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ABSTRACT 

Analysis of a Band-Saw 

by
Suat Ali Ozsoylu

Hie solution for the transverse oscillations o f a band-saw is determined. Two 

different models are treated: a fourth-order model and a second-order model. The 

response characteristics for both models are determined using Laplace transformation. 

To obtain the inverse Laplace Transform for the fourth-order model, it was necessary to 

find the frequencies by applying the Extended Lanczos Method in order to overcome the 

problem for computer overflow.

The limits of stability for both models are studied by plotting the eigenvalues 

against changing parameter values. Conditions for the onset of divergence and flutter 

instabilities, which need to be taken into account in designing a band-saw, are given. For 

increased axial tension, the critical velocities are shown to increase for both models. This 

serves as a means of increasing the stable region.

The less accurate second-order model yields solutions with relative ease. The 

accuracy of this solution is evaluated by comparing with the fourth order model. The 

results of the second-order came very close to those of the fourth-order model for high 

values of tension.
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CHAPTER 1

INTRODUCTION

Hie axially moving beam appears frequently as an element in the mathematical 

modeling of various devices such as high-speed magnetic tapes, aerial cable tramways, 

band-saws, pipes with fluid flow, power transmission chains and belts. The study of 

transverse vibrations and the characterization of such systems is required for effective 

design.

This work will focus on the transverse vibration characteristics o f a band-saw to 

illustrate the application of the Laplace Transformation to such problems and to 

demonstrate the advantages o f this approach. The common model for a band-saw is the 

axially moving Bemoulli-Euler Beam under tension. The problem formulation and the 

solution for the transverse oscillations of this model will be made clear in the process of 

this study. Below, we will review the literature on this subject, and we will re-examine 

the mathematical model as well as the method of obtaining the solution, particularly 

with respect to the boundary conditions and external forces acting on the band-saw.

Simpson [ 2 ] studied the transverse modes and frequencies of beams, without the 

axial tension, axially translating between fixed-end supports. He presented numerical and 

graphical results to show the effects o f the velocity of the beam on the natural 

frequencies. Mote [ 3 ] created a mathematical model of a band-saw treating the axially 

moving beam with axial tension and simple supports. His work included numerical and 

graphical results showing die change in the characteristics of the system for increasing 

values of the velocity. Recently, Mote and Wickert [1 ]  studied a similar problem where
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modal analysis and the Green's Function method was used to find the natural 

frequencies, the modes and closed-form solutions of the fourth-order and second-order 

models. The steady state response of an axially moving strip subjected to lateral load 

was studied by Chonan [ 5 ], but his study pertains to motion in the plane of the strip; the 

present study as well as the other references cited are concerned with the motion 

perpendicular to the plane of the strip.

We will review the physical characteristics o f the problem in order to justify our 

mathematical models. It turns out that a beam with one end fixed and the other simply 

supported needs to be studied. In addition, we need to examine the case in which the 

forcing function consists o f a periodic displacement o f one of the supports. The previous 

studies did not treat the case with the fixed-simple boundary conditions, nor the case of 

non-homogenous boundary conditions. For these and other reasons that will become 

clear later, we will use Laplace Transformation to obtain the solutions, and we will 

explain the advantages of this method in the treatment o f this and similar problems. We 

will employ the Extended Lanczos' Method (Herman [4]) to obtain the eigen-frequencies 

and explain the reasons for this step. We will compare the results of the fourth-order 

model (Bemoulli-Euler Beam) with the much simpler second-order model (axially 

moving string in tension) to observe the differences in results. This will provide a basis 

for choosing between the second-order and fourth-order models.

Results are presented for a range of parameter values which were chosen from 

physical data on equipment and operating conditions recommended by the equipment 

manufacturer. The results include resonant frequencies and limits on the velocity o f the 

band-saw based on divergence and flutter instabilities.



CHAPTER 2

FOURTH-ORDER MODEL

2.1 Discussion of the Problem

The main components o f a band-saw assembly are shown in Figure 1. Basically, a 

mechanism provides tension in the steel blade ( band ) which is wrapped around the 

driving and the idler pulleys. For the cutting to take place, the driving pulley transmits 

motion to the blade by friction, where the fiiction force depends on the tension in the 

blade. Then, the woric piece is fed to the cutting edge where additional supports 

(Marked C in Figure 1) are provided to guide and increase the rigidity of the blade. The 

location of the driving pulley, which corresponds to the left pulley in Figure 1, will be 

such that it will pull the band away from the work piece.

V

Figure 1 Schematic Band-Saw Assembly

To create a mathematical model of the band-saw, the assembly will be analyzed 

in three portions ( Figure 1 ), AC, BC and ED. Each segment of the blade will be
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modeled as an axially moving Bemoulli-Euler beam under tension. Based on the 

coordinate frame defined in Figure 1, the transverse direction for all models is along the 

y-axis, and the width of the blade is along the z-axis. The boundary conditions for these 

models will be: simple support at the end adjacent to a pulley, and fixed support at the 

end adjacent to the cutting region (Marked C in Figure 1). Therefore, segments AC 

and BC will have simple-fixed supports; and segment ED will have simple-simple 

supports as their boundary conditions.

There are two reasons to designate the boundary conditions at a pulley to be 

simple supports. The first reason is that the moment caused by the transverse deflection 

will be negligible relative to the tension forces applied ( the blade thickness is very small 

compared to die other dimensions in the assembly), and the second reason is that the 

band will follow die pulley’s transverse deflection, whether the pulley is moving or 

stationary. These two characteristics are best approximated by a simple support.

ROLLER 
PAIR#1 “ \

ROLLER 
PAIR #2

Figure 2 The Supports at Point C in Figure 1.
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The support assembly at the cutting area is shown in Figure 2. Because the 

distance between the roller pairs is small at all times, the support assembly will strongly 

resist bending and act as a fixed support for the portions of the band-saw assembly that 

are of interest. This behavior is enhanced when there is a work-piece between the 

support members (roller pairs) during the cutting procedure.

The beam width will be considered to be uniform and constant for the model, 

even though there are teeth at the cutting edge (Figure 3), because of the small size of 

the teeth relative to the width of the blade. Similarly, the thickness will be considered 

uniform throughout the length of the beam. The thickness, relative to the other 

dimensions, is small, therefore the rotary inertia and the transverse shearing deformation 

terms will be neglected.

; f THICKNESS

>• y ~ \ '  v~

w Id t h

Figure 3 Band-Saw Blade

As previously stated, die pulleys apply tension to die blade. One of the reasons 

for tension in the blade is to provide the necessary friction force between die 

driving-pulley and the blade to overcome the cutting force. In addition, as we will find,
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the tension in the blade increases stability o f operation. However, increased tension 

increases the fluctuating tensile stresses in the blade, reducing its life.

Throughout die cutting procedure, the change in the axial velocity o f die blade 

will be considered negligible. Especially when the work-piece is cut manually, uneven 

feed would lead to speed fluctuation; but from a practical point o f view, die machinist is 

expected to intervene to avoid such machine behavior. Besides, because of the 

transmission, such erratic feeding might cause unwanted slippage between the driving 

pulley and die band.

Damping will not be included in the model. Such non-conservative forces are very 

important in similar problems, such as magnetic tapes, but the governing forces in 

band-saws are too high for the damping to be significant.

2.2 Formulation of the Fourth O rder Model

2.2.1 Simple-Simple Boundary Conditions

Figure 4 shows the axially moving Bemoulli-Euler beam with simple-simple boundary 

conditions. The blade excitation stems from the oscillations or the eccentricity of the 

driving pulley, and will have a frequency (w) equal to die angular velocity o f the pulley. 

The equation of transverse motion of an axially moving Bemoulli-Euler beam (Mote[3]) 

is

(E^Uxxxx + 8{2vuxt + u „ -  V2u xl} -  PUxx =  0 (2.1)
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Y(x,t)

Ksin(wt)

Figure 4 The Axially Moving Bemoulli-Euler Beam Under Tension

The boundary conditions are

u(x =0,t) = u ^ x  = 0,0  = ««(* = 1 ,0  = 0; (2.2)

u(x = L ,0  = K  sin(H>0

Where E : Elastic modulus
I : Area moment o f inertia 

5 : Density per unit length 
U : Transverse displacement 
Ux : Derivative with respect to x 

v : Velocity of the beam in the axial direction 
K : Transverse displacement of the support 
w : Frequency of die excitation 
L : The length between supports 
P : Axial tensile force

In non-dimensionalized form, Equations (2.1) and (2.2) will be

Yxxxx+ jj{8v2L 2 -  PL2}Yxx+v2L(±)>YXt + Yrr = 0 (2.3)

Y(X= 0,T)= Yxx{X= 0,T)= Yxx{X=  1, T) = 0 (2.4)

Y(X= \ ,T )  = Ksw{pT)
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where

(2.5)

For convenience this equation can be further simplified by substituting the

parameters bz = jj{8v2L 2- P L 2}, b\ -  v2L(-gj)*:

Yxxxx+bzYxx+bxYxr+ Yrr ~ 0 (2.6)

The governing differential operator o f Equation (2.6) is non-selfadjoint. In 

addition, die boundary conditions are non-homogenous. These two conditions make it 

impossible to satisfy the orthogonality conditions that are associated with the classical 

eigenvalue solution technique (Appendix A). To overcome these difficulties, Laplace 

transforms of Equations (2.5) and (2.6) are taken with respect to T, where the initial 

conditions are taken to be:

Yx(X, T= 0) = 0; Y(X, T = 0) = 0; Yj{X, T= 0) = 0 (2.7)

Then Equation (2.5) will become

Yxxxx(X,s)+ bzYxx(X,s) + b\sYx(X,s) + s 2Y(X ,s)  = 0 (2.8)

with the boundary conditions

Y(X= 0,s) = YJaKX= 0 ,s) = Yxx{X= 1,5) = 0 (2.9)



A solution of die form Y(X, s) = Ae7* is assumed for Equation (2.8). When die 

solution is substituted, die characteristic equation (that is a fourth order polynomial in

A.) will be found.

X4 + b2X2 + b 1sX + s 2 = Q (2.10)

To find the fonn of the roots, Equation (2.10) will be written as a product o f two 

quadratic equations.

(X2 -  a.X + ri XX2 + a.X+r2) = X4 + b2X2 + bisK + s 2 = 0 (2.11)

Equating the coefficients will give the following equations;

b2 + a2 = n  + r2 

= ~ r 2 r xr2 = s2 (2.12a)

r\ = \{ b 2 + az + ^-y ,  r2 = \{ b 2 + a2 - ^ - }

Then the roots will be as follows:

a + J * 2- * ' !  n n - * - J a 2- 4r 2 , ______   ,
M = -----5  A 2 = ----- J----- A3 = ----- =--------  A4 = --- 5-----  (2 .1 2b)

Assuming all roots to be distinct, the solution will be as follows:

Y(X,s) = A lex'x +A2ex*x  + A3ex>x +A t e ^  (2.13)
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To find the unknown parameters A,, A2, A3, A4 , the boundary conditions are 

applied to Equation (2.13). The resultant four equations in four unknowns will be 

written in a matrix form, where the unknowns can be obtained using matrix algebra.

l l
*2 Xj

e t

2 *1 , 2 *2 * 2 *3

v 2
3

2 *4 
k4 '

A 1
0

a 2 = K- *

A 3

A 4 0

0

(2.14)

The unknown coefficients are found to be:

A ,A l sis)

fi(s) = K${X\iX\ - X\)ex> + X\{X\ -  X\)ex' - X \iX \- X\)ex*} (2.15a)

A l  ~  sis)

f2(s) = K${X\iX\ -  X\)ex' -  Xl(X\ -  X\)ex* -  X\(X\ -  X\)ex<} (2.15b)

A  3  =
Ms)
gis)

h is )  = ^ l)ex■ + x\{X \ -  Xl)ex* - X]{X\-  X\)ex*} (2.15c)

A
A4 ~  Sis)

h is)  = K p i t f f r l  ~ ^ l )e x> -  X\(X\ -  X\)exi + Xj iXj  -  X\)ex*} (2.15d)
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gts) = (s2 + p2){(^,2 -  X2t X 2 -  X2)(ex >* 1  + e ^ +*< K 

(&1 ~ ^ 3X^ 2  “  + ex^ * )  + (Xl -  X2X \ 2 -  XjXe*'^* + eXj+*3)} (2.15e)

Then Equation (2.13) can be rewritten in terms of the new functions introduced as:

Equation (2.16) represents the solution to the problem in the X-s plane. To find

die solution in the X-T plane, it is necessary to find the inverse of Equation (2.16). This

is obtained by summing the residues of the poles of Y(X,s) in the complex s-plane, [6];

equivalently we need to find the zeros of g(s). From Equation (2.15e), the only apparent 

zeros are s  = ±fp. Efforts (Appendix C) to find the rest o f the zeros of g(s) were 

unsuccessful, because the range of values of g(s), in the region of interest, exceeds

the magnitudes that the computer can handle. To circumvent this problem, Equation

(2.8) is treated as an eigenvalue problem with s as the eigenvalue parameter. This is 

equivalent to finding the zeros of g(s) besides s  = ±/p. The method employed in 

obtaining the eigenvalues is the Extended Lanczos' Method presented by Herman [4].

Then the inversion of Y(X,s) will be:

Y(X, T) = + E {% *e1>V ''}+
r 'rC »r) r  g '(jr) '  r V g'(Jr) 1

(2.17)

Where sr are the poles o f the o f Y(X,s) and, g'(s) is the derivative o f g(s) with respect 

to s.



To find the derivative of the denominator, g(s) will be treated as a function % and 

s where X=X(s). Applying the chain rule:

1 '

& dwhere ^  and ^  represent partial differentiation with respect to X and s respectively, 

are found from the characteristic equation (Equation (2.10)):

dXi b i Xi+2s
; i= l, 2, 3, 4 (2.19)

ds 4X*+2 b2X y b xs

And

£  = ( s 2 +  P 2){(X 2 -  X2)[X 2 +  2X, -  X2> * " ^ +

(X j -  X |)[X J  + 2 X ,  -  X |] e x'**> + (X | -  X f)[X f +  2X , -  Xj]e*'+*<+ 

2 Xi [ ( Xj  -  X \ ) e x*+x* -  (X l  -  X j ) e x*+x< + ( X j  -  X l ) e x*+X/t] }  (2.20a)

^  = O 2 +  P 2){(>-1 - X |) [ X ?  +  2X2 -  X 22y ^ +

(X? -  X | ) [ x f + 2 X2 -  +  (X f -  X2)[X^ +  2 X2 -  x 3 ] e l ^ < 4

2 X2[(X\  -  X 2{ ) e x '+x> +  ( X ] - X 2A) e x'+x< + - ( X |  -  X l ) e x>+x<]}  (2.20b)
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£-} = (*2 + v 2m l  -  -  x \ y ^ x 3+

(xf -  x j f x j  -  2 X3 -  x f ] ® ^ + (x ?  -  x f ) [ x |+ 2 X3 -  x 24y > +x<+

2X3[(Xf -  -  (X? -  Xj)exi+3L« +  { X \  -  X \ ) e x* x* ] }  (2.20c)

^  = ( s 2 + p2){(Xl -  X \ ) \ _ X \  -  2X4 -  X|}?*>+*«+

( X i  -  x \ ) [ x 22 -  2X4 -  X l ] e ^ 2  +  ( x \  -  X\)\_X\ -  2X4 -  X j ] ^ +x<+

2 X 4 K X 2 -  X j ) e X2+x' + ( X j  -  X j ) e x'+x* +  (Xj -  X \ ) e x* Xi] }  (2.20d)

= 2s{(X\ -  X lXXl  -  X \Xex'+k2 + e k*+k<)+ (2.20e)

(X? -  Xj XXl  -  Xj X^ l+li3 + e X2+x*) + (A.J -  X4XX3 -  X \X ex'+x< + eX2+x>)}

Then Equation (2.14) can be rewritten as:

f e f r r )  3\  Bg
B\: ~ET a t

e x>x e Srt} + T , {
dgbr) dg
iSr-ar+s

e x,XgSrtj +  £ {   e x^ e Sr t} +
^  n  av.‘ floV  Bg<Jr) 3Xi Bg

“  dXj "5T 5t

■ex4x e ' rJ} (2.21)

For convenience, Equation (2.21) can be further simplified as:

n x n  =  t z  C , { s r) e W e ° ' T
*= 1 r

(2.22)
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Previously, the s, were defined to be the roots of g(s) (Equation (2.15e)).

Recall that die Extended Lanczos' Method [4] was adapted to this problem to find the 

roots besides s  =  ±t(3, because the method yields a polynimial in s, and allows the 

computation o f the roots in a way that circumvents the problem of computer

overflow. Within the stable region, sr will take complex values and will appear in

conjugate pairs. Similarly, both C; and ’s appear in complex conjugate pairs, having

die following properties.

^  ^ r Real ^  r  Imaginary

h ( s  r) = h ( S r )  =  h Red(s r ) -  H ilmBgir)ary(Sr) (2.23)

C i ( S r )  =  C i S r )  =  C iReal( s r )  -

Then die final fonn of die solution will become a real valued function:

Y(X, 7 ) = £  £  {2C, #, y 7) -
r=l i= 1

2 Q  . e ^ ^ ^ s m C k i  X + s r . T ) \  (2.24)*imaginary V 1 imaginary r imaginary ' *  v '

where

^  Imaginary

^  ~  >̂ReaI +  Imaginary (2.25)

^ r RaaI ^  r Imaginary
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Hie resonance frequencies correspond to die excitation frequencies at which the 

magnitude of the oscillations become large when die system is at steady state. 

Mathematically, these frequencies are die excitation frequencies (P) that make die 

denominator of the steady state response zero (g'(s)=0).

n _  4  dgter)dki . dg(sr) n  ,___ _
& ( S r> -  S  “^ 7 " a T  +  —  -  0  (2-26)

The expression for g(s) written in a simplified fonn for convenience.

gO) = (s2 + p2)gr(.s) (2.27)

g ' ( s )  =  2 ^ i (5) +  ( s 2 +  p 2)g ( ( s )  (2.28)

Then, for any sr corresponding to a root of g, (s), Equation (2.26) will be

g '( s r) =  (s 2 +  p 2)g[(Sr)  (2 .2 9 )

When p is equal to ±isr , Equation (2.29) becomes zero, but p can only be real 

(excitation frequency), therefore, g’(s) will be minimized as function of p for fixed sr

when

tfe{sr2 + P2) = 0; => <2-30>
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On the other hand, when s  = ±/(3 Equation (2.28) will become

g ^ l i ’P ) =  ± i2 P g i(± ip )

I f  the final solution (Equation (2.17)) is considered, P will cancel from this 

expression as it will appear to multiply both the denominator and die numerator. Then, 

the resonance will occur at the value of p, closest to the roots o f g, (s), which will 

correspond to the magnitude of the imaginary parts o f the system's eigenvalues. These 

frequencies will be the resonance frequencies that the operating conditions should avoid. 

Even though the resonance frequencies are determined, the system may become unstable 

before it attains steady state. The instabilities associated with the system are discussed in

2.2.2 Simple-Fixed Support

Figure 5 shows the axially moving Bemoulli-Euler beam under tension with 

fixed-simple supports. The only difference in form between the simple-fixed and the 

simple-simple support case is that one of the boundary conditions is a fixed support. 

Therefore, Equation (2.6) is still valid but die boundary conditions need to be 

redefined.

Chapter 5.

d2Y(X=Q, T)
ax2 = Y ( X = l ,T )  = ^ ^ 1 = 0 (2.31)

Y (X  = 0 ,7 )  = A !sin(P7)
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Y(x,t)
A

Ksin(wt)

l \<r

Figure 5 The Fixed-Single Support Beam Model For segments AC and BC 
in Figure 1

For similar reasons discussed for the simple-simple support case, the Laplace 

transfonn of Equation (2.6) and (2.31) will be taken with respect to T, where the 

initial conditions are as in Equation (2.7).

Yxxxx(X, s )  +  #2 YjorfX, s )  +  b  i sY x(X , s ) +  s 2 Y(X, s )  = 0  (2.32a)

Y xx(X =  0  , s )  =  Y (X =  l , s )  = Y x{X =  l , s )  =  0; (2.32b)

A solution of die form Y(X, s )  =  A e ^  is assumed to get the characteristic 

equation (a fourth order polynomial in A.). The characteristic equation is similar to

Equation (2.10); therefore the roots o f die characteristic equation as well as the form of

die solution will be similar to Equations (2.12) and (2.13) respectively. Then

(2.32c)

Y ( X , s )  =  ' & A ie x ‘x
t= l

(2.33)
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The boundary conditions will be applied to Equation (2.33) and the set of 

equations obtained will be written in matrix form, from which the unknowns can be 

determined using matrix algebra.

'2

\ 1 \
1 2*e

1 1
A 1

a 2\ j 1 k 42

Xj xA
e 9 a 3

\  l 3 1 X*h y 9 A 4

K- |8

0
0
0

(2.34)

The unknown coefficients will be;

A - A A  - M U -  A - M & .  A - M f l -
A l  gis)! A l ~  g(s)> A * ~  g(s)> g(s)9 (2<35>

and

fi(s) = 2 -  + X\(X2 -  X4)e^A + x\(X4 -  X3) e ^  }
(2.36a)

f i(s)  = ̂ p{X|(Xi -X 4)el '^< + X1l(X1

(2.36b)

*(s) = A:p{-X5ai - X 2)e’" ^  + X l(X ,  - X , ) e > - ^  + X ] ( X , - X 2)e l ^ ‘ }

(2.36c)
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f4(s) = K $ { X l ( X i - X 2) e ^ +k' - X 3) e ^  +  X 2t ( X 2 - X 3) e ^ }

(2.36d)

g(s) = ( s2 + p2){ { X i -  x t y  + X2( x l  -  X j )  } e x'+̂ +

{X i ( x j - X \ )  + X 3{ x \ - X 2̂ } e K'+h*

{ X \ { X 2 -  X 2) +  X j ( X 3 -  X2) } e ^ 3 +  { X 2(X4 -  X2) +  X \ { X 2 -  X4) } e K̂ * +

{ X \ ( X 3 -  X 4) +  X \ { X 4 -  X 3) } e x*+k4} (2.36e)

The final form of the solution will be as follows:

Y(X, T) = + + I { ^ W e« }+
r  g'(sr) * r g (*r) * r g'(sr) *

Where g’(s) is the derivative of g(s) with respect to s. Treating g(s) as afunction of ^(s) 

and s, and applying the chain rule to find g*(s) will give:

r t i - i - i g * !  « * >
i= 1 '

dXj
To find the characteristic equation (Equation (2.10)) will be used;
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dX,- Z>i2,.+2s
= ------    (2.39)

ds 4X*+2b2Xi+b1s

The rest o f the terms are as follows:

= (s2 + p2){(Xx -  X2 + 1 X^ 3  ~ X\)ex'+x* + (Ai -  X2 + 1 M l  ~ 'X\)ex'+x'+

(Xi -  X4 + 1X^2 -  *-l)ex'+x< + 2Xi(X2 -  X2)ex^  -  2Xi(X2 -  X4)ex>+x*+

2Xl (X3 - X 4)ex>+x<} (2.40a)

^  = ( s2 + p2){(?n -  X2 -  1 M \  ~ X2)ex^  + ( X 2 - X 2 + l  X̂ ? -  X2A) e ^ +

(X4 - X 2- l M l -  X \ ) e x'+x< + 2X2(X3 -  Xx)eki+x’ + 2X2(Xx -  X4)exi+x<+

- 2 X 2(X3 -  X4)ex* x<} (2.40b)

3g(0
ax, = (s2 + P2){(Xi -  X2 -  1X̂ 4 -  h22)ex'+x’ +(X2- X 2- 1  xxf -  X24)exi+x’+

(X2 - X 4+ I M 2i ~ h l)ex'+x< + 2X2(X\ -  X2)exi+x* -  2X3(Xi -  X4)ex'+x<+

-2X3(X2 -  X4)ex>+x<} . (2.40c)

^  = (2.1 -  X4 -  \ M l  ~ Xj)ex'+x< + (X2 - X 4- l X*| -  Xl)ex*+x<+
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(^3 — <̂4 — 1 X*1 — + 2 X4 ^ 2  ~~ ^<i)c^l+̂ J — 2%4(X\ — X3)£^l+̂ 3 +

-2 % 4 (X z -X i)e ^ X3} (2.40d)

Equation (2.33) is the solution of the problem in die X-s plane. To find the solution in 

the X-T plane it is necessary to find the inverse of Y(X,s). This is obtained by summing 

the residues of the poles of Y(X,s) in the complex s-plane [6]; equivalently we need to 

find the zeros o f g(s) (Equation (2.36d)). For convenience Equation (2.36d) can be 

written as:

g<s) = ( s 2 + p 2)^ i( s )  (2.41)

From Equation 2.41, the apparent poles o f the system are s  = ± /p . The rest of 

the poles correspond to the zeros of g, (s). Efforts (Appendix C) to find these values

were unsucessful, because of the range of values of g, (s) results in computer

overflow. To circumvent this problem Equation (2.31) was treated as an eigenvalue

problem, which is equivalent to finding the zeros of g, (s). The eigenvalues were

found using die Extended Lanczos' Method (Chapter 4). Equation (2.37) can be

rewritten in a simplified form for convenience:

Y(X, D  = t  C i(sr) e ^ rT (2.42)
fc=l

The poles of the problem appear in complex conjugate pairs. When the conjugate 

pairs are substituted in Equation 2.42 a real-valued (unction will result because of the
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following properties of the coefficients:

r R e d  r Imaginary

r) “  ^«(Sr) -  ^iRe<sl(Sr) iImaginaryf )

C i( ?  r )  — C , ( s r)  — C jRtal{ s r )  i ^ ' iSnBgiMvy{s r)

Y (X , 7) - 1  t ^ C ^ ' ^ ^ c o ^ X ^ X + S r ^ i y
r= 1 /=!

2Cf. . . X + sr. . 7)}‘ynagvtory v 1 imaginary '  imaginary '  *

The resonance characteristics can be analyzed in a manner similar to the 

simple-simple support case. From Equation (2.41), the simplified form of the 

denominator will be

£'(s) = 2sgi(s) + (s2 + P2)gi(s)

The p values that makes g’(s) zero, will correspond to the resonance 

frequencies. But, die excitation frequencies are real, therefore the resonance frequencies 

wQl be

B 2 = s 2 - s 2• r Imaginary rReal
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From the transverse response characteristics instability conditions can also be 

determined, but the discussion of these is left for Chapter 5.



CHAPTER 3

SECOND-ORDER MODEL

The mathematical model o f an axially travelling string under tension will be called the 

second-order modeL This problem has been previously studied in Wickert [1] and 

Chonan[5], and series solutions have been determined for models with homogenous 

boundary conditions. In this chapter, the second order model will be studied to see if 

the results are good approximations to the fouilh-order problem. The homogeneous 

transverse equation of motion is:

(8V2 -  P)uxx + 2V8uxt + 8un = 0 (3.1)

with the boundary conditions

u(x -0 ,1 ) -  ifsinCwr)
(3.2)

u(x = L ,l) = 0

For convenience, further substitution is made for the coefficients of Equation (3.1):

b2uxx + b iuxt+ un = 0

(3.3)

b2 = V 2-% b! = 2V

u(x ,t): Transverse displacement o f the string.
V : Constant axial velocity.
K : Transverse displacement of die excitation. 
L : The distance between the supports 
8 : Density per unit length 

w : Frequency of the excitation

24
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The solution procedure win be similar to that of the fourth order models because 

of non-homogenous boundary conditions. Hie Laplace transform of Equation (3.3) is 

taken with respect to t, with the initial conditions;

u(x, t = 0) = 0 u,(x, t = 0) = 0 (3.4)

Yielding

bzU îpCfS) + b\sUx(x, s ) + s 2U(x, s) -  bju(x, t = 0) -  su(x, t = 0) -  ut(x, t = 0) = 0 (3.5)

Equation (3.5) results in the following ordinary differential equation when the initial 

conditions are applied.

b2 Uxx(x,s) + bisUx(x,s) + s 2U(x,s) = 0 (3.6)

with the boundary conditions

U (x=0>s) = K ^ ;  U(x = L,s) = 0 (3.7)

A solution of the form U(x, s) = A e ^  will be assumed for Equation (3.6). Substitution

results in die characteristic equation (Equation (3.8b)).

(|a2&2 + P-s&i + s2)AefU -  0 (3.8a)

\x2bz + \xsbi + s2 = 0 (3.8b)

The roots o f Equation (3.8b) are:
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~b\+Jb^—4b2 —b \—Jb^—4b2
=  W i  S; \ l 2 = -------- W l------- *  (3.9)

Assuming distinct roots, U(x,s) will be

U ^ x ^ A x ^ + A i e ^  (3.10)

The boundary conditions are applied to determine die unknown coefficients, A, and 

A2.

U (x  =  0 , s') — A  \ + A 2 = K - f - 1  => A 2 = - A i + ~y ^ y  (3.11)
r+vr- (s*+wz)

Then

U ( x , s ) = A i { e W - e W }  + 7 ^ T e ^  (3 .1 2 )
(ŝ +W*)

Where the following substitutions are made for convenience:

-b\ Jbj-4b2
a i  =  r r -  ; a 2 =2bz * A 2b2

Substituting the above expressions into Equation (3.12) yields

U (x ,s)  =  y4ieaiSX2sinh(a25Jc) +  - ^ - e tl2X (3.13)
(S  +w )



Applying the other boundary condition

U(x = L ,s )  = 0  = A i  eaisL2 sinh(a 2sL) +

Then A, is found to be

Kw u2L
A (s2+w2) Kwefl2Le~a lsL

A j = —■— ---  = --------------------   (3.14)
2e 1 s inh(a2^) 2(^2+w2)sinh(a2^I)

The final fonn of the solution to the second order model in the X-s plane is as follows:

* >  - f r X C Z ,  W ” x>+  o , , >

To find the solution in die x-t plane it is necessary to find the inverse transform 

of U(x,s). This is obtained by the summation of the residues of the poles of U(x,s) in 

the complex s-plane [6]. Before the inverse of U(x,s ) is determined, Equation (3.15) 

will be written in a more convenient form as follows:

U(X,S) = U 1(X ,S )+ U2(X,S) = ^  + ^ ;

Then die inverse of U(x,s) becomes
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where, sr4 corresponds to the poles of Uj(x,s), and g/(s) is the derivative of gj(s) 

with respect to s. The terms in the inverse o f U(x,s) will be treated one at a time. 

Considering U,(x,s)

t / i <x ’ 5 ) = ^ S S r s i n h ( a 2 $ x ) = i l  ( 3 1 7 )

fi(s) = Kw{e^L - 1  }ea|,(jf_i^sinh(a2^) 

gi(j) = {s2 + w2)sinh(a2jZ-)

and g,'(s) is found to be

gi(j) = 2s sinh(a2Ji) + (s2 + w2)a.2L cosh(a2 sL)

The poles of U, (x,s) are die zeros of g, (s), which are

s r , = ± n v  ; s r x = ± i ^  ; r =  1,2,3,.. (3.18)

Summing die residues of the poles for U,(x,s) results in ut(x,t).

« i ( x ,  t )  =  £  ( 3 19)
ri 2srismh(a.2SriL')+(s*1+w2)a2Lcosh(a2^rjT.)
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Equation (3.19) can be further simplified:

Kw{ e^2 (iW)L- 1} ea l "^I_I^sinh(a2 iwx)eiwtu\(x,t) = 2m'sinh(a2iwX)

Kw{ }e~a l ft̂ x~^sm h(-a2lwy)-e~f>v<
-2iwsinh(-a2,"Ĥ )

a ,-% (x -L ) ,
oo K w {e  - \ } e  a2 sinh(a2j2Tx)ea2z'

2  (  =-------------------------
W=1 ( ( ^ ) 2+w2)a 2icosh(/«n)

M2(~i32F)£’ -a i^ T (* -i)  —̂
*>v{e a2 - \ } e a2L sinh(-a2^ ) e  “ 21 

^ “ ^ ^ 2+M’2 (̂X2i coshH»K)

■a 2L

} (3.20)

Further simplification gives the result in real functions as follows:

«i(*> t) = ^ ^ -{sin(w((ai -  a 2)L + a i(x -L )  + /))■

sin(w(a i (x -L )  + f))}

°° 2£wsin(f*) __- 2  ^ ^ ^ { c o s ( ^ ( ( a ,  -  <x2)L + ci\(x -  L) +1))-

(3.21)
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The same procedure is followed for U2 (x,s). Then

( s l + W L)

fi(s) = K w e^x 

g i(s)= (s2 + w2) 

g [(s )= 2 s

The poles for U2 (x,s) are as follows:

Sr2 = ± i w

ThenU2(x,s) becomes

U l ( x  t )  =  — g (a  1 ~a 2)iwxe iwt+ Kw c - ( ai ~<x2)iwxe ~iwt 
^ '  2iw -2 iw

ui(x, t) = -A^sin(w(ai -  ol2) x  + wt)

The addition o f the two parts gives the final solution.

«(*> 0 = ^ ^ { s in (w ((a i -  a 2)L + a i ( x -L )  +1))-

s i n ( w ( a i  (jc -  L) +  * ))}

(3.22)

(3.23)



oo 2Ar>vsin(7Ljf) „
+ « i (* - i ) +0)-

-co s(^ (a i(* -£ ) + f))}

sin((ai -  <X2)wjt + M) (3.24)

Hie instability and resonance characteristics o f the second order model can be

analyzed from Equation (3.24). For instability to set in the sine or the cosine functions

with the time as a variable existing, should become hyperbolic-sine and

hyperbolic-cosine. In Equation (3.24) this will be observed when becomes 

imaginary (co s(^ /)) . This parameter was defined in Equation (3.9) as follows:

(3.25)

Then the instability will start when:

(3.26)

Resonance, on the other hand, will occur whenever one of the denominator terms 

o f first part of the solution becomes small (as for the second part, there is no 

denominator). The resonance condition is met when



CHAPTER 4

APPLICATION OF THE EXTENDED LANCZOS METHOD

In Chapter 2, Y(x,s) represents the solution of the problem in the complex X-s plane. 

To find the solution in the X-T plane an inverse transformation is required. As 

discussed in Chapter 2, die inverse transformation depends on die poles o f Y(X,s), 

which corresponds to die zeros of g(s) (Equation (2.36d)). For convenience g(s) will be 

written as follows

g(s) = (s2 + P2).giCs)

From the above form, the apparent poles are s = ±ij3, but die rest of the poles 

are the zeros of g, (s). The exact solution to die roots of g, (s) is not available,

therefore numerical methods can be used to find a sufficient number of roots to describe

the transverse response. Within the operating range, because of the exponential

coefficients, g, (s) achieves magnitudes resulting in computer overflows if the values

of s are not close enough to the roots (Appendix C). To circumvent this problem

Equation (2.8) was treated as an eigenvalue problem in s, this being equivalent to

finding the zeros o f g, (s). The method of obtaining these eigenvalues is the Extended

Lanczos* Method presented by Herman [4].

The method is based on "quadrature by differentiation" and makes use of the 

properties of modified Legendre polynomials. The resultant quadrature formula [4] is

f o * ) *  = ? r g ( 6 - , (/»(„)■+ 1(-:I)‘/*>(i)] (4.1)
a '*o ifc=0

32
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where ( Y® denotes the k’th derivative, and

pi QH)I y\

In general, the higher the value of n, the better die approximation o f the 

quadrature formula. In this problem, the beam has been divided into N subintervals 

and the quadrature formula has been applied over each subinterval resulting in the 

following system of equations (for the kth subinterval).

( i f ]  -  i f ’) + f e d / f t  -  !?> )+ J*i(JV , -  Yt ) = - / f  Y.dx
k

(4.3)

T y®*=(ym - Yt)= +y®) + yf  - if,)+^ j f  + y®,>

T  y®«&= (yg?, -  i f ) = + y g , ) + ^ ( y f  -  y ^ )

t  y®* = <y®, - y®j = & if + y®)

The subintervals will be called elements, and the ends o f the elements will be 

called nodes, following the standart nomenclature used in the finite element method. 

There are four unknowns at each node, and from Equations (4.3) there are four
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equations in 4(N+1) unknowns. All of these equations are combined in a single matrix 

equation as follows:

.(W f 1).4.(V +1) * (  4.CW+1) -  4 . ^ + 1 )

where

For a non-trivial solution for (Yk ), it is necessary that the determinant of M(s) 

be equal to zero. The determinant turns out to be a polynomial in s, where the 

coefficients are a function of the element number and the system parameters b, and b2. 

The roots of this polynomial correspond to the approximate eigenvalues of the 

system. The determinant of the equation has to be solved symbolically as s appears 

implicitly in M(s). Therefore, Equations (4.3), that form matrix M(s), should be 

simplified as much as possible before they are substituted into Equation (4.4). 

Rearranging Equations (4.3):

( - h s + ( - t 2 + + j £ i f >+ ( - 1 + ^ ) j f +

+ + (H - ̂ )r»> + i+(i - = o

+ + s ? 1? ’ -  = o

y fl)  . 1 I /g )  . I T/ffl y f l ) ,  l y ®  1 y<3) n
1 k  +  2N k +  l2ffl I k 1 k+l +  2AT *+1 12ffi +1 ~

y(2) y(2) 1 y(3) 1 v(3) _ n
1  *4-1 1  k  2N  k  2 N I k+\ ~  "
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These equations can be written in submatrix form for each subinterval as follows

with

(Vi _  ( y(°) yO) y(2) y(3) y(0) y(l) y(2) «(3) ^
>■** >s k »■** JkHj

Then matrix [M^s)] will be

(4.5)

1
2-N

1 1
2-N

b i-s  + -----  - b 2 +
1 2-N *

1

3 s2 s2

1
-1

1 1 1

120-N3 2-N I ON2 120-N3

1

12-N2
0 -1

1

2-N

1

12-N2

1

2-N
0 0 -1 1

2-N

- - b j  8 +  — . 3 b2 - b 2 + -------- • +

28-N 84-N 1680-N*

Elementary row operations are employed for further simplifications which result in the 

following matrix.

M,(s) =

1 1 1
-1

1 1 1

2-N IO N 2 120-N3 2-N 10-N2 120-N3

1
1 1 o -1

1 1

2-N 12-N2 2-N 12-N2

0 1
1

2-N
D 0 .1 1

2-N

0 0 A 1 A 2 A 3 A 4 A 3

(4.6)

where
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A , = -
(20b1/fi-(5blsN-120J -̂s3)')

120?/

A 2 = &

A , = ?PhiN~3')-
3 2A?2 ’

6A?3

^5 =
Afr+4(30?/-i2)  )

120? /

If  the beam is divided into N elements, then there will be N such matrices. These 

matrices are combined in a single matrix form as shown in Figure 6.

[Ml(s>]

[M2(s>]

[M3(s>]

[Mn(s>]

Figure 6 The Arrangement of the Submatrices
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Then, the columns that represent the known nodal variables will be taken out 

o f  the matrix M(s) to avoid trivial solutions. By way of an example, the simple-simple 

support case using two elements is shown in Figure 7. In this figure, columns 

corresponding to die boundary conditions, Y,(0) = Y ,(2)= Y 3(0) = Y jro= 0, are the 

columns that have the value 1 in the first two and the last two rows.

1
1

1/(2 N) 1/(10 NA2) 1/(120 NA3) -1 1/(2 N) -1/(10 NA2) 1/(120 NA3)
1 1/(2 N) 1/(12 NA2) -1 1/(2 N) -1/(12 NA2)

1 1/(2 N) -1 1/(2 N)
A1 A2 A3 A4 A5

1 1/(2 N) 1/(10 NA2) 1/(120 NA3) -1 1/(2 N) -1/(10 NA2) 1/(120 NA3 )
1 1/(2 N) 1/(12 NA2) -1 1/(2 N) -1/(121^2)

1 1/(2 N) -1 1/(2 N)
A1 A2 A3 A4 A5

1
1

Figure 7 Matrix [M(s)] for the Simple-simple Support Case, using Two 
Elements (Blanks stands for zero values)

After the simplification (cancelation of the columns), the determinant of matrix 

M(s) is found using a symbolic processor(Derive and Mathematics). If  the same 

procedure is carried out for a six- element matrix, then the resultant polynomial 

obtained by evaluating the determinant of a fixed-simple support using six elements 

will be:

(24768000000*b2/'6*NA12 + 3097843200000+b2A5*NA14 - 
85927219200000*b2A4*NAI6 + 733813862400000*b2A3*NAl 8 - 

2452936089600000*b2A2*NA20 + 3061081497600000*b2*NA22 -
1057038336000000*NA24 + 70705600000*b2A5*bl*NAl l*  s - 

852576000000*b2/'4*bl*NA13* s + 82828800000*b2A3*bl*NA15* s +
15773184000000*b2A2*b 1 *NA17* s -
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6695654400000*b2*b 1 *NA19* s - 47949926400000*bl*NA21* s + 
150812160000*b2A5*NA10* sA2 - 32615200000*b2A4*blA2*NA10* sA2 - 

20657790720000*b2A4*NAl 2* sA2 + 4200456000000*b2A3*blA2*NA12* sA2 +
421392706560000*b2A3*NA14* sA2 - 74430662400000*b2A2*blA2*NA14* sA2 - 

3027694878720000*b2A2*NA16* sA2 + 428304326400000*b2*blA2*NA16* sA2 +
8212426444800000*b2*NAl 8* sA2 - 739092211200000*blA2*NAl 8* sA2 - 

6672853094400000*NA20* sA2 - 237316000000*b2'^*bl*NA9* sA3 + 
39672200000*b2A3*blA3*NA9* sA3 + 2798186880000*b2A3*bl*NAll*  sA3 - 

303753600000*b2A2*blA3*NAll*  sA3 - 3805401600000*b2A2*bl*NA13* sA3 - 
534016800000*b2*blA3*NA13* sA3 - 14100410880000*b2*bl*NA15* sA3 + 

892080000000*blA3*NA15* sA3 - 23252313600000*bl*NA17* sA3 - 
507770688000*b2A4*NA8* + 186892800000*b2A3*blA2*NA8* sM -

17414550000*b2A2*blA4*NA8* 8*4 + 30041345088000*b2A3*NA10* 8*4 - 
9383595840000*b2A2*blA2*NA10* + 659560950000*b2*blA4*NA10* -
452069144064000*b2A2*NAl 2* + 106758509760000*b2*blA2*NA12* sA4 -

4395168000000*b 1 A4*NA12* 6*4 + 2390721765120000*b2*NA14* sA4 - 
32789064384000G*blA2*NA14* 6*4 - 3816398592000000*NA16* sA4 + 

186542472000*b2A3*bl*NA7* s '*  - 32835680000*b2A2*blA3*NA7* sA5 - 
488106250*b2*blA5*NA7* 8*5 - 1827800640000*b2A2*bl*NA9* sA5 + 

21758520000*b2*blA3*NA9* s '*  + 36555375000*blA5*NA9* sA5 + 
2377970784000*b2*bl*NAl l*  sA5 + 919234800000*bl A3*NA11 * sA5 - 

100517760000*bl*NA13* s '*  + 377202220800*b2A3*N'** s '*  - 
155922336000*b2A2*blA2*NA6* + 20139810000*b2*blA4*N'** s '*  -

809334375*blA6*NA6* 8*6 - 14432933260800*b2A2*NA8* 8*6 + 
4422829428000*b2*blA2*NA8* 8*6 - 307655325000*blA4*NA8* s '*  + 
147899487168000*b2*NA10* s '*  - 25230860208000*blA2*NA10* s '*  - 

428339249280000*NA12* s '*  - 55411480000*b2A2*bl*NA5* sA7 + 
3050930500*b2*blA3*NA5* 8*7 + 1710115625*blA5*NA5* sA7 + 
388630132800*b2*bl*NA7* sA7 + 53283030000*blA3*NA7* s*7 - 

309455568000*bl*NA9* 8*7 - 101556062160*b2A2*NA4* sA8 +
34212362800*b2*bl A2*NA4* sA8 - 2911533750*blA4*NA4* sA8 + 
2508796854000*b2*NA6* sA8 - 469180347600*blA2*NA6* sA8 - 

13383305136000*NA8* sA8 + 7917219910*b2*bl*NA3* 8*9 + 22730750*blA3*NA3* 
s*9 - 34252120200*bl *NA5* + 10740580608*b2*NA2* sA10 -

1817042895*blA2*NA2* sA10 - 133451752680*NA4* sA10 - 490692327*bl*N* sAl l  - 
375996372* sA12)/(21499084800000*NA27)

(4.7)

Similarly, die closed form solution for the simple-simple-support case, using six 

elements will be:

(-2652887036648800294797312000000 + 37459747508233745330176000000*b2 - 
12566187309228928008192000000*b2A2 + 155576853941559754752000000*b2A3 -
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834822843814379520000000*b2A4 + 1977598045126656000000*b2A5 - 
1697890222080000000*b2A6 - 28561067354867378002329600000* sA2 +

1357809496836827774976000000*b2* sA2 - 19493661826831771238400000*b2A2* 
sA2 + 113721197257477324800000*b2A3* sA2 - 284788433018880000000^2^* 
sA2 + 254852838604800000*b2A5* sA2 - 115103180010062610432000000*blA2* 

sA2 + 2569822363559264256000000*b2*blA2* sA2 - 
18344267173232640000000*b2A2*bl A2* sA2 + 51553824454656000000*b2A3*blA2* 
sA2 - 49612497408000000*b2A4*b 1A2* sA2 - 19738502570367988531200000* sA4 
+ 458577904009759948800000*b2* 8*4 - 3377399868257402880000*b2A2* sA4 +

9782419910307840000*b2A3* - 9717754291200000*b2A4* sA4 -
57428346997614182400000*blA2* s '*  + 699617625112166400000*b2*blA2* sA4 - 

2573773014528000000*b2A2*bl A2* + 2935632844800000*b2A3*blA2* 8*4 -
23395376302848000000*blA4* s'H + 136091411280000000*b2*blA4* s'H - 

189665388000000*b2A2*blA4* sA4 - 2438217116191457280000* s '*  + 
30990904537190400000*b2* s '*  - 119393245956096000*b2A2* s '*  + 

143271431424000*b2A3* s '*  - 4515841074170880000*blA2* +
29406949974720000*b2*b 1A2* s '*  - 45359254800000*b2A2*blA2* -

1310250070800000*blA4* + 3211609500000*b2*blA4* -
80986725756288000* sA8 + 565130230344000*b2* sA8 - 939404401200*b2A2* sA8 - 

83038482936000*blA2* sA8 + 234838602000*b2*blA2* sA8 - 7457670000*blA4* 
sA8 - 877912761960* sA10 + 2745450630*b2* sA10 - 362302200*blA2* sA10 -

2911363*sAl2)/2652887036648800294797312000000
(4.8)

In Equation (4.7), the number o f elements (N) is left as a parameter, whereas in 

Equation (4.8) its value (N=6) is substituted to show how the magnitudes o f the 

coefficients, even for the most simplified equations, might become large.

For a general case, as die number of elements increases, the coefficients o f the 

determinantal equation become symbolically very complicated. From a practical point 

of view, the first couple o f eigenvalues are the dominant natural frequencies in most 

systems, as well as for the band-saw. The four, five and six-element solutions have 

been completed for the band-saw problem with the two possible cases of boundary 

conditions. The numerical results indicated that a sufficient number o f elements for 

the solution of the band-saw problem, yielding accurate results for the first three



eigenvalues in this study, should be around six. The results for the eigenvalues 

studied showed little variation ( less then 10% ) with respect to die number of 

elements. The computed values are the approximations to die exact solution, and to see 

how close they are to the exact solution, the results were substituted into g(s). As 

expected, the value o f g(s) was close to zero, but the increase in the accuracy with an 

increase in die number of elements was significant. Therefore the printed solutions in 

this study are the ones that were obtained using the six-element model, to get the 

highest accuracy possible with respect to four and five elements. These results are 

plotted for further discussion in Chapter 5.

Getting results from a symbolic processing (Mathematica, Derive and MathCad) 

is not easy if the problem that is of interest is sufficiendy complex. To avoid this 

problem, the matrix was made upper triangular by elementary row operations. Then the 

determinant becomes die product of the diagonal elements. The routine for such a 

procedure has been completed up to six elements. The determinant is resolved into a 

polynomial with the coeficients given in terms of the problem parameters, and the 

results are found for a whole range of values in a matter of seconds. These procedures 

that are the macro programs for Mathematica are presented in Appendix B.



CHAPTER 5

DISCUSSION

Instability and resonance are two conditions that must avoided for an effective design of 

a dynamic system. Instabilities are associated with the complementary solution, 

whereas resonance is associated with the forced vibrations, that determine the steady 

state response. For the band-saw model, the instability is directly related to the applied 

tension and to the axial velocity of the blade. The velocity at which instability occurs is 

called the critical velocity and as far as the operating range of a band-saw is concerned, 

a critical velocity always exists. Therefore, the operating range should be restricted to 

velocities lower than those causing instability. Operation above some resonance 

frequencies is possible but the resonance frequencies should be passed through very 

quickly.

A dynamic system may experience divergence or flutter instability. The 

divergence instability appears whenever one of the eigenvalues o f the system becomes 

real and positive. This results in displacements that increase exponentially with time. 

Flutter appears when the real part of one of the eigenvalues become positive, but the 

imaginary part still exists. This type of instability will result in oscillations with the 

amplitude increasing exponentially with time.

Numerical results are substituted into the parameters of the problem to gain a 

better understanding of the system characteristics. This discussion is based on a 

representative blade thickness and width, which are kept the same throughout the 

computations for the different models, axial tensions and axial velocities. To understand
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the instability characteristics and to find the transverse response, the eigenvalues o f the 

system have been computed using the Extended Lanczos' method described in Chapter 

4. Then the smallest eigenvalue's real and imaginary parts have been plotted against 

changing values o f tension and velocity.

Table 1 The numerical values for the models

Width of the Blade: 24.5 mm 
Thickness of the Blade : 1 mm

Elastic Modulus (E ): 20 E 10 N/m2 
Area Moment of Inertia (I) : 2.12 mm4

E l : 0.424 Nm2

Simple-Simple Support;
b2 : 0.73 v2 - 3.685 P 
b ,: 1.708v

Fixed-Simple Support;
b2 :0.1825 V2 -0.92125 P 
b, : 0.854 v

In the graphs plotted, the actual tension ( P ) is varied from 250 N to 1000 N. 

The blade is under varying tension, hence subject to fatigue failure throughout its 

operation. Therefore die highest value of the blade tension is kept around 1000 N to 

assure that die endurance limit is not reached and that the surface, reliability, heat etc. 

effects are all taken into account

The graphs presented clearly define the variation of the systems eigenvalues 

with respect to changing values of tension and velocity. For each of the curves, the
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tension is kept constant, and the velocity is varied until a critical velocity is 

encountered.

In the simple-simple support case, the changes in the eigenvalues typically lead 

to divergence instability. From Figures 8, 10, 12 and 14, it may seem as if  the real part 

of the first eigenvalue leads to flutter instability as they show positive values, but the 

numbers are so small that they are outside the computational accuracy of the calculations. 

Therefore die real parts o f the first eigenvalue are taken to be zero. Similar argument are 

valid for the higher modes. It is important to keep in mind that the plots are done with 

respect to non-dimensional tension ( ^  ) and non-dimensional velocity )■

Figure 16 clearly indicates that the critical velocities increase with increasing values 

of tension. Thus, to permit operation at a higher velocity we may increase the tension. 

The previous studies (Wickert and Mote [1]) have only dealt with the divergence type of 

instability for the band-saw problem at low tensions, and the for this range of values our 

results agree with those previously obtained (Figure 17).

For the fixed-simple support case, the distribution of the eigenvalues with 

respect to the change in the velocity and tension is not typical. At low tensions, flutter 

instability occurs even for very low velocities (Figure 18). From Figures 18, to 26 the 

increase in the tension leads to an increase in the critical velocity at which flutter 

instability starts. From the same graphs, die critical velocity at which flutter occurs gets 

closer with increasing blade tension to the velocity at which divergence instability 

would have started if there were no flutter instabilities. Then, the tension in the blade is 

increased to maximum values permitted by the fatigue strength properties, to provide a
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large enough operating range for the velocity of the blade, thus increasing the stability 

region.

For a fixed tension value, the fixed-simple and simple-simple cases have almost 

the same critical velocities (when the values are converted from non-dimensional to 

actual velocity values ); however the simple-simple support case reaches divergence , 

and the fixed-simple, flutter instability.

Basically, when analyzing the response characteristics, the blade is studied in 

three segments as discussed earlier in Chapter 2. When the blade is not cutting, the 

tension is constant throughout. During cutting, the tension in the blade between the 

work-piece and the driving pulley will increase as the cutting force increases, but the 

tension in the other segments will decrease by some fraction of the cutting force. 

Therefore, the critical speed will first be reached in the segments in which the tension 

drops. This should be kept in mind in the design of band-saws.

Even though the dynamic system may attain steady state without experiencing 

instabilities, there is still the problem lhat the operating frequency may be close to a 

resonance point. To avoid resonance when it arises, the operating conditions or the 

forcing frequency could be changed, but from an efficient design point of view, the 

resonance frequencies of the system should be determined and taken into account in 

design in order to provide as large a safe operation range as possible. In Chapter 2 the 

mathematical source of resonance has been studied, and the imaginary part of the 

eigenvalues (the natural frequencies o f the system ) are found to be close to the 

resonance frequencies ( Chapter 2). When related to the physical properties of the saw, 

this provides useful design information.
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To reduce the effort and get a quicker solution than the one obtained for die 

fourth-order problem, die second-order model was considered. The closed form of die 

second order model is studied in Chapter 3 using the same approach. Confirming our 

expectations, the solution for die second-order model was close to that obtained for 

the fourth-order model with simple-simple supports. The second-order model reaches 

only divergence instability and almost at die same critical velocity as does the 

fourth-order model when the tension is sufHciendy high. This type o f a result was 

expected since the band is long and flexible and the applied tension, being relatively 

high, will reduce the influence of the fourth-order terms appearing in the equation.
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APPENDIX A

To show that the governing differential operator in Equation (2.6) is not self-adjoint, the 

adjoint operator will be found. Comparing the adjoint and die original operators, 

non-self-adjointness will be observed. Equation (2.6)is the equation of motion for the 

axially moving Bemoulli-Euler beam and is as follows:

Yxxxx+bz.Yxx+b\.Yxr+ Ytt = 0 (A A .l)

For simplicity , the boundary conditions will be taken homogenous and 

simple-simple supports. Then

u {X =  0 ) =  u (X =  1) = u x x (X =  0 ) =  u xx (X =  1) = 0  (AA.2)

A solution of the form Y(X, T) = U (X )ellT will be assumed and substituted into 

Equation A A .l. The resultant ordinary differential equation will be as follows:

U xxxx+ b 2 U xx  + \Lbi U x + \ i2U =  0  (AA.3)

Then eigenvalue problem will be defined such that

uxxxx + b2uxx  + \* b iu x + \i  u  =  0  (AA.4)

The governing differential operators will be
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(AA-5>
and

M =  J L l 2

To find die adjoint functions the following integral should be completed, 

l l
\  t> L(u)dX=  |  {<D“  + <W >2^ +  (AA.6)
0 0

Applying integration by parts, the above equation will yield

l
{O .uxxx  -  Ox-Uxx +  ® xx-ux -  Qxxx-u  } I o +  J  u<&xxxxdx+

0
1 1

62{{O.Mjy- Oat.m}Io + J  u($>xxdx} +/>i!1{OmIo -  J
0 0

Because the boundary conditions are defined to be homogeneous all the terms evaluated 

at the boundaries will drop out Then

l l
j{*&UXXXX + QblUxX+ ® bi[lU x}dx  = j{Q>XXXXU +^>XX^2 «  — ® xb  1 \U4 } dx  
0 0

The adjoint operator is not equal to the operator of the governing differential

equation (Equation AA.5). Therefore self-adjointness is not possible.



APPENDIX B

The macro programs to find the polynomials for the four, five and the six elements with 

simple-simple supports are as follows:

Six elements:

n=6; x = ■<20*b2*nA2-(5,f'b l,5,n*s-120,4,n/'4-sA2))/(120*n/N4); x = Expand[x]; y  = sA2/n; 
y = Expandfy]; z = s*(2*bl*n-s)/(2*nA2); z = Expand[z]; w = 
(6*b21htA2-s*(3*bl*n-s))/(6*nA3); w = Expand[w]; u =
-(4Q*b2*nA2-( 15*b 1 *n*s+4*(30*nA4-s A2)))/( 120*nA4); u = Expandfu]; Al=y/n+z; 
Al=Expand[Al]; Bl=w+2*n*x-5*y/(12*nA2); Cl=u-x+y/(12*nA3); Bl=Expand[Bl]; 
Cl=Expand[Cl]; C10=x; D l=x; El=y; Fl=z; Gl=w; H l=u;
A4 =
(41472*nAll* x A4-13824*nA8*xA3*(7*y-3*n*z)-288*nA5*xA2*(35*yA2-n*y*(253*z+12
*n*(14*n*u-ll*w))+4*nA2*z*(61*z+21*n*(2*n*u-3*w))>12*nA2*x*(2*yA3-n*yA2*(7
7*z+48*n*(2*n*u-w))+8*nA2*y*(49*zA2+3*n*z*(82*n*u-45*w)+36*nA2*(2*n*u-w)A2
)-16*nA3’!,z*(29*zA2+6*n*z*(34*n*u-21*w)+9*nA2*(20*nA2*uA2-36*n*u*w+13*wA2))
)+z*(y-4*n*(z+6*nA2*u-3*n*w))A3)/(41472*nAll* x A4); A4 = Expand[A4]; B4 =
(13824*nA9*xA4-288*nA6*xA3*(143Hy-4*n*(35*z-6*nA2*u-21*n*w»-12*nA3*xA2*(12
7*y A2-4*n*y *( 151*z+66*n*(17*n*u-4* w))+16*nA2*(40*zA2+3 *n*z*( 120*n*u-41 * w)+
9*nA2*(8*nA2*uA2-34*n*u*w+9*wA2)))-x*(3*yA3-4*n*yA2*(8*z+3*n*(71*n*u-7*w))
+16*nA2*y*(7*zA2+6+n*z*(53*n*u-6*w)+9*nA2*(136*nA2*uA2-86*n*u*w+5*wA2))-6
4*nA3*(2*zA3+15*n*zA2*(7*n*u-w)+18*nA2*z*(34*nA2*uA2-25*n*u*w+2*wA2)+27*
nA3*(12*nA3*uA3-32*nA2*uA2‘|,w+15*n*u*wA2-wA3)))+u*(y“4*n*(z+6*nA2*U“3*n*w))
A3)/(41472*nAl 1 *xA4); B4 = Expand[B4]; A5 =
-(82944*nAll* x A4+13824*nA8*xA3*(17*y-23*n*z)+288*nA5’,,xA2*(39*yA2-n*y*(341*z 
H42*n*(22*n*u-15*w))+4*nA2*z*(101*z+3*n*(46*n*u-45*w)))+12*nA2*x*(2*yA3-3* 
n*yA2*(27*z+16*n*(2*n*u-w))+8*nA2*y*(53*zA2+3*n*z*(90*n*u-49*w)+36*nA2*(2* 
n*u-w)A2)-48*nA3*z*(ll*zA2+2+n*z*(42*n*u-25*w)+3*nA2*(36*nA2*uA2-52*n*u*w+ 
17*wA2)))-z*(y-4*n*(z+6’,,nA2,',u-3,''n*w))A3)/(13824*nA10*xA4); A5 = Expand[A5];
B5 =
-(103680*nA9*xA4+288*nA6*xA3*(247*y-4*n*(79*z+138*nA2*u-69*n*w))+12*nA3*xA
2*(139*yA2-12*n*y*(57*z+2*n*(267*n*u-52*w))+48*nA2*(16*zA2+n*z*(208*n*u-53
*w)+3*nA2*(56*nA2*uA2-82*n*u*w+13*wA2)))+x*(3*yA3-4*n*yA2*(8*z+3*n*(75*n*
u-7* w))+16*nA2*y’#'(7*zA2+18*n*z*( 19*n*u-2* w)+9*nA2*( 152*nA2*uA2-94*n*u* w+5
*wA2))-64*nA3,e,(2*zA3+3*n*zA2*(39’,,n*u-5*w)+I8*nA2*z*(42*nA2*uA2-29*n*u*w+2
*wA2)+27V 3*(28*nA3*uA3-48*nA2*uA2*w+19*n*u*wA2-wA3))>u*(y-4*n*(z+6*nA2
*u-3*n*w))A3)/(13824*nA10*xA4); B5 = Expand[B5]; A6 =
(41472+nAll» x A4+6912*nA8*xA3+(23*y-27*n*z)+144*nA5*xA2*(73*yA2-n*y+(575*z+
12*n*(34*n*u-25*w))+4*nA2*z+(155+z+3*n+(58*n+u-63*w)))+6*nA2*x*(4*yA3-n*yA2
*(157*z+96*n*(2*n*u-w))+8*nA2*y*(101*zA2+3,,,n*z*(170*n*u-93*w)+72*nA2*(2*n*
u-w)A2)-16*nA3*z*(61*zA2+6*n*z*(74*n*u-45*w)+9*nA2*(52*nA2*uA2-84*n*u*w+29
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*wA2)))-z*(y-4*n*(z+3*n*(2*n*u-w)))A3)/(6912*nA12*xA4); A6 = Expand[A6]; B6 =
(55296*nA9*xA4+144*nA6*xA3#(373*y-4*n*(109*z+3*n*(50*ii*u-29*w)))+6*nA3*xA2
*(263*yA2-4*n#y*(317*z+6*n*(437*n*u-94*w))+16,*,nA2*(86*zA2+39*n*z*(24*n*u-7
*w)+9*nA2*(64*nA2*uA2-110*n*u*w+21*wA2)))+x*(3*yA3-2*n,,,yA2,,,(16*z+3*n*(145
*n*u-14*w))+16*nA2*y*(7*zA2+3*n*z*(109+n*u-12*w)+9*nA2*(142*nA2*uA2-89*n*
u*w+5*wA2))-32*nA3*(4*zA3+3*n*zA2*(73*n*u-10*w)+18*nA2*z*(74*nA2*uA2-53*n
*u*w+4*wA2)+27*nA3*(36*nA3*uA3-76*nA2*uA2*w+33*n*u*wA2-2*wA3)))-u,s,(y-4*n*
(z+3*n*(2*n*u-w)))A3)/(6912*nA12*xA4); B6 = Expand[B6]; A7 =
(1327104*nAll* x A4+13824*nA8*xA3*(81*y-175*n,!,z)+576*nA5*xA2*(30*yA2-n*y*(41
3*z+24^*(16^*u-9*w ))+4*nA2*z*(167*z+3*n*(130*n*u-97*w)))+24*nA2*x*(yA3-3
*n*yA2*(17*z+8*n*(2*n*u-w))+8*nA2 V (3 7 * zA2+3*n*z*(66*n*u-35*w)+18*nA2*(2*
n*u-w)A2)-48*nA3*z+(9*zA2+2*n*z*(42*n*u-23*w)+3*nA2*(60*nA2*uA2-68*n*u*w+l 
9*wA2)))-z*(y-4*n*(z+3,*n*(2+n*u-w)))A3)/(331776*nA12*xA4); A7 = Expand[A7]; B7

(1119744*nA9*xA4+576*nA6*xA3*(431*y-4*n*(178*z+15*n*(44*n*u-13*w)))+24*nA3
*xA2*(101^A2-24*nV(23*z+n*(355*n*u-47*w))+48+nA2*(15*zA2+2*n*z*(179*n*u
-29*w)+3*nA2*(200*nA2*uA2-190*n*u*w+17*wA2)))+x*(3*yA3-4*n*yA2*(8*z+3*n*(9
6*n*u-7*w))+16*nA2’V (7 * zA2+36*n*z*(13*n*u-w)+9*nA2*(236*nA2*uA2-136*n*u*
w+5*wA2))-64*nA3*(2*zA3+15*n*zA2,*'(12*n*u-w)+36*nA2*z*(42*nA2*uA2-25*n*u*w
+wA2)+27*nA3*(112*nA3*uA3-132*nA2*uA2*w+40+n*u*wA2-wA3)))-u*(y-4*n*(z+3*n
*(2*n*u-w)))A3)/(331776*nAl 2*xA4); B7 = Expand[B7]; A8 =
-(82944*nAll* x A4+13824*nA8*xA3*(27*y-37*n*z)+576*nA5*xA2*(22*yA2-n*y*(223*z
+24*n*(8 *n*u-5 * w))+4*nA2*z*(73 *z+3*n*(38*n*u-3 5 *w)))+24*nA2*x*(yA3-n*yA2*(4
3*z+24*n*(2*n*u-w))+8*nA2*y*(29*zA2+3*n*z*(50*n*u-27*w)+18*nA2*(2*n*u-w)A2
)-16*nA3*z*(19*zA2-+^*n*z*(26*n*u-15*w)+9*nA2*(28*iiA2*uA2-36*n*u*w+ll*wA2))
)-z*(y-4*n*(z+6*nA2+u-3*n*w))A3)/(82944*nAll* x A4); A8 = Expand[A8]; B8 =
-(152064*nA9*xA4+576*nA6*xA3*(181*y-4*n*(62*z+108*nA2*u-57*n*w»+24*nA3*xA
2*(77*yA2-8*n*y*(49*z+3*n*(181*n*u-31*w))+16*nA2*(29*zA2+6*n*z*(77*n*u-17*
w)+27*nA2*(16*nA2*uA2-22*n*u*w+3*wA2»)+x*(3*yA3-4*n*yA2*(8*z+3*n*(80*n*u-
7*w))+16*nA2*y*(7*zA2+12*n*z*(31*n*u-3*w)+9*nA2*(172*nA2*uA2-104*n*u*w+5*
wA2))-64*nA3*(2*zA3+3*n*zA2*(44*n*u-5*w)+36*nA2*z*(26*nA2*uA2-17*n*u*w+wA
2)+27*nA3*(48*nA3*uA3-68*nA2*uA2*w+24*n*u*wA2-wA3)))-u*(y-4*n*(z+6*nA2*u-3
*n*w))A3)/(82944*nAl 1 *xA4); B8 = Expand[B8]; A9 =
(13824*nA8*xA3*(9*y-7’t,n*z)+576*nA5*xA2*(18*yA2-n*y*(137’!,z+24*n*(4*n*u-3*w)) 
+4*nA2*z*(35*z+3*n*(10*n*u-13*w)))+24*nA2*x*(yA3-3*n*yA2*(13*z+8*n*(2*n*u- 
w))+8*nA2*y*(25*zA2+3*n*z*(42*n*u-23*w)+18*nA2*(2*n*u-w)A2)-48*nA3*z*(5*zA 
2+2*n*z*(18*n*u-ll*w)+3*nA2*(12*nA2*uA2-20*n*u*w+7*wA2)))-z*(y-4*n*(z+3+n* 
(2+n*u-w)))A3)/(27648*nA10+xM); A9 = Expand[A9]; B9 =
(13824*nA9*x^+576*n^*xA3*(83*y-4*n*(22*z+3*n*(4*n*u-5*w)))+24*nA3*xA2*(6
5*yA2-24*n*y*(13*z+n*(103*n*u-23*w))+48*nA2*(7’,,zA2+2*n,,<z*(35*n*u-ll,,,w)+3*n
A2*(8*nA2*uA2-22*n*u*w+5*wA2)))+x*(3*yA3-4*n*yA2*(8*z+3*n*(72*n*u-7*w))+16
*nA2*y*(7*zA2+36*n*z*(9*n*u-w)+9*nA2*(140*nA2*uA2-88*n*u*w+5*wA2))-64,',nA3
*(2*zA3+3*n*zA2*(36*n*u-5*w)+36*nA2*z*(18*nA2*uA2-13*n*u*w+wA2)+27*nA3*(l
6*nA3*uA3-36*nA2*uA2*w+16*n*u*wA2-wA3)))-u,,,(y-4*n*(z+3*n*(2*n*u-w)))A3)/(276
48*nA10*xA4); B9 = Expand[B9]; A10 =
-(13824*nA8*xA3*(3*y-n*z)+576*nA5*xA2*(16*yA2-n*y,|,(97*z+48*n,,,(n*u-w»+4*nA2



*z*(19*z+3*n*(2*n*u-5*w)))+24*nA2*x*(yA3-n*yA2*(37*z+24*n*(2*n*u-w))+8*nA2* 
y*(23*zA2+3*n*z*(38*n*u-21*w)+18*nA2*(2<,n*u-w)A2)-16*nA3*z+(13*zA2+6*n*z*(l 
4*n*u-9*w)+9<,iiA2*(4*nA2*uA2-12*n*u*w+5*wA2)))-z*(y-4*n*(z+6*nA2^u-3»n*w))A 
3)/(13824*nA9*xA3); A10 = Expand[A10]; BIO =
-(576*nA6*xA3*(43Sr-4*n*(8,J‘z-3*n*w))+24*nA3*xA2*(59*yA2-8*n*y*(34*z+3*n*(67 
*n*U-19*w))+16*nA2*(17*zA2-f^*n*z*(17*n*u-8*w)-27*nA2*w*(2*n*u-w)))+x*(3*yA 
3-4*n’>yA2*(8*z+3*n*(68*n*u-7,»,w))+16*nA2*y*(7*zA2+12*n*z*(25*n*u-3,e,w)+9*nA2 
^ 1 2 4 ^ A2*uA2-80^*u*w+5*wA2))-64*nA3*(2*zA3+3*n*zA2*(32*n*u-5*w)+36*nA2* 
z*(14*nA2*uA2-ll*n*u*w+wA2>27*nA3*w*(20*nA2*uA2-12*n*u*w+wA2)))-u*<y-4*n 
*(z+6*nA2*u-3*n*w))A3)/(13824*nA9*xA3); BIO = Expand[B10]; stl = -A1*A4; stl = 
Expand[stl]; st2 = -B1*A5; st2 = Expand[st2]; st3 = -Cl*A6*2*nA3; st3 = Expand[st3]; 
A = stl+st2+st3; A= Expand[A]; stl=-A l*B4; stl=  Expand[stl]; st2=-Bl*B5; 
st2=Expand[st2]; st3 = <;i*B6*2*iiA3; st3=Expand[st3]; B2= stl+st2+st3; 
B2=Expand[B2,]; stl = -2*nA3*Dl*A6; stl=Expand[stl]; st2 = -E1*A7; 
st2=Expand[st2]; st3 = “F1*A8; st3=Expand[st3]; st4 = -G1+A9; st4=Expand[st4]; st5 = 
-H1*A10; st5=Expand[st5]; st5 = st5/C10; st5=Expand[st5]; Ap=stl+st2+st3+st4+st5; 
Ap=Expand[Ap]; stl = -2*nA3*Dl*B6; stl=Expand[stl]; st2 = -E1*B7; 
st2=Expand[st2]; st3 = -F1*B8; st3=Expand[st3]; st4 = -G1*B9; st4=Expand[st4]; st5 = 
-H1*B10; st5=Expand[st5]; st5 = st5/C10; st5=Expand[st5]; Bp=stl+st2+st3+st4+st5; 
Bp=Expand[Bp]; dt = A*Bp; dt=Expand[dt]; d tl = B2*Ap; dtl=Expand[dtl]; dt=dt-dtl; 
dt=Expand[dt]; dt=dt*C10A(n-2)/(4*nA4); dt=Expand[dt]; dt=Together[dt]

Five elements, simple-simple:

n=5; x=-(20*b2*nA2-(5*bl*n*s-120*nA4-sA2))/(120*nA4); x=Expand[x]; y= sA2/n; 
y=Expand[y]; z=s*(2*bl*n-s)/(2*nA2); z=Expand[z]; 
w=(6,,,b2*nA2-s*(3*bl*n-s))/(6*nA3); w=Expand[w]; 
u=-(40*b2*nA2-(l 5*bl*n*s+4*(30*nA4-sA2)))/(120*nA4); u=Expand[u];
Al=y/n+z; B 1 =w+2*n*x-5*y/( 12*nA2); Cl=u-x+y/(12*nA3); C10=x; D l=x; El=y; Fl=z; 
Gl=w; H l=u; Al=Expand[Al]; Bl=Expand[BlJ; Cl=Expand[Cl]; 
A4^1152*nA8*xA3-2016*nA5*xA2*(y-n*z)-12*nA2*x*(2,'y A2-n*y*(41*z+24*n*(2*n*u 
-w))+4*nA2*z*(17*z+3*n*(10*n*u-9*w)))+z*(y-4*n*(z+6*nA2*u-3*n*w))A2)/(1728*n 
A8*xA3)
B4=-(48*nA6*xA3+12*nA3*xA2*(43*y-4*n*(16*z+12*nA2*u-15*n*w))+x*(3*yA2-4*n*
y*(5*z+3*n*(37*n*u-4*w))+16*nA2*(2*zA2+3*n*z*(19*n*u-3*w)+9*nA2*(6*nA2*uA2
-9*n*u*w+wA2)))-u*(y-4*n*(z+6*nA2*u-3*n*w))A2y(1728*nA8*xA3)A5=-<2880*nA8*xA3+288*nA5*xA2*(ll*y-23*n*z)+12*nA2*x*(2*yA2-3*n*y*(15*z+8*

n*(2*n*u-w))+12*nA2*z*(7*z+n,*(18*n*u-13*w)))-z,,'(y-4*n*(z-t-6*nA2*u-3*n*w))A2y(
576*nA7*xA3)
B5=-(2832*nA6*xA3+12*nA3*xA2*(55,,,y-12*n*(8*z+28*nA2*u-9+n*w))+x*(3*yA2-4*n
*y*(5*z+3*n*(41*n*u-4*w))+16*nA2*(2*zA2+3*n*z*(23*n*u-3*w)+9*nA2*(14*nA2*u
A2-13*n*u*w+wA2)))-u*(y-4*n*(z+6*nA2*u-3*n*w))A2y(576*nA7*xA3)
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A6=(1440*nA8*xA3+144*nA5’!,xA2*(17*y-29*n*z)+6*nA2*x*(4*yA2-n*y*(85*z+48*n*(
2*n*u-w))+4*nA2*z*(37*z+3*n+(26*n*u-21*w)))-z*(y-4*n+(z+3+n*(2+n*u-w»)A2)/(2
88*nA9*xA3)
B6=(1560*nA6*xA3+6*nA3*xA2*(95*y-4*n*(38*z+3*n*(32*n*u-13*w)))+x*(3*yA2-2*
n*y*(10*z+3*n*(77*ii*u-8*w))+8+nA2*(4*zA2+3+n*z*(41*n’!,u-6*w)+9*nA2*(18*nA2*
uA2-21*n*u*w+2*wA2)))-u*(y-4*n*(z+3*n*(2*ii*u-w)))A2)/(288*nA9*xA3)
A7=(41472*nA8*xA3+576*nA5 *xA2*( 16*y-65 *n*z)+24*nA2*x*(yA2-3 *n*y*( 11 *z+4*n
*(2*n*u-w))+12*nA2*z*(7*z+n*(30*n*u-17*w)))-z*(y-4*n#(z+3*n*(2*n*u-w)))A2)/(13
824*nA9*xA3)
B7=(24768*nA6+xA3+24*nA3+xA2*(59*y-12*n*(ll*z+5*n*(20*n*u-3*w)))+x*(3*yA2-
4*n*y*(5*z+6*n*(31*n*u-2*w))+16*nA2*(2*zA2+3*n*z*(44*n*u-3*w)+9*nA2*(56*nA
2*uA2-34*n*u* w+wA2»)-u*(y-4*n*(z+3 *n*(2*n*u-w)))A2)/(13824*nA9*xA3) 
A8=-(3456*nA8*xA3+576*nA5*xA2*(8*y-19*n*z)+24*nA2*x*(yA2-n*y*(25*z+12*n*(2 
*n*u-w))+4*nA2*z*(13*z+3*n*(14*n*u-9,|<w)))-z*(y-4*n*(z+6*nA2*u-3*n*w))A2)/(345 
6*nA8*xA3)
B8=-(4608*nA6*xA3+24*nA3*xA2*(35*y-4*n*(17*z+72*nA2*u-21*n*w))+x,,,(3*yA2-4* 
n*y*(5*z+6*n*(23*n,,,u-2*w))+16+nA2*(2*zA2+3*n*z+(28*n*u-3*w)+9*nA2*(24*nA2* 
uA2-18*n*u*w+wA2)))-u*(y-4*n*(z+6*nA2*u-3*n*w))A2)/(3456*nA8*xA3) 
A9=(576*nA5*xA2*(4*y-5*n*z)+24*nA2*x*(yA2-3*n*y*(7*z+4*n*(2*n*u-w))+12*nA2 
*z*(3*z+n*(6*n*u-5*w)))-z*(y-4*n*(z+3*n*(2*n*u-w)))A2)/(1152,,‘nA7*xA3) 
B9=(576*nA6*xA3+24*nA3*xA2*(23*y-12*n*(3*z+n'»,(4*n*u-3+w)))+x*(3*yA2-4*n*y*( 
5*z+6*n*(19*n*u-2*w))+16*nA2*(2*zA2+3*n*z*(20*n*u-3*w)+9*nA2*(8*nA2*uA2-10 
*n*u*w+wA2)))-u*(y-4*n*(z+3*n*(2*n*u-w)))A2)/(l 152*nA7*xA3) 
A10=-(576*nA5*xA2*(2*y-n*z)+24*nA2*x*(yA2-n*y*(19*z+12*n*(2*n*u-w))+4*nA2*z 
*(7*z+3*n*(2*n*u-3*w)))-z*(y-4*n*(z+6*nA2*u-3*n*w))A2)/(576*nA6*xA2) 
B10=-(24*nA3*xA2*(17*y-4*n*(5*z-3*n*w))+x*(3*yA2-4*n*y*(5*z+6*n*(17*n,|‘u-2*w 
))+16*nA2*(2*zA2+3*n*z*(16*n*u-3*w)-9*nA2*w*(6*n*u-w)))-u*(y-4*n*(z+6*nA2*u- 
3*n*w))A2)/(576*nA6*xA2) B10=Expand[B10]; s tl = -A1*A4; stl = Expand[stl]; st2 = 
-B1*A5; st2 = Expand[st2]; st3 = -Cl*A6*2*nA3; st3 = Expand[st3]; A =
stl+st2+st3; A=Expand[A]; stl=-Al*B4; s t l -  Expand[stl]; st2=-Bl*B5;

st2=Expand[st2]; st3 = -Cl*B6*2*nA3; st3=Expand[st3]; B2= stl+st2+st3;
B2=Expand[B2]; s tl = -2*nA3*Dl*A6; stl=Expand[stl]; st2 = -E1*A7;

st2=Expand[st2]; st3 = -F1*A8; st3=Expand[st3]; st4 = -G1*A9;
st4=Expand[st4]; st5 = -H1*A10; st5=Expand[st5]; st5 = st5/C10;
st5=Expand[st5]; Ap=stl+st2+st3+st4+st5; Ap=Expand[Ap]; stl = 
-2*nA3*Dl*B6; stl=Expand[stl]; st2 = -El*B7; st2=Expand[st2]; st3 = 
«F1*B8; st3=Expand[st3]; st4 = -G1*B9; st4=Expand[st4]; st5 = -H1*B10;

st5=Expand[st5]; st5 = st5/C10; st5=Expand[st5]; Bp=stl+st2+st3+st4+st5; 
Bp=Expand[Bp]; dt = A*Bp; dt=Expand[dt]; d tl = B2*Ap; dtl=Expand[dtl];

dt=dt-dtl; dt=Expand[dt]; dt=dt*C10A(n-2)/(4*nA4); dt=Expand[dt]; 
dt=Together[dt]
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Four elements, simple-simple

x=-(20*b2*nA2-(5*b*n*8-120*nA4-sA2))/(120*nA4); x=Expand[x]; y= sA2/n; 
y=Expand[y]; z=s*(2*b*n-s)/(2*nA2); z=Expand[z]; w ^6*b2*nA2-s*(3*b*n-s))/(6*nA3); 
w=Expand[w]; u:=-(40*b2*nA2-(15*b*n*s+4*(30*nA4-sA2)))/(120,,,nA4); u=Expand[u]; 
m4={{ 1, l/(12*nA2),0,-l, l/(2*n),-l/(12*nA2),0,0,0,0,0,0,0,0,0,0},
{0, l/(2*n),0,0,-l, l/(2*n),0,Q,0,0,0,0,0,0,0,0},
{0,0,-l,l/n,-5/(12*nA2Xl/(12*nA3),0,0,0,0,0,0,0,0,0,0},
{0,0,0,1, l/(2*n), l/(12*nA2),0,-l, l/(2*n),-l/(12*nA2),0,0,0,0,0,0},
{0,0,0,0,1, l/(2*n),0,0,-l, 1/(2^),0,0,0,0,0,0}, 
{0,0,0,0,0,l/(2*nA3),-l,2/n,-23/(12*nA2),2/(3*nA3),0,0,0,0,0,0},
{0,0,0,0,0,0,1, l/(2*n), l/(10*nA2), l/(120+nA3),-l, l/(2*n),-l/(10*nA2), l/(120+nA3),0,0}, 
{0,0,0,0,0,0,0,1, l/(2*n), l/(12*nA2),0,-l, l/(2*n),-l/(12*nA2),0,0},
{0,0,0,0,0,0,0,0,1, l/(2*n),0,0,-l, l/(2*n),0,0}, {0,0,0,0,0,0,0,0,0,x,y,z,w,u,0,0},
{0,0,0,0,0,0,0,0,0,0,1, l/(2*n), l/(10*nA2), l/(120*nA3), l/(2*n), l/(120*nA3)}, 
{0,0,0,0,0,0,0,0,0,0,0,l,l/(2*n),l/(12*nA2),-l,-l/(12*nA2)},
{0,0,0,0,0,0,0,0,0,0,0,0,1, l/(2*n),0, l/(2*n)}, {0,0,0,0,0,0,0,0,0,0,0,0,0,x,z,u}, 
{0,0,0,y/n+z,2*n*x-5*y/(12*nA2)+w,-x+y/(12*nA3)+u,0,0,0,0,0,0,0,0,0,0}, 
{0,0,0,0,0,x,y,z,w,u,0,0,0,0,0,0}}; dHDet[m4]; dt=Together[dt]

Six elements, fixed-simple support:

n=6; x = -(20*b*nA2-(5*bl*n*s-120*nA4-sA2))/(120*nA4); x = Expand[x]; y = sA2/n; y 
= Expand[y]; z = s*(2*bl*n-s)/(2*nA2); z = Expandfz]; w = 
(6*b*nA2-s*(3*bl*n-s))/(6*nA3); w = Expand[w]; u = 
-(40*b*nA2-(15*bl*n*s+4*(30*nA4-sA2)))/(120*nA4); u = Expand[u]; 
Al=-6*nA2*x+(3*y)/(4*n)+z; Bl=w+6*n*x-y/(4*nA2); Cl=u-2*x+y/(24*nA3); 
Al=Expand[Al]; Bl=Expand[Bl]; Cl=Expand[Cl]; C10=x; Dl=x; El=y; Fl=z; Gl=w; 
H l=u;
A4=(622080*nAll* x A4-27648*nA8*xA3*(3*y+23*n*z)-1152*nA5*xA2*(41*yA2-3*n*y*
(8 5*z+4*n*( 12*n*u-11 *w))+12*nA2*z*( 16*z-3 *n*(2*n*u+3 * w)))-24*nA2*x*(5 *yA3-n
*yA2*(187*z+120*n*(2*n*u-w))+24*nA2*y*(39«,zA2+n*z*(194*n*u-107*w)+30*nA2*(
2*n*u-w)A2)-16*nA3*z*(67*zA2+6*n*z*(74*n*u-47*w)+9*nA2*(28*nA2*uA2-68*n*u*
w+27*wA2)))+5*z,"(y-4*n*(z+6*nA2*u-3*n* w))A3)/(331776*nAl 1 *xA4);
B4^442368*nA9*xA4-3456*nA6*xA3*(35*y-4!!!n*(4i,!z-40:,:nA2!!!u+3!,!n!!!vv))-24!!!nA3!,<xA2
*(301*yA2-8*n*y’s,(175*z+3*n*(356*n*u-99*w))+16*nA2*(89*zA2+6*n*z*(88*n*u-43
*w)-9*nA2*(52*nA2*uA2+16*n+u*w-17*wA2))>x+(15'V3-4*n*yA2*(40*z+3*n*(344*
n*u-35+w))+16*nA2*y*(35*zA2+12*n*z*(127*n+u-15*w)+9*nA2*(636*nA2*uA2-408*
n*u*w+25*wA2))-64*nA3*(10*zA3+3*n*zA2*(164*n*u-25*w)+36*nA2*z*(74*nA2*uA2
.57*n*u*w+5*wA2)+27*nA3*(16*nA3*uA3-116*nA2*uA2*w+64*n*u*wA2-5*wA3)))+5*
u*(y-4*n*(z+6*nA2*u-3*n*w))A3)/(331776*nAll* x A4);
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A5=-(953856*nAl 1 *xA4+27648*nA8*xA3*(93*y-127*n*z)+l 152*nA5*xA2*(107*yA2-3
*n*y*(311*z+4*n*(60*n*u-41*w))+12*nA2*z*(92*z+3*ii*(42*n*u-41*w)))+24*nA2*x
* (ll* y A3-n*yA2*(445,,,z+264*n*(2*ii*u-w))+24*nA2 V (9 7 * zA2+n*z*(494*n*u-269*w
) ^ * n A2*(2*n*u-w)A2)-16*nA3*z*(181*zA2+6*n*z*(230*n*u-137*w)+9*nA2*(196*n
A2*uA2-284*n*u*w+93*wA2)))-l 1 *z*(y-4*n*(z+6*nA2*u-3*n*w))A3)/(110592*nA10*x
-4);
B5=-(1161216*n/'9*xA4+3456*n/'6*xA3*(225*y-4*n*(72*z+128*nA2*u-63*n*w))+24*
nA3*xA2*(763*yA2-8*n*y*(469*z+15*n*(292*n*u-57*w))+16*iiA2*(263*zA2+6*n*z*(
568*n*u-145*w)+9*nA2*(308*nA2*uA2-448*n*u*w+71*wA2)))+x*(33*yA3-4*n*yA2*(
88*z+3*n*(824*n*u-77*w))+16*nA2*y*(77*zA2+12*n*z*(313*n*u-33*w)+9*nA2*(16
68*nA2*uA2-1032*n*u*w+55*wA2))-64*nA3*(22*zA3+3*n*zA2*(428*n*u-55*w)+36*n
A2*z*(230*nA2*uA2-159*n*u*w+ll*wA2)+27*nA3*(304*nA3*uA3-524*nA2*uA2*w+20
8*n*u*wA2-ll*w A3 )))-ll#u*(y-4*n*(z+6*nA2*u-3*n*w))A3)/(110592*nA10*xA4);
A6=(953856*nAl 1 *xA4+359424*nA8*xA3*(9*y-l 1 *n*z)+l 152*nA5*xA2*(175*yA2-3*n
*y*(467*z+4*n*(84*n*u-61*w))+12*nA2*z*(128*z+3*n*(50*n*u-53*w)))+24*nA2*x*
(19*yA3-n*yA2*(749*z+456*n*(2*n*u-w))+24*nA2*y*(161*zA2+n*z*(814*n*u-445*w
)+114*nA2*(2*n*u-w)A2)-16*nA3*z*(293*zA2+6*n*z*(358*n*u-217*w)+9*nA2*(260*
nA2*uA2-412*n*u*w+141*wA2)))-19*z*(y-4*n*(z+3*n*(2*n*u-w)))A3)/(165888*nA12*
xA4)j
B6=( 1216512*n/v9*xA4+3456*nA6*xA3*(309*y-4*n*(92*z+n*( 136*n*u-75* w)))+24*n 
A3*xA2*(1259*yA2-8 *n*y *(761 *z+3 *n*(2140*n*u-453* w))+16*nA2*(415 *zA2+6*n*z* 
(776*n*u-221*w)+9*nA2*(340*nA2*uA2-560*n*u*w+103*wA2)))+x*(57*yA3-4*n*yA2 
*(152*z+3*n*(1384*n*u-133*w))+16*nA2*y*(133*zA2+12*n*z*(521*n*u-57*w)+9*n 
A2*(2724*nA2*uA2-1704*n*u*w+95*wA2))-64*nA3*(38*zA3+15*n*zA2*(140*n*u-19* 
w)+36*nA2*z*(358*nA2*uA2-255*n*u*w+19*wA2)+27*nA3*(368*nA3*uA3-748*nA2*u 
A2*w+320*n*u*wA2-19* wA3)))- 19*u*(y-4*n*(z+3 *n*(2*n*u-w)))A3)/(165888*nAl 2*x 
^4);
A7 =
(1327104*nAll* x A4+13824*nA8*xA3*(81*y-175*n*z)+576*nA5*xA2*(30*yA2-n*y*(41 
3*z+24*n*(16*n*u-9*w))+4*nA2*z*(167*z+3*n*(130*n*u-97*w)))+24*nA2*x*(yA3-3 
*n*yA2*(17*z+8*n*(2*n*u-w))+8*nA2*y*(37*zA2+3*n*z*(66*n*u-35*w)+18*nA2*(2* 
n*u-w)A2)-48*nA3*z*(9*zA2+2*n*z*(42*n*u-23*w)+3*nA2*(60*nA2*uA2-68*n*u*w+l 
9*wA2)))-z*(y-4*n*(z+3*n*(2*n*u-w)))A3)/(331776*nA12*xA4); A7 = Expand[A7]; B7

(1119744*nA9*xA4+576*nA6*xA3 *(431 *y-4*n*( 178*z+15 *n*(44*n*u-l 3 * w)))+24*nA3
*xA2*(101*yA2-24*n*y*(23*z+n*(355*n*u-47*w))+48*nA2*(15*zA2+2*n*z*(179*n*u
-29*w)+3*nA2*(200*nA2*uA2-190*n*u*w+17*wA2)))+x*(3*yA3-4*n*yA2*(8*z+3*n*(9
6*n*u-7*w))+16*nA2*y*(7*zA2+36*n*z*(13*n*u-w)+9*nA2*(236*nA2*uA2-136*n*u*
w+5*wA2))-64*nA3*(2*zA3+15*n*zA2*(12*n*u-w)+36*nA2*z*(42*nA2*uA2-25*n*u*w
+wA2)+27*nA3*(112*nA3*uA3-132*nA2*uA2*w+40*n*u*wA2-wA3)))-u*(y-4*n*(z+3*n
*(2*n*u-w)))A3)/(331776*nA12*xA4);B7 = Expand[B7]; A8 =
-(82944*nAll* x A4+13824*nA8*xA3*(27*y-37*n*z)+576*nA5*xA2*(22*yA2-n*y*(223*z 
+24*n*(8*n*u-5*w))+4*nA2*z*(73*z+3*n*(38*n*u-35*w)))+24*nA2*x*(yA3-n*yA2*(4 
3*z+24*n*(2*n*u-w))+8*nA2*y*(29*zA2+3*n*z*(50*n*u-27*w)+18*nA2*(2*n*u-w)A2 
)-16*nA3*z*(19*zA2+6*n*z*(26*n*u-15*w)+9*nA2*(28*nA2*uA2-36*n*u*w+ll*wA2)) 
)-z*(y-4*n*(z+6*nA2*u-3*n*w))A3)/(82944*nAl 1 *xA4); A8 = Expand[A8]; B8 =



-(152064*nA9*xA4+576*nA6*xA3*(181*y-4*n*(62*z+108*nA2*u-57*n*w))+24*nA3*xA
2*(77*yA2-8*n*y*(49*z+3*n*(181*n*u-31*w))+16*nA2*(29*zA2+6*n*z*(77*n*u-17*
w)+27*nA2*(16*nA2*uA2-22*n*u*w+3*wA2)))+x*(3*yA3-4*n*yA2*(8*z+3*n*(80*n*u-
7*w))+16*nA2 V (7 * z A2+12*n*z*(31*n*u-3*w>f9*nA2*(172*iiA2*uA2-104*n*u*w+5*
wA2))-64*nA3*(2*zA3+3*ii*zA2*(44*ii*u-5*w)+36*nA2*z*(26*nA2*uA2-17*n*u*w+wA
2)+27*nA3*(48*nA3*uA3-68*nA2*uA2*w+24*n*u*wA2-wA3))>u*(y-4*n*(z+6*nA2*u-3 
*n*w))A3y(82944*nAll* x A4); B8 = Expand[B8]; A9 =
(13824*nA8*xA3*(9*y-7*n*z)+576*nA5*xA2*(18*yA2-n*y*(137*z+24*n*(4*n*u-3*w)) 
+4*nA2*z*(35*z+3*n*(10*n*u-13*w)))+24*nA2*x*(yA3-3*n*yA2*(13*z+8*n*(2*n*u- 
w))+8*nA2*y*(25*zA2+3*n*z*(42*n*u-23*w)+18*nA2*(2*n*u-w)A2)-48*nA3*z*(5*zA 
2+2*n*z*(18*n*u-ll*w)+3*nA2*(12*nA2*uA2-20*n*u*w+7*wA2)))-z*(y-4*n*(z+3*n* 
(2*n*u>w)))A3)/(27648*nA10*xA4); A9 = Expand[A9]; B9 =
(13824*nA9*xA4+576*nA6*xA3*(83*y-4*n*(22*z+3*n*(4*n*u-5*w)))+24*nA3*xA2*(6
5*yA2-24*n*y*(13*z+n*(103*n*u-23*w))+48*nA2*(7*zA2+2*n*z*(35*n*u-ll*w)+3*n
A2*(8*nA2*uA2-22*n*u*w+5*wA2)))+x*(3*yA3-4*n*yA2*(8*z+3*n*(72*n*u-7*w))+16
*nA2*y*(7*zA2+36*n*z*(9*n*u-w)+9*nA2*(140*nA2*uA2-88*n*u*w+5*wA2))-64*nA3
*(2*zA3+3*n*zA2*(36*n*u-5*w)+36*nA2*z*(18*nA2*uA2-13*n*u*w+wA2)+27*nA3*(l
6*nA3*uA3-36*nA2*uA2*w+16*n*u*wA2-wA3)))-u*(y-4*n*(z+3*n*(2*n*u-w)))A3)/(276
48*nA10*xA4); B9 = Expand[B9]; A10 =
-(13824*nA8*xA3*(3*y-n*z)+576*nA5*xA2*(16*yA2-n*y*(97*z+48*n*(n*u-w))+4*nA2
*z*(19*z+3*n*(2*n*u-5*w)))+24*nA2*x*(yA3-n*yA2*(37*z+24*n*(2*n*u-w))+8*nA2*
y*(23*zA2+3*n*z*(38*n*u-21*w)+18*nA2*(2*n*u-w)A2)-16*nA3*z*(13*zA2+6*n*z*(l
4*n*u-9*w)+9*nA2*(4*nA2*uA2-12*n*u*w+5*wA2)))-z*(y-4*n*(z+6*nA2*u-3*n*w))A
3)/(13824*nA9*xA3); AlO = Expand[A10]; BIO =
-(576*nA6*xA3*(43*y-4*n*(8*z-3*n*w))+24*nA3*xA2*(59*yA2-8*n*y*(34*z+3*n*(67
*n*u-19*w))+16*nA2*(17*zA2+6*n*z*(17*n*u-8*w)-27*nA2*w*(2*n*u-w)))+x*(3*yA
3-4*n*yA2*(8*z+3*n*(68*n*u-7*w))+16*nA2*y*(7*zA2+12*n*z*(25*n*u-3*w)+9*nA2
*(124*nA2*uA2-80*n*u*w+5*wA2))-64*nA3*(2*zA3+3*n*zA2*(32*n*u-5*w)+36*nA2*
z*(14*nA2*uA2-ll*n*u*w+wA2)-27*nA3*w*(20*nA2*uA2-12*n*u*w+wA2)))-u*(y-4*n
*(z+6*nA2*u-3*n*w))A3)/(13824*nA9*xA3); BIO = Expand[B10]; stl = -A1*A4; stl =
Expand[stl]; st2 = -B1*A5; st2 = Expand[st2]; st3 = -Cl*A6*2*nA3; st3 = Expand[st3];
A = stl+st2+st3; A= Expand[A]; stl=-A l*B4; stl=  Expand[stl]; st2=-Bl*B5; 
st2=Expand[st2]; st3 = -Cl*B6*2*nA3; st3=Expand[st3]; B= stl+st2+st3; B=Expand[B]; 
stl = -2*nA3*Dl*A6; stl=Expand[stl]; st2 = -E1*A7; st2=Expand[st2]; st3 = -F1*A8; 
st3=Expand[st3]; st4 = -G1*A9; st4=Expand[st4]; st5 = -HI*AlO; st5=Expand[st5]; st5 = 
st5/C10; st5=Expand[st5]; Ap=stl +st2+st3+st4+st5; Ap=Expand[Ap]; stl = 
-2*nA3*Dl*B6; stl=Expand[stl]; st2 = -E1*B7; st2=Expand[st2]; st3 = -F1*B8; 
st3=Expand[st3]; st4 = -G1*B9; st4=Expand[st4]; st5 = -H1*B10; st5=Expand[st5]; st5 = 
st5/C10; st5=Expand[8t5]; Bp=stl+st2+st3+st4-i-st5; Bp=Expand[Bp]; dt = A*Bp; 
dt=Expand[dt]; d tl = B*Ap; dtl=Expand[dtl]; dt=dt-dtl; dt=Expand[dt]; 
dt=dt*C10A(n-2)/(4*nA4); dt=Expand[dt]; dt=Together[dt]; NSolve[dt==::<)Js]
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Five elements, fixed-simple support:

b=-100; c=20; n=5; x=-(20*b*nA2-(5*c*n*s-120*n/^-sA2))/(120*n/̂ ); x=Expand[x]; y= 
sA2/n; y=Expand[y]; z=s*(2*c*n-s)/(2*nA2); z=Expand[z]; 
w=(6*b*nA2-s*(3’,,c*n-s))/(6*nA3); w=Expand[w]; 
u=-(40*b,,,nA2-(l 5*c*n*s+4*(30*nA4-sA2)))/(120*nA4); u=Expand[u]; 
Al=-6*nA2*x+(3*y)/(4*n)+z; Bl=w+6*n*x-y/(4*nA2); Cl=u-2*x+y/(24*nA3); 
Al=Expand[Al]; Bl=Expand[Bl]; Cl=Expand[Cl]; C10=x; Dl=x; El=y; Fl=z; Gl=w; 
H l=u;
A4=(19008*nA8*xA3-3456*nA5*xA2*(2,,,y+n*z>-24+nA2,,,x*(5*yA2-n*y*(97*z+60*n*(2
*n*u-w))+4*nA2*z*(37*z+3*n*(14*n*U“17*w)»+5*z*Cy-4*n*(z+6*nA2*u-3*n*w))A2)/
(13824*nA8*xA3);
B4=(8352*nA6*xA3-24*nA3*xA2*(91*y-4*n*(29*z-78*nA2*u-21*n*w))-x*(15*yA2-4*n
^*(25*z+6*n*(87*n*u-10*w))+16*nA2*(10*zA2+9*n*z*(28*n*u-5*w)+9*nA2*(8*nA2
*uA2-34*n*u*w+5*wA2»)+5*u*(y-4*n*(z+6*nA2*u-3*n*w))A2)/(13824*nA8*xA3);
A5=-(32832*nA8*xA3+3456*nA5,,,xA2'e‘(10*y-21*n*z)+24*nA2*x*(ll*yA2-n*y,!‘(247*z+
132*n’»(2*n*u-w))+4*nA2*z*(115*z+3*n*(98*n*u-71+w)))-ll*z*(y-4*n*(z+6*nA2+u-3
*n* w))A2)/(4608*nA7*xA3);
B5=-(31392*n/>6*xA3+24*nA3*xA2*(301*y-4*n*(131*z+462*nA2*u-147*n*w))+x*(33 
*yA2-4*n*y*(55*z+6*n*(225*n*u-22*w))+16*nA2*(22*zA2+9*n*z*(84*n*u-ll*w)+9* 
nA2*( 152*nA2*uA2-142*n*u*w+l 1 *wA2)))-l 1 *u*(y-4*n*(z+6*nA2*u-3*n*w))A2)/(460 
8*nA7*xA3);
A6=(32832*nA8*xA3+3456*nA5*xA2*(14*y-25*n*z)+24*nA2*x*(19*yA2-n*y*(407*z+ 
228*n*(2*n*u-w))+4*nA2*z*( 179*z+3*n*( 130*n*u-103 *w)))-19*z*(y-4*n*(z+3 *n*(2 
*n*u-w)))A2)/(6912*n/'9*xA3);
B6=(33696*nA6*xA3+24*nA3*xA2*(461*y-4*n*(187*z+15*n*(34*n*u-13*w)))+x*(57*
yA2-4*n*y*(95*z+6*n*(369*n*u-38*w))+16*nA2*(38*zA2+9*n*z*(132*n*u-19*w)+9*
nA2*(184*nA2*uA2-206*n*u*w+19*wA2)))-19*u*(y-4*n*(z+3*n*(2*n*u-w)))A2)/(6912
*nA9*xA3);
A4=Expand[A4]; B4=Expand[B4]; A5=Expand[A5]; B5=Expand[B5]; A6=Expand[A6]; 

B6:=Expand[B6];

A7=(41472*nA8*xA3+576*nA5*xA2*(16*y-65*n*z)+24*nA2*x*(yA2-3*n*y*(ll*z+4*n 
*(2*n*u-w))+12*nA2*z*(7*z+n*(30*n*u-17*w)))-z*(y-4*n*(z+3*n*(2*n*u-w)))A2)/(13 
824*nA9*xA3); A7=Expand[A7];
B7=(24768*n^*xA3+24*nA3*xA2*(59*y-12*n*(ll*z+5*n*(20*n*u»3*w)))+x*(3*yA2- 
4*n*y *(5 *z+6*n*(31 *n*u-2* w))+l 6*nA2*(2*zA2+3 *n*z*(44*n*u-3 *w)+9*nA2*(56*nA 
2*uA2-34*n*u*w+wA2)))-u*(y-4*n*(z+3*n*(2*n*u-w)))A2)/(13824*iiA9*xA3); 
B7=Expand[B7];
A 8^3456*nA8*xA3+576*nA5+xA2*(8*y-19*n*z)+24*nA2*x*(yA2-nV (25*z+12*n*(2 
*n*u-w))+4*nA2*z*(13*z+3*n*(14*n*u-9*w)))-z*Gr-4*n*(z+6*nA2*u-3*n,,'w))A2)/(345 
6*nA8*xA3); A8=Expand[A8];
B8=-(4608*n/^6*xA3+24*nA3*xA2*(35*y-4*n*(17*z+72*nA2*u-21*n!,’w))+x*(3*yA2-4*
nV(5*z+6*n*(23*n*u-2*w))+16*nA2*(2*zA2+3*n*z+(28*n*u-3*Yv)+9*nA2*(24+nA2*
uA2-18*n*u*w+wA2)))-u*(y-4*n*(z+6*nA2*u-3*n*w))A2)/(3456*nA8*xA3);



B8=Expand[B8];
A9=(576*nA5*xA2*(4*y-5,,‘n*z)+24*nA2*x*(yA2-3*n*y*(7*z+4*n*(2*n*u-w))+12*nA2 
*z*(3*z+ii*(6*n*u-5 * w)))-z*(y-4*n*(z+3 *n*(2*n*u-w)))A2)/( 1152*nA7*xA3); 
A9=Expand[ A9];
B9=(576*nA6*xA3+24*nA3*xA2*(23*y-12*n*(3*z+n*(4*n*u-3*w»)+x*(3*yA2-4*n*y*(
5*z+6*n*(19*n*u-2*w))+16,#,nA2#(2*zA2+3,,‘n*z*(20*n*u-3*w)+9*nA2*(8*nA2*uA2-10
*n*u*w+wA2))>u*(y-4*n*(z+3*n*(2ni*u-w)))A2y(l 152*nA7*xA3); B9=Expand[B9];
A 10^S76*nA5*xA2*(2V n*z)+ 24^A2»x#(yA2-n*y’,‘(19+z+12*n+(2*n*u-w))+4*nA2*z
*(7*z+3*n*(2*n*u-3*w)))-z*(y-4*n*(z+6*nA2*u-3*n*w))A2y(576*nA6*xA2);
A10=Expand[A10];
B10=-(24*nA3*xA2*(17*y-4*n*(5*z-3*n,!‘w))+x*(3*yA2-4*n*y*(5*z+6*n*(17*n*u-2*w 
))+16*nA2*(2*zA2+3*n*z*(16*n*u-3*w>9*nA2*w*(6*n*u-w)))-u*(y-4*n*(z+6*nA2*u- 
3*n*w))A2V(576*nA6*xA2); B10=Expand[B10];
stl = -A1*A4; stl = Expand[stl]; st2 = -B1*A5; st2 = Expand[st2]; st3 = 

-Cl*A6*3*nA3; st3 = Expand[st3]; A = stl+st2+st3; A=Expand[A];
stl=-A l*B4; stl=  Expand[stl]; st2=-Bl*B5; st2=:Expand[st2]; st3 =
-Cl*B6*3*nA3; st3=Expand[st3]; B= stl+st2+st3; B=Expand[B]; stl =
-3*nA3*Dl*A6; stl=Expand[stl]; st2 = -E1*A7; st2=Expand[st2]; st3 =
-F1*A8; st3=Expand[st3]; st4 = -Gl*A9; st4=Expand[st4]; st5 = -Hl*A10;

st5=Expand[stS]; st5=st5/C10; st5=Expand[st5]; Ap=stl+st2+st3+st4+st5; 
Ap=Expand[Ap]; stl = -3*nA3*Dl*B6; stl=Expand[stl]; st2 = -E1*B7;
st2=Expand[st2]; st3 = -F1*B8; st3=Expand[st3]; st4 = -G1*B9;
st4=Expand[st4]; st5 = -H1*B10; st5=Expand[st5]; st5 = st5/C10;
st5=Expand[st5]; Bp=stl+st2+st3+st4+st5; Bp=Expand[Bp]; dt = A*Bp; 
dt=Expand[dt]; dtl=B*A p; dtl=Expand[dtl]; dt=dt-dtl; dt=Expand[dt];
dt=dt*C10A(n-2)/(18*nA5); dt=Expand[dt]; dt=Together[dt]; NSolve[dt==0,s]

Four elements, fixed-simple support:

n=4; x = -(20*b*nA2-(5*c*n*s-120*nA4-sA2)y(120*nA4); x = Expand[x]; y = sA2/n; y = 
Expandjy]; z = s*(2*c*n-s)/(2*nA2); z = Expand[z]; w = (6*b*nA2-s*(3*c*n-s))/(6*nA3); 
w = Expand[w]; u = -(40*b*nA2-(15*c*n*s+4*(30*nA4-sA2)))/(120*nA4); u =
Expand[u]; m4={{ 1, l/(2*n),0,0,-l, l/(2*n),0,0,0,0,0,0,0,0,0,0},
{0,-l/(6*nA2),0,-l,nA(-l),-l/(3*nA2),0,0,0,0,0,0,0,0,0,0},
{0,0,-l,3/(4*n),-l/(4*nA2),l/(24*nA3),0,0,0,0,0,0,0,0,0,0},
{0,0,0,1,0,0,0,0,0,0,0,0,0,-(100*nA2+w-66+nA3*x+15*y-50*ii*z)/(960+nA5*x)-K300*nA
3*u-219*nA3*x+10^-25*n*zy(1440*nA5*xH120*nA3*u-60*nA2*w-48*nA3*x-5*y+20
*n*z)/(576*nA5*x),(21*nA3*x-5*y+5*n*z)/(24*nA3*x)-(z*(120*nA3*u-60*nA2*w-48*n
A3*x-5^+20*n*z)y(576*nA5*xA2),K100*nA2*w-66*nA3*x+15*y-50*n*z)/(960*nA5*x)
-(u+(120*nA3*u-60*nA2+w-48*nA3*x-5#y+20*n#z)y(576*nA5*xA2)+(81*nA3*x-15*y+2
5*n*z)/(1440*nA5*x)}, {0,0,0,0,1, l/(2*n),0,0,-1,l/(2*n),0,0,0,0,0,0},
{0,0,0,0,0,l/(3*nA3),-l,7/(4*n),-3/(2*nA2),l/(2*nA3),0,0,0,0,0,0},
{0,0,0,0,0,0, l,l/(2*n), l/(10*nA2), l/(120*nA3),-l, l/(2*n),-l/(10*nA2), l/(120*nA3),0,0}, 
{0,0,0,0,0,0,0,l,l/(2*n),l/(12*nA2),0,-l,l/(2*n),-l/(12*nA2),0,0},



{0,0,0,0,0,0,0,0,1, l/(2*n),0,0,-l, l/(2*n),0,0}, {0,0,0,0,0,0,0,0,0,x,y,z,w,u,0,0>, 
{0,0,0,0,0,0,0,0,0,0,1, l/(2*n), l/(10*nA2), l/(120*nA3), l/(2*n), l/(120*nA3)>, 
{0,0,0,0,0,0,0,0,0,0,0,1, l/(2*n), l/(12*nA2),-l,-l/(12*nA2)}, 
{0,0,0,0,0,0,0,0,0,0,0,0,l,l/(2*n),0,l/(2*n)>, {0,0,0,0,0,0,0,0,0,0,0,0,0,x,z,u}, 
{0,x,y,z,w,u,0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,x,y,z,w,u,0,0,0,0,0,0}}; 
dt=Det[m4]; dt=Together[dt]; NSolve[dt==0,s]



APPENDIX C

To solve the zeros o f the function g(s), several routines have been used before the 

Lanczos' Method, hi all o f these methods the solution depended on the initial conditions 

and step lengths which resulted in overflows as well as diveigence in the solution.

The first one was the nonlinear root solver in Mathematica. The solution depended 

on the initial values assumed, and in most cases convergence was not possible. The second 

method was the perturbation analysis. The zero velocity conditions were used for the initial 

values o f the routine. Then, the velocity was increased in steps, where the solution found 

was substituted into the next as the initial guess. In this approach the initial guess 

sometimes has to be found numerically leading to accumulation of errors from the start. 

Also the step length dependence was highly critical, because if  a large step length was 

chosen then the solution may not converge. The third used the Taylor expansion of the 

expressions in the equation, but to get enough accuracy more then hundred terms for each 

of the expression in the equation. This from the practical point o f view was not possible.
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