
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-31-1994

An on-line approach for evaluating trigonometric functions An on-line approach for evaluating trigonometric functions

Rajesh Amin
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Amin, Rajesh, "An on-line approach for evaluating trigonometric functions" (1994). Theses. 1242.
https://digitalcommons.njit.edu/theses/1242

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1242&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1242?utm_source=digitalcommons.njit.edu%2Ftheses%2F1242&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

An On-Line Approach For
Evaluating Trigonometric Functions

by
Rajesh Amin

This thesis investigates the evaluation of trigonometric functions based on

an on-line arithmetic approach. On-line algorithms have been developed to

evaluate the sine and cosine functions. Error analysis and heuristics are carried

out to arrive at a minimal error algorithm based on the series expansion of the

sine and cosine function.

A logical design based on the algorithm is presented where the unit is

designed as a set of basic modules. A detailed bit slice design of each module is

also presented. A simulator was designed as an experimental tool for synthesis

of the on-line algorithms, and a tool for performance evaluation.

AN ON-LINE APPROACH FOR
EVALUATING TRIGONOMETRIC FUNCTIONS

by
Rajesh Amin

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

January 1994

APPROVAL PAGE

AN ON-LINE APPROACH FOR
EVALUATING TRIGONOMETRIC FUNCTIONS

Rajesh Amin

Dr. Edwin Hou, Thesis Adviser 	 Date
Assistant Professor of Electrical & Computer Engineering, NJIT

Dr. Sotirios Ziavras, Committee Messer
	

Date
Assistant Professor of Electrical & Computer Engineering, NJIT

Dr. M. Zhou Committee member 	 Date
Assistant Professor of Electrical & Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Rajesh Amin

Degree: 	Master of Science in Electrical Engineering

Date: January 1994

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1994

• Bachelor of Science in Electronics and Communications Engineering,
Maharaja Sayajirao University, Baroda, India, 1991

Major: 	Electrical Engineering

iv

This thesis is dedicated to my sister

v

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my advisor Dr. Edwin

Hou for his guidance and motivation throughout this research, without whom

this thesis could not have been conceived. His insight, comments, criticisms and

suggestions added greatly to the final result. Thanks especially for his support of

the thesis writing and for his many readings of it, at different stages.

Special thanks to Dr. Ziavras for his help and advice which made it possible

for me to reach higher standards. I also would like to thank him for leading me

through my masters program. My thanks also goes to Dr. Zhou for serving as a

member of committee.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Introduction. 	 1

1.2 Objectives 	 `2

1.3 Thesis Overview 	 3

	

2 BACKGROUND.. 4

2.1 Redundant Number Systems 	 4

	

2.1.1 Signed Digit Number System 4

2.1.2 Modified Signed Digit Representation. 	 7

2.2 On-Line Arithmetic 	 8

2.2.1 Overview 	 8

2.2.2 Fixed Point On-line Add 	 10

2.2.3 Fixed Point On-line Multiply 	 11

2.2.4 Implementation 	 11

2.2.5 Characteristics And Features 	 13

3 TRIGONOMETRIC FUNCTION EVALUATION. 	 16

3.1 Cordic Procedure 	 16

3.1.1 Cordic Algorithm. 	 16

3.1.2 Implementation. 	 18

3.2 On-Line Trigonometric Functions Over Conventional CORDIC 	19

4 ERROR ANALYSIS 	 21

4.1 Introduction 	 21

4.2 Error Analysis 	 23

4.2.1 Error Analysis 	 23

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.2.2 Input Deviation Error 	 24

4.2.3 Optimal Series 	 24

5 HARDWARE IMPLEMENTATION 	 26

5.1 Design Considerations 	 27

5.2 OLMLP 	 28

5.2.1 Data Conversion 	 28

5.2.2 Single Bit Multiplier 	 30

5.2.3 Addition 	 31

5.2.4 Result Digit Selection 	 31

5.2.5 Pipelining Implementation 	 33

5.2.6 Organization Of On-line Unit. 	 35

5.3 OLADD3 	 37

6 SOFTWARE SIMULATION 	 39

6.1 Overview 	 39

6.2 Design Of Simulator 	 39

7 CONCLUSION 	 43

7.1 Future Investigation 	 43

	

APPENDIX 45

A Conversion Algorithm 	 45

B On-Line Algorithms 	 48

C Heuristics And Error Analysis graphs 	 51

D Visual Basic: Windows Programming System 	 55

REFERENCES 	 58

viii

LIST OF FIGURES

Figure 	 Page

1 Input/Output Characteristics of On-Line Arithmetic. 	 8

2 Comparison of Evaluation Time: On-Line And Conventional 	 10

3 Linear Array Organization of On-Line Unit 	 12

4 Two-Dimensional Pipelined On-Line Unit 	 14

5 Coordinate Rotation of Vector R 	 16

6 Implementation of CORDIC 	 18

7 Error Curve for Cosine Series. 	 facing 22

8 Error Curve for Modified Cosine Series 	 facing 23

9 Input Deviation Error Curve for Modified Cosine Series 	 facing 23

10 Block Diagram of the On-Line Implementation of the Cosine Function . 	27

11 Implementation of the Conversion Algorithm 	 30

12 Addition by Carry Save Addition Technique 	 31

13 Implementation of Select Function 	 33

14 Pipelined Implementaion of Multiplication Recurrance 	 34

15 On-Line Linear Array Organization 	 35

16 Modular Decomposition of the Conversion Algorithm Implementation . 	 36

17 Bit Slice Organization of the On-Line Multiply Module 	 facing 36

18 Pipelined Implementation of OLADD3 	 38

19 Bit Slice Organization of the On-Line Add Module 	 facing 38

20 User Interface Screen of the Simulator 	 facing 40

ix

LIST OF FIGURES
(Continued)

Figure 	 Page

21 Exploded View of the OLADD3 Unit 	 facing 41

22 Exploded View of the OLMLP Unit 	 facing 41

23 The Error Curve for fsin(x) = X - x3/23 + X5/210 - X7/214; (m = 16) 	 52

24 The Error Curve for fcos(x) = 1 - X2/21 + X4 /24 - X6/29 ; (m =16) 	 52

25 The Error Curve for fsin(x) = X - X3/23 + X5/25 - X7/214 ; (m =16) 	 53

26 The Error Curve for fcos(x) =1 - X2/21 + X4 /24 - X6/27 ; (m =8). 	 53

27 Deviation Error Curve for fcos(x) = 1 - X2/21 + X4/24 - X6/29 	 54

28 Deviation Error Curve for fcos(x) ..+_ I - X2 /21 + X4/24 - X6/27 	 54

LIST OF TABLES

Table 	 Page

1 Addition Procedure for Radix 10 	 6

2 The Radix-2 Addition Procedure 	 8

3 Significant Terms Analysis 	 22

4 Truth Table for Y = -X 	 26

5 Truth Table for Selection Function 	 32

6 Conversion Procedure for Radix r= 2 	 47

7 Substitution Table 	 47

xi

CHAPTER 1

INTRODUCTION

1.1 Introduction

"It has been long recognized that the concept of computer architecture is no

longer restricted to the structure of bare machine hardware"[1]. A modern

computer is an integrated system consisting of machine hardware, an instruction

set, system software, application programs, and user interfaces. Present day

computing is driven by real life problems which require fast and accurate

solution.

Most scientific problems require extensive numerical computations and

their solutions demand complex mathematical formulations and numerous fixed

or floating point computations. Most complex problems such as weather

forecasting, structural analysis, and random problems in navigation can be

transferred to arithmetic computation problems using well known techniques

[2]. The resources required by these massive problems are the driving factor that

necessitate the enhancement of current day arithmetic units. To satisfy the

demands of present day computational problems, more efficient implementation

of arithmetic units and faster computational algorithms are needed. Numerous

hardware techniques have been introduced, such as parallel processing,

pipelining etc.[1]. These techniques are utilized to develop high speed and

efficient arithmetic units based on architectures such as superscalar or

superpipelining, where one or more results can be obtained in each clock cycle.

However, the basic arithmetic pipeline structures are limited by the time

required to add or shift operands. Methods such as carry look ahead addition or

carry save addition have been developed to alleviate the carry propagate

1

bottleneck of addition[3]. However, these parallel implementations still require

that both operands must be completely resided in the registers before the

computation can start. This limitation can be eliminated by a fast evolving

technique called on-line arithmetic which uses serial addition instead of

conventional parallel arithmetic.

On-line arithmetic is a process for performing arithmetic on a serial basis.

All on-line arithmetic processors accept inputs and generate outputs in a most

significant digit first format. Redundant number representations [4] are used for

the digits to avoid carry propagation in addition. These methods allow the

arithmetic unit to produce partial results starting from most significant bits of

the input operands. That is, for every bit of input, you produce an output after a

small delay. On-line arithmetic processors can be pipelined directly to perform

complicated calculations and with their serial dataflow characteristic, they may

be internally pipelined at rates limited only by the time required to calculate a

single digit. Elimination of carry propagation allows on-line operations to be

overlapped. Application specific systems benefit especially because arithmetic

operations can be overlapped by starting operations as soon as digits become

available from previous operations.

1.2 Objectives

The main objective of this thesis is the development of iterative algorithms for

the computation of trigonometric functions such as, cosine and sine, based on

on-line arithmetic techniques. Specifically, the algorithm is to be digit on-line

algorithm and the on-line delay of this algorithm is to be at the most four. Delay

should be limited to this value for efficient pipeline implementation of the

algorithm.

Secondly, a modular logic design of the underlying hardware is presented.

This provides us with an understanding of the hardware requirements and form

the basis of comparison with other algorithms on similar functions.

Finally, a software simulation of the algorithm is presented. This simulation

would act as an acid-test to verify the correctness of the algorithm.

1.3 Thesis Overview

The rest of the thesis is organized as follows. Chapter 2 reviews some basic

concepts and background materials on the on-line algorithms. The CORDIC

procedure for evaluating trigonometric functions and a comparison with the on-

line approach is discussed in chapter 3. The implementation of CORDIC is also

briefly discussed in this chapter. Chapter 4 deals with the error analysis and

heuristics carried out to achieve an optimal series approximation. The hardware

implementation along with a logic design, for the implementation of the

trigonometric functions are presented in chapter 5. Chapter 6 discusses the

software simulation of the on-line algorithm.

CHAPTER 2

BACKGROUND

2.1 Redundant Number System

2.1.1 Signed Digit Number System (Radix > 2)

In a conventional number system with an integer radix r>1 each digit is allowed

to assume exactly r values: 0, 1, . 	r-1. In a redundant number representation

with the same radix r each digit is allowed to assume more than r values.

Avizienis[6] described a method where each digit of a positional constant

radix number with an integer radix r is allowed to assume q values,

r+2 	q 5_ 2r-1 	 (2.1)

This is possible because both positive and negative digit values are allowed.

Redundancy in the number representation allows fast addition and subtraction

in which each sum digit is the function only of the digits in two adjacent digital

positions of the operands. Such operations are called totally parallel addition

and subtraction. The requirements for totally parallel addition and subtraction

and a unique representation for the zero value are satisfied by a class of

redundant representations with radices r > 2 which are called signed digit

representations. Each digit of a number in signed digit representation can

assume both positive and negative integer values. The number of digit values in

a radix r > 2 representation ranges from a required minimum of r+2 to the

allowable maximum of 2r-1.

The purpose of signed digit representation is to allow addition and

subtraction of two numbers where no carry propagation is required; that is, the

time for the operation is independent of the length of the operands and is equal

to the time required for the addition or subtraction of two digits. A signed digit

4

5

number is represented by n+m+1 digits zi (i= -n, . . . , -1, 0, 1, . . m) and has the

value Z as shown in equation 2.2.

Z 	r-i
rn

(2.2)
-n

Consider the addition of two digits, zi, yi, the sum digit si = f(zi, yi, ti)

where ti is the transfer digit from the (i+1) th position on the right and 	=

f(zi, yi). The addition of the two digits is performed in two successive steps.

First, an outgoing transfer digit ti_i and an interim sum digit wi are formed:

zi + yi = rti-1 + wi 	 (2.3)

then the sum digit si is formed from,

Si = wi + ti.
	 (2.4)

The requirement for the unique representation of zero is satisfied by the

condition,

I zi I 5_ r-1. 	 (2.5)

For a two operand operation, the condition(equation 2.5) establishes values

for ti = (-1,0,1) and the condition I wi I r-2 sets the upper limit for the

magnitude of the interim sum (this also restricts the radix to r > 2). The

relationship between the greatest value wmax and smallest value win of wi is

wmax win r 1,
	 (2.6)

and the set of allowable values for wi is unique and consists of 2r-3 integers

from -(r-2) to (r-2).

Since ti E -1, 0, 1), the required values of the sum digit si consists of a

sequence of r+2 integers:

si E tWmin-1, win, . . -1, 0, 1, 2, . . . ,wm , max +1})-
	(2.7)

For odd radix ro, the minimum required set is,

zi E -(r0 + 1)/2, -1, 0, 1 , (r0 + 1)/2), 	(2.8)

6

for even radix re, minimum required set is,

zi E {-(re/2 + 1), 	, -1 , 0, 1, re/2 + 1). 	(2.9)

Also, since I zi I 5 r-1 we can have different sets of zi E { -a, -(a+1), . -1,

0, 1, ..(a-1), a), where, (r0 + 1)/2 a 5 r0 -1 or re/2+ 1 a re - 1. If a = ro -1

or a = re -1, then there is maximum redundancy, and if a = (r0+1)/2 or a =

re/2+1 , then condition exists for minimum redundancy.

The following gives an example for addition of two signed digit numbers

as the totally parallel addition of all corresponding digits.

Example: Signed Digit Addition (Radix = 10)

The allowed digit values for ti and wi are:

ti: -1, 0, 1 and,

wi: 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6.

Z =1.651.4: 	value = 0.76486

Y = 0.40531 	value = -0.39471

The addition procedure S = Z + Y based on equations (2.3) and (2.4) is illustrated

in the following table where x = -x.

Table 1: Addition Procedure for Radix 10.
i 0 1 2 3 4 5

augend zi 1. -3 6 5 -1 -4
addend yi 0. -4 0 5 3 -1

step 1 (rti_i + wi) 0+1 -10+3 10+(-4) 10+0 0+2 0+(-5)
step2 (ti) -1 1 1 0 0
sum si 0. 4 -3 0 2 5

The sum is S = 0.43-023; 	value = 0.37015

7

2.1.2 Modified Signed Digit Representations (Radix = 2)

The digit addition rules for signed digit may be modified to allow the

propagation of the transfer digit over two digital position to the left[4]. If this

type of transfer addition is allowed the radix r = 2 may be used and only r + 1

values are required for the sum digit. Two transfer additions are executed in

three steps

zi'+ yi = rti-it + wi' , 	(2.10)

wi' + = 	+ wi' 	(2.11)

sit = ti"+ wi" , 	 (2.12)

the digits zi yi , and si are digits of a modified signed digit representation. For

example, with radix r = 2, the required values are -1, 0, 1;

• if no redundancy exists and each sum digit si is the function of all the addend

digits zi and augend digits yi to the right, i.e.

si = f(zi yi 	..,zm , ym);

• if each sum digit assumes r + 1 values, we have si = f(zi yi , zi+i, yi+i

zi+2 yi+2) and the operations are two transfer additions;

• if each sum digit assumes r + 2 values or more, then we have si = f(zi , yi

yi+1) and the operation is a single transfer addition.

Example: Signed Digit Addition (Radix = 2)

The allowed digit values are:

wi 	wi" E 	0, 1.1 ; 	ti , ti" E (-1, 0, 1}

S = Z

ti =

if —1(zi.
if 	(zi +yi)>1
if 	(zi +yi) <-1

if —1 	+ti)<1
if 	(wi +ti)> I
if 	+t'i)<-1

8

Z = 1.10 lil
	

binary value = 0.1001

Y = 0.10101
	

binary value = 0.0011

The procedure of addition based on equations (2.10)-(2.12) is illustrated in the

following table:

Table 2: The Radix-2 Addition Procedure.
i -1 0 1 2 3 4 5

augend z 1. -1 0 1 -1 0
addend y 0. 1 -1 -1 1 0

zi + yi 1 0 -1 0 0 0
tit 0 0 0 0 0 0 0

wit 1 0 -1 0 0 0
ti" 0 0 0 0 0 0 0

witt 0 1 0 -1 0 0 0
si 0 1 0 -1 0 0 0

The sum is S =1.01000; 	binary value = 0.11000

2.2 On-Line Arithmetic

2.2.1 Overview

On-line arithmetic is a process for performing arithmetic on a serial (i.e. digit by

digit) basis. All on-line arithmetic processors accept inputs and generate outputs

in a most significant digit first format. To obtain the jth digit of the result from

an on-line algorithm, it is necessary and sufficient to have the operands available

up to the (j + 6)th digit. The index difference 6, called on-line delay(typically 1 to

4), is a small positive constant and it is algorithmic dependent.

9

i+6
On-Line Arithmetic

y
	 Unit

Figure 1 Input/Output Characteristics of On-Line Arithmetic

As indicated in Figure 1, the first digit of the output is produced after a

delay S. Subsequently, one digit of the result is produced upon receiving one

digit of each of the operands and m is the precision of the result.

Figure 2 demonstrates the difference in evaluation time between on-line

and conventional arithmetic for an expression:

a 	[(p+q)1/2* (m - 0)2 	(x y) 	 (2.13)

It is easy to perceive that a conventional (non-redundant) number system is

not feasible for on-line arithmetic. If we were to use a non-redundant number

system, then even for simple operations like addition and subtraction, there is an

on-line delay 8 = m due to carry propagation. Hence it is required for an on-line

algorithm to use redundant numbers where the time required to compute one

output digit is independent of the length of the input operands. The on-line

representation of a number A is defined as

A / = A -1+ aJ. 4_ 5 r-8-' (2.14)

and,

10

Figure 2 Comparison of Evaluation Time: On-Line and Conventional

The digits ai belong to a redundant digit set {-µ, . . . -1, 0, 1, . . . 1.1.) where r/2

r-1 determines the amount of redundancy.

Example: For binary data the redundant digit set consists of {-1, 0, 1}.

2.2.2 Fixed Point On-Line Addition

Presented below is an example of an on-line add algorithm for adding Xk and

Yk [5].

Let Xk= Xk —1+ xk.r —k and Yk = Y k —1+ yk.r-k denote the values of the

addends, while Sk= Sk _1+ sk.r —lc denotes the value of the sum, at step kin a

radix-r redundant number system.

[1] Initialization:

w j 	; s_2 s-i = 0

[2] Recurrence:

11

for j = 0, 1, 2, 3, 	 m+1 do:

w = r (w 1 _ 1 - s j_2)+r-5 (x + y j)

[3] Selection Function:

si= S(w1)

where the selection function S is done by rounding

The on-line delay is 8 = 1 for r >= 4 and 11, = r-1. For r = 2, 8 = 2.

2.2.3 Fixed Point On-Line Multiply

We now give an example of an on-line multiply algorithm for multiplying Xk

and Yk [5].

Let Xk= Xk-i+ x' K 	k and Y k = Y k_i+ ykr-k denote the values of the

multiplier and multiplicand, while Dk = Dk -1+ dkr-k denotes the value of the

partial product, at step k in a radix-r redundant number system.

[1] Initialization:

w1=0 ; xo= Yo= 0 ; do = 0

[2] Recurrence:

for j = 0,1, 2, 3, 	 m+1 do:

wi = r (w1_ 1- dj_i)+ (XjYi+Yj-ix j)

[3] Selection Function:

dj= S(wi) = sign w1. [w jI + 1/2j

where the selection function S is done by rounding and after m steps the product

is P = XY = Dm + (Wm - dm)r-m.

12

2.2.4 Implementation

On-line arithmetic algorithms can be implemented in two ways:

1. Linear array organization of on-line units and

2. Pipelined implementation.

In a linear array organization of on-line units, inputs are given parallel to

each module where input operands are divided in sub operands depending on

the precision of the internal digits of each module. As the input operand digits

start coming to the first module(most-significant bits) it calculates the partial

output and also passes the transition result to the next module. Hence the unit

starts producing output result as soon as the input operand bits are available

(plus a small delay), unlike the conventional computation where the unit has to

wait for all the bits of the operand and then starts the computation.

Figure 3 Linear Array Organization of On-Line Unit

The pipelined implementation is similar to the linear array implementation

but here the input operands are given in a pipelined fashion instead of single

input operation as in the linear array. A pipelined on-line unit consists of (n+8)

stages with the stage delay td. In the steady state, the unit is computing up to n

different results and the last stage producing the last digit of the (i-n)th result. To

implement the recurrence of an on-line algorithm, the working precision that

increases with the number of steps must be provided. If the result is to be

computed to a maximum precision of n digits, the recurrence requires at the jth

13

step a precision of the j digits for j< n/2 and a precision of n-j digits for j > n/2.

Therefore, n simultaneous operations in various stages of completion require a

total working precision of about n2/4 digits. This requires that a one-

dimensional array of modules, shown in figure 3, would not be suitable for

pipelined inputs since the modules (their internal precision) and the inter-

module bandwidth would depend on the relative position in the array. A two

dimensional array typical for pipelined inputs is shown in the figure 4.

This array, if implemented with d digit wide modules, requires rn/d1

rows with a variable number of modules per row. The total number of d-digit

modules required for maximum precision of n digits is approximately (n/d)2/4.

2.2.5 Characteristics and Features

The following depicts some of the important characteristics and features of on-

line arithmetic :

1. Produces results most significant digit first.

2. Digit cycle time is independent of data wordlength.

3. Higher computational rates by allowing overlap at the digit level between

successive operations.

4. Variable precision.

5. Overlapped operand alignment in floating point operations.

6. Error control.

7. Minimum interconnection complexity between the processing units - one

digit per operand.

8. Low interconnection bandwidth.

9. Modularity.

10. High concurrency.

11. VLSI realizability.

14

Figure 4 Two-Dimensional Pipelined On-Line Unit (n= 5, d = 1, 6 = 1)

On-line arithmetic is highly ails 	active in high speed multi-module

structures for parallel and pipelined computations. Compared to conventional

arithmetic where high speed multi-operand processing requires full precision

bandwidth between arithmetic units, on-line requires a bandwidth of only one

digit per operand which presents a very feasible and cost effective alternative.

Also due to its highly modular characteristics it can be easily realized in terms of

VLSI design. The main results indicate that the on-line approach offers a speed-

up factor of 2 to 16 with respect to conventional arithmetic while preserving

limited interconnection bandwidth, decentralized control, and uniform

structure. These features are highly attractive for reconfigurable networks.

The principal disadvantage lies in the fact that the use of redundant

number system is mandatory where conversions to and from the conventional

system is an overhead. Moreover the inherently serial operation makes on-line

arithmetic unsuitable for isolated arithmetic operations and comparisons.

15

53

Figure 25 The Error Curve for fsin(x) = X - X3/ 23 + X5/25 - x7/214 ; (m =16).

- XL/2 Figure 26 The Error Curve for fcos(x) X4 /24 - X6/ 27 ; (m =8).

54

Figure 27 Deviation Error Curve for fcos(x) = 1 - X2/21 + X4/24 _ X6/29.

Figure 28 Deviation Error Curve for fcos(x) = 1 - X2 /21 + X4 /24 - X6 /27.

APPENDIX D

Introduction to Visual Basic

Visual Basic is a programming language from Microsoft , a graphical user

interface (GUI) revolution. Applications for Microsoft Windows or OS/2

Presentation Manager can be easily and efficiently developed in Visual Basic. It

is a development system especially geared toward creating graphical

applications. It includes graphical design tools and a simplified, high-level

language. It emphasizes feedback and debugging tools that quickly take you

from an idea to a running application.

Visual Basic is centered around two types of objects: you create windows,

called forms, and on those forms you draw objects, called controls. Then you

program how forms and controls respond to user actions. The applications you

produce are fast and can include all of the most common features an user expect

in a GUI environment.

Visual Basic works under the Windows operating system environment.

The Windows operating environment differs from DOS in at least two important

ways:

• Applications share screen space. A Visual Basic application runs in a group

of one or more windows and rarely takes over the whole screen.

Applications share computing time. An application cannot run continually,

or if it does, it has to be able to run in the background.

The event-driven approach used by Visual Basic enables you to share

computing time and other resources(such as Clipboard). An event-driven

application consists of objects that wait for a particular event to happen. (An

55

56

event is an action recognized by a Visual Basic object. Objects include form and

controls.)

The Visual Basic code does not work in the linear fashion of a DOS

program - starting at the top, proceeding toward the bottom, and finally

stopping. Instead, in event-driven programming, you use code that remains idle

until called upon to respond to specific user-caused or system-caused events.

For example, you might program a command button to respond to a mouse

dick. When the command button recognizes that the event has occurred, it

invokes the code you wrote for that event.

While the application is waiting for an event, it remains in the

environment. In the meantime, the user can run other applications, resize

windows, or customize system settings such as color. But the code is always

present, ready to be activated when the user returns to the application.

Features Supported:

• A full set of the objects needed to create Windows applications, including:

command buttons, option buttons, check boxes, list boxes, combo boxes, text

boxes, scroll bars, frames, file and directory selection boxes, and menu bars.

• Multiple windows in an application.

• Highly flexible response to mouse and keyboard events at run time,

including automated drag-and-drop support.

• Ability to show and hide any number of items at run time.

• Direct access to the environment's Clipboard and to the printer.

• Direct system calls to Windows functions.

• Communication with other Windows applications through dynamic data

exchange (DDE), and extensibility via dynamic-link-libraries (DLL). For

example, a user can call dynamic-link-libraries (including Windows functions)

for within Visual Basic code.

57

• Graphics statements.

• A powerful math and string handling library.

• Easy-to-use string variables.

• Both fixed arrays and dynamic arrays. (The latter help to simplify memory-

management problems.)

• Random-access and sequential file support.

• Sophisticated run-time error handling.

Visual Basic also makes development easier by providing a set of powerful

debugging commands that help isolate and correct errors in code. Visual Basic

operates as an incremental compiler, instantly translating code statements into

"runnable" form as soon as they are typed. GUI environments generally make

computing easier and more fun for the user. But these environments create more

complexities for developers, who now must think visually, write code that

responds to events, and anticipate how users will interact with applications.

REFERENCES

1. Hwang, K. "On-Line Algorithms for Divison and Multiplication." IEEE
Trans. Comput., (1977 Jul):681-687.

2. Owens, R.M., and M.J. Irwin. "Designing Pipeline Architectures using On-
Line Algorithms." Proc. of the 6th Annual Symposium on Computer
Architecture, (1979 Apr):12-19.

3. Hwang, K. Advanced Computer Architecture with Parallel Programming.
Preliminary Edition.,(1993).

4. Avizienis, A.,"Signed-Digit Number Representations for Fast Parallel
Arithmetic." IRE Trans. Electron. Comput.,(1961):389-400.

5. Ercegovac, M.D., "On-Line Arithmetic: An Overview." Proc. SPIE Conf. Real
Time Signal Proc.(1984):667-680.

6. Voider, J.E. "The CORDIC Trigonometric Computing Technique." IRE Trans.
Elect. Comp., (1959):330-334.

7. Golub, G.H., and C.F. Van Loan. Matrix Computations. Baltimore, MD: The
John Hopkins University Press (1983).

8. Haviland, G.L., and A.A. Tuszyunski. "A CORDIC Arithmetic Processor
Chip." IEEE Trans. Comp., (1980):68-78.

9. Waser, S., and M.J. Flynn. Introduction to Arithmetic for Digital Systems
Designer. NY: Holt, Rinehart & Winston, (1982).

10. Fowkes, R.E. "Hardware Efficient Algorithms for Trigonometric Functions."
IEEE Trans. Comput., Vol. 42 No.2(1993 Feb).

11. Steer, D.G., and S.R. Penstone. "Digital Hardware for Sine-Cosine Function."
IEEE Trans. Comp., (1977):1283-1286.

12. Brackert Jr., "A High Speed Recursive Digital Filter Using On-Line
Arithmetic." IEEE ISCAS,(1989).

13. Tullsen D.M. and M.D. Ercegovac "Design and VLSI Implementation of an
On-Line Algorithm." Proc. SPIE Conf. Real-Time Signal Process., (1986).

58

59

REFERENCES
(Continued)

14. Ercegovac, M.D., "A General Hardware-Oriented Method for Evaluation of
Functions and Computations in a Digital Computer." IEEE Trans.
Comput. (1977):667-680.

15. Gorji-Sinaka, A., and M.D. Ercegovac., "Design of a Digit Slice On-Line
Arithmetic Unit." IEEE Symp on Comput. Arith., (1981):72-80.

16. Ercegovac, M.D., and T. Lang. "On-The-Fly Conversion of Redundant into
Conventional Representation." IEEE Trans. Comput., (1987):895-897.

17. Atkins, D.E. "Introduction to the Role of Redundancy in Computer
Arithmetic." Computer. Vol. 8, No. 6(1975):84-96.

18. Ercegovac, M.D. "An On-Line Square Rooting Algorithm." Proc. of the 4th
Symposium on Computer Arithmetic, (1978 Oct):183-189.

19. Mario, M.M., Computer System Architecture, Second Edition., (1982).

20. Hwang, K., Computer Arithmetic Priciples, Architecture and Design. NY:
Wiley (1979).

21. Microsoft, Visual Basic Manual 2.0 Edition. Microsoft Press (1992).

72. Irwin, M.J., "Reconfigurable Pipeline Systems." Proc.1978 Annual Conf. of the
ACM, (1979 Apr):86-92.

