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ABSTRACT

Comparison between
Stimulated EMG and Natural EMG

by
Zak Belfki

The electromyograph (EMG) signal generated from a cat's

jaw muscle in movement, is analyzed. After a series of

experiments at UMDNJ, three major categories of EMG were

recorded: rest EMG, biting EMG and hissing EMG.

The biting files contained a series of EMG collected in

successive episodes. Power spectrum and statistical analysis

were applied to the episodes. Each episode had approximately

43,000 samples. Results showed that these episodes had a

similar spectrum with statistically the same mean and

variance.

The hissing files were produced by electrical

stimulation of the hypothalamus and contained EMG embedded in

a stimulus artifact. The problem was to filter the stimulus

out of the signal that contained hissing EMG for analysis.

Unfortunately, the spectrum of the stimulus is within the

bandwidth of the hissing EMG. Therefore we could not apply

classical digital filtering techniques, and we had rather use

adaptive filtering techniques. A suitable algorithm is the

LMS algorithm because it is powerful and has a wide range of

use. Moreover it is easy to use, and if used properly, it

can give good results.



A conclusion was drawn that the response due to hissing

is statistically different from the one due to biting. On

the other hand, the spectra of the biting episodes are

similar to each other.
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CHAPTER 1

BACKGROUND AND PHYSIOLOGY

1.1 Introduction

The objective of this work is to apply digital signal

processing techniques to electromyograph signals. The first

type of signal is biting EMG which is generated by having a

cat chew on a stick. Five episodes of biting are recorded.

The second type of signal is hissing EMG which is generated

by stimulating the hypothalamus of the same cat. The EMG is

detected from the same masseter muscle as for biting EMG.

The stimulus artifact will be canceled adaptively using an

LMS algorithm to extract the hissing EMG signal. We will

assume that the cat's body is linear. We will apply spectrum

analysis to both types of signals to analyze their powers at

different frequencies.

The five episodes of biting EMG will be compared to each

other, as well as comparing their average to the hissing EMG.

To do this comparison we will apply statistical analysis to

both types of signals.

1.2 Physiology

It is important to discuss some of the physiology involved in

this work. The discussion will be brief, and will go over

the relevant parts of the nervous system and the skeletal

muscle, but if the reader wishes to know more about this

subject can consult a physiology book such as [1].

1
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The hypothalamus - is a tiny region of the diencephalon

of the brain. It lies below the thalamus. The hypothalamus

is crucial to homeostatic regulation and is a principal site

for regulating the behavior essential to the survival of the

individual and the species. The major functions of the

hypothalamus are:

1. Regulation of anterior pituitary gland

2. Regulation of water balance

3. Regulation of autonomic nervous system

4. Regulation of hormones

5. Regulation of eating and drinking behavior

6. Regulation of reproductive system

7. Reinforcement and regulation of circadian rhythms

The peripheral nervous system - is the liaison between

the parts of the body and the central nervous system (cns).

This liaison consists of nerve fibers. The peripheral nervous

system is divided into :

I. Afferent division

II. Efferent division

The efferent division is divided into two parts:

1. Somatic nervous system

2. Autonomic nervous system

The autonomic nervous system is divided into two parts:

a. Sympathetic division

b. Parasympathetic division

Efferent neurons carry signals (EMG) from the CNS to
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muscles or glands.

Afferent neurons bring information from receptors to the

CNS.

The somatic nervous system is made of all the nerve fibers

going from the CNS to skeletal muscle cells.

The autonomic nervous system enervates all tissue

besides the skeletal muscle. Some parts of the body that the

autonomic nervous system controls are: heart, lungs, glands,

liver, pancreas, etc. One interesting function of the

autonomic nervous system is that it controls the muscle that

causes hair to stand during emotional behavior. It is known

that it is the sympathetic division that contracts this type

of muscle. The autonomic nervous system is divided into two

parts 	 the sympathetic division and the parasympathetic

division. 	 These two divisions are more likely to act

opposite to each other; for example, if the one dilates a

muscle, the other constricts it.

The muscle - There are three types of muscle: Skeletal

muscle, smooth muscle, cardiac muscle.

The skeletal muscle is attached to bone. Depending on the

released hormone or chemical in its fibers, the muscle can

either dilate or constrict, this results in moving the bone.

attached to it.

1.3 Experiment

The experiment was done at UMDNJ New Jersey Medical school

using the facilities of the Department of Neurosciences. The

experiment is a very invasive one, where the cat had
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permanent electrodes implanted into its hypothalamus sites

from which the hissing behaviors could be elicited by

stimulation. These electrodes are monopolar electrodes,

coated with an insulator except at the tip. The electrical

stimulation consisting of biphasic rectangular pulses (0.1-

0.6 mA, 62.5 Hz, 2 ms/cycle duration) was generated by two

independent Grass S88 stimulators and fed through stimulus

isolation units to the cat. Pairs of 40 KOhms resistors in

series with the cat approximated constant current conditions.

The peak to peak current was monitored by a Tektronix 502A

oscilloscope.

Three bipolar silver-silver chloride electrodes were

placed on the masseter jaw muscle for EMG recordings. One

electrode was used as a reference and the other two for two

channels of data [see figure 1.1 for experiment settings].

These electrodes had a distance of 10 - 15 mm between them.

Hypothalamic behavior affective defense sites were identified

and EMG recordings were made of the masseter muscle under the

following conditions:

1) At rest

2) During forceful masticatory like activity (biting on

a stick)

3) During affective defense behavior elicited by

electrical stimulation at hypothalamic behavioral

sites.

The first type of EMG is recorded in rest files, the second

type is recorded in biting files and the third type is
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recorded in hissing files.

The signal was passed through a Grass P511 preamplifier,

sampled at 10,000 samples/sec. The gain was controlled

manually and varied from 2,000 to 200. The signal was then

stored in Asyst 3.0 data acquisition files after A-D

conversion with the Metrabyte DASH16.

The next chapter will discuss the data in more detail.



Stimulator
Grass 5

6                                      

Amp: dinpFthed 10.000
Grass P511           

Tape                                                                                                                                                                                                                                                                                                                     

TEKTRONIC
502A
	

Ch 1                                                                                                                                                                                                                                                              

Ch 2                                                                                                                                                                                                                                                                            

Ch 0 Hi

Ch 0 Io                                                                                            
LL gnd 	

Ch 1 Hi o 

a 1 Lo  

LL gnd o-                                                                                                                                                                                                                                                

( DASE116--------PC                                                            

Figure 1.1. Experiment settings



CHAPTER 2

THEORY

2.1 Introduction

This chapter contains the theory applied to the EMG signal

analysis. The outcome of the experiment is three categories

of EMG:

1. EMG Rest

2. EMG Biting

3. EMG Hissing

The third category of EMG is called hissing EMG because the

EMG produced by modulating the hypothalamus of the cat is

provoking a low jaw muscle masticatory activity, whereas the

biting EMG had more activity because the cat was actually

biting on a stick. This was demonstrated by observing the

signals on the Tektronix oscilloscope used in the experiment.

This will be fully discussed in chapter 3.

The files that contained the hissing EMG were corrupted by

the stimulus artifact used to modulate the hypothalamus. In

other words, when the hypothalamus is stimulated, this

stimulus goes through the entire body of the cat.

7
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The system consisting of the stimulus, cat and EMG

acquisition is modeled in a very simple way in figure 2.1

Sm (z)

Hc(z)
Y( z)

Figure 2.1. Simple model of the system

where Sm (z) is the input stimulus signal in the z domain,

He (z)is the transfer function of the system, taken as the

entire body of the cat, and Y(z) is the output from the jaw

muscles. The output Y(z) is defined as:

Y(z) = I-1,(z)S m (z)

y (t) = hc (t)*S m (t)

The system is a time varying system, and the coefficients of

the transfer function are functions that characterize the

body of the cat.

One of the reasons that the stimulus is present with the

hissing EMG is that the square wave used to stimulate the

hypothalamus goes through the entire body of the cat and gets

modified by it. Therefore, the hissing files contained EMG

embedded in stimulus. In order to analyze this EMG we need

to isolate it from the stimulus signal. One approach is to

find a model that characterizes the cat body, and use it to

model the stimulus. We will not follow this approach in this

work.
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Another way is to use classical digital filtering

techniques to filter the stimulus artifact, i.e. a low-pass,

high-pass or band-pass filter. This approach is not

satisfactory, because the bandwidth of the stimulus is within

the bandwidth of the EMG, so by using digital filtering

techniques, a lot of information from the EMG signal would be

lost and we would not be able to cancel the stimulus artifact

completely. Examining all these options, we are left with

adaptive filtering techniques. We need a filter that will

adapt to each frequency of interest quickly.

A suitable algorithm is the LMS algorithm because it is

powerful and has a wide range of use. Moreover, it is easy

to use and usually gives good results. To understand how the

LMS algorithm works and whether or not we can use it, we will

first discuss the theory of adaptive filtering.

2.2 Concept of LMS Algorithm

The key difference between adaptive signal processing methods

and the classical signal processing techniques is that we are

now dealing with time-varying digital systems [2],[3].

Our general system is now as illustrated in figure 2.2.



Input Xk    output

Yk

1 0   

Hk (z)                

Figure 2.2. Block diagram of time-varying
digital system

where Hk (z) denotes a time-varying transfer function.

The system is assumed to be linear, and the characteristics

of the transfer function H k (z) change, or adapt, according to

signal conditions. An adaptive algorithm is the equation or

set of equations used to adjust the coefficients of H k (z).

To better understand adaptive filtering, we will examine an

example:

Suppose we have a broad-band signal corrupted by power

line frequency interference. The classical approach would be

to use a notch filter centered at 60 Hz, the nominal line

frequency. Since the interfering frequency may in reality

deviate from 60 Hz, this filter will attenuate the

interference by different amounts as the frequency varies.

A better solution in this case is to use an adaptive filter

capable of tracking the line frequency and keeping the notch

centered on the incoming interference.

2.3 Operation of the Least-Mean-Square Algorithm

The operation of the LEAST-MEAN-SQUARE (LMS) Algorithm is
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descriptive of a feedback control system. 	 Basically, it

consists of a combination of two basic processes:

1. Adaptive process, which involves the automatic

adjustment of a set of tap weights.

2. A filtering process, which involves:

a. forming the inner product of a set of tap

inputs and the corresponding set of tap weights

emerging from the adaptive process to produce an

estimate of a desired response.

b. generating an estimation error by comparing

this estimate with the actual value of the desired

response. The estimation error is in turn used to

actuate the adaptive process, thereby closing the

feedback loop.

See figure 2.3.1 and figure 2.3.2.



E i A

TransversalX.

filter

II
Adaptive
Weight
Control
Mechanism

Yi

Figure 2.3.1. Adaptive process

A

12

Figure 2.3.2. Transversal filter
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The transversal filter is an FIR filter consisting of three

basic elements: a unit-delay element, a multiplier, and an

adder.

The number of delay elements used in the filter determines

the duration of its impulse response.

xnp x", ...,x0 form the elements of the tap input vector X i.

The tap weights wop \alp 	, %gni form the elements of the tap

weight vector Wp

The output yi from figure 2.3 is equal to the inner product of

the two vectors X. and W [2] .

Yi = X3TW = W TX,J 	 (2.1)

Note: equation (2.1) can be derived from the difference

equation of the transversal filter.

Difference equation

3/3,=E wi (n) 	 (2.2)

A
	 A

Let di be is an estimate of the desired response dp yj = di
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The error E i is defined as the difference between the desired

response and the estimate coming out of the filter:

e i = di -	 = 	 -	 = 	 - xTiW 	 WTX 	
(2 .3.)

The signal x i is input to the transversal filter and interacts

with the weights wi to cancel the correlated signal which is

the stimulus present.in the desired response d i . Based on

this configuration, the LMS output will be the error •• In

other words e i is the hissing EMG provided that the LMS

algorithm converges.

The algorithm is developed by calculating E
	

taking its

expected value and minimizing the result.

WE =	 - TX.
	 (2.4)

Note that W and Xi are vectors whereas d i and E i are scalars.

Squaring both sides of equation (2.4) :

E2! = d2j - 2diXTw 	 wTxixTiw
	

(2.5)

Taking the expected value of both sides of equation (2.5) [2]

J = E [ € 2. ] = E [d 2j ]- 2E [diXTy] f E [WTXJX1ry]
	

(2.6)

J is defined in equation (2.6) and called the cost function.
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We assume that the filter input and the desired response are

single realizations of jointly wide-sense stationary

stochastic processes, both with zero mean.

We obtain:

J= 	 - 2E [diXTi] W + WTE [XjX.ri ] W 	 (2.7)

where er 2j = E[d2i ]

We define the vector P as the cross-correlation between the

desired response d i and the vector X j :

p = E [dixi l = E [djx01 , dx 1 , . . . , 	 (2 . 8)

We also define the cross-correlation Matrix R as the expected

value of the inner product of the input vector by its

transpose.

r(0) r(1) r(n)

r*(1) r(0) r(n-1)

R = (2.9)

r* (n) r* (n-1) 	 . r(0)
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where r is the autocorrelation function defined as:

r[n,n-k] = E[x njx0Ab 	k = 0, ± 1, ± 2, ... (2.10)

R is a symmetric positive n by n matrix.

Combining equations: (2.7), (2.8), and (2.9), we obtain:

J = Uzi - 2PW + WTRW

The cost function is a hyperparabolic surface shaped like a

bowl. The function is never negative. (see figure 2.4)

Jan

Figure 2.4 cost function J

To find the minimum of the function J we need to take the

derivative, equate to zero and solve for the minimum value.

Applying the gradient operator V to the cost function J we

obtain the gradient vector:

For the cost function J to attain its minimum value, all the

elements of the gradient vector V(J) must be simultaneously

equal to zero,



aJyawo
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V(J)

avaw

V(J) = 0

V(J) =-2P+2RW

atilaW=a/aW( a d2 -2P TWA- W TRW)

aJvaw=0 -2P T-1- (aw. ww) 	 (8W/3W)

V(J) —2P+2RW

V (j) =0 = -2P+2RW=0 =

=RW=p

or W* =R -1 P

(2.12)

which is the Wiener-Hopf equation [2].

Although R is a nxn square matrix, it is very difficult to

find its inverse, due to the lengthy input data vector x j .

One way of solving this equation is to approximate R or

The other way is to approximate the gradient V. We will see

that the LMS algorithm is based on this approximation.

The technique utilized by the LMS algorithm to update the

coefficients is based on the METHOD OF THE STEEPEST DESCENT,

described in vector notation as follows:
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14;+1 - w; }IV;

where Wi =[wo (j),w1 (j),...,wo (j)1 1. 	(2.13)

and g is a parameter that controls the rate of convergence.

From equation (2.13) we see that the coefficient updates are

proportional to the negative gradient (-Vi) of the performance

surface.

When 	 is known at each step of the adaptive process, the

adjustment always results in a better filter. In addition,

once the MMSE solution is found, the gradient reaches zero,

and the coefficients will be at their optimal value.

From equation (2.10) and equation (2.11), we have:

ad/awo" avawc,[e; ]

aJyawo _ aE/awn [e2i ]

v=aE [€;] /a rvi 	[2.14)
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avawo

V(J) =

ova

aE[E2] /aw

aEtE2 /aw

= aE[Eyaw]

In order to estimate the gradient V, we have to estimate the

error E[e 2j] by omitting the expected value [2] [3]

'7= a€2 j/aw;

= 2€jayaw
= 2Eia(dryi ) //taw;
= (2.15)

V is the estimate of V. and e j = dj - yj

Combining equations (2.15) and (2.13) we obtain:



WPIT• =W ÷2p.€µE3 X3 (2.16)

20

Equation (2.16) is the LMS algorithm equation and p is the

parameter of stability and convergence. We have to choose A,

so that the following two forms of convergence are satisfied:

I. Convergence in the mean, which means that the

expectation of tap-weight vector w(n) approaches the

(optimum) Wiener solution w o as the number of iterations n

approaches infinity.

2. Convergence in the mean square, which means that the

final (steady-state) value J(m) of the mean-squared error is

finite [2].

The recursive equation (2.16) tells us that given an input

vector Xi , a desired response di and by selecting the right A,

we can implement the LMS algorithm assuming w 0 is initialized

to zero. Therefore, the convergence parameter A plays an

important role in determining the performance of the adaptive

system.

We recall that we are using the instantaneous error E l k in the

gradient instead of the mean value E[E 2 1,]. A single update of

the weight vector Wi could contain a considerable error. Thus

a large 4 could result in a fast adaptive process (might

never converge), and if A is too small, the coefficient

vector adaptation is very slow.

The algorithm can be used in a stationary or non-stationary

environment.
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It has been shown that the stable range of p is :

0 < g < 1 / Xmax (2.17)

where Xflax is the largest eigenvalue of the correlation matrix

R.

From equation (2.18):

Xmm,
x(R) - 	

Xmm

Smax
[2] 	 (2.18)  

where x(R) is the eigenvalue spread,

and S min , S. are minimum and maximum power spectral density,

respectively.

From equations (2.17) and (2.18), we can say that A depends

on the input signal power.

We will proceed with the normalized value of p

AN = 11/(L+1)u 	 (2.19)

where L+1 is the number of the filter lags, and a2 is the

input signal power xp

If we substitute this normalized value into equation (2.16)

we can show that: 	 O<A<1.

The input signal power can be estimated by

a2,7=ax2.÷(1_00A2.
3 1 (2.20)3 
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where xj is the current input sample, and a is a factor that

determines the stationarity of the input signal and it is

called the forgetting factor.

a is defined in the range: 0<u‹<1.

This estimate enables operation in nonstationary environment,

since a can be selected to reduce the influence of past input

samples. That is the reason for the name "forgetting

factor".

As a general guideline, updating the input signal power via

equation (2.20) amounts to forgetting the past value of x and

using the new one.

Therefore, we implement the LMS algorithm as follows:

2/2.cixi
W. =W.+ 	 0<451 	 (2.21)
3+1 	3 	(L+1) 2 .

e 	 0<a<1
-1

The LMS program is written in Fortran77 (see Appendix).



CHAPTER 3

DATA MANAGEMENT

3.1 Data Collection

As it was mentioned in chapter 1, three types of data were

collected:

i 	 Rest;

ii Biting;

iii Hissing;

We collected 8 files as follows:

Testl.prn;

Test2.prn;

Test3.prn;

Test4.prn;

Test5.prn;

Test6.prn;

Testl.prn;

Test8.prn;

Testl.prn, test2.prn,test8.prn contained biting with no stim,

whereas test3.prn, test4.prn, test5.prn, test6.prn, test7.prn

contained hissing EMG with stim. All files contained rest

EMG in, either a pre-stim rest episode or post stim rest

episode.

23
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The biting files contained masticatory-like activity packaged

in episodes. We will analyze these episodes of biting EMG to

investigate the correlation between them, and we will apply

spectrum analysis, and digital filtering techniques to

further analyze these episodes. On the other hand we will

apply adaptive filtering techniques to the hissing files.
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3.2 Tabulation of Results

TABLE 3.1 Experiment layout

FILE

SIZE TAPE INDEX DATA RECORDED NOTES

FROM - TO

20 sec Testl.Dat Biting - no stim gain = 2,000

391 K 0 	 - 	 51 filters: 	 .1 	 Hz,
30 KHz

60 Hz filter in

35 sec Test2.Dat Biting - no stim Same as above

684 K 60 	 - 	 143 5 episodes with

Rest in between

18 sec Test3.Dat Stim EMG response gain = 2,000

352 K 150 	 - 	 188 Start 5 sec before
stim

Same as above

Stim for 5 sec end

5 sec poststim

18 sec Test4.Dat 5 sec before stim gain = 2,000

352 K 195 	 - 	 236 stim until hiss

5 sec poststim

23 sec Test5.Dat Same as above gain = 1,000

450 K 240 	 -293

21 sec Test6.Dat Same as above gain = 500

411 K 300 	 - 	 350

22 sec Test7.Dat Same as above gain = 200

430 K 360 	 - 	 414

40 sec Test8.Dat Biting - no gain = 2,000

782 K 420 	 - 	 514 Stim, 	 5 episodes
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The first column of the table is the size of the file in

binary format (unpacked) and its duration in seconds.

The second column is the index of the tape where the data is

stored.

The third column shows comments about the type of EMG stored.

The fourth column shows the gain of the amplifier which

varied from 2,000 to 200, it also shows that the data is

band-pass filtered from .1 Hz to 30 kHz.

Since the files are very large (sampling frequency : 10,000

samples per second), a large memory and storage are needed.

3.3 Data Processing

The Metrabyte DASH16 comes with software called STREAMER.EXE,

which allows you to collect data from an interfaced device,

with up to 8 channels.

We sampled the data at a rate of 10,000 Hz because we

want to obey the sampling theorem in which the sampling

frequency must be at least twice as fast as the highest

frequency in the signal.

After determining the size of the file, we use streamer

to collect the data from the tape to the PC in MS-DOS

environment. At this point the files (testl through test8)

are stored in BINARY format. Although some of the programs

used in this work read files in BINARY, the files were

converted to ASCII format in order to load them into MATLAB.
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MATLAB is a very nice and powerful software package that will

be used for the data analysis.

We used UNPACK.EXE to convert data from BINARY to ASCII

format.

The command :

C:UNPACK TEST2.DAT,TEST2.PRN,0-50000/B/DAS16

converts the file test2.dat into 50,000 ASCII format samples

and stores them in the file test2.prn.

Note that the extension .DAT will be used for BINARY files,

whereas as the extension .PRN will be used for ASCII files.

The program UNPACK.EXE is unpacking file sizes up to 50,000

samples only. This limitation forces us to split the files

into 50,000 samples each. One of the largest files

(test8.prn) contains 800,000 samples.



CHAPTER 4

DATA ANALYSIS

4.1 Introduction

The main focus of the analysis is to compare biting EMG

produced by making a cat bite on a stick to EMG produced by

the cat's jaw muscle activity during emotional behavior

responses elicited by electrical stimulation at hypothalamic

sites.

To do this comparison, we need to analyze the biting EMG

collected in test2.prn, and extract hissing EMG collected in

test5.prn by using the LMS algorithm discussed theoretically

in chapter 2. The hissing EMG is then analyzed and compared

to the biting EMG using spectrum analysis.

This chapter will be divided in three parts:

1. Biting EMG Analysis

2. Hissing EMG Analysis

3. Comparison

4.2 Biting EMG

Biting EMG is collected in test2.prn as described in Chapter

3. The file contained about 350,208 samples (see table 3.3.2

in the appendix), but only 250,000 samples are of interest,

the remaining samples containing rest EMG and noise.

There are five episodes of biting EMG in these 250,000

samples.

Since the data is sampled at 10,000 samples per second,

28



29

the duration of the episodes are about 25 seconds total. The

plots of the episodes are in figures 4.1.1 and 4.1.2.

From the plot of test2.prn, we can see the five episodes of

biting EMG consisting of a series of bursts with rest EMG in

between distorted with low frequency noise (probably due to

motion artifact).

The first episode was collected with a delay (about 2.5

seconds). In other words, biting occurred 2.5 seconds before

turning on the switch to collect the data. Therefore we will

disregard episode one. The episodes have 2-3 seconds between

them, and have a duration of approximately 4 seconds each.

To compare the four episodes, we need to maintain the same

number of samples in each episode, keeping in mind that we

should not overlap any of them.

The power spectrum of biting contained high power

components below 10 Hz and very low power components above

1000 Hz. For this reason, we determined that the data should

be filtered by a Butterworth band-pass filter with a lower

cutoff frequency of 10 Hz and an upper cutoff frequency of

1,000 Hz.

[see bandpass filter design in the appendix].

4.3 Biting' EMG - Episodes Selection

As we said before, test2.prn is broken into six files of

50,000 samples each. These files are filtered one by one

through the band-pass filter as if they were part of one long

file and plotted using Matlab. (see figure 4.2.1 to 4.2.6).
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From this filtered plot, we can estimate (in "number of

samples" sense) the episodes without overlapping, and we can

see that they have rest EMG between them of approximately 2

to 3 seconds. We can also see that they have seven major

bursts of EMG with an approximate periodic occurrence with a

period of , .5 sec. Note also that the last plot in figure

4.2.6 (test25.prn) has more activity than the others.

From these investigations, we selected the episodes as

follow:

E2 	[test21(22K:50K);test22(2:15K)]

E 3 	[teSt22(24K:50K);teSt23(2:17K)]

E4 	[test23(36K:50K);test24(2:29K)]

E5 	[teSt24(45K:50K);teSt25(2:38K)]

where E 2 , E3 , E 4 , E 5 , represent the episodes respectively.

This notation is in n by 1 matrix form.

Since test2.prn is split into six files, the episodes contain

samples from two consecutive files, for example, E 2 : episode

2 starts from sample number 22 of test2l.prn (50,000 samples)

ends at 50,000 and then starts again at sample number 2 of

test22.prn (50,000 samples) and ends at sample 15,000. The

other episodes are selected in the same way.

These episodes are plotted in figure 4.3.1 to 4.3.4) then

filtered throughout the band-pass filter designed previously

and plotted in figure 4.4.1 to 4.4.4)
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4.4 Hissing EMG - ADAPTIVE FILTERING

In the previous chapter, we discussed the theory of adaptive

filtering, and in particular, the LMS algorithm. We are

going to apply this theory to our data: test5.prn to cancel

the stim and analyze the hissing EMG.

We will use part of the file test5.prn as a reference signal

(this part contains stim only) to cancel the stim present in

the part that contains the hissing EMG.

d-= s.+n.

LMS output

E j

Figure 4.7.1 LMS algorithm structure

In figure 4.7.1, d i is the desired response, (in our case, the

part that contains stim and hissing EMG) , d. 	 + n.
P

Si is the hissing EMG and, n j is the stim signal

xi = np is the input signal to the adaptive filter and it is

the part that contains stim only. Since we are using x j to

cancel n, present in dp then the error E j is our output.

The error signal c j is continuously fed back to the adaptive

control to be updated, depending on the number of lags used.

= d3 - x.
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We will assume that the signal xj = n. is uncorrelated to the

We must split tests into these configured signals,. The

desired response and the reference signal are plotted on

figure 4.7.2, and figure 4.7.3

LMS algorithm [see program # 4]

The algorithm requires the use of the input signal (smOl.prn)

power.

We will assume that this signal is wide-sense stationary and

has zero mean and that the best estimate of its power is
A

equal to r(0) without the expected value.

.?(0)= 	 Xi
2

i = 0

where n is the length of smOl.prn which is 6050.

See program # 2 for computing input power.

The convergence of the LMS algorithm to the best estimate of

E i depends on the choice of A. The algorithm also depends on

L, the number of lags and the parameter a. We will run the

program for different values of these parameters.

The outputs of the LMS algorithms are called resp(i).prn

with i= 1, 2, 3,...

From chapter 2, we know that 0 < A < 1. a is a parameter

called the forgetting factor. When a = 0, it assumed that

the signals are stationary, and since we want to be as close

as possible to stationarity, the parameter a should be in the
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range of .01.

We should note that if we had the exact stimulus present in

the hissing EMG as a separate signal, the output of the LMS

would be an ideal case.

The outputs respi.prn of the LMS algorithm are generated

by varying the three parameters o, A, and L (see figure 4.7.4

through figure 4.7.7). In figure 4.7.4, we can identify from

the plot of the desired response that the hissing EMG has an

amplitude between -.05 and .05. Therefore a good estimate of

the hissing EMG should be in the same range. Figure 4.7.3

tells us that the reference signal used to cancel the stim is

made of spikes occurring in a periodic pattern and a periodic

noise that looks like 60 Hz power line noise but is not

because during the experiment a 60 Hz notch filter was used.

Also, this periodic signal is present in all the test5.prn

file, and since it is present in the reference and the

desired response signals, the LMS algorithm will cancel it.

We investigated the value of A that will maintain stability

and convergence. And the best value of A is .15, we can see

in figure 4.7.7 for A = .2 the algorithm does not converge.

We also note that by increasing L from 4 to 18 we obtain a

better and sharper output as in figure 4.7.5.

We used r(0) as an estimate for the input signal power by

assuming zero mean and stationarity. and when the samles are

incremented during the iteration, this input signal power is

updated to a better estimate using equation (2.20) from

chapter 2.



a=ax.+(l - a) -

0 3 _1 (2.20)
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As a conclusion of this part of the analysis, we can say that

resp40 in figure 4.7.5 is a good estimate of the hissing

EMG.

4.5 Spectrum Analysis

Examining the power spectral density of a signal has many

powerful applications, such as the ability to define the

frequency range with the highest power (or the area with the

highest power). Another application is the median frequency

shift. Work was done to show that this frequency shift

particularly to the left was interpreted as a sign of

fatigue. Nevertheless, it is not the purpose of our work to

investigate the median frequency shift.

Another application is the ability to identify dominant peaks

(frequencies) in random noise. This task involves some

effort and sometimes it is not possible to be realized. One

difficulty lies in the resolution of the spectrum. When the

resolution is good, it is possible to detect peaks that are

close to each other, but when the resolution is poor, two

close peaks can appear as one. Therefore if we are trying to

detect a signal embedded in random noise, we might miss some

of its components or we might not be able to detect any of

its components at all.

Using computers to calculate the power spectrum of a signal

is actually estimating it because computers are digital and
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work with discrete non-continuous signals only.

The estimation of power spectrums [8] is divided into two

major parts:

1- The Classical Spectral Estimation

2- The Modern Spectral Estimation

1- The classical methods include Correlation methods PSD

Estimation, and Periodogram PSD Estimations( Danill

Periodogram, Bartlett Periodogram, Welch Periodogram). The

use of classical methods require trade-offs in an effort to

produce statistically reliable spectral estimators of highest

possible resolution with a finite amount of data samples.

Trade-offs among data windowing, lag windowing, time domain

averaging, and frequency-domain averaging are required to

balance the need to reduce sidlobes, and to insure

appropriate spectral resolution.

2-Modern spectrum estimators which estimate AR parameters

only from available sample data, do not require windowing.

Therefore we will not have the problems introduced by

controlling a window with the data samples, but there is

another trade-off paid for a higher resolution [8]. We will

not investigate these methods any further because in our work

we used the classical method, using the Fast Fourier

Transform (FFT) to calculate the power spectrum.
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4.5.1 Power Spectrum of biting EMG

We will take an FFT (Fast Fourier Transform) of the episodes

and calculate their power spectrum using:

N-1

Y2 (k)
	

y.2 (n ) 
e-2nkn/N

n=0

Py2 = Y2

where Y2 is an FFT of an episode y,

and, Py2 is the power Spectrum of y,

[See program # 2 in the appendix for FFT and power spectrum

calculation]

We should note that the power spectrum is a function of the

amplitude squared versus frequency whereas the FFT is a

function of amplitude versus frequency.

The episodes have 43,000 samples each. The next higher power

of two is 2 16 = 65536. Therefore each sequence [episode] will

be padded with 22536 zeroes.

The power spectrum plots of the four episodes E 2 , E 3 , E 4 , E 5 ,

are in figure 4.5.1 to figure 4.5.4.

Note that all data is filtered at 60 Hertz component, which

is due to the 60 Hz notch filter used during the experiment.

We can note also, that there is no DC component and nothing

below 10 Hz due to the band-pass filter used to filter the

data from 10 Hz to 1,000 Hz.

4.5.2 Power Spectrum of hissing EMG

Using program # 1, we can estimate the power spectrum of
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sm01, reference signal, sr01: desired response and resp40:

hissing EMG, see figure 4.7.10.

The power spectrum of the reference signal and the desired

responce signal (see figure 4.7.8 and 4.7.9) are very close

to equal to each other, therefore, we can say that all the

frequencies that we see are mainly due to stim. The power

spectrum of hissing EMG(resp40) does not have those

frequencies, this is another supporting factor that resp40 is

a good estimate of the power spectrum of the hissing EMG. By

the same token the power spectrum of resp40 is clearly

different from the power spectrum of the episodes. [compare

figure 4.7.10 to any of figures 4.5].

These conclusions are based on visual examination of the

spectral plots and on the physiological characterization as

discussed in chapter 1. In order to further investigate this

conclusion, statistical analysis was performed and will be

described in the next section.

4.6 STATISTICAL ANALYSIS

In this section, we will apply statistical tests to the four

episodes of biting EMG and hissing EMG power spectra. The

tests will tell us whether or not they have same mean and

variance.

To avoid dealing with large numbers in applying

statistical analysis to episode spectra, we will normalize

each power spectrum by dividing it by its maximum squared

amplitude. We will consider hissing EMG as episode number 1,
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with Pyl as its power spectrum. Although this episode does

not have the same number of samples as the biting episodes

its power spectrum has the same number of FFT points because,

recall that we padded the hissing episode with zeros to

maintain the same length of FFT for all the episodes.

Notation: 

Py l : is the power spectrum of hissing EMG, and will be

- biting EMG.

- biting EMG.

- biting EMG.

- biting EMG.

As noted earlier Episode 5 has more activity; this is shown

also in its power spectrum with a higher power.

Next we will evaluate the episodes variances and standard

deviations.

Notation:

PY2n 	 normalized power spectrum of Py 2 (2nd

episode).

PYI„ = [PYil /m 1

PY2. = [Py2] /m2;

Py3  [PY3] /m3;

PY4 1, = [Py4] /m4;

Py5
. 

= [Py5 ] /m5;

considered as episode 1.

Py2 is the power spectrum of episode 2

Py3 : is the power spectrum of episode 3

Py4 : is the power spectrum of episode 4

Py5 : is the power spectrum of episode 5
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The following table summarizes variances, standard deviations

and means of each power spectrum using the following formulas

[4]:

The mean 	 and variance a of a discrete RV is defined by:

E
= E[x] - 	  

N

a2 -_ E[ (x-y) 2 (x1-422

N-1

is the standard deviation defined by :

0 = fp

See program # 2 in the Appendix for calculating these

parameters]

TABLE 4.1 Statistical calculations

Normalized
Power
Spectrum

Parameters

Mean Std
Deviation

Variance

PY2n .0061 .0353 .0012

PY31 .0060 .0331 .0011

PY411 .0067 .0374 .0014

PY5n .0061 .0325 .0011

Average .0062 .0395 .0012

PYin .0031 .00231 .000563
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As we can see from table 4.1, the means and variances of the

four biting EMG spectra are very close to each other, but

this is not a sufficient condition to imply that all spectra

are the same. We still have to apply statistical tests

before we can draw any conclusion. We also note that the

mean and variance of episode 1 which is hissing EMG spectra

is far off from the others.

We will define three types of distributions that will be used

in our statistical analysis, these distributions are: the

Chi-Square Distribution, the "Student's" t-distribution and

the F-distribution [5] [6].

a) Chi-square distribution

Suppose 	 y, are independent random variables each

distributed normally with 0 mean and variance 1. Let x2 (chi-

square) be the sum of their squares.

The random variable:

2 	 2 	 2 	 2
X - .371 +Y +.-•+Yv

has probability density function:



f[ x2]_ 	 1 	 e-x2/2

2 ,/2r (1)
2

V
2) 2 for X2
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v is called degree of freedom

v = number of experiment - 1.

b) The "student's" t-distribution

If Z has a normal distribution with 0 mean and variance 1,

and V is distributed as x2 with p degrees of freedom and Z and

V are independent, then the random variable

	t-  z 
fV/v

has the probability density function

r( "l)
f( t) =  1 	 2 	(1+ t ) - (V+1) /2 for-co< t<930

1/v 1T r( 1 )
2

c) F-distribution.

The F-distribution is the distribution of the random variable

F which is defined as:
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U

F=
V

v 2

where U and V are independent variables distributed as x 2 with

v 1 and v, degrees of freedom, respectively. The probability

density function of F is given by:

11(  v 1 -1-v 2 )
	vi 	

vi-2

f(F) -

2 	( 
v l ) 2

1 	
2

V, 	 V	r( -, ) p( 2) 	 v 2 	
(1+ vl F) (v '"2"2

2	 2 	 v2

These distributions are utilized by their values provided in

tables in the Appendix of reference [6].

4.6.1 Comparison of means

For comparing the means of the episode spectra, we will use

the "student's" t-test [6].

First we will compare the biting EMG spectra: Py,, Py 3 , Py4 ,

PY5 -	 Their four means are:



Normal distribution 	 t-distribution

-distribution

a
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3;=.0061

Y3 =.0060

3F4 =.0067

'14=.0061

Yavg ,-.-.0062

Since X2 = X5 , we need to compare only three means:

X2 =.0061, X3 =.0060, X4 =.0067

First we compare

X2 to Xavg

The t-distribution has a bell shape curve almost like a

normal distribution, see figure 4.6.1, 4.6.2.

tc

Figure 4.6.1. Normal, and ' Figure 4.6.2. t-distribution

t-distribution



Using the average of the mean:

.Kyg=.0062

we will test for null Hypothesis:

X2 = Xavg

X3 Xavg

X4 := Xavg

The test simply tells you to use this equation

s
VR

to calculate the value of t, and compare this value with the

one from the table in appendix of reference [6]. If the

value of t computed is less than the one from the table, then

it is possible to conclude that the means are equal.

A is the average of the mean:

X„g=.0062

-S: sample variance, we will use the average of that variance

from table 4.1 :

N is number of FFT point: 65536 which is the length of the

episode spectra.

44
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The degree of freedom is AT-1 = 65535.

For X2 = 0061, t2-.
0061-.0062

   - -.000325
- .0012 1/65536

t, :distribution for X2 is symmetric: we can use the positive

value of t 2 =.000325.

From the table since N is a very large number, we can use the

value of infinity : t m5=2.576

t .0015 : the probability that t 2 will exceed t. 005 is .005, or .5

percent of the area under F distribution lies to the right of

t.005.

It is clear that t, < t .0015

The same procedure will follow for x 3 , x4



For 31 3 	. 0 06, .006-.0062
	- .000651

.0012165536
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therefore, t3 <t .005 ---2 .576

For 5(4 = . 0067 , .0064-.0062t - 	 -.000651
4 .0012/65536

therefore, t4<t.00s

Since all t, t 3 , t 4 are less than t oolo we can conclude by the

t-test that all the means can be equal to their average:

X„,g= , 0062

Next we need to compare the mean of episode 1 spectra with

the average mean of the other four.

From the table : t. 005 = 2.576 with a degree of freedom equal

to infinity.

Hypothesis :



X1X = X avg
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Where Tii = .0031 ; Xavg = . 0062

.0062-.0031

(.0012) 2 	(.00053) 2

65536 	 65536

ti =604.9

t . 005

Therefore we reject the hypothesis:

=Xay.g

We can not conclude that the mean of the hissing EMG is the

same as the mean of biting EMG.

4.6.2 Comparison of Variances

We first compare the variances of the four episodes of biting

EMG. These variances with their average are:

sl

- 

=. 0012

s2-=.0011

s3-=.0014

s4

- 

= .001 1

a vg•= 0012

We will use the F-distribution test [6]
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we will compare 	 and, § 32 , the ones which are the furthest

apart.

Comparing the others will follow the same procedure.

We will assume that §,2/§ 32 have an F-distribution.

from table 6 [6].

Degree of freedoms associated with
	

-9 ,2
7 : P 7 — oo

S- 32 : V 3 —> co

FA = 2(1.00)= 2

s3 	 .0014 
-1.27

—2 . 0011S2

<F .1
	 F1=2 ( F .05 )

The probability that F will exceed F0 5 is .05, or 5 percent of

the area under F distribution lies to the right of F 05 .

Since F 	 FA, we cannot reject the null Hypothesis:
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H0=s = —S32 .

Therefore we can conclude that it is possible that

Next we will compare the variances of the biting EMG spectra

to the variance of hissing EMG spectra.

Hypothesis

avg

Where -S- 1 , is the variance of episode 1, ' is the average of

the variances of episode 2 through 5.

From table F 1 = 2;

75 a F= vg_
S i

001F _ . 	 2_
.000563

F=2.13

. -.F> F .1

Since the test failed, we can't conclude anything. It means

that this particular test cannot tell that the variances are

the same.
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Statistical analysis tells us that it is possible for the

four episodes to have the same mean and same variance. On

the other hand from a physiological point of view, the biting

episodes are generated by the same mechanism. In other

words, the cat is given a stick to bite on it without

stimulating the hypothalamus. Therefore, we can conclude by

stating the four episodes of biting EMG have the same power

spectrum, with the same mean and same variance.

We also compared the mean and variance of the hissing EMG

spectra to the biting EMG spectra and the results of the

tests did not allow us to conclude that they are the same.

Hissing EMG is generated by Stimulating the hypothalamus of

the cat, whereas the biting EMG is generated by voluntary

masticatory activity. This physiological characterization

allows us to conclude that their power spectrum is different.

For concluding this chapter, we state that the episodes of

biting EMG have the same power spectrum with the same mean

and same variance, and their power spectrum is different from

the power spectrum of the hissing EMG.



2500 

2000 -

1500 -

1000 -

500 -

0 

-500-

-1000 -

-1500
0 • 0.2 	 0.4 	 0.6 	 0.8 	 1 	 1.2 	 1.4 	 1.6 	 1.8 	 2

x105

Figure 4.1.1. Plot of biting EMG file



2 4 6 8 10 12 14 16

2500

2000

1500

• 1000

50.0

0

-500

-1000

-1500

-2000o

Figure 4.1.2. Plot of biting EMG file (continued)
	 o4



4 5
x1 0 4

2000

-2000
0 	 1 	 2 	 3

number of samples

1 	 2 	 3
number of samples

2000

Figure 4.2.1... Biting EMG, band -pass
filtered; 10-1K Hz.
First 50 K samples

2000

Figure 4.2.2. Second 50 K samples

2000

-2000 -	
0

-2000 -

0 .	 1	 2 	 3

number of samples
4	 5

x10 4

1 	 2 	 3 	 4 	 5
number of samples 	 x104

Figure 4.2.3. Third 50 k sample's Figure 4.2.4. Fourth 50 K samples



4 5
x10 4

2 	 3
number of samples

0

2000

1 	 2 	 3 	 4 	 5
number of samples 	 x104

-2000 -	
0

2000

-2000

Figure 4.2.5. Fifth 50 K samples
	

Figure 4.2.6. Sixth 50 K samples



2000

0

-2000

2000

0

-2000

0 	 I 	 2 	 3
	

4
	

1 	 2 	 3 	 4
Number of samples 	 x10 4

	
Number of samples 	 x10 4

Figure 4.3.1. Biting EMG, Episode 2 	 Figure 4.3.2. Biting EMG, Episode 3

2000

0

-2000    

0
	

2 	 3
	

4 	 0 	 1 	 2 	 3
	

4
Number of samples 	 x1'0 4 	Number of samples	 x10 4

Figure 4.3.3. Biting EMG, Episode 4 Figure 4.3.4. Biting EMG, Episode 5



2000

-2000

2000

-2000

2 	 3 	 4
Number of samples 	 x104

1 	 2 	 3 	 4
Number of samples 	 x10 4

Figure 4.4,1. Episode 2, band-pass	 Figure 4.4.2. Episode 3, band-pass
filtered; 10-1,000 Hz. filtered; 10-1,000 Hz.           

1 	 2
	

3
	

4

	

Number of samples 	 x10 4   

1 	 2 	 3 	 4
Number of samples 	 x10 4

Figure 4.4.3. Episode 4, band-pass
filtered; 10-1,000 Hz.

Figure 4.4.4. Episode 5, band-pass
filtered; 10-1,000 Hz.

Cr)



x10 6

4 	
x1 0 6

3

2

200 	 400 	 600 	 800 	 1000 200 	 400 	 600 	 800 	 1000

Figure 4.5.1. Spectrum of biting EMG;Episode 2 Figure 4.5.2. Spectrum of biting EMG;Episode 3

X10 6

4 	

3

2

0 	 200 	 400 	 600 	 800 	 1000

X10 6

4 	

3

0 	 200 	 400 	 600 	 800 	 1000

Figure 4.5.3. Spectrum of biting EMG;Episode 4 Figure 4.5.4. Spectrum of biting EMG;Episode 5



0.4

•0.2

• 0

-0.2

-0.4o

sr01=(test52(42500: 

1000 	 2000 	 3000 	 4000 	 5000 	 6000 	 7000

Figure 4.7.2. Plot of the desired response

	0.4
	 sm01=Rest52(1:6050)]

0.2 -

0

-0.2-

	

-0.4 	

	

0
	

1000
	

2000 	 3000 	 4000
	

5000 	 6000 	 • 7000

Figure 4.7.3, Plot of the reference signal xi



0.2

0

-0.2

0 • 2040 4000 6000.2000 4000 	 6000

2000 	 4000 	 6000 2000 4000 6000.

L=4, a=.01, g=.2
Figure 4.7.6. LMS output; hissing EMG, Figure 4.7.7. LMS output; hissing EMG,

L=4, a=.01, g=.15

Figure 4.7.4. Stimulus+hissing EMG Figure 4.7.5. LMS output; hissing EMG,
L=18, d=.01, g=.15

0.2

-0.2

0.2

-0.2



0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

0
200 .	400	 600

Hz

d 	0	
800 	 1000 	 0 200 	 400 	 600

Hz
800 	 1000

Figure 4.7.8. Stimulus spectrum,N=2 16 Figure 4.7.9. Stimulus+response

spectrum, N=216

x10'
5 	

4

3

2

1

L.„

0 	 200 	 400 	 600 	 800 	 1000
Hz

Figure 4.7.10. Hissing spectrum, N=216



CHAPTER 5

CONCLUSION

The physiological goal of the experiment was to modulate the

masseter jaw muscle by stimulating the hypothalamus of the

cat. This goal was achieved by watching the cat grinding its

teeth immediately following stimulation.

The analysis goal was to extract the signal produced by

this "teeth grinding" (hissing EMG), where this hissing EMG

was embedded in a stimulus artifact. This goal was achieved

by adaptively filtering the signal collected from the

masseter jaw muscle during stimulation. We used successfully

the LMS algorithm to cancel the stimulus and leave the

hissing EMG as the output. There are ways of measuring the

performance of an LMS algorithm but they will not be covered

in this work because of the shortage of time. We analyzed

biting EMG collected in episodes of data, which was produced

by having the cat chew on a stick. We then applied spectrum

analysis to both types of EMG signals to investigate their

power in the frequency domain. Finally we applied

statistical analysis and the results are:

A - biting EMG

We used the student T-test, F-test and the X 2 - test, and

because the tests did not fail we found that all power

spectrum episodes have the same mean and same variance.
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We then supported our analysis with the fact that

physiologically, these episodes were produced in the same

natural way, that is, biting on a stick.

It is known that the skeletal muscle is controlled by the

somatic nervous system [1] ( see figure 5.1 ).  

(masseter jaw m.) 
Somatic Nervous System 1	
	 01 Skeletal muscle   

Figure 5.1 Efferent division of the peripheral
nervous system. Overall plan of the
Somatic system.

The path is a direct connection between the Central Nervous

System ( CNS ) and the muscle by a non ganglionic nerve, where

some of these nerves could be one meter long.

Therefore with the physiological support we concluded the

power spectrum is the same for each episode.

The question arises that if they are the same, then why do

their plots look different? The answer is that the episodes

were recorded successively and each episode had its own random

noise added to it, due to the electronics used, the movement

of the cat etc. With this in mind one should expect

differences.
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Since the biting EMG power spectrum was the same in four

successive episodes of data, we conclude that the biting EMG

must have followed the same nerve path to generate masticatory

activity.

B - Hissing EMG

The same statistical tests were used to compare the hissing

EMG power spectrum to the average power spectrum of the biting

EMG. The tests failed to conclude that they are equal. Since

one phenomenon is produced by having the cat chew on a stick,

the other by stimulating its hypothalamus, we find that the

physiology again supports our statistics. Therefore we

concluded that they are different.

Autonomic Nervous System

CNS Skeletal muscle

Preganglionic
Fiber

Postganglionic
Fiber

Ganglion

Figure 5.2 Efferent division of the peripheral
nervous system. CNS-Skeletal muscle
plan of the autonomic nervous system.
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It is known that the sympathetic division of the autonomic

nervous system, constricts skeletal muscle and dilates certain

others [1]. Since hypothalamic stimulation manifested jaw

muscle activity, that is, the cat does not realize its jaw

muscle movement or does not desire to grind its teeth, then it

must be the sympathetic nervous system that either constricts

or dilates the masseter jaw muscle . Using figure 5.2 and

analysis findings, we conclude that the hissing EMG follows a

different nerve path than the biting EMG. This path contains

preganglionic fibers, ganglion and postganglionic fibers.

Assumptions made during analysis 

To proceed with the LMS algorithm, we assumed the system is

linear. From the output collected at the masseter jaw muscle,

we considered the part that contained stim only our input

signal (reference signal) to the LMS algorithm and canceled

from the part that contained stim plus hissing EMG (desired

response). We then assumed that this input signal has zero

mean and is wide sense stationary and we said that this was

necessary to give a good estimate to the input signal power

(r(0)). We also for convenience set w(0) = 0 as an initial

condition. Note that it could be set to some other value.

We should point out that, when we use computers to collect

data, we are actually using an estimate of the signals,

because signals during the experiment are continuous and they

are sampled and digitized to be processed by the digital
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computer. In other words they become discrete signals. It is

not the sampling process that makes the signals an estimate

but the use of electronics, because they add random noise.

Future work improvement 

Suggestions to improve the experiment:

- The 60 Hz notch filter should not be used. This component

can be canceled adaptively.

- The gain should be less than or equal to 200 to avoid data

clipping.

- The sampling frequency should be less than 10,000

samples/sec, probably 3,000 samples/sec. This would obey the

sampling theorem because the highest frequency was 1,500 Hz in

the stimulus plus hissing EMG files. And this will make the

files smaller when unpacked and easier to handle.

- A third channel should be added to collect stim only. This

will make adaptive filtering easier to use.

Suggestions for future work 

We should apply modern spectrum analysis to EMG studies to

investigate from a different prospective. For example, the

issue of eigenvalue spread and correlation matrix of sequences

of EMG should be examined.

We should also monitor other signals such as the EEG and the

EKG simultaneously with the EMG. With these signals in hand we

could investigate the changing pattern of EMG by analyzing
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simultaneously with the EEG and the EKG.

The finding of this work:" the stimulated EMG follows a

different path than the natural EMG", should be researched

more to map these nerves. This would help solve the problem

of oraniomandibular disorder (CMD) which involves pain in the

masticatory jaw muscles and results in damaging the

temporomandibular joint (TMJ). By mapping the nerves that

make up the path of the stimulated EMG, we could give

medication to TMJ patients to inhibit these nerves from

conducting this type of EMG.
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1. Data Conversion

TEST1.DAT 	 400,384 bytes (binary)
# of samples 	 200,192

Table 3.3.1 Testl.dat file unpacking

FILE
	

ASCII 	 Starting sample -
size in bytes 	 Ending sample

TEST10.PRN
	

190,726
	

1 K - 50 K

TEST11.PRN
	

281,356
	

50 K - 100 K

TEST12.PRN
	

278,640
	

100 K - 150 K

TEST13.PRN
	

294,144
	

150 K - 200.192K

TEST2.DAT 	 700,416 bytes (binary)
# of samples 	 350,208

Table 3.3.2 Test2.dat file unpacking

FILE ASCII
size in bytes

Starting sample-
Ending sample

TEST20.PRN 192,860 1 K - 	 50 K

TEST21.PRN 284,034 50 K - 	 100 K

TEST22.PRN 281,304 100 K - 	 150 	 K

TEST23.PRN 277,163 150 K - 	 200 	 K

TEST24.PRN 275,188 200 K - 	 250 K

TEST25.PRN 267,741 250 K - 	 300 K

TEST26.PRN 269,841 300 K - 	 350.208K
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TEST3.DAT 	 360,448 bytes (binary)
# of samples 	 180,224

Table 3.3.3 Test3.dat file unpacking

FILE ASCII
size in bytes

Starting sample
Ending sample

TEST30.PRN 190,151 1 K - 	 50 K

TEST31.PRN 277,754 50 K - 	 100 K

TEST32.PRN 272,311 100 K - 	 150 K

TEST33.PRN 152,247 150 K - 	 180.224K

-

TEST4.DAT 	 360,448 bytes (binary)
# of samples 	 180,224

Table 3.3.4 Test4.dat file unpacking

FILE ASCII
size in bytes

Starting sample
Ending sample

TEST40.PRN 188,482 1 K - 	 50 K

TEST41.PRN 292,623 50 K - 	 100 K

TEST42.PRN 273,935 100 K - 	 150 K

TEST43.PRN 143,979 150 K - 	 180.224K

-
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TEST5.DAT 	 460,800 bytes (binary)
# of samples 	 230,400

Table 3.3.5 Test5.dat file unpacking

FILE
	

ASCII 	 Starting sample -
size in bytes	 Ending sample

TEST50.PRN

TEST51.PRN

TEST52.PRN

TEST53.PRN

TEST54.PRN

194,025

275,378

271,544

261,270

175,335

1 K - 50 K

50 K - 100 K

100 K - 150 K

150 K - 200 K

200 K - 230.400K

TEST6.DAT 	 420,864 bytes (binary)
# of samples 	 210,432

Table 3.3.6 Test6.dat file unpacking

FILE
	

ASCII 	 Starting sample -
size in bytes 	 Ending sample

TEST60.PRN
	

204,285
	

1 K - 50 K

TEST61.PRN
	

260,241
	

50 K - 100 K

TEST62.PRN
	

270,892
	

100 K - 150 K

TEST63.PRN
	

257,894
	

150 K - 200 K

TEST64.PRN
	

66,594
	

200 K - 210.432K
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TEST7.DAT 	 440,320 bytes (binary)
# of samples 	 220,160

Table 3.3.7 Test7.dat file unpacking

FILE
	

ASCII 	 Starting sample -
size in bytes 	 Ending sample

TEST70.PRN 	 201,638 	 1 K - 50 K

TEST71.PRN 	 258,824 	 50 K - 100 K

TEST72.PRN 	 262,523 	 100 K - 150 K

TEST73.PRN 	 260,268 	 150 K - 200 K

TEST74.PRN 	 107144 	 200 K - 220.160K

TEST8.DAT 	 800,768 bytes (binary)
# of samples 	 400,384

Table 3.3.8 	 Test8.dat file unpacking

FILE 	 ASCII
size in bytes

Starting sample
Ending sample

TEST80.PRN 200,354 1 K - 	 50 K

TEST81.PRN 273,315 50 K - 	 100 K

TEST82.PRN 251,195 100 K - 	 150 K

TEST83.PRN 276,395 150 K - 	 200 K

TEST84.PRN 247,500 200 K - 	 250 K

TEST85.PRN 257,171 250 K - 	 300 K

TEST86.PRN 273,706 300 K - 	 350 K

TEST87.PRN 301,834 350 K - 	 400.384K

-
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This section completes data collection, unpacking and storage,

the BINARY files are stored in the tape and floppies, the

ASCII files are stored on PC and floppies.

At this point, we need to transfer the files (ASCII format)

from a PC to the Sun-workstations at the mechanical computer

lab. We have three communications software (maybe more)

available at NJIT, but there is no single PC connected to the

Sun-workstation at the mechanical department, this was a

problem because the ASCII files are stored on floppies. The

only way to do it is to transfer the files to Hertz (VAX

system), then from there to the Sun-workstation. We used FTP

(file transfer) which is the fastest one. We also contributed

a lot of work unpacking and transferring the same files to Dr.

Dun at Rutgers University using EMail. This last

communications software is not as fast as FTP. But still the

process was very time consuming because in the beginning we

started with only 1 MB of disk space in each account : MESUNW,

HERTZ.

Then the files in ASCII format are transferred from HERTZ to

MESUNW, FTP program adds at the end the file two lines, one

blank and one containing a control-z character. This causes

a problem trying to load the files into MATLAB, the reason is

that MATLAB could not read those lines added by FTP, then the

files are edited to delete these characters using VI editor

(in UNIX environment).
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The program STREAMER.EXE adds also a one to the beginning of

each file, which indicates that data has been collected from

channel one of DASH16 board. This had to be deleted also

because it is not part of the data.



96 Program #1
%
% Program to design band-pass filter

% b and a are coefficients of the filter
% Lower cutoff frequency = 10 Hz
% Upper cutoff frequency = 1,000 Hz
% f s is the sampling frequency =10,000 Hz

% f s = 10000;

% order of filter is 2 x n = 10
n = 5;

= 2 * [10,1000]/f“
[b,a] = butter(n,W)

% test50 = xo , test5l = x 1 , test52 = x 2 , test53 =
% test54 = x4 , test55 = x 5

yo =
=

y2 =

filter(b,
filter(b,
filter(b,

a,
a,
a,

y3 = filter(b, a,
y4 = filter(b, a,
y5 = filter(b, a,

74

xo ) ;
x i ) ;
x2) ;
x3) ;
x4);
x5);
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% Program #2

%
%
%

This program calculates FFTs and power spectrum of
and plot results and their statistical parameters.
x2 1 X3 r X4' X5 are episode's data samples

each episode

%
%

F, is sampling frequency
f is frequency

% Xm, 	 Xm, 	 X4d' 	 X5d is detrended data
% N is FFT size
y, 	 y3 , 	 y4 , 	 y5 are FFT of y 	 X3d' 	 X4d, 	 Xsd

% Py, 	 Py3, 	 Py4 , 	 Py5 are power spectrums of episodes
95

N = 2 /s 16;
f, = 10000;

% This will array the frequency, and use the symmetry

f = f,* (0 :N/2-1) N;
0
0

% Calculation of FFT's

Y2 = fft(XUrN);
Y3 = fft(X3ON);
Y4 = fft (X4d,N)

= fft(X50N);
9E;
% Calculation of power spectrums

Py2 = y2 * conj (y2 ) /Nj ;
Py3 = 3 * conj (y3 ) /NJ;
Py4 = Y 4 * 	 conj (y4 ) /NJ ;
Py5 = y5 * conjW/N

% Program to plot spectra. Subplot will divide the screen up to %
four parts

subplot (221) [ plot (f, Py2 (1 :N/2) )
title(' Episode 2 - Spectrum')
xlabelP1-1 7 ')
subplot (222) , plot (f, Py3 (1 :N/2) )
title(' Episode 3 - Spectrum')
xlabel('HZ)
subplot (223) , plot (f, Py 4 (1 :N/2) )
title(' Episode 4 - Spectrum')
xlabel('HZ)
subplot (224) , plot (f, Py5 (1 :N/2) )
title(' Episode 5 - Spectrum')
xlabel('HZ)



% Program to normalize spectra, calculation of maximum point
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m2 =
m3 =
m4 =
m5 =

max (Py2 ) ;
max (Py3 ) ;
max (Py4 ) ;
max (Py5 ) ;

% Divide spectrum by maximum point
%-

PY2n =
PY3., =
Py4i, =
PY5„ =

[PY2 ] /m2;
[Py3 ] /m3;
[PY4] /m4 ;
[PY5} /m5;

% Calculation of means and their averages

mu, = mean([Py,]);
mu3 	mean([Py3]);
mu4 	mean([Py4]);
mu5 	 mean([Py5]);
mean (mu,, mu 3 , mu 4 , mu5 )

% Calculation of variances and their means

S 22 = cov(Py 2d;
?s-3 = cov(Py31 );

s 24 = cov(Py41 );
s 25 = cov(Py511 );
mean (s 22 , s 23 , 9 24 	s25);

% Calculation of standard deviations and their means

std (Py2n ) ;
std(Py3 ) ;
std(Py40 ;
std (Py0 ;

mean(s 2 , s 3 , s 4 , s5) ;

% Calculation of input power of signal s(k)=sm01(k)
% The signal s(k) is supposed to be stationary with
% zero mean - P(w) = r(0) = Ex i

s(k) = sm01(k);
P = 0;
For i=1:6050;

P=P+sum(s(i) A 2);

s 2 =
s 3 =
s 4 =
s 5 =

end



C
o Program #3
C
o Program to open a data file, read samples of designated
c 	 intervals, and store them in files
o Initialization

INTEGER i
DIMENSION x(50010)

C ROUTINE********
OPEN 	 (1, 	 FILE = 	 'test52.prn', 	 STATUS = 	 'OLD')

11 FORMAT(F10.4)
DO 10 	 i=1,50000
READ(1,11)x(i)

10 CONTINUE

OPEN 	 (2, 	 FILE = 	 'smOl.prni,
DO 20 i=1,6050

STATUS = 'NEW')

WRITE(2,11)x(i)
20 CONTINUE

OPEN 	 (3, 	 FILE = 	 'DUMPl.prn',
DO 30 i=6049,42499
write(3,11)x(i)

STATUS = 'NEW')

30 CONTINUE

OPEN 	 (4, 	 FILE = 	 isrOl.prn',
DO 40 i=42500,48550

STATUS = 'NEW')

WRITE(4,11)x(i)
40 CONTINUE

OPEN 	 (5, 	 FILE = 	 'DUMP2.prn',
DO 50 i=48551,50000
write(5,11)x(i)

STATUS = 'NEW')

50 CONTINUE

END

77
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c 	 Program #4 	 ADAPTIVE STIM CANCELER

c 	 X(0:N-1)= data vector (output replaces input)
c 	 N	 = number of data samples and of adaptive iterations
c 	 D(0:N-1)= desired response vector
c 	 B(0:L) 	 = adaptive coefficient vector
c 	 L 	 = order of adaptive system
c 	 mu 	 = REAL convergence parameter mu (0.0 < MU < 1.0)
c 	 sig 	 = input signal power estimate
c 	 AL 	 = exponential forgetting factor alpha (0 < AL < 1)
c 	 px(0:L) = vector that retains past inputs for block mode
c 	 IERROR = 0 no error detected
c 	 1 filter order L < 0
c 	 2 convergence parameter MU < 0 or MU > 1
c 	 3 input signal power estimate sig < 0

4 forgetting factor AL < 0 or AL > 1
5 response yk exceeds 1.E10

c 	 SR01 	 : data containing desired response D(1:6050)
c 	 SMO1 	 : data containing data vector X(1:6050)
c 	 RESP 	 : output of adaptive filter
c

DIMENSION X(0:6049),D(0:6049),B(0:4),px(0:4)
real mu
data B/5*0./,px/5*0./

data L/4/,N/6050/,mu/.1/,sig/46.355/,Al/.01/
OPEN(UNIT=1,FILE='SR01.PRN',STATUS='OLD')
OPEN(UNIT=2,FILE= 1 SM01.PRN',STATUS= 1 OLD')
OPEN(UNIT=3,FILE='RESP.PRN',STATUS='NEW)

DO 10 i=0,6049
READ (1,*) D(i)
READ (2,*) X(i)

10 	 CONTINUE

CALL SPNLMS (X,N,D,B,L,mu,sig,AL,px,IERROR)
if (IERROR.NE.0) Then
PRINT *, 	 spnlms error =',ierror
STOP

ENDIF
do 20 i=0,6049

WRITE (3,*) X(i)
20 	 CONTINUE

END



SUBROUTINE spnlms (X,N,D,B,L,mu,sig,AL,px,IERROR)
DIMENSION X(0:6049),D(0:6049),B(0:L),px( 0 :L)
REAL mu

IERROR = 0
WRITE(*,*) 'mu=',mu
IF(L.LT.0) IERROR=1
IF(mu.LE.0..OR.mu.GE.1.) IERROR 	 2
IF(sig.LE.0) IERROR = 3
IF(AL.LT.O..OR.AL.GE.1.) IERROR = 4
IF(IERROR.NE.0) RETURN
IERROR = 5
DO 5 K=0,6049

px(0) = X(K)
X(K) = 0

DO 1 LL=0,L
X(K)=X(K)+B(LL)*px(LL)

1 	 CONTINUE
IF(abs(X(K)).GT.1.E10) RETURN
E=D(K)-X(K)
sig=AL*(px(0)**2)-01-AL)*sig
TMP=2*mu/((L+1)*sig)
DO 2 LL=O,L

B(LL)=B(LL)+TMP*E*px(LL)

2 	 CONTINUE

DO 3 LL=L,1,-1
px(LL)=px(LL-1)

3 	 CONTINUE

5 	 CONTINUE
IERROR=0
RETURN

END

79



Program #5 : Zcross.c

Programmer : Zak Belfki

Description : This program detects the zero crossings

80

*/

/* 	 Include standard libraries
#include <stdio.h>
#include <math.h>

/* 	 Include definitions

/* 	 Constant definitions
#define MAXSIZE 1000

main(argc, argv)

int argc;
char **argv;

command line parse
int c;
extern int optind;
extern char *optarg;

/ * 	 option flags
int ierr=0;
int i_flg=0;
int r_flg=0;
int oflg=0;

/* 	 file I/O
FILE *infile;

Input data
int x[MAXSIZE],a;
int count,num;
int nread;
float dely,xzero;

int i;

/* standard C I/O

/* size of codeword

/* command line argument count*/

*/
/* command line option
	 */

/* index of option
	 */

/* command line option
	 */

*/
/* error flag 	 */
/* input file specified ?*/
/* threshold specified ? */
/* codebook file spec. */

/* input file

iteration



}

parse and read command line arguments
while ((c=getopt(argc,argv,"i:")) !=E0F)

switch(c) 	 {

specify input file
case

if ((infile=fopen(optarg,"r")) == NULL) {
ierr =1;
printf("ERROR - main - cannot open %s\n",

optarg);
exit(1);

1
printf("input data file:\t\t'ls\n\n\n",optarg);
i_flg = 1;
break;
default:

ierr=1;

}

	 break;

check that all necessary options have been specified
if(!i =fig)

ierr = 1;

if error then print the help string
if (ierr) 	 {

printf("Usage:\tzcross \\\n");
printf("\t\t 	 input_data_file \\\n");
exit (1)

}

nread=2;
num=count=0;
while (nread›0)
	

{

nread = fread(x,sizeof(int),1000,infile);

/* for(i=0;i<nread;i++)
printf(" x[d]= 5=6d\n",i,x[i]);*/

a=x [0]
for(i=1;i‹nread;i++)

if (a*x[i] < 0)
{
printf("there is a zero crossing before sample

%d\n\n",i+count);

81.

{

*/

* /
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num++;
dely= (float) (x[il-a);
xzero=(float) (i+count-1) - (float) (a/dely);
printf(" the new zero crossing is at sample
%f\n\n",xzero;

}

if (x 	 == 0)
{

printf("there is a zero crossing at sample
%d\n\n",i+count);

num++;

a=x [i]

}

	 count=count+nread;

printf("the total # of zero crossings is
%d\n\n\n",num);

fclose(infile);

printf(H\n***********************************\ n H),
printf(" 	 END OF PROGRAM
printfnn***********************************\ n up

/* finished main program 	 */



7. Digital Filter Design

Specification: tenth order butterworth band-pass filter with

lower cutoff frequency of 10 Hz and upper-cutoff frequency of

1,000 Hz.

10
	

1000
	

Hz

Figure 6.1 Magnitude of transfer function

Assuming that the system is linear, the tenth order digital

filter is characterized by the difference equation:

y(n) = b(1) x(n) +b(2) x(n-1) +...+b (10) x(12-9) - 	 (4-1)
-a (2) y(n-1) -a (3) y(n-2) -...-a (10) y(n-9)



where x(n) is our input sequence

and, y(n) is our output sequence

Taking the z transform of equation (4-1), we obtain:

Y(z) -  b(1) ÷b(2) Z-1+...+b(10) Z-9 X(z)
1+a (2) z - 1 +...+a (9) z -9

Y(z) =H(z)x(z)
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where H(z) is the transfer function of the system.



b (1)

y(n)
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The direct form II structure realization of the filter is:

x(n)

Figure 6.2 Direct form II realization

[See program #1 for filter design]

The coefficients of the filter are:

b(1) .0012 a(1) = 1
b(2) = 0 a(2) = - 	 7.9792
b(3) = -.0061 a(3) = 28.7224
b(4) = 0 a(4) = -61.4932
b(5) = .0123 a(5) = 86.7979
b(6) = 0 a(6) = -84.4580
b(7) = -.0123 a(7) = 57.3972
b(8) = 0 a(8) -26.9050
b(9) = .0061 a(9) = 8.3253
b(10)= 0 a(10)= - 	 1.5355
b(11)= -.0012 a(11). .1282



The

b 1 	=

zeroes of the

-1.0069

transfer function are:

b, = 	 -1.0021 + 	 0.0065i

b4 = b5 * = 	 - 	 .09944 + 	 0.0040i

b6 = 1.0030

= b8 	1.0009 + 0.0029i

139 = bio * - 	 .9975 + 0.0018i

The poles of the transfer function are:

P I = P2 	= .6872 + 	 .4746i

P 3 = P4 	= .9980 + 	 .0061i

P5 = P6 	= .9946 + 	 .0035i

P7 = .9942

Pg = P9 	 = .5543 + 	 .2361i

P io= . 5168

The filter is stable and minimum phase.
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