12.22063</td>
<td>278.02637</td>
<td>278.29468</td>
</tr>
<tr>
<td>0.9800</td>
<td>27.39459</td>
<td>625.57910</td>
<td>626.17871</td>
</tr>
<tr>
<td>0.9900</td>
<td>109.33597</td>
<td>2502.34863</td>
<td>2504.73584</td>
</tr>
<tr>
<td>0.9950</td>
<td>437.09937</td>
<td>10009.45310</td>
<td>10018.99220</td>
</tr>
<tr>
<td>0.9990</td>
<td>10925.92970</td>
<td>250244.50000</td>
<td>250482.87500</td>
</tr>
</tbody>
</table>
Table 5.5

Particle Deposition along a Convergent Channel for various Charge Parameter Q; θ = 7.5°, L = 6.07, St = 100

<table>
<thead>
<tr>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>10 0.020 0.060 0.100 0.140 0.200 0.260 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
<td></td>
</tr>
<tr>
<td>10 0.012 0.055 0.110 0.177 0.276 0.336 1.211 1.688 2.347 3.345 4.967 6.077</td>
<td></td>
</tr>
<tr>
<td>10 0.027 0.136 0.286 0.469 0.771 1.351 2.621 2.764 3.584 4.488 5.471 6.091</td>
<td></td>
</tr>
<tr>
<td>1 0.070 0.322 0.680 0.898 1.340 2.110 2.904 3.714 4.822 5.405 6.425</td>
<td></td>
</tr>
<tr>
<td>0.1 0.125 0.432 0.730 1.058 1.500 2.310 3.103 3.920 4.735 5.394 6.231</td>
<td></td>
</tr>
<tr>
<td>0.011 0.135 0.442 0.750 1.058 1.520 2.310 3.113 3.909 4.652 5.547 6.229</td>
<td></td>
</tr>
<tr>
<td>0 0.145 0.452 0.750 1.058 1.520 2.310 3.113 3.909 4.652 5.547 6.229</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.6

Particle Deposition along a Convergent Channel for various Charge Parameter Q; θ = 7.5°, L = 6.07, St = 10

<table>
<thead>
<tr>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>10 0.066 0.024 0.050 0.079 0.129 0.239 0.394 1.239 1.740 2.440 3.522 5.240 6.122</td>
<td></td>
</tr>
<tr>
<td>10 0.012 0.055 0.111 0.178 0.296 0.542 0.849 1.239 1.740 2.440 3.522 5.240 6.122</td>
<td></td>
</tr>
<tr>
<td>1 0.027 0.136 0.287 0.469 0.781 1.411 2.151 3.011 4.096 5.076 6.081</td>
<td></td>
</tr>
<tr>
<td>0.1 0.070 0.322 0.610 0.928 1.420 2.302 3.241 4.213 5.157 6.048 6.104</td>
<td></td>
</tr>
<tr>
<td>0.010 0.125 0.432 0.760 1.088 1.608 2.504 3.452 4.412 5.335 6.091</td>
<td></td>
</tr>
<tr>
<td>0 0.145 0.452 0.780 1.108 1.630 2.535 3.473 4.435 5.359 6.092</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.7

Particle Deposition along a Convergent Channel for various Charge Parameter $Q_j \theta = 7.5^\circ$, $L = 6.07$, $St = 1$

<table>
<thead>
<tr>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.020 0.060 0.100 0.140 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
<td></td>
</tr>
</tbody>
</table>

| 100 10.004 0.015 0.030 0.045 0.070 0.125 0.195 0.289 0.419 0.609 0.936 1.720 2.943 6.077 |
| 10 10.006 0.025 0.051 0.079 0.129 0.232 0.364 0.537 0.769 1.111 1.706 3.226 5.335 6.298 |
| 1 10.011 0.055 0.111 0.182 0.310 0.591 0.989 1.579 2.622 3.733 5.507 6.109 |
| 10.1 10.029 0.143 0.310 0.531 1.029 2.478 4.353 5.611 6.181 |
| 10.010 0.074 0.368 0.830 1.640 3.114 5.023 5.982 6.120 |
| 10 10.151 0.577 1.210 2.103 3.623 5.182 6.091 |

Table 5.8

Particle Deposition along a Convergent Channel for various Charge Parameter $Q_j \theta = 7.5^\circ$, $L = 6.07$, $St = 0.1$

<table>
<thead>
<tr>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.020 0.060 0.100 0.140 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
<td></td>
</tr>
</tbody>
</table>

| 100 10.003 0.013 0.023 0.033 0.052 0.090 0.143 0.215 0.318 0.473 0.741 1.384 2.454 6.190 |
| 10 10.004 0.016 0.029 0.045 0.071 0.130 0.236 0.457 0.682 1.084 2.405 5.957 6.207 |
| 1 10.006 0.026 0.051 0.083 0.141 0.277 0.491 0.899 2.172 4.231 5.782 6.130 |
| 10.1 10.011 0.058 0.128 0.236 0.422 3.892 5.731 6.198 |
| 10.010 0.028 0.204 2.953 5.156 6.098 |
| 10 12.433 6.078 |

Table 5.9

Particle Deposition along a Convergent Channel for various Charge Parameter Q; \(\theta = 7.5^\circ \), \(L = 6.07 \), \(St = 0.01 \)

<table>
<thead>
<tr>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>0.020 0.060 0.100 0.140 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
<td>19.929 19.969 19.999 19.969 19.939 19.909 19.939 19.909 19.969 19.939 19.909 19.969 19.939 19.909 19.969</td>
</tr>
<tr>
<td>0.040 0.080 0.120 0.160 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
<td>19.929 19.969 19.999 19.969 19.939 19.909 19.939 19.909 19.969 19.939 19.909 19.969 19.939 19.909 19.969</td>
</tr>
<tr>
<td>0.060 0.120 0.180 0.240 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999 0.999</td>
<td>19.929 19.969 19.999 19.969 19.939 19.909 19.939 19.909 19.969 19.939 19.909 19.969 19.939 19.909 19.969</td>
</tr>
</tbody>
</table>

Table 5.10

Particle Deposition along a Convergent Channel for various Charge Parameter Q; \(\theta = 7.5^\circ \), \(L = 6.07 \), \(St = 0 \)

<table>
<thead>
<tr>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>0.020 0.060 0.100 0.140 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
<td>16.020 16.060 16.100 16.140 16.200 16.300 16.400 16.500 16.600 16.700 16.800 16.900 16.950 16.990 16.999</td>
</tr>
<tr>
<td>0.040 0.080 0.120 0.160 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
<td>16.020 16.060 16.100 16.140 16.200 16.300 16.400 16.500 16.600 16.700 16.800 16.900 16.950 16.990 16.999</td>
</tr>
<tr>
<td>0.060 0.120 0.180 0.240 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999 0.999</td>
<td>16.020 16.060 16.100 16.140 16.200 16.300 16.400 16.500 16.600 16.700 16.800 16.900 16.950 16.990 16.999</td>
</tr>
</tbody>
</table>
Table 5.11

Particle Deposition along a Convergent Channel for various Charge Parameter $Q_i: \theta = 5^\circ, L = 9.14, St = 100$

<table>
<thead>
<tr>
<th>Q_i</th>
<th>0.020</th>
<th>0.060</th>
<th>0.100</th>
<th>0.140</th>
<th>0.200</th>
<th>0.300</th>
<th>0.400</th>
<th>0.500</th>
<th>0.600</th>
<th>0.700</th>
<th>0.800</th>
<th>0.900</th>
<th>0.950</th>
<th>0.990</th>
<th>0.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.011</td>
<td>0.054</td>
<td>0.112</td>
<td>0.178</td>
<td>0.301</td>
<td>0.555</td>
<td>0.880</td>
<td>1.280</td>
<td>1.615</td>
<td>2.589</td>
<td>3.864</td>
<td>6.319</td>
<td>8.446</td>
<td>9.177</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.029</td>
<td>0.151</td>
<td>0.315</td>
<td>0.529</td>
<td>0.891</td>
<td>1.631</td>
<td>2.506</td>
<td>3.543</td>
<td>4.748</td>
<td>6.132</td>
<td>7.702</td>
<td>9.149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.004</td>
<td>0.012</td>
<td>0.090</td>
<td>1.228</td>
<td>1.890</td>
<td>3.064</td>
<td>4.280</td>
<td>5.519</td>
<td>6.818</td>
<td>8.156</td>
<td>9.261</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.175</td>
<td>0.632</td>
<td>1.090</td>
<td>1.548</td>
<td>2.362</td>
<td>3.496</td>
<td>4.716</td>
<td>6.016</td>
<td>7.175</td>
<td>8.518</td>
<td>9.265</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.215</td>
<td>0.672</td>
<td>1.130</td>
<td>1.598</td>
<td>2.380</td>
<td>3.548</td>
<td>4.770</td>
<td>6.073</td>
<td>7.248</td>
<td>8.604</td>
<td>9.267</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.215</td>
<td>0.672</td>
<td>1.140</td>
<td>1.630</td>
<td>2.430</td>
<td>3.584</td>
<td>4.817</td>
<td>6.134</td>
<td>7.319</td>
<td>8.606</td>
<td>9.210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.12

Particle Deposition along a Convergent Channel for various Charge Parameter $Q_i: \theta = 5^\circ, L = 9.14, St = 10$

<table>
<thead>
<tr>
<th>Q_i</th>
<th>0.020</th>
<th>0.060</th>
<th>0.100</th>
<th>0.140</th>
<th>0.200</th>
<th>0.300</th>
<th>0.400</th>
<th>0.500</th>
<th>0.600</th>
<th>0.700</th>
<th>0.800</th>
<th>0.900</th>
<th>0.950</th>
<th>0.990</th>
<th>0.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.005</td>
<td>0.021</td>
<td>0.047</td>
<td>0.075</td>
<td>0.121</td>
<td>0.229</td>
<td>0.342</td>
<td>0.497</td>
<td>0.702</td>
<td>0.997</td>
<td>1.497</td>
<td>2.747</td>
<td>4.753</td>
<td>9.156</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.011</td>
<td>0.054</td>
<td>0.112</td>
<td>0.179</td>
<td>0.306</td>
<td>0.560</td>
<td>0.888</td>
<td>1.306</td>
<td>1.874</td>
<td>2.768</td>
<td>4.138</td>
<td>6.813</td>
<td>8.924</td>
<td>9.248</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.029</td>
<td>0.151</td>
<td>0.318</td>
<td>0.529</td>
<td>0.911</td>
<td>1.719</td>
<td>2.728</td>
<td>3.960</td>
<td>5.404</td>
<td>7.418</td>
<td>9.086</td>
<td>9.615</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.004</td>
<td>0.042</td>
<td>0.080</td>
<td>1.288</td>
<td>2.060</td>
<td>3.459</td>
<td>4.941</td>
<td>6.396</td>
<td>7.764</td>
<td>9.032</td>
<td>9.301</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.175</td>
<td>0.642</td>
<td>1.140</td>
<td>1.658</td>
<td>2.462</td>
<td>3.923</td>
<td>5.397</td>
<td>6.801</td>
<td>8.060</td>
<td>9.072</td>
<td>9.305</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.215</td>
<td>0.692</td>
<td>1.200</td>
<td>1.752</td>
<td>2.573</td>
<td>4.026</td>
<td>5.476</td>
<td>6.917</td>
<td>8.193</td>
<td>9.099</td>
<td>9.330</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.13

Particle Deposition along a Convergent Channel for various Charge Parameter \(Q; \theta = 5^\circ, L = 9.14, St = 1 \)

<table>
<thead>
<tr>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>0.060 0.100 0.140 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
</tr>
<tr>
<td>0.003</td>
<td>0.013 0.024 0.037 0.062 0.109 0.171 0.252 0.364 0.530 0.809 1.482 2.626 7.808 9.242</td>
</tr>
<tr>
<td>0.005</td>
<td>0.023 0.046 0.074 0.121 0.222 0.349 0.514 0.736 1.062 1.643 3.261 6.092 10.135 ----</td>
</tr>
<tr>
<td>0.011</td>
<td>0.054 0.113 0.184 0.317 0.612 1.035 1.687 2.915 5.048 7.994 9.278 ---- ---- ----</td>
</tr>
<tr>
<td>0.028</td>
<td>0.150 0.348 0.611 1.239 3.852 7.034 8.794 9.240 ---- ---- ---- ---- ----</td>
</tr>
<tr>
<td>0.085</td>
<td>0.488 1.276 2.946 6.126 8.667 9.961 ---- ---- ---- ---- ---- ----</td>
</tr>
<tr>
<td>0.241</td>
<td>1.057 2.917 5.424 7.589 9.388 9.122 ---- ---- ---- ---- ---- ----</td>
</tr>
</tbody>
</table>

Table 5.14

Particle Deposition along a Convergent Channel for various Charge Parameter \(Q; \theta = 5^\circ, L = 9.14, St = 0.1 \)

<table>
<thead>
<tr>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>0.060 0.100 0.140 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
</tr>
<tr>
<td>0.003</td>
<td>0.010 0.017 0.026 0.040 0.071 0.115 0.174 0.258 0.382 0.601 1.115 1.966 7.817 9.614</td>
</tr>
<tr>
<td>0.003</td>
<td>0.010 0.017 0.026 0.040 0.071 0.115 0.174 0.258 0.382 0.601 1.115 1.966 7.817 9.614</td>
</tr>
<tr>
<td>0.005</td>
<td>0.023 0.047 0.076 0.133 0.266 0.474 0.865 2.621 5.671 8.234 9.304 ---- ---- ----</td>
</tr>
<tr>
<td>0.012</td>
<td>0.056 0.128 0.239 0.444 0.704 1.428 2.925 ---- ---- ---- ---- ---- ----</td>
</tr>
<tr>
<td>0.010 0.029 0.227 4.949 8.046 9.259 ---- ---- ---- ---- ---- ----</td>
<td></td>
</tr>
<tr>
<td>0.498 9.157 ---- ---- ---- ---- ---- ---- ---- ---- ---- ----</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.15

Particle Deposition along a Convergent Channel for various Charge Parameter $\Theta = 5^\circ$, $L = 9.14$, $St = 0.01$

<table>
<thead>
<tr>
<th>Q</th>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.020 0.060 0.100 0.140 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
<td>0.015 0.014 0.013 0.012 0.011 0.010 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001</td>
</tr>
</tbody>
</table>

Table 5.16

Particle Deposition along a Convergent Channel for various Charge Parameter $\Theta = 5^\circ$, $L = 9.14$, $St = 0$
Table 5.17

Particle Deposition along a Convergent Channel for various Charge Parameter \(Q; \theta = 2.5^\circ, L = 18.3, St = 100 \)

<table>
<thead>
<tr>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>10.020</td>
<td>0.060 0.100 0.140 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
</tr>
<tr>
<td>10.031</td>
<td>0.053 0.107 0.179 0.308 0.572 0.911 1.342 1.933 2.816 4.427 8.447 13.273 18.329</td>
</tr>
<tr>
<td>10.028</td>
<td>0.139 0.348 0.599 1.051 2.021 3.296 4.914 6.990 9.643 13.056 17.428 18.330</td>
</tr>
</tbody>
</table>

Table 5.18

Particle Deposition along a Convergent Channel for various Charge Parameter \(Q; \theta = 2.5^\circ, L = 18.3, St = 10 \)

<table>
<thead>
<tr>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>10.020</td>
<td>0.060 0.100 0.140 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
</tr>
<tr>
<td>10.004</td>
<td>0.013 0.042 0.068 0.113 0.286 0.322 0.465 0.652 0.917 1.360 2.498 4.684 15.038 18.450</td>
</tr>
<tr>
<td>10.011</td>
<td>0.053 0.110 0.179 0.309 0.575 0.923 1.374 1.995 2.970 4.057 9.672 15.013 18.520</td>
</tr>
<tr>
<td>10.028</td>
<td>0.159 0.359 0.599 1.081 2.173 3.685 5.821 8.722 12.847 17.113 19.432</td>
</tr>
<tr>
<td>10.099</td>
<td>0.572 1.250 2.078 3.585 6.897 10.434 13.772 16.591 18.676</td>
</tr>
</tbody>
</table>
Table 5.19

Particle Deposition along a Convergent Channel for various Charge Parameter Q; \(\theta = 2.5^\circ \), \(L = 18.3 \), \(St = 1 \)

<table>
<thead>
<tr>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>10.020</td>
<td>0.060 0.100 0.140 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
</tr>
<tr>
<td>10.004</td>
<td>0.010 0.019 0.029 0.049 0.069 0.141 0.208 0.295 0.423 0.633 1.122 1.929 3.316 18.330</td>
</tr>
<tr>
<td>10.019</td>
<td>0.053 0.112 0.184 0.322 0.629 1.085 1.842 3.661 9.832 15.865 19.000</td>
</tr>
<tr>
<td>10.039</td>
<td>0.163 0.380 0.710 1.608 9.276 15.561 18.509</td>
</tr>
<tr>
<td>0.010 0.183</td>
<td>0.717 3.300 10.910 16.288 18.537</td>
</tr>
<tr>
<td>10.541</td>
<td>6.860 13.826 17.012 18.517</td>
</tr>
</tbody>
</table>

Table 5.20

Particle Deposition along a Convergent Channel for various Charge Parameter Q; \(\theta = 2.5^\circ \), \(L = 18.3 \), \(St = 0.1 \)

<table>
<thead>
<tr>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>10.020</td>
<td>0.060 0.100 0.140 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
</tr>
<tr>
<td>10.002</td>
<td>0.006 0.011 0.017 0.028 0.051 0.081 0.123 0.182 0.271 0.418 0.753 1.263 5.670 18.772</td>
</tr>
<tr>
<td>10.009</td>
<td>0.010 0.019 0.031 0.050 0.093 0.151 0.227 0.334 0.492 0.761 1.465 6.575 18.456</td>
</tr>
<tr>
<td>10.004</td>
<td>0.021 0.042 0.071 0.125 0.250 0.455 0.836 3.970 10.019 15.477 18.990</td>
</tr>
<tr>
<td>10.010</td>
<td>0.055 0.128 0.241 0.728 11.399 16.823 18.523</td>
</tr>
<tr>
<td>0.010 0.030</td>
<td>0.253 10.920 16.772 18.535</td>
</tr>
<tr>
<td>10</td>
<td>----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----</td>
</tr>
<tr>
<td>0</td>
<td>----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----</td>
</tr>
</tbody>
</table>
Table 5.21

Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 2.5^\circ$, $L = 18.3$, $St = 0.01$

<table>
<thead>
<tr>
<th>Q</th>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.029 0.060 0.100 0.140 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.001 0.005 0.008 0.013 0.021 0.038 0.063 0.097 0.146 0.222 0.349 0.623 1.015 12.597 18.410</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.001 0.006 0.012 0.018 0.029 0.056 0.096 0.152 0.238 0.370 0.612 2.185 8.410 18.546</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.003 0.011 0.020 0.035 0.065 0.135 0.335 1.382 4.838 9.770 14.960 18.575</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.004 0.024 0.061 0.135 1.044 11.365 16.870 18.508</td>
<td></td>
</tr>
<tr>
<td>0.011</td>
<td>0.145</td>
<td>11.516 17.293 19.539</td>
</tr>
<tr>
<td>0</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>

Table 5.22

Particle Deposition along a Convergent Channel for various Charge Parameter Q; $\theta = 2.5^\circ$, $L = 18.3$, $St = 0$

<table>
<thead>
<tr>
<th>Q</th>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.029 0.060 0.100 0.140 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.006 0.007 0.019 0.031 0.052 0.102 0.173 0.263 0.394 0.567 0.848 1.546 5.476 12.295 18.336</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.006 0.011 0.020 0.032 0.053 0.125 0.223 0.365 0.552 0.861 1.463 4.672 8.460 18.157 18.654</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.006 0.011 0.024 0.049 0.115 0.207 0.397 1.784 4.911 9.729 15.034 18.602</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.006 0.021 0.050 0.243 2.046 11.276 16.828 18.513</td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.007</td>
<td>0.344</td>
</tr>
<tr>
<td>0</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>
Table 5.23

Particle Deposition along a Parallel Plate Channel for various Charge Parameter \(Q; \theta = 0^\circ, L = 12.5, St = 0 \)

<table>
<thead>
<tr>
<th>X-DISPLACEMENT</th>
<th>FRACTION OF DEPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q)</td>
<td>(10.0) 0.060 0.100 0.140 0.180 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990 0.999</td>
</tr>
<tr>
<td>0.0</td>
<td>10.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.005 0.009 0.015 0.022 0.037 0.059</td>
</tr>
<tr>
<td>0.1</td>
<td>10.000 0.006 0.000 0.000 0.001 0.004 0.009 0.017 0.031 0.053 0.087 0.150 0.215 0.368 0.590</td>
</tr>
<tr>
<td>0.2</td>
<td>10.000 0.000 0.001 0.004 0.011 0.036 0.087 0.174 0.312 0.525 0.867 1.499 2.151 3.682 5.877</td>
</tr>
<tr>
<td>0.3</td>
<td>10.000 0.000 0.003 0.013 0.037 0.107 0.363 0.872 1.739 3.116 5.250 8.664 14.988 ---- ---- ----</td>
</tr>
<tr>
<td>0.4</td>
<td>10.000 0.001 0.134 0.367 1.070 3.632 8.715 17.393 ---- ---- ---- ---- ---- ----</td>
</tr>
<tr>
<td>0.5</td>
<td>---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----</td>
</tr>
<tr>
<td>0.6</td>
<td>---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----</td>
</tr>
<tr>
<td>0.7</td>
<td>---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----</td>
</tr>
<tr>
<td>0.8</td>
<td>---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----</td>
</tr>
<tr>
<td>0.9</td>
<td>---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----</td>
</tr>
</tbody>
</table>
Figure 3.1 Coordinate System in a Parallel Plate Channel with Charged Particle and Image Pairs
Figure 3.2 Coordinate System in a Convergent Channel with Charged Particle and Image Pairs
Figure 3.4 Distribution of Image Pairs on Image Circle of a Convergent Channel of 60 Degrees
Figure 3.6 Distribution of Image Pairs on Image Circle of a Convergent Channel of 42 Degrees
Figure 3.7 Distribution of Image Pairs on Image Circle of a Convergent Channel of 30 Degrees
Figure 3.8 Limiting Case of a Convergent Channel of 180 Degrees
Figure 3.9 Distribution of Image Pairs on Image Circle of a Convergent Channel of 15 Degrees
Figure 3.10 Distribution of Image Pairs on Image Circle of a Convergent Channel of 10 Degrees
Figure 3.12 Scheme of Image Pairs on Image Circle of a Convergent Channel of 45 Degrees
Fig. 5.1 Axial Velocity of Fluid along a Convergent Channel:

\[\theta = 7.5^\circ, L = 6.07, Q = 10, S_t = 10 \]
Fig. 5.2 Vertical Velocity of Fluid along a Convergent Channel;
\[\theta = 7.5^\circ, \ L = 6.07, \ Q = 10, \ St = 10 \]
Fig. 5.3 Particle Trajectory along a Convergent Channel;
$\theta = 7.5^\circ$, $L = 6.07$, $Q = 10$, $St = 10$
Fig. 5.4 Particle Axial Velocity along a Convergent Channel;
$\theta = 7.5^\circ$, $L = 6.07$, $Q = 10$, $St = 10$
Fig. 5.5 Particle Vertical Velocity along a Convergent Channel;
$\theta = 7.5^\circ$, $L = 6.07$, $Q = 10$, $St = 10$
Fig. 5.6 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 7.5$, $L = 6.07$, $St = 100$
Fig. 5.7 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 7.5^\circ$, $L = 6.07$, $St = 10$
Fig. 5.8 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 7.5^\circ$, $L = 6.07$, $St = 1$
Fig. 5.9 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 7.5^\circ$, $L = 6.07$, $St = 0.1$
Fig. 5.10 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 7.5^\circ$, $L = 6.07$, $St = 0.01$
Fig. 5.11 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 7.5^\circ$, $L = 6.07$, $St = 0$
Fig. 5.12 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 100$
Fig. 5.13 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel: $\theta = 5^\circ$, $L = 9.14$, $St = 10$
Fig. 5.14 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 1$
Fig. 5.15 Effect of Charge Parameter \(Q \) on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 5^\circ, L = 9.14, St = 0.1 \)
Fig. 5.16 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 0.01$
Fig. 5.17 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 0$.
Fig. 5.18 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 100$
Fig. 5.19 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 10$
Fig. 5.20 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 1$
Fig. 5.21 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 0.1$
Fig. 5.22 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 0.01$
Fig. 5.23 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 5^\circ$, $L = 9.14$, $St = 0$
Fig. 5.24 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 2.5^\circ$, $L = 18.3$, $St = 100$
Fig. 5.25 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 2.5^\circ$, $L = 18.3$, $St = 10$
Fig. 5.27 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 2.5^\circ, L = 18.3, St = 0.1 \)
Fig. 5.28 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 2.5^\circ$, $L = 18.3$, $St = 0.01$
Fig. 5.29 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 2.5^\circ$, $L = 18.3$, $St = 0$
Fig. 5.30 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel: $\theta = 2.5^\circ$, $L = 18.3$, $St = 100$
Fig. 5.31 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 2.5^\circ$, $L = 18.3$, $St = 10$
Fig. 5.32 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 2.5^\circ$, $L = 18.3$, $St = 1$
Fig. 5.33 Effect of Charge Parameter \(Q \) on Deposition for Uniform Flow in a Convergent Channel; \(\theta = 2.5^\circ \), \(L = 18.3 \), \(St = 0.1 \)
Fig. 5.34 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 2.5^\circ$, $L = 18.3$, $St = 0.01$
Fig. 5.35 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Convergent Channel; $\theta = 2.5^\circ$, $L = 18.3$, $St = 0$
Fig. 5.36 Effect of Charge Parameter Q on Deposition for Uniform Flow in a Parallel Plate Channel; $\theta = 0^\circ$, $L = 12.5$, $St = 0$
Fig. 5.37 Comparison of Deposition in a Parallel Plate Channel with Yu and Chandra's Result; \(\theta = 0^\circ \), \(St = 0 \)
VITA

Name: HUI, Kwok Wah

Degree and Date to be conferred: D. Eng. Sci., 1986

Secondary Education: Hong Kong Pui Ching Middle School, 1969

Collegiate Institutions attended Dates Degree (Year)
Stevens Institute of Technology 9/80-6/82 M.S.M.E. 1983
Imperial College of Science and Technology
National Cheng Kung University
Tainan, Taiwan 9/69-6/73 B.S.M.E. 1973

Major: Mechanical Engineering
Minor: Aeronautical Engineering, Computer Science

Positions held:

9/84-Present Product Engineer
 Borg-Warner Air-Conditioning, Inc.
 York, Pennsylvania, U.S.A.
9/82-8/84 Research Assistant, N.J.I.T.
6/83-8/83 Adjunct Instructor, N.J.I.T.
9/80-8/82 Research Assistant, Stevens Tech.
6/76-7/80 Assistant Research Scientist
 Chung Shan Institute of Science and Tech.
 Lung Tan, Taiwan, R.O.C.
8/75-3/76 Mechanical Designer
 Coronet Industries Ltd., Hong Kong
AFFILIATION:
American Society of Mechanical Engineers
American Institute of Aeronautics & Astronautics
Royal Aeronautical Society (England)

PUBLICATION:

