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ABSTRACT 

An On-Line Approach For 
Evaluating Trigonometric Functions 

by 
Rajesh Amin 

This thesis investigates the evaluation of trigonometric functions based on 

an on-line arithmetic approach. On-line algorithms have been developed to 

evaluate the sine and cosine functions. Error analysis and heuristics are carried 

out to arrive at a minimal error algorithm based on the series expansion of the 

sine and cosine function. 

A logical design based on the algorithm is presented where the unit is 

designed as a set of basic modules. A detailed bit slice design of each module is 

also presented. A simulator was designed as an experimental tool for synthesis 

of the on-line algorithms, and a tool for performance evaluation. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

"It has been long recognized that the concept of computer architecture is no 

longer restricted to the structure of bare machine hardware"[1]. A modern 

computer is an integrated system consisting of machine hardware, an instruction 

set, system software, application programs, and user interfaces. Present day 

computing is driven by real life problems which require fast and accurate 

solution. 

Most scientific problems require extensive numerical computations and 

their solutions demand complex mathematical formulations and numerous fixed 

or floating point computations. Most complex problems such as weather 

forecasting, structural analysis, and random problems in navigation can be 

transferred to arithmetic computation problems using well known techniques 

[2]. The resources required by these massive problems are the driving factor that 

necessitate the enhancement of current day arithmetic units. To satisfy the 

demands of present day computational problems, more efficient implementation 

of arithmetic units and faster computational algorithms are needed. Numerous 

hardware techniques have been introduced, such as parallel processing, 

pipelining etc.[1]. These techniques are utilized to develop high speed and 

efficient arithmetic units based on architectures such as superscalar or 

superpipelining, where one or more results can be obtained in each clock cycle. 

However, the basic arithmetic pipeline structures are limited by the time 

required to add or shift operands. Methods such as carry look ahead addition or 

carry save addition have been developed to alleviate the carry propagate 
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bottleneck of addition[3]. However, these parallel implementations still require 

that both operands must be completely resided in the registers before the 

computation can start. This limitation can be eliminated by a fast evolving 

technique called on-line arithmetic which uses serial addition instead of 

conventional parallel arithmetic. 

On-line arithmetic is a process for performing arithmetic on a serial basis. 

All on-line arithmetic processors accept inputs and generate outputs in a most 

significant digit first format. Redundant number representations [4] are used for 

the digits to avoid carry propagation in addition. These methods allow the 

arithmetic unit to produce partial results starting from most significant bits of 

the input operands. That is, for every bit of input, you produce an output after a 

small delay. On-line arithmetic processors can be pipelined directly to perform 

complicated calculations and with their serial dataflow characteristic, they may 

be internally pipelined at rates limited only by the time required to calculate a 

single digit. Elimination of carry propagation allows on-line operations to be 

overlapped. Application specific systems benefit especially because arithmetic 

operations can be overlapped by starting operations as soon as digits become 

available from previous operations. 

1.2 Objectives 

The main objective of this thesis is the development of iterative algorithms for 

the computation of trigonometric functions such as, cosine and sine, based on 

on-line arithmetic techniques. Specifically, the algorithm is to be digit on-line 

algorithm and the on-line delay of this algorithm is to be at the most four. Delay 

should be limited to this value for efficient pipeline implementation of the 

algorithm. 



Secondly, a modular logic design of the underlying hardware is presented. 

This provides us with an understanding of the hardware requirements and form 

the basis of comparison with other algorithms on similar functions. 

Finally, a software simulation of the algorithm is presented. This simulation 

would act as an acid-test to verify the correctness of the algorithm. 

1.3 Thesis Overview 

The rest of the thesis is organized as follows. Chapter 2 reviews some basic 

concepts and background materials on the on-line algorithms. The CORDIC 

procedure for evaluating trigonometric functions and a comparison with the on-

line approach is discussed in chapter 3. The implementation of CORDIC is also 

briefly discussed in this chapter. Chapter 4 deals with the error analysis and 

heuristics carried out to achieve an optimal series approximation. The hardware 

implementation along with a logic design, for the implementation of the 

trigonometric functions are presented in chapter 5. Chapter 6 discusses the 

software simulation of the on-line algorithm. 



CHAPTER 2 

BACKGROUND 

2.1 Redundant Number System 

2.1.1 Signed Digit Number System (Radix > 2) 

In a conventional number system with an integer radix r>1 each digit is allowed 

to assume exactly r values: 0, 1, . 	r-1. In a redundant number representation 

with the same radix r each digit is allowed to assume more than r values. 

Avizienis[6] described a method where each digit of a positional constant 

radix number with an integer radix r is allowed to assume q values, 

r+2 	q 5_ 2r-1 	 (2.1) 

This is possible because both positive and negative digit values are allowed. 

Redundancy in the number representation allows fast addition and subtraction 

in which each sum digit is the function only of the digits in two adjacent digital 

positions of the operands. Such operations are called totally parallel addition 

and subtraction. The requirements for totally parallel addition and subtraction 

and a unique representation for the zero value are satisfied by a class of 

redundant representations with radices r > 2 which are called signed digit 

representations. Each digit of a number in signed digit representation can 

assume both positive and negative integer values. The number of digit values in 

a radix r > 2 representation ranges from a required minimum of r+2 to the 

allowable maximum of 2r-1. 

The purpose of signed digit representation is to allow addition and 

subtraction of two numbers where no carry propagation is required; that is, the 

time for the operation is independent of the length of the operands and is equal 

to the time required for the addition or subtraction of two digits. A signed digit 
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number is represented by n+m+1 digits zi (i= -n, . . . , -1, 0, 1, . . m) and has the 

value Z as shown in equation 2.2. 

Z 	r-i  
rn 

(2.2) 
-n 

Consider the addition of two digits, zi, yi, the sum digit si = f(zi, yi, ti) 

where ti is the transfer digit from the ( i+1 ) th position on the right and 	= 

f(zi, yi ). The addition of the two digits is performed in two successive steps. 

First, an outgoing transfer digit ti_i and an interim sum digit wi are formed: 

zi + yi = rti-1  + wi 	 (2.3) 

then the sum digit si is formed from, 

Si = wi + ti. 
	 (2.4) 

The requirement for the unique representation of zero is satisfied by the 

condition, 

I zi I 5_ r-1. 	 (2.5) 

For a two operand operation, the condition(equation 2.5) establishes values 

for ti = (-1,0,1) and the condition I wi I r-2 sets the upper limit for the 

magnitude of the interim sum (this also restricts the radix to r > 2). The 

relationship between the greatest value wmax  and smallest value win  of wi is 

wmax win  r 1, 
	 (2.6) 

and the set of allowable values for wi is unique and consists of 2r-3 integers 

from -(r-2) to (r-2). 

Since ti E -1, 0, 1), the required values of the sum digit si consists of a 

sequence of r+2 integers: 

si E tWmin-1, win, . . -1, 0, 1, 2, . . . ,wm  , max +1})- 
	(2.7) 

For odd radix ro, the minimum required set is, 

zi E -(r0  + 1)/2, .. . . -1, 0, 1 . . . . , (r0  + 1)/2), 	(2.8) 
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for even radix re, minimum required set is, 

zi E {-(re/2 + 1), 	, -1 , 0, 1, .... re/2 + 1). 	(2.9) 

Also, since I zi I 5 r-1 we can have different sets of zi E { -a, -(a+1), . -1, 

0, 1, ..(a-1), a), where, (r0  + 1 )/2 a 5 r0  -1 or re/2+ 1 a re  - 1. If a = ro  -1 

or a = re  -1, then there is maximum redundancy, and if a = (r0+1)/2 or a = 

re/2+1 , then condition exists for minimum redundancy. 

The following gives an example for addition of two signed digit numbers 

as the totally parallel addition of all corresponding digits. 

Example: Signed Digit Addition (Radix = 10) 

The allowed digit values for ti and wi are: 

ti: -1, 0, 1 and, 

wi: 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6. 

Z =1.651.4: 	value = 0.76486 

Y = 0.40531 	value = -0.39471 

The addition procedure S = Z + Y based on equations (2.3) and (2.4) is illustrated 

in the following table where x = -x. 

Table 1: Addition Procedure for Radix 10. 
i 0 1 2 3 4 5 

augend zi 1. -3 6 5 -1 -4 
addend yi 0. -4 0 5 3 -1 

step 1 (rti_i + wi) 0+1 -10+3 10+(-4) 10+0 0+2 0+(-5) 
step2 (ti) -1 1 1 0 0 
sum si 0. 4 -3 0 2 5 

The sum is S = 0.43-023; 	value = 0.37015 
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2.1.2 Modified Signed Digit Representations ( Radix = 2) 

The digit addition rules for signed digit may be modified to allow the 

propagation of the transfer digit over two digital position to the left[4]. If this 

type of transfer addition is allowed the radix r = 2 may be used and only r + 1 

values are required for the sum digit. Two transfer additions are executed in 

three steps 

zi'+ yi = rti-it + wi' , 	(2.10) 

wi' + = 	+ wi' 	(2.11) 

sit = ti"+ wi" , 	 (2.12) 

the digits zi yi , and si are digits of a modified signed digit representation. For 

example, with radix r = 2, the required values are -1, 0, 1; 

• if no redundancy exists and each sum digit si is the function of all the addend 

digits zi and augend digits yi to the right, i.e. 

si = f( zi yi 	..,zm  , ym  ); 

• if each sum digit assumes r + 1 values, we have si = f( zi yi , zi+i, yi+i 

zi+2 yi+2) and the operations are two transfer additions; 

• if each sum digit assumes r + 2 values or more, then we have si = f( zi , yi 

yi+1 ) and the operation is a single transfer addition. 

Example: Signed Digit Addition (Radix = 2) 

The allowed digit values are: 

wi 	wi" E 	0, 1.1 ; 	ti , ti" E (-1, 0, 1} 

S = Z 

ti  = 

if —1(zi.  
if 	(zi +yi)>1 
if 	(zi +yi) <-1  

if —1 	+ti)<1 
if 	(wi +ti)> I 
if 	+t'i)<-1 
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Z = 1.10 lil 
	

binary value = 0.1001 

Y = 0.10101 
	

binary value = 0.0011 

The procedure of addition based on equations (2.10)-(2.12) is illustrated in the 

following table: 

Table 2: The Radix-2 Addition Procedure. 
i -1 0 1 2 3 4 5 

augend z 1. -1 0 1 -1 0 
addend y 0. 1 -1 -1 1 0 

zi + yi 1 0 -1 0 0 0 
tit 0 0 0 0 0 0 0 

wit 1 0 -1 0 0 0 
ti" 0 0 0 0 0 0 0 

witt 0 1 0 -1 0 0 0 
si 0 1 0 -1 0 0 0 

The sum is S =1.01000; 	binary value = 0.11000 

2.2 On-Line Arithmetic 

2.2.1 Overview 

On-line arithmetic is a process for performing arithmetic on a serial ( i.e. digit by 

digit) basis. All on-line arithmetic processors accept inputs and generate outputs 

in a most significant digit first format. To obtain the jth digit of the result from 

an on-line algorithm, it is necessary and sufficient to have the operands available 

up to the (j + 6)th digit. The index difference 6, called on-line delay(typically 1 to 

4), is a small positive constant and it is algorithmic dependent. 
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i+6 
On-Line Arithmetic 

y 
	 Unit 

Figure 1 Input/Output Characteristics of On-Line Arithmetic 

As indicated in Figure 1, the first digit of the output is produced after a 

delay S. Subsequently, one digit of the result is produced upon receiving one 

digit of each of the operands and m is the precision of the result. 

Figure 2 demonstrates the difference in evaluation time between on-line 

and conventional arithmetic for an expression: 

a 	[ (p+q)1/2* (m  - 0)2 	(x  y) 	 (2.13) 

It is easy to perceive that a conventional (non-redundant) number system is 

not feasible for on-line arithmetic. If we were to use a non-redundant number 

system, then even for simple operations like addition and subtraction, there is an 

on-line delay 8 = m due to carry propagation. Hence it is required for an on-line 

algorithm to use redundant numbers where the time required to compute one 

output digit is independent of the length of the input operands. The on-line 

representation of a number A is defined as 

A / = A -1+ aJ. 4_ 5 r-8-' (2.14) 

and, 
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Figure 2 Comparison of Evaluation Time: On-Line and Conventional 

The digits ai belong to a redundant digit set {-µ, . . . -1, 0, 1, . . . 1.1.) where r/2 

r-1 determines the amount of redundancy. 

Example: For binary data the redundant digit set consists of {-1, 0, 1}. 

2.2.2 Fixed Point On-Line Addition 

Presented below is an example of an on-line add algorithm for adding Xk and 

Yk [5]. 

Let Xk= Xk —1+ xk.r —k  and Yk = Y k —1+ yk.r-k denote the values of the 

addends, while Sk= Sk _1+ sk.r —lc denotes the value of the sum, at step kin a 

radix-r redundant number system. 

[1] Initialization: 

w j 	; s_2 s-i = 0 

[2] Recurrence: 
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for j = 0, 1, 2, 3, 	 m+1 do: 

w  = r (w 1 _ 1 - s j_2)+r-5  (x + y j ) 

[3] Selection Function: 

si= S(w1) 

where the selection function S is done by rounding 

The on-line delay is 8 = 1 for r >= 4 and 11, = r-1. For r = 2, 8 = 2. 

2.2.3 Fixed Point On-Line Multiply 

We now give an example of an on-line multiply algorithm for multiplying Xk 

and Yk [5]. 

Let Xk= Xk-i+ x' K 	k and Y k  = Y k_i+ ykr-k denote the values of the 

multiplier and multiplicand, while Dk = Dk -1+ dkr-k  denotes the value of the 

partial product, at step k in a radix-r redundant number system. 

[1] Initialization: 

w1=0 ; xo= Yo= 0 ; do = 0 

[2] Recurrence: 

for j = 0,1, 2, 3, 	 m+1 do: 

wi = r (w1_ 1- dj_i)+ (XjYi+Yj-ix j ) 

[3] Selection Function: 

dj= S(wi) = sign w1. [w jI + 1/2j 

where the selection function S is done by rounding and after m steps the product 

is P = XY = Dm  + (Wm  - dm)r-m. 



12 

2.2.4 Implementation 

On-line arithmetic algorithms can be implemented in two ways: 

1. Linear array organization of on-line units and 

2. Pipelined implementation. 

In a linear array organization of on-line units, inputs are given parallel to 

each module where input operands are divided in sub operands depending on 

the precision of the internal digits of each module. As the input operand digits 

start coming to the first module(most-significant bits) it calculates the partial 

output and also passes the transition result to the next module. Hence the unit 

starts producing output result as soon as the input operand bits are available 

(plus a small delay), unlike the conventional computation where the unit has to 

wait for all the bits of the operand and then starts the computation. 

Figure 3 Linear Array Organization of On-Line Unit 

The pipelined implementation is similar to the linear array implementation 

but here the input operands are given in a pipelined fashion instead of single 

input operation as in the linear array. A pipelined on-line unit consists of (n+8) 

stages with the stage delay td. In the steady state, the unit is computing up to n 

different results and the last stage producing the last digit of the (i-n)th result. To 

implement the recurrence of an on-line algorithm, the working precision that 

increases with the number of steps must be provided. If the result is to be 

computed to a maximum precision of n digits, the recurrence requires at the jth 
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step a precision of the j digits for j< n/2 and a precision of n-j digits for j > n/2. 

Therefore, n simultaneous operations in various stages of completion require a 

total working precision of about n2/4  digits. This requires that a one-

dimensional array of modules, shown in figure 3, would not be suitable for 

pipelined inputs since the modules ( their internal precision) and the inter-

module bandwidth would depend on the relative position in the array. A two 

dimensional array typical for pipelined inputs is shown in the figure 4. 

This array, if implemented with d digit wide modules, requires rn/d1 

rows with a variable number of modules per row. The total number of d-digit 

modules required for maximum precision of n digits is approximately (n/d)2/4. 

2.2.5 Characteristics and Features 

The following depicts some of the important characteristics and features of on- 

line arithmetic : 

1. Produces results most significant digit first. 

2. Digit cycle time is independent of data wordlength. 

3. Higher computational rates by allowing overlap at the digit level between 

successive operations. 

4. Variable precision. 

5. Overlapped operand alignment in floating point operations. 

6. Error control. 

7. Minimum interconnection complexity between the processing units - one 

digit per operand. 

8. Low interconnection bandwidth. 

9. Modularity. 

10. High concurrency. 

11. VLSI realizability. 
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Figure 4 Two-Dimensional Pipelined On-Line Unit ( n= 5, d = 1, 6 = 1) 

On-line arithmetic is highly ails 	active in high speed multi-module 

structures for parallel and pipelined computations. Compared to conventional 

arithmetic where high speed multi-operand processing requires full precision 

bandwidth between arithmetic units, on-line requires a bandwidth of only one 

digit per operand which presents a very feasible and cost effective alternative. 

Also due to its highly modular characteristics it can be easily realized in terms of 

VLSI design. The main results indicate that the on-line approach offers a speed-

up factor of 2 to 16 with respect to conventional arithmetic while preserving 

limited interconnection bandwidth, decentralized control, and uniform 

structure. These features are highly attractive for reconfigurable networks. 



The principal disadvantage lies in the fact that the use of redundant 

number system is mandatory where conversions to and from the conventional 

system is an overhead. Moreover the inherently serial operation makes on-line 

arithmetic unsuitable for isolated arithmetic operations and comparisons. 
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Figure 25 The Error Curve for fsin(x) = X - X3/ 23  + X5/25  - x7/214 ; (m =16).  

- XL/2 Figure 26 The Error Curve for fcos(x) X4 /24  - X6/ 27  ; (m =8). 
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Figure 27 Deviation Error Curve for fcos(x) = 1 - X2/21 + X4/24 _ X6/29.  

Figure 28 Deviation Error Curve for fcos(x) = 1 - X2 /21  + X4 /24  - X6 /27. 



APPENDIX D 

Introduction to Visual Basic 

Visual Basic is a programming language from Microsoft , a graphical user 

interface (GUI) revolution. Applications for Microsoft Windows or OS/2 

Presentation Manager can be easily and efficiently developed in Visual Basic. It 

is a development system especially geared toward creating graphical 

applications. It includes graphical design tools and a simplified, high-level 

language. It emphasizes feedback and debugging tools that quickly take you 

from an idea to a running application. 

Visual Basic is centered around two types of objects: you create windows, 

called forms, and on those forms you draw objects, called controls. Then you 

program how forms and controls respond to user actions. The applications you 

produce are fast and can include all of the most common features an user expect 

in a GUI environment. 

Visual Basic works under the Windows operating system environment. 

The Windows operating environment differs from DOS in at least two important 

ways: 

• Applications share screen space. A Visual Basic application runs in a group 

of one or more windows and rarely takes over the whole screen. 

Applications share computing time. An application cannot run continually, 

or if it does, it has to be able to run in the background. 

The event-driven approach used by Visual Basic enables you to share 

computing time and other resources( such as Clipboard). An event-driven 

application consists of objects that wait for a particular event to happen. (An 
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event is an action recognized by a Visual Basic object. Objects include form and 

controls.) 

The Visual Basic code does not work in the linear fashion of a DOS 

program - starting at the top, proceeding toward the bottom, and finally 

stopping. Instead, in event-driven programming, you use code that remains idle 

until called upon to respond to specific user-caused or system-caused events. 

For example, you might program a command button to respond to a mouse 

dick. When the command button recognizes that the event has occurred, it 

invokes the code you wrote for that event. 

While the application is waiting for an event, it remains in the 

environment. In the meantime, the user can run other applications, resize 

windows, or customize system settings such as color. But the code is always 

present, ready to be activated when the user returns to the application. 

Features Supported: 

• A full set of the objects needed to create Windows applications, including: 

command buttons, option buttons, check boxes, list boxes, combo boxes, text 

boxes, scroll bars, frames, file and directory selection boxes, and menu bars. 

• Multiple windows in an application. 

• Highly flexible response to mouse and keyboard events at run time, 

including automated drag-and-drop support. 

• Ability to show and hide any number of items at run time. 

• Direct access to the environment's Clipboard and to the printer. 

• Direct system calls to Windows functions. 

• Communication with other Windows applications through dynamic data 

exchange (DDE), and extensibility via dynamic-link-libraries (DLL). For 

example, a user can call dynamic-link-libraries (including Windows functions) 

for within Visual Basic code. 
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• Graphics statements. 

• A powerful math and string handling library. 

• Easy-to-use string variables. 

• Both fixed arrays and dynamic arrays. (The latter help to simplify memory-

management problems.) 

• Random-access and sequential file support. 

• Sophisticated run-time error handling. 

Visual Basic also makes development easier by providing a set of powerful 

debugging commands that help isolate and correct errors in code. Visual Basic 

operates as an incremental compiler, instantly translating code statements into 

"runnable" form as soon as they are typed. GUI environments generally make 

computing easier and more fun for the user. But these environments create more 

complexities for developers, who now must think visually, write code that 

responds to events, and anticipate how users will interact with applications. 
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