

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

193

processes its messages. Some messages are used to configure the system at start-up time;

other messages are used to transfer information to nodes. The structure o f the messages

is predefined. Every node receives and transmits messages identically, but different types

o f messages are defined according to the special requirements o f the various nodes. The

protocol defines a detailed message structure.

CAN-kingdom distinguishes between deterministic messages whose sequence and

frequency are known in advance, and stochastic messages, which are event-driven. It also

distinguishes between messages with deadlines and messages that are not time critical.

Fredriksson recommends early processing o f data and transmitting only essential results

to avoid overloading the communication channel. Thus, CAN-Kingdom support

distributed processing with a centralized control.

T ab le 6.27 CAN-Kingdom Communication View Mapping

M egSDF View Concept Corresponding CAN-Kingdom Architecture
Concept

Communication style Message passing

Communication
primitives

Every node receives all messages but processes
only messages sent to itself.
Deterministic/stochastic messages.
Time critical/non-critical messages.

Constraints for load
balancing

Transfer only essential data.
Process data as early as possible and send only
results and processed data.

Specification o f legal
communication

Predefined Protocol

Location transparency
mechanism

Not defined

Failure handling policy Not defined

194

The Control View

The architecture uses the master-slave (distributed system with centralized control)

approach. The Capitol is the system master, the cities are the slaves.

Table 6.28 CAN-Kingdom Control View Mapping

M egSDF View Concept Corresponding CAN-Kingdom Architecture
Concept

Control approach Distributed system with centralized control

Control units Cities

Invocation approach Not defined

Operation ordering
primitives

Not defined

The Data View

There is no definition o f any meta-data-model other than detailed definition o f messages

structure. Fredriksson recommends using different messages (called forms) for interfacing

between different data representation methods.

The Environment View

The CAN-Kingdom architecture does not specify an environment view.

Application Architecture

The kingdom designer defines the functionality o f each city and specifies its actual

parameters by defining the system configuration at start-up. In this approach the same

"city" can be re-used in different ways, depending on the needs o f the kingdom. The

195

allocation o f functionalities to cities can be considered as application architecture design.

Fredriksson recommends using a graphical notation to represent interaction between cities.

T able 6.29 CAN-Kingdom Application Architecture Mapping

Architecture Element Existence in the CAN-Kingdom Architecture

List o f Building Blocks The cities

List o f clusters N ot defined

BB interaction diagram Graphical representation o f city interactions

Data distribution map Not defined

Service dictionary Not defined

196

6.4.2.4 The Advanced Networked Systems Architecture (ANSA)

The Advanced Networked Systems Architecture (ANSA) [HERB 91a, b, c], [ANSA 89]

focuses on Information Technology (IT) that spans several domains. The goals o f the

ANSA project are:

• To propose an architecture for networked computer systems,

• To support distributed applications, and

• To promote the acceptance o f the results o f the project as an industry-wide standard.

ANSA is intended to enable integration o f application systems from multiple

vendors by using a distributed application platform that is independent o f

communications, operating systems, and the computer instructions set. It aims at an

architecture which will provide the simplest set o f concepts necessary to build distributed

systems.

The ANSA architecture identifies five viewpoints for distributed processing: an

enterprise model, an information model, a computational model, an engineering model,

and a technology model. The viewpoints are interrelated but emphasize different aspects

o f the system. ANSA’s viewpoints correspond to the essential elements o f MegSDF, and

not to the views o f M egSDF’s conceptual architecture. The enterprise and the information

model can be mapped to the domain model. The ANSA computational model might be

considered as a partial conceptual architecture. The concepts o f the computational model

are on a lower level and closer to technologies. The engineering and technology views can

be mapped to the infrastructure.

197

The ANSA project concentrates on the computational and engineering viewpoints.

These viewpoints are independent o f both the application domain and the technology

trends. Moreover, these viewpoints provide an environment for the specification o f

interfaces between the applications and the hardware and software that support them. The

ANSA computational model identifies the functions (services) that must be available to

programmers and the constraints on program structure necessary to enable distribution.

A federation o f ANSA systems is built from systems, each running multiple

applications. The individual system applications are linked together by a trader and

configuration manager. Federation is achieved by linking together the traders o f the

various systems. The applications are considered as components that provide or utilize

services. A precise specification o f the interactions between components is necessary to

enable independent development. ANSA suggests using an Interface Definition Language

(IDL) for interface specification. Interface specification requires action, data, and property

specification. An action is invoked only through an interface.

According to ANSA, different applications require different types o f distribution

and therefore different types o f transparency mechanisms. On the basis o f this idea, ANSA

provides selective transparency in which a programmer specifies the required transparency

when declaring an interface between applications. ANSA supports access, location,

concurrence, failure, replication, and migration transparency.

198

The Structural View

The individual ANSA applications and systems can be thought o f as components o f the

architecture. There is no definition o f classes o f components, constraints on components,

or guidelines and rules for decomposition into systems and applications.

Table 6.30 ANSA Structural View Mapping

MegSDF View Concept Corresponding ANSA Concept

Component Applications (components), systems

Classes o f components Not defined

Constraints for
components

Not defined

Guidelines and rules for
decomposition

Not defined

The Communication View

The ANSA architecture uses the client-server approach. A trader supports the interaction

between components and their applications. A service is accessible to other applications

only after its server exports an interface reference to the trader. A client can retrieve

interface references from the trader by import operations. A server can export several

interfaces and a client can import a number o f interfaces. The trader enables late binding

and location transparency.

By using the server group concept (see the control view) ANSA also supports

broadcasting. ANSA recommends retransmission and supports error-codes to handle

communication failures.

T a b le 6.31 A N S A C om m u n ica tio n V iew M apping

199

M egSDF View Concept Corresponding ANSA Concept

Communication style Message passing

Communication
primitives

Port-to-port and broadcasting

Constraints for load
balancing

Not defined

Specification o f legal
communication

By Interface reference only

Location transparency
mechanism

Trader and selective transparency

Failure handling policy Retransmitting, error codes

C ontro l View

The ANSA architecture supports fully distributed processing. The components interact

using the client-server model. ANSA supports both synchronous and asynchronous

interaction to ensure maximum concurrency. It specifies operation ordering primitives as

sequential, parallel, or atomic operation; optional invocation o f operations; and operations

tied to external clocks. The attributes o f the invocations are defined in the interfaces for

the operations.

ANSA supports the concept o f server groups. One can define functionally

distributed, coordinated replica, and parallel replica server groups. In a functionally

distributed group, each server performs some part o f the requested service. In a

coordinated replica one server receives the message and performs the required action

while all other servers stand by. In the parallel replica group, all members perform the

200

same service. Each group has a coordinator which accepts requests from clients and

distributes them to the members o f the group.

Table 6.32 ANSA Control View Mapping

M egSDF View Concept Corresponding ANSA Concept

Control approach Fully distributed

Control units Components, servers groups

Invocation approach Client-server

Operation ordering
primitives

Sequencing, serial, optional, clock based, and
parallel operation

The Data View

ANSA suggests using an Interface Definition Language (IDL) as a tool that overcomes

problems rooted in the heterogeneity o f the environment. IDL can be considered as a

meta-data-model. ANSA supports distributed systems with distributed databases. Data is

stored in objects and accessed via interfaces. ANSA does not specify redundancy or

consistency control mechanisms.

Table 6.33 ANSA Data View Mapping

M egSDF View Concept Corresponding ANSA Concept

Meta-data-model Interface Definition Language

Database organization Distributed systems

Transactions primitives Atomic operations

Redundancy and
consistency control

Not specified

201

The Environment View

The only element o f the environment view that ANSA specifies is the inclusion o f security

attributes in the interfaces.

Application Architecture

ANSA is intended to develop a platform to support systems integration o f information

technologies which spans many application domains; Therefore, it does not and cannot

specify an application architecture, which by definition must be domain specific.

6.4.3 Examples o f Projects with Software Architectures

This section describes two architectures that have been defined and used in projects for

the development o f systems o f systems.

6.4.3.1 Ship-2000

Ship-2000 [SS2000a, b] is a project for the development o f a family o f integrated systems

(a generic system o f systems in M egSDF’s terminology). The application domain o f the

Ship-2000 project are naval vessel systems including Naval Command, Control, and

Communication (C3)/Weapon Control Systems.

Understanding the various problems involved in development o f such systems led

the developers to define an architecture for the system. From our viewpoint, Ship-2000

specifies a Mega-System architecture, but the elements o f the conceptual and application

architecture are intermingled and not always clearly distinguished into views. The

202

following describes the role o f a Mega-System Architecture in the Ship-2000 project and

maps the Ship-2000 architecture into our concepts and views.

Conceptual Architecture

Ship-2000 distinguishes between execution and static views o f the system. These views

correspond to the structural and control views in MegSDF.

The Structural View

Ship-2000 systems are built from Computer Software Components (CSC). The CSCs are

organized into a hierarchy of:

• Functional Areas (FA),

• System Function Groups (SFG), and

• System Functions (SF).

The uppermost layer consists o f components called Functional Areas. Each

Functional Area is divided into a number o f intermediate components, called System

Function Groups. The main role o f a System Function Group is project management. It

is similar to the system task in MegSDF. A System Function Group is divided into System

Functions. There are. usually, one to twenty System Functions in a System Function

Group. A System Function corresponds to one or a few programs (which are described in

the control view).

Ship-2000 also specifies another classification o f System Functions based on the

level o f generality o f the components. It includes the following layers:

• Product dependent - for a specific system o f a customer,

• Customer - for one customer for several systems,

203

• Equipment - a specific hardware,

• Ship Systems - special functions for ships,

• Systems Independent - fits other types o f system, and

• Fundamental/base system - distributed computing environment.

To reduce dependency o f Systems Functions, the architecture allows only

downward dependency, i.e., elements may only use services o f a lower level only. Thus,

a Custom er’s System Function can use services o f an Equipment or Ship System Function.

Table 6.34 Ship-2000 Structural View Mapping

M egSDF View Concept Corresponding Ship-2000 Concept

Component Functional Areas (FA), System function groups,
and System Functions (SF)

Classes o f components Generality classification: Product, Customer,
Equipment, etc.

Constraints for
components

Using the generality classification, only downward
dependency is allowed.

Guidelines and rules for
decomposition

Product or functionality based

The Communication View

The hardware components o f Ship-2000 are connected by a Local Area Network (LAN)

which enables different communication approaches. The programs o f Ship-2000 are

connected by Inter Program Communication (IPC). The IPC is supported by Ada runtime

system. OS, and hardware.

204

Messages are sent by procedure call and stored in a queue. A receiver empties its

queues at its own pace. For efficiency, logical names are exchanged for physical names

by a "name server" using a runtime built database where entries are created when

programs register themselves to the network.

IPC provides the following communication primitives:

• M ulticast - Only one message is sent; all receiving programs receive it in parallel. There

is no indication o f how many processors or nodes read the message. Multicast is used for

high volume and conserves the network bandwidth.

• Singlecast - The sender names the receiver.

• Virtual Channel - A safer version o f singlecast. It can be used for long messages. The

virtual channel performs blocking, sequencing, and deblocking.

A fundamental rule reduces communication flow by requiring messages to be

transferred only once. The architecture does not specify what constitutes legal

communication or a communication failure policy.

Table 6.35 Ship-2000 C o m m u n ica tio n V iew M apping

205

MegSDF View Concept Corresponding Ship-2000 Concept

Communication style Message passing using queues

Communication
primitives

Singlecast, broadcast, virtual channel

Constraints for load
balancing

High rate messages are transferred only once

Legal communication Not defined

Location transparency
mechanism

Name server that uses a runtime built database to
substitute logical names with physical addresses

Failure handling policy Not defined

The Control View

Ship-2000 execution view includes Ada programs that communicate by exchanging

messages. A configuration consists o f several nodes. Each node includes several

processors. Each processor can run programs. Programs not linked to special hardware can

migrate. Multiple instances o f a specific program might be installed in the same

configuration.

Programs behave as free-running entities. Each program performs a single task and

is generally single-threaded. Interfacing with the message passing mechanism is

implemented by an Ada generic task called whenever a message arrives. Other tasks are

used inside programs when parallel processing is appropriate.

The architecture also specifies events for reporting abnormal technical states in the

system. Hardware events indicate malfunctions that require repair by a technician and are

206

generated by background on-line test programs. Software events indicate coding or

configuration errors and are not repaired by customer personnel.

The architecture specifies a specific function that starts and reconfigures the

system. When a node starts, a local agent identifies itself to the controlling program. The

controlling program sends the node a list o f programs which are supposed to run on the

node. The agent then loads all programs not already loaded.

The architecture supports both event-driven and periodic processing.

T ab le 6.36 Ship-2000 Control View Mapping

MegSDF View Concept Corresponding Concept in the Architecture

Control approach Fully distributed

Control units Processes, threads

Invocation approach Event driven and periodic loop

Operation ordering
primitives

events, start-up procedures

The Data View

Ship-2000 defines concepts for data handling but these concepts are more application

oriented than the concepts we recommend for the data-view. The project requires that all

data be time-stamped as early as possible. It defines essential data components and

constraints for handling them. These concepts can be considered as a meta-data-model.

The essential data components in the system includes:

• Sensors (tracking data),

• Altitude,

207

• Own Ship Position and velocity, and

• History Recording.

The architecture does not specify either transaction primitives or redundancy and

consistency mechanisms.

T able 6.37 Ship-2000 Data View Mapping

M egSDF View Concept Corresponding Ship-2000 Concept

A meta-data-model Essential elements definitions and their handling

Data organization Distributed data

Transactions primitives Not defined

Redundancy and
consistency control

Not defined

The E nv ironm ent View

Ship-2000 defines concepts that corresponds to the user-interfacing and special purpose

hardware elements o f M egSDF's environment view. For user interfacing, Ship-2000 uses

a Man Machine Interface (MMI) function to provide maximum flexibility for users,

especially in environments with different customers and varying levels o f expertise. The

MMI manager defines a set o f MMI objects. Operators can define any form o f

representation based on the defined MMI objects. The MMI is used to isolate the

application from representation details.

The architecture specifies the following interfacing primitives:

• Graphics - to draw complex graphical objects.

• Text - to present and accept new values from operators.

• Alerts - to inform operators that something has happened that merits attention.

208

• Softkeys - keys drawn on a touch sensitive display device.

• Menus - to organize softkeys.

Ship-2000 is intended for real-time embedded systems. Accordingly, it specifies

special purpose hardware concepts. The nodes o f the system are synchronized within an

accuracy o f one millisecond ensured by special hardware and software. To minimize

complexity and enable reuse, a common internal representation o f sensor data,

independent o f sensor particulars, is used. The project also specifies rules for handling

sensor data.

Table 6.38 Ship-2000 Environment View Mapping

MegSDF View Concept Corresponding Ship-2000 Concept

Common user interface -
presentation

Softkeys approach, flexible interfaces

Common user interface -
interaction

MMI with set o f interaction primitives

Special purpose
hardware and external
systems interfaces

Sensor handling
Synchronization o f the systems with 1 millisecond
accuracy

Security in the system Not defined

Application Architecture

Ship-2000 does not distinguish between a conceptual and an application architecture, but

it is possible to identify elements o f an application architecture. The project specifies the

actual functional areas (FA), the system function groups (SFG), and System Functions

(SF). The functional areas include:

209

- Command, Control and Communication (C3),

- Weapon/Director,

- Fundamentals, and

- Man Machine Interface (MMI).

These functional areas roughly correspond to the cluster concept o f MegSDF. There are

about 30 SFG’s and 200 SF’s [SS2000a, b]. The documentation o f the project includes

general diagrams for building block interaction. The project does not specify data

distribution or a service dictionary.

Table 6.39 Ship-2000 Application Architecture Mapping

M egSDF Element Corresponding Ship-2000 Element

List o f Building Blocks Systems Functions

Clusters o f BB The list o f the Functional areas

BB interaction Diagram General interaction diagram

Data distribution map Not defined

Service Dictionary Not defined

6.4.3.2 ESF - FSE Reference architecture

The Eureka Software Factory (ESF) [ESF 89], [ESF 90], [SCHA 90], [HUBE 90],

[ADOM 92] is an ongoing project intended for industrial software production using

software factories. In ESF, a Factory Support Environment (FSE) must be able to be

configured for specific industries and to evolve with technological innovation. To enable

such customization and evolution the ESF uses the ESF-FSE reference architecture which

is, in MegSDF terminology, a conceptual architecture for systems o f systems.

210

The goal o f the ESF - FSE architecture is to define requirements that must be met

by every instance o f the ESF. It consists o f the ESF standards and the structure which

inter-relates these standards. The reference model addresses multiple platforms, market

fragmentation, and the need to adapt the systems to various customers. The architecture

is a reference model for Factory Support Environments. The application domain for the

ESF project is Integrated Computer Aided Software Engineering (CASE) Systems.

ESF 's architecture is based on a minimal kernel with "plugable" extensions. It is

a communication-oriented architecture with service-oriented building blocks.

The Conceptual Architecture

The FSE architecture is defined using structural, user, and process views. These

correspond to the structural, environment, and (to some extent) the control view o f the

conceptual architecture recommended by MegSDF.

The Structural View

An FSE consists o f a set o f components connected to a Software Bus (SWB). There are

two types o f components: Service Components (SCs) and User Interface Components

(UIC). Service components, typically, do not have a user interface. Figure 6.9 illustrates

the FSE architecture. An FSE consists o f a set o f tools which are dynamically established

and configured through bindings between user interaction components and sets o f service

components.

The ESF project recommends including a minimal kernel o f services required by

other components. Service Components w'hich implement a functionality o f the minimal

kernel mechanisms are called kernel components. The kernel components can be replaced

211

by other components that provide the same services using different algorithms or

languages.

User
interaction
component

User
interaction
component

User
interaction
component

User
Interaction
component

Software Bus

'ig u re 6.9 The Structural View o f the ESF Architecture
(copied from ESF - Project Overview 1990 [ESF 90])

The components and the tools correspond to the component types o f the MegSDF

structural view. The Service, User Interface, and kernel components correspond to

component classes.

Any component can be decomposed into sub-components, which can be integrated

by such mechanisms as a common database or communication channel. The reference

architecture, however, is not concerned with integration within sub-components.

A service component generally consists o f two parts: functionality and a storage

system. The storage system can be an Object Management System (OMS), file system, or

traditional database. The capabilities o f a service component are defined in its interface.

212

The ESF project proposes specifying a minimal set o f capabilities every component must

provide, e.g., help mechanisms.

A user interaction component presents information to users and provides editing

capabilities. This component also includes code for user interaction logic.

The software bus requires a formal description o f components. These descriptions,

expressed using the a Component Definition Language (ESF-CDL), include the

imported/exported capabilities, transfer syntax, control exchange primitives, and

requirements on the actual technical platform. The use o f kernel services is not specified

in the descriptions.

Conformance criteria for ESF components, corresponding to MegSDF constraints

on components, include:

• Use o f the Softw are Bus (SWB) primitives for all inter-component communication

• Specification o f interfaces using the ESF-CDL.

• Minimal set o f capabilities required to be present in every component.

The ESF does not specify rules for decomposition into components (tools).

213

Table 6.40 E S F S tructu ral V iew M app ing

MegSDF View Concept Corresponding ESF Architecture Concept

Component Components, tools

Classes o f components Service, user interaction, kernel

Constraints for
components

Use SWB primitives, specified by the ESF-CDL;
Have the required minimal capabilities

Guidelines and rules for
decomposition

Not defined

The Communication View

The ESF architecture is communication oriented. Integration o f components is done by

a software bus, not by a common database. The software bus is an abstract communication

channel. It hides distribution aspects and allows the exchange o f data without loss o f

structural and conceptual information. It supports the components with inter-operations

and integration.

The software bus provides two principle services that hide distribution and

heterogeneity:

• The plug-in mechanism - for static or dynamic binding o f clients to services, and

• A communication mechanism - for exchanging control and data

ESF proposes specifying new standardized transfer syntaxes, as well as

standardized means for describing new transfer syntaxes and standardized protocols. ESF

does not specify communication primitives, constraints for load balancing, or failure

handling policy.

Table 6.41 E S F C o m m u n ica tio n V iew M apping

214

MegSDF View Concept Corresponding ESF Architecture Concept

Communication style Message passing by the SoftWare Bus (SWB)

Communication
primitives

Static and dynamic binding

Constraints for load
balancing

Not defined

Specification o f legal
communication

Not defined

Location transparency
mechanism

By the SWB based on the plug-in and the
communication mechanism

Failure handling policy Not defined

The Control View

The process view o f the ESF-FSE architecture includes concepts corresponding to

concepts o f the MegSDF control view. One o f the essential features o f the FSE is the

programmable environment. This is supported by a kernel service component called the

Factory Process Engine (FPE).

The Factory Process Engine uses process models to customize the FSE according

to customer requirements. These models are described as process programs using a special

Process Programming Language (PPL). A process program links organization structures,

development methods, and tools suitable for supporting the various tasks o f the

developers. The Component o f the Factory Process Engine controls the operations o f the

other components within the ESF.

215

Table 6 .42 E SF C ontro l V iew M apping

M egSDF View Concept Corresponding ESF Architecture Concept

Control approach Distributed with a centralized control by the
Factory Process Engine

Control units Components

Invocation approach Not specified

Operation ordering
primitives

The process programs

The Data View

ESF defines a framework that allows different database systems to be accessed through

common Data Definition and Data Access languages. ESF also specifies essential

requirements on database systems for software engineering. The other concepts o f the data

view are not defined.

Table 6.43 ESF Data View Mapping

MegSDF View Concept Corresponding ESF Architecture Concept

A meta-data-model Data Definition language and Data Access language
Essential requirements on database systems for
software engineering

Database organization Not defined

Specifications o f
transactions primitives

Not defined

Redundancy and
consistency control

Not defined

