New Jersey Institute of Technology

Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-31-1994

Fast point pattern matching by heuristic and stochastic
optimization techniques

Ashish Agrawal
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

6‘ Part of the Electrical and Electronics Commons

Recommended Citation

Agrawal, Ashish, "Fast point pattern matching by heuristic and stochastic optimization techniques"
(1994). Theses. 1234.

https://digitalcommons.njit.edu/theses/1234

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1234&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1234?utm_source=digitalcommons.njit.edu%2Ftheses%2F1234&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly

to order.

University Microfilms international
A Bell & Howell information Company

300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Number 1356272

Fast point pattern matching by heuristic and stochastic
optimization techniques

Agrawal, Ashish, M.S.

New Jersey Institute of Technology, 1994

Copyright ©1994 by Agrawal, Ashish. All rights reserved.

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

ABSTRACT

FAST POINT PATTERN MATCHING BY HEURISTIC
AND STOCHASTIC OPTIMIZATION TECHNIQUES

by
Ashish Agrawal

This work is concerned with one of the methodologies used in the final
stages of machine vision: the matching of model point patterns to observed point
patterns. Conventional search methods not only fail to arrive at the optimal
match, but are also computationally expensive and time consuming. To arrive at the
optimal pattern match, stochastic and heuristic optimization as the search technique,
exploiting Simulated Annealing (SA), Evolutionary Programming (EP) and Mean
Field Annealing (MFA), are explored in detail. A comparison of results obtained
using SA versus “hill-climbing” and “exhaustive search” techniques, and results of
EP are presented. The relative effectiveness of these optimizing search algorithms

over other conventional algorithms will be demonstrated. Finally, the limitations of

MFA are discussed.

FAST POINT PATTERN MATCHING BY HEURISTIC
AND STOCHASTIC OPTIMIZATION TECHNIQUES

by
Ashish Agrawal

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

January 1994

Copyright © 1994 by Ashish Agrawal
ALL RIGHTS RESERVED

APPROVAL PAGE

FAST POINT PATTERN MATCHING BY HEURISTIC
AND STOCHASTIC OPTIMIZATION TECHNIQUES

Ashish Agrawal

Dr. Nirwan Ansari, Thesis Advisor " Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin S. H. Hou, Committee Member " Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Y. Shi, Committee Member 4 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Ashish Agrawal
Degree: Master of Science in Electrical Engineering
Date: January 1994

Undergraduate and Graduate Education:

e Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1993

o Bachelor of Science in Electrical Engineering,
Manipal Institute of Technology, Manipal, India, 1990

Major: Electrical Engineering
Presentations and Publications:

N. Ansari, E. S. H. Hou and A. Agrawal, “Point Pattern Matching using Simulated
Annealing,” Proceedings of the 19938 Regional IEEE Conirol Conference,
pp.215-218, August 1993.

A. Agrawal, “Backpropagation Techniques in Neural Networks: A Quantitative
Analysis of Various Algorithms,” 1993 International MATLAB Conference,
Cambridge, MA, October 18-20, 1993.

iv

I dedicate this thesis to my parents for
their eternal love, support and understanding

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his advisor, Professor
Nirwan Ansari, for his guidance, friendship, and moral support throughout this
research.

Special thanks to Professors Edwin S. H. Hou and Y. Shi for serving as members

of the committee.

The author would also like to thank Lisa Fitton for her help with proofreading,
and Chris Peckham for carefully preparing the impeccable INTEX infrastructure which

enabled an overnight compilation of this document.

vi

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION e e 1
2 POINT PATTERN MATCHING i 3
2.1 An OVErVIEW . ..o it ittt it e i e e 3
2.2 Problem Statement 5
2.3 Generic Approach v it e 5

3 SIMULATED ANNEALING i 8
3.1 General Framework i i 8
3.2 Implementation of SA to Point Pattern Matching 9
3.2.1 The Coding Scheme 9

3.2.2 The Energy Function. 10

3.2.3 The Perturbation Rule 10

3.24 The Acceptance Rule 11

3.2.5 The Cooling Schedule 11

3.2.6 The Stopping Criterion 12

3.3 SimulationResults i il 13
3.4 SUMMATY . . . v e e e e e e e 23

4 EVOLUTIONARY PROGRAMMING 24
4.1 Introduction......... 24
4.2 Genetic Algorithms - Precursors to Evolutionary Programs........ 24
4.2.1 The Point Pattern Matching Procedure 28

4.3 Implementation of EP to Point Pattern Matching 29
4.3.1 Representation of Solution Space 29

4.3.2 Population Size......... e e 29

4.3.3 Initial Population 30

vii

Chapter Page

434 Fitness Function i i i 30

4.3.5 Reproduction i 30

436 GeneticOperators. 33

44 SimulationResults i i 39
4.5 SUMIMATY « o v v ot i et et e et et e e et et et i e 49

5 MEAN FIELD ANNEALING 50
5.1 Introduction........ i 50
5.2 The Hopfield Energy Function 50
5.3 The Hopfield Neural Network 51
54 Mean Field Theory 52
5.5 Modeling the PPM Task onto the Hopfield Network 54
5.5.1 Neuron Encoding 55

5.6 Formulation of the Energy Function 55
5.6.1 Cost and Constraint Terms 55

5.7 Evaluation of the Thermal Average 57
58 Cooling Schedule 58
5.8.1 Initial Temperature 58

5.8.2 Stopping Criterion, 58

5.8.3 Number of Iterations at each Temperature. 58

5.8.4 Temperature Updating Rule.............. 59

5.9 The Mean Field Annealing Algorithm 59
5.10 Inherent Limitations in the MFA Algorithm 59
5.11 SUMMATY .« . o o e e e e e e e e 61

6 CONCLUSION e, 62
6.1 OVerVIeW e e 62
6.2 Extensionson thisWork 62
REFERENCES e e 64

LIST OF TABLES

Table Page
3.1 SA Results Compared with “Hill-climbing” and “Exhaustive Search” ... 14
3.2 SA Results Compared for the Mentioned Incomplete and Noisy Cases .. 14

4.1 EP Results Compared for the Mentioned Incomplete and Noisy Cases .. 40

ix

LIST OF FIGURES

Figure Page
3.1 An Arbitrary Assignment of Observed Point Labels to Model Point Labels
Depicting the Scheme of “String” Representation................ 10
3.2 A “String” Representation Illustrating the Technique of Perturbation. .. 11
3.3 Plot Illustrating the Result of A High Scheduling Temperature T'. Herein
Every Other Search Node is Accepted as a Solution Thereby Failing to
Converge Even after Over 1500 Iterations. 12
3.4 Plot Illustrating the Result of A Low Scheduling Temperature T'. Herein
the Solution Gets “Stuck” at A Local Minima for Over 750 [terations. 13
3.5 Case 1: Model Point Pattern 15
3.6 Case 1: Observed Pattern = T[Model Pattern] 15
3.7 Case 1: Plot Showing the Error Convergence with Each Iteration for the
Clean and Complete Pattern Set. 16
3.8 Case 2: Model Point Pattern 17
3.9 Case 2: Observed Pattern = T[Model Pattern] - 2 Points 17
3.10 Case 2: Plot Showing the Error Convergence with Each Iteration for the
Clean and Incomplete Pattern Set. 18
3.11 Case 3: Model Point Pattern 19
3.12 Case 3: Observed Pattern = T[Model Pattern] + Noise 19
3.13 Case 3: Plot Showing the Error Convergence with Each Iteration for the
Noisy and Complete Pattern Set. 20
3.14 Case 4: Model Point Pattern 21
3.15 Case 4: Observed Pattern = T[Model Pattern] + Noise - 2 Points 21
3.16 Case 4: Plot Showing the Error Convergence with Each Iteration for the
Noisy and Incomplete Pattern Set. 22
4.1 GA- Coded String: Binary Representation of Integer Values......... 25
4.2 Solution Depicting the Need for Mutation-1 Operator 34
4.3 Identical Toursof a TSP i .. 36
4.4 Case 1: Model Point Pattern 41

Figure

4.5
4.6
4.7

4.8
4.9
4.10

4.11

4.12
4.13
4.14
4.15

4.16
4.17
4.18
4.19

31
—

Case 1: Observed Pattern = T[Model Pattern]
Case 1: Plot Showing the Rapid Error Convergence with Each Iteration

Case 1: Mesh Plot Showing the Fitness Values of Solutions for Each of
the 8 Iterations

Case 2: Model Point Pattern
Case 2: Observed Pattern = T[Model Pattern] - 3 Points
Case 2: Plot Showing the Rapid Error Convergence with Each Iteration

Case 2: Mesh Plot Showing the Fitness Values of Solutions for Each of
the 11 Iterations i i

Case 3: Model Point Pattern
Case 3: Observed Pattern = T[Model Pattern] + Noise
Case 3: Plot Showing the Rapid Error Convergence with Each Iteration

Case 3: Mesh Plot Showing the Fitness Values of Solutions for Each of
the6 Iterations

Case 4: Model Point Pattern
Case 4: Observed Pattern = T[Model Pattern] + Noise - 3 Points
Case 4: Plot Showing the Rapid Error Convergence with Each Iteration

Case 4: Mesh Plot Showing the Fitness Values of Solutions for Each of
the 12 Tterations

xi

42
43
43
44

46
47
47
43

CHAPTER 1
INTRODUCTION

Point pattern matching is a troublesome but crucial task in machine vision. Existing
algorithms employing conventional search techniques usually fail to arrive at a global
optimal match and, moreover, require a priori knowledge of certain attributes of the
search points. Algorithms that arrive at an optimal pattern match in the presence
of noise and an incomplete data set are presented herein. The techniques of Evolu-
tionary Programming (EP), Simulated Annealing (SA), and Mean Field Annealing
(MFA) are exploited and the entire task is mapped on to a stochastic and heuristic
optimization framework.

These techniques provide an efficient means of traversing the search space
combining the elements of “gradient descent” and “random search,” thereby incorpo-
rating strategies which not only exploit the concept of a “depth first search” but also
bring in the advantage of a “breadth first search.” In fact, it is this characteristic of
these algorithms to prevent the search from being limited to a subset of the search
nodes, thereby escaping local optima, which would otherwise result in an inefficient
cost realization.

For illustrative purposes, a two-dimensional (2— D) framework and a similarity
transformation are considered. The pattern sets (model and observed) are compared
for a similarity transformation such that the resulting error between the model points
undergoing the similarity transformation and the observed pattern is minimized. The
error is formulated as a cost function using the transform parameters as its variables.
The task finally boils down to evaluating the search space such that this cost is
minimized, thereby arriving at a global minima.

To enable an efficient realization of the above strategies, various parameters,

such as, the energy function (a function that relates a solution node with its corre-

sponding cost), the acceptance rule (which determines whether a particular search
node should be accepted), a cooling schedule (an algorithmic parameter used to
model the concept of stability at lower temperatures) and a perturbation rule (which
enables one to traverse the search space), etc. are defined. Most of these are problem
specific and are best designed heuristically.

Results show that the above techniques perform well in the presence of noise
(interestingly, when the number of points constituting a pattern is significantly
higher, the computation of the transformation parameters is less prone to error,
resulting in a convergence with a lower match error). Graphs of model and observed
points along with a match error plot at every search attempt are presented for ideal
and noisy cases in the presence of complete and partial data sets. Not only is the
matching optimal, but also efficient in that the algorithm needs to search a fairly

low number of nodes constituting the solution space.

CHAPTER 2

POINT PATTERN MATCHING

2.1 An Overview

Shape recognition is an important task in machine vision and pattern recognition.
We use the term shape to refer to the invariant geometrical properties of the relative
distances among a set of static spatial features of an object. These static spatial
features are known as the shape features of the object. For the purpose of recognition,
much of the visual data perceived by the human eye is highly redundant. It has been
suggested from the point of the human visual system [1] that some dominant points
along an object contour are rich in information content and sufficient to characterize
the shape of the object.

Numerous studies on planar object recognition have been carried out. The
recognition task can be modeled as searching for an assignment between two features.
Commonly used features are holes and points [2, 3, 4, 5, 6, 7, 8], line-segments
[9, 10, 11, 12, 13], curve-segments [14, 15, 16, 17, 18, 19], or a combination of these
features [20, 21]. These features are obtained by a preprocessing step such as edge
detection, polygonal approximation, and corner extraction. Among the methods
mentioned above, [6, 8] which use relaxation labeling for point pattern matching
do not assume, similar to our proposed algorithm, knowledge on the order of the
points. However, a good estimate of the initial assignment between the points of the
two point patterns is important relative to the convergence of the algorithm and the
validity of the result. These methods [6, 8], inheriting the drawback of relaxation
labeling, are complex, and computationally expensive because of their sequential
nature. Moreover, existing methods that use points as their features, usually require
a priort knowledge of the order of the arrangement of the points.

Evidently, the problem addressed here is that of recognizing and locating

objects which are represented by a set of points. That is, each object is repre-

4

sented by a set of dominant points (shape features). Information about the order
of these points is not known or provided. The task is to find a subset of points in
a point pattern that match to a subset of points in another point pattern through
a transformation in a certain optimal sense with the constraint that the mapping is
single. In a general setting, the points are arranged in n-dimensional space, and the
transformation is specified according to the geometric and environmental constraints
of the problem. Exhaustive search to find the best assignment mapping one set of
points to another set is, if the number of points that are to be matched is large,
computationally expensive. Thus, point pattern matching, wherein points are used
as shape features, is a crucial vision task.

The current literature identifies three main types of search methods:
¢ calculus-based
e enumerative
¢ random

Random search algorithms have achieved increasing popularity as researchers have
recognized the shortcomings of calculus-based and enumerative schemes. Random
secarch schemes, though robust, are computationally inefficient. The conventional
search methods do not meet the robust requirement, because they are local in scope.
However, as more complex problems are attacked, other methods will be necessary.

We take a similar view by posing the recognition task as a point-pattern
matching problem. Our approach is more general in that it assumes no knowledge on
the sequential order of the points. For the computations, only two-dimensional point
patterns (because images are inherently 2 — D) and the similarity transformation is
considered, however, the algorithm itself is not restricted to 2 — D point patterns

or/and the similarity transformation.

2.2 Problem Statement

Given two sets of points defined as follows:
P ={P:PecRV;i=1,2,3,---,m}
O ={0;:0; € RV;i=1,2,3,---,n}, (2.1)

find an assignment P’ — O', where P! C P and O’ C O, such that the match error
between T'(P') and O’ is minimized. The match error, defined later, indicates the
degree of match; the lower the match error, the better the quality of the match. T is a
predefined similarity transformation; 7' = {rotation, translation, scaling}. It should
be noted here that the problem is different from that of image registration wherein
the objective is to align two images [22] through a geometric transformation.

Let O be an observed point pattern and P a model point pattern. The 2-D

similarity transformation T is defined by the mapping X — U; X and U € R? such

that
U cosf sind T e
[v]:s[—silm cosO]{y]+[f]’ (22)
where
T
X =[m y] :
U =[u v]T,

S = scale factor, § = angle of rotation, e = translation in the z-axis and f =
translation in the y-axis. By letting @ = Scos# and b = Ssin#, the similarity

transformation can be rewritten as
u a b T e
HEEHIHEN 29

2.3 Generic Approach
In order to determine the degree of match between the model and the observed

points, the parameters of the similarity transformation which map P optimally to O

6

need to be found; in this case, in the minimum least squared error sense. Mapping

P under the transformation, T'[(z;, ;)] = [(u, v!)], we have

[u}=[—abey}+[;} (2.4)

The squared error between the model and observed point sets may then be defined

as

n

ef = Y (ui —ul)?+ (v —v))?

i=1
= Z(u, — ax; — by; — ¢)*
i=1
+ (v; + bx; — ay; — f)°%. (2.5)

In order to find the parameters that minimize the squared error, we take partial
derivatives w.r.t. a,b,e and f of the squared error defined in equation (2.5) above

and equate them to zero. Thus, we have

O¢e? =
_— = (u,- —azx; — by; — 0)(—561')
0w T X
+ (vi + bz; — ayi — f)(—yi) =0,
O¢e? =
—_ = (ui - az; — by; — 6)(—3/:')
o T X

+ (vi + bz — ay; — f)(—=:) =0,

O¢e? -
— = Y (ui—az; — by, —e)(—1) =0, and
38 i=1
O¢? n
—87 = Z(v,-—i—ba:,'—ay;—f)(—l)::O.
i=1

Solving the above equations and rewriting the same in terms of matrices, we have
T
Ala b e f] =c, (2.6)

where

>z} + yf) 0 1T DY
A= 0 T(ef+yf) Ty -Ta
2T 2 Yi n 0
2 Yi —-Xz; 0 n

and

S (uizi + viyi)

| Zluiyi — vizs)
¢= > u;
v

Then the optimal transformation parameters yielding the minimum least squared

error may be obtained as
[a b e f] =[a" C]. (2.7)

The least squared error thus obtained, however, quantifies the degree of match
only between the model points’ subset P’ and the observed points’ subset O'. To
obtain a measure of the overall match between the two pattern sets, the following

heuristic measure [2, 3] is used

: ___{ Sr(l+ (32) logy(22) k23 (2.8)

00 k=0,1,2.

defined as the match error, which penalizes for an incomplete match. Herein, k
denotes the number of model points that match the observed points, m denotes the
number of model points, and S denotes the scale factor. From the equation above,
it should be noted that a match between two or fewer points is considered an under-
determined case. The logarithmic term serves as the penalty factor for incomplete
matching of the pattern sets. When all points of the two patterns match (k = m),
the match error equals the normalized least squared error. The problem defined
above is a combinatorial optimization problem (COP) and can be best approached

by techniques suited for problems of this class.

CHAPTER 3

SIMULATED ANNEALING

3.1 General Framework

Simulated annealing, first introduced by Kirkpatric et al [23] is analogous to the way
liquids crystallize: at high temperatures the energetic molecules are free to move and
rearrange, and with a decrease in temperature, lose mobility as a result of decreasing
energy, finally settling down to an equilibrium state resulting in the formation of a
crystal having minimum energy. Equivalently, in simulated annealing, there are two
operations involved: a thermostatic operation [24] which schedules the decrease of
the temperatures (an algorithm parameter), and a random relaxation process which
searches for the equilibrium solution at each temperature.

The SA technique [25] eliminates most disadvantages of the “hill-climbing”
methods: solutions do not depend on the starting point any longer and are usually
close to the optimal point. Moreover, the SA algorithm can escape local optima for
a COP. It is essentially a stochastic search algorithm; at a given temperature, it
arrives at a possible subsequent state 1y, (i.e., I1;) by ‘perturbation’ of the present

state II; . The transition is carried out based on the following rule:

) _ Hj if A,’j Z n
ivr = { I; if A; <o, (3.1)

where € [0,1] and is a uniform random number, and A;;, the acceptance probability,

1s defined as

Aij = e—A'_I'L, (32)

where T' = scheduling temperature and A f is a measure of the energy change between

subsequent states and is defined as
Af =—(f(II;) - f(IL))*, (3.3)

where f(Il,,) = energy at state n, and

=15 wsZo @1

The number of transitions at a particular temperature is determined heuris-
tically as some fraction of the total number of search nodes that constitute the
solution space. The scheduling temperature T' is determined using the cooling
schedule which, again, is chosen heuristically based on the size of the solution space
and the number of transitions involved at each successive temperature.

The search is said to converge to its optimal solution when the scheduling
temperature reaches its minimum level and all transitions at this temperature have
been exploited for a possible subsequent state. The number of transitions at a
given temperature may be curbed to a minimum if, for a predefined number of

such consecutive transitions, the cost of the subsequent states does not change much

(again a problem-dependent, predefined value).

3.2 Implementation of SA to Point Pattern Matching
'To map the point pattern matching problem onto the SA framework we now explicitly
define the coding scheme (a way of representing the point pattern), a perturbation
rule for generating new assignments (configurations or states), the acceptance rule,

the cooling schedule, and the convergence criterion.

3.2.1 The Coding Scheme

We code the point pattern as a string representation constituting of nodes (i.e.,
labels for different point co-ordinates), thereby forming the search/solution space.
Thus each code is an assignment between two sets of points; each cell value of a
string indicates an observed point that is assigned to a model point which is, in
turn, denoted by the cell number. Suppose we have m model points and n observed

points. Accordingly, we choose a code consisting of m cells, wherein each cell may

10

take on any integer value from 0 to n (a value of zero denotes that no observed point
could be matched with a model point). Thus, the cell position-value (corresponding
to the model point) in the string and the value within each cell (corresponding to
the observed point) indicates an assignment of match from the model point to an
observed point, with the constraint of one to one mapping. For example, consider

the following assignment for 12 cells as shown in Fig. 3.1. The cell position from

[2[5]7]o[9]1[3]4[6[11]10]12]

Figure 3.1 An Arbitrary Assignment of Observed Point Labels to Model Point
Labels Depicting the Scheme of “String” Representation.

the left indicates the label of the model point; for example, the sixth cell corresponds
to the sixth model point. Then, accordingly, the first model point is assigned to the
second observed point, the second to the fifth, the third to the seventh, the fourth
is not assigned, the fifth to the ninth, and so on. Thus, each code (an assignment)

is analogous to the state of a liquid.

3.2.2 The Energy Function
The energy (cost associated with each node of the solution space) function, analogous
to the energy of a state of the liquid, is defined as the match error of the assignment.

Restating equation (2.8), it is defined as

E= { S(1+ (3) logy(35F) k23 (3.5)
00 k=0,1,2

3.2.3 The Perturbation Rule

Consider the string assignment depicted above in Fig. 3.1. We generate randomly,

two numbers within the ranges 1 and m (the number of model points) and 1 and n

(the number of observed points), respectively; say, “1” and “6.” The first random

number indicates the cell of the string whose value will be replaced by the second

number representing the observed point. The next step is to substitute the replaced

11

number in the cell from which the original replacement came from. Thus, after the

replacement we have the sting assignment as depicted in Fig. 3.2.

[1]s5][7]o]9]2][3]4]6]11[10]12]

Figure 3.2 A “String” Representation Illustrating the Technique of Perturbation.

3.2.4 The Acceptance Rule

This rule is used for deciding whether to accept or ignore the subsequent search node.
Assignments with lower energies are always accepted, and to provide a mechanism
to escape a local optima, a new assignment with a higher energy is occasionally
accepted. Equations (10), (11), and (12) define the probability of accepting a new
assignment based on the acceptance probability A;;. It should be noted that as the
temperature T is decreased A;; — 0, thereby reducing significantly the probability
of accepting assignments with higher energy states at low temperatures. This is the
reason why, a search space with local minima, whose energy is nearly equal to that
of the global minima, may sometimes yield solutions close to the optimal one at very

low temperatures.

3.2.5 The Cooling Schedule

As mentioned earlier, the cooling schedule is problem-dependent. Based on a cooling
schedule where the temperature is decreased linearly, such that its final value for a
heuristically pre-determined number of maximum search attempts (i.e., total number

of transition attempts) is zero, we define the scheduling temperature T' as follows:
T =To(1 — (n/nmaz)), (3.6)

where Ty is chosen (again, heuristically) as the starting (initial) temperature, n
denotes the nth search attempt, and n,,.; denotes the mazimum number of such

search attempts.

12

x104 SA -- Choice of Scheduling Temperature

Match Emror
o

1+]

0 1 i) 1 i 1 1
0 200 400 600 80 1000 1200 1400 1600

Number of iterations = 1501

Figure 3.3 Plot [llustrating the Result of A High Scheduling Temperature T'. Herein
Every Other Search Node is Accepted as a Solution Thereby Failing to Converge Even
after Over 1500 Iterations.

The choice of this parameter plays a crucial role in the entire algorithm and
often proves to be the deciding factor behind the convergence speed. As an illus-
tration of this fact, consider Fig. 3.3. Choosing a high value of Tj results in almost an
unstable state (¢.e., almost every other search node is accepted as a possible solution,
causing the search to oscillate through the solution domain, proving detrimental to
the convergence speed. Furthermore, a low value of Ty may cause the search to get

stuck in a local minima, as illustrated by Fig. 3.4, affecting the convergence speed.

3.2.6 The Stopping Criterion

In this algorithm, the process of annealing is terminated naturally when an optimal
solution (with match error € ~ 0) is obtained, or else when the scheduling
temperature T' cannot be decreased anymore (i.e., when it reaches its lowest value

of zero), which happens when the predetermined number of search attempts have

13

been exhausted. Usually, termination due to the latter case is an indication that
the scheduling temperature needs to be remodeled or/and a larger number of search

attempts be allowed.

x104 SA -- Choice of Scheduling Temperature
16 . . T :

141 .
12 9

10 -

Match Error
o0

00 260 400 600 800 1000

Number of iterations = 851

Figure 3.4 Plot Illustrating the Result of A Low Scheduling Temperature T'. Herein
the Solution Gets “Stuck” at A Local Minima for Over 750 Iterations.

3.3 Simulation Results
Experimental outcomes depicting average results have been presented. For any
particular simulation the same may vary by 20 to 30 iterations on an average.
First we present results which compare the SA technique with “hill-climbing”, and

“exhaustive search,” for the ideal case, i.e.,

e clean and complete pattern set.

14

[rAlgorithm used | Tterations | Matching | Error |
Exhaustive search refer eqn. (15) | 100% ~0
Hillclimbing > <25 % >3 x 104

10,000 (rarely
converges)
SA ~ 130 100% ~ 0

Table 3.1 SA Results Compared with “Hill-climbing” and “Exhaustive Search”

Next, we present results for four cases; namely, (1) clean and complete pattern
sct, (2) clean and incomplete pattern set, (3) noisy and complete pattern set, and (4)
noisy and incomplete pattern set. We define as an incomplete pattern set wherein
2 observed points are missing out of a total of 12 points and as a noisy pattern set
wherein the observed points have been corrupted with a Gaussian random variable
of mean = 0 and variance = 4.

The results mentioned in Table 3.2 are depicted by their respective model pattern,

[Case | Iterations | Matching | Error JI
(1) clean and complete 105 100% =0
(2) clean and incomplete | 298 100% ~0
(3) nousy and complete 197 100% ~ 0
(4) noisy and incomplete | 500 100% ~0

Table 3.2 SA Results Compared for the Mentioned Incomplete and Noisy Cases
observed pattern, and match error plots, for each of the four cases. One should note
that a complete match is always obtained regardless of the quality of the data set; it
is almost always possible to realize this at the cost of a slightly higher convergence
value, using SA. Situations where this might fail are those solution spaces wherein
exist local optimas of nearly the same low energy as that of the global optima,
regardless of the physical (co-ordinate) proximity. This happens because at energies
close to the global optima the low scheduling temperature might not allow further

“breadth first search” to be incorporated in the algorithm.

SA -- Model Point Pattern
500 Y T T T

450} 4 -

350} -
12

10
2501 11 b

2

150 y .
100[- 6 '3 4

50} . .

0 100 200 300 400 500

Figure 3.5 Case 1: Model Point Pattern

SA -- Observed Point Pattern
500 S T ——T— T 7 T

.

44
J1

300} .

100(E

6 .10

-100 : . L s L
0 200 400 600 800 1000 1200

Figure 3.6 Case 1: Observed Pattern = T[Model Pattern]

15

16

x104 SA - Search Plot Depicting Convergence
7 T T T T T

Match Error

0 1 1 1 R
0 20 40 60 80 100 120

Number of iterations = 105

Figure 3.7 Case 1: Plot Showing the Error Convergence with Each Iteration for the
Clean and Complete Pattern Set.

SA - Model Point Pattern

450} . :

0 100 200 300 400 500

Figure 3.8 Case 2: Model Point Pattern

SA -- Observed Point Pattern

350+ 6 .
300} 1

2501 2 -

50’~ 10]

0 100 200 300 400 500 600 700

Figure 3.9 Case 2: Observed Pattern = T[Model Pattern] - 2 Points

17

18

x105 SA -- Search Plot Depicting Convergence
1 . 8 T T T T T — T

1.6} .

Match Error

0 1

0 50 100 150 200 250 300 350

Number of iterations = 298

Figure 3.10 Case 2: Plot Showing the Error Convergence with Each Iteration for
the Clean and Incomplete Pattern Set.

12
SA ~ Model Point Pattern
500 T T T v

350 6 1 b

150+ 5

IOOL .

0 100 200 300 400 500

Figure 3.11 Case 3: Model Point Pattern

SA -- Observed Point Pattern

800 - ~r T — —

"4
600 - W
6
7 .
400} . E
8
200+ 0 1 * w
3
0f * E
2
2001 12]
200 . .5 9
_4m 1 1 1 i) i
0 200 400 600 800 1600 1200

Figure 3.12 Case 3: Observed Pattern = T[Model Pattern] + Noise

20

x104 SA -- Search Plot Depicting Convergence
1 O T T T T

Match Error

0 i 1 1
0 50 100 150 200 250

Number of iterations = 197

Figure 3.13 Case 3: Plot Showing the Error Convergence with Each Iteration for
the Noisy and Complete Pattern Set.

SA ~ Model Point Pattern

450}

350+

150+

100

T T T

Figure 3.14 Case 4: Model Point Pattern

SA -- Observed Point Pattern

g

g

100

$ & 8

2'8

21

Figure 3.15 Case 4: Observed Pattern = T[Model Pattern] + Noise - 2 Points

22

x104 SA -- Search Plot Depicting Convergence
16 T T i T

14

T
L

12

T
—1

Match Error
o]

i i 1

0 L
0 100 200 300 400 500

Number of iterations = 500

Figure 3.16 Case 4: Plot Showing the Error Convergence with Each Iteration for
the Noisy and Incomplete Pattern Set.

23

3.4 Summary
A heuristic method for point pattern recognition is introduced. The robustness
(ability to carry out the matching efliciently even in case of noisy or/and incomplete
observed point sets) and fast convergence of the algorithm is established through
the presented results. As mentioned earlier, the SA algorithm yields results that are
close to the global optima. Exhaustive search would surely get to the global optima,

but it would require a total of

(m—n:z-i—z)(niz)(n—l)' for n < m,
1=0

and
= n m
> :) (m =) forn2>m (3.7
i=0 m-—1 t
search nodes to be evaluated. Hill-climbing, on the other hand, depends on the
starting point of the search space, and the search herein is almost always not able
to converge to an optimal (or even close to optimal) global minima, as it always
gets stuck in a local minima, there being no mechanism to escape the same in this

algorithm.

CHAPTER 4

EVOLUTIONARY PROGRAMMING

4.1 Introduction
Evolutionary Programming stemmed as a result of limitations inherent in the theory
of classical Genetic Algorithms. ! As will be made clear shortly, GAs evolved into
Evolutionary Programs as a result of multiple modifications, incorporating domain
knowledge with a view to performance enhancement of the former. To understand
and appreciate the mechanism of EPs, one needs to recognize the strengths and
weaknesses of GAs. The following sections introduce the reader to the practical
(implementation) aspects of the GA, with comments on its shortcomings. Where
appropriate, the EP approach as applied to our task of point pattern matching, will
be introduced and built upon. A detailed discussion of the mathematical foundations
of GAs can be found in [26]. It should be mentioned that adequate theoretical basis

for the theory of EPs is not established as of this work [27],

“... On the other hand we have to admit the poor theoretical basis of
evolutionary programs.”
nevertheless, EPs outperform GAs significantly, as will be evident from the results

presented herein.

4.2 Genetic Algorithms - Precursors to Evolutionary Programs
As opposed to conventional search techniques which evaluate potential search nodes
from the solution space sequentially, a genetic algorithm evaluates them simulta-
neously; that is to say, genetic algorithms are parallel operationally and algorith-
mically. They [26] were first introduced by John Holland, his colleagues, and his

students at the University of Michigan. They are a class of general purpose (domain

1The term Genetic Algorithm (GA) refers to classical Genetic Algorithms, unless stated
otherwise.

24

25

(1frfoftfofrjofifoflofifi]

Figure 4.1 GA- Coded String: Binary Representation of Integer Values

independent) search methods which strike a remarkable balance between explo-
ration and exploitation of the search space. Herein, each search node or potential
chromosome is represented as a string, and with subsequent iterations search nodes
are arrived at by using genetic operators on these strings. A search node replaces
the previous one if it is judged as a better chromosome. Finally, after many such
iterations one arrives at an optimal search node which is taken to represent the
best assignment. This technique is based on the mechanics of natural selection and
genetics combining the notion of survival of the fittest; random and yet structured
search; and parallel evaluation of search nodes in the solution space. A genetic

algorithm consists of

e a coded binary string representation (genes) of the search node in the solution

space,

e an evaluation function that plays the role of the environment, rating chromo-

somes in terms of their “fitness,”
e fitness function to evaluate the search nodes,
e a set of binary genetic operators for generating new search nodes, and

e a stochastic assignment to control the genetic operators.

Suppose, we want to represent values 0 to 4. Consider an arbitrary binary string
representation, as in Fig. 4.1. Each group of three bits represents an integer value,
namely, 6, 5, 2, and 4. We see that illegal codes are inherent in this scheme and
it would need repair algorithms to be able to work efficiently. The coding of the

problem often moves the GA to operate in a different space than that of the problem

26

itself. The application of genetic operators may again give rise to strings outside the
solution space, requiring recursive use of repair algorithms which results in wasteful

computational resources.

In 1985 De Jong remarked [51]:

“What should one do when elements in the space to be searched are
most naturally represented by more complex data structures such as
arrays, trees, digraphs, etc. Should one attempt to ‘linearize’ them into
a string representation or are there ways to creatively redefine mutation
and crossover to work directly on such structures. I am unaware of any

progress in this area.”

Realizing the above major shortcoming of GAs, reports citing implementations of
modified GAs appeared, e.g., “A Modified Genetic Algorithm ... ” [52], “Specialized
Genetic Algorithms ... ” [53], “A Non-Standard Genetic Algorithm ... ” [54], paving
the way for a technique coined as Evolutionary Programs.

Evolution programs can be perceived as custom genetic algorithms. Classical
genetic algorithms operate on fixed length binary strings, which need not be the case
for evolution programs. Also, evolution programs usually incorporate a variety of
“genetic” operators, whereas genetic algorithms use binary crossover and mutation.
The major factor behind the failure of GAs is the same one responsible for their
success: domain independence. EPs, by virtue of being domain dependent, result
in a better constraint satisfaction. The construction of an EP framework for any

problem can be separated into four distinct and yet related tasks:

e choice of the data-structure which represents the solution domain most

naturally and efficiently,

o the design of problem specific, knowledge-based genetic operators incorporating

environment information with each iteration,

e choice or formulation of a robust fitness function enabling efficient evaluation

of potential chromosomes, and

27

o preferably, dynamic determination of the stochastic parameters controlling the

genetic operators in order to ‘explore’ and ‘exploit’ efficiently.

The algorithm for an evolutionary program may be depicted [27] as follows:

The structure of an Evolution Program

procedure evolutionary programming
begin
t—20
initialize P(t)
evaluate P(t)
while (not termination-condition) do
begin
te—t+4+1
select P(t) from P(t - 1)
recombine P(t)
evaluate P(t)
end
end

Evolution Programs outperform other traditional algorithms because:

e they work directly on the data-structure of the problem domain and not on

any coding or linearization of the same

e they search from a genetically-rich population of chromosomes rather than
evaluating genetically-poor population as in the case of GAs or individual

solution points as in the case of linear algorithms

o they effectively use payoff (objective function) information built into the

knowledge-based genetic operators

28

e they use probabilistic and knowledge-based transition rules and not arbitrary

deterministic rules.

4.2.1 The Point Pattern Matching Procedure

The core of any Evolutionary Program consists of the following necessary steps as

implemented herein (detailed descriptions are provided in the following subsections):

1.

ot

Initialization of the starting population: The pool of an initial population of

the search nodes is randomly generated.

Cost evaluation of strings in the population: The fitness function determines

the fitness of each chromosome in the population space.

Reproduction of offspring: Based on the fitness values of strings in the
population, a population of strings is produced as outlined in the selection

strategy for EP.

Re-combination of reproduced offspring: The reproduced population then
undergoes a subsequent re-combination using genetic operations such as

crossover, mutation and inversion.

. Convergence criteria: Steps (2)-(4) are repeated until convergence or a

predefined number of generations have been reached.

From the above description, we can see that the notion of survival of the fittest,

passing good genes to the next generation of strings, and combining different strings

to explore new search nodes are present in an evolutionary program.

29

4.3 Implementation of EP to Point Pattern Matching
To map the task of pattern matching onto the EP framework, we need to define a
representation scheme, a fitness function, a set of genetic operators, and the rules to

control the genetic operators.

4.3.1 Representation of Solution Space
As we are interested in finding the best assignment, a data-structure depicting
assignments between the model points and the observed points forms the most ideal

representation in that it:

e is a simple and direct labeling and assignment in the problem domain and a

compact (minimum storage space) representation of the pattern points,

e is robust as it spans the entire range of all possible assignments and hence the
solution space, without the possibility of illegal assignments, with the natural

provision of a null label in case of incomplete pattern sets, and

e can be efficiently operated on by genetic operators yielding only valid
assignments, thereby avoiding the need for computationally expensive repair

algorithms.

Thus by using a string representation as explained in section (3.2.1), Fig. 3.1, each
assignment is depicted by a label; that is, as discussed for the case of SA, each
string indicates which of the model points are assigned to the observed points, and

vice-versa.

4.3.2 Population Size
Theoretically, the number of chromosomes available at each iteration should be
iufinite in order to realize the highest degree of operational parallelism of the

evolution program. Practically, this is impossible and a reasonable balance has

30

to be struck between the number of such available chromosomes and computa-
tional resources. Moreover, desired are the eflicient utilization of the available
population size by avoiding overcrowding, and maintaining a pool of chromosomes
which is significantly exploratory in nature initially and evolves into an exploitative
search of the solution domain. In our algorithm, the size chosen is 30. Efficient
utilization of this population space is brought about by an efficient reproduction
of the chromosome strings based on deterministic, knowledge-based, stochastic and

heuristic genetic operators.

4.3.3 Initial Population
The initial population is a set of chromosomes generated by randomly meeting
the onec-to-one mapping constraint and it contains both good and bad strings

(assignments). The population size is chosen to be N = 30.

4.3.4 Fitness Function

A customized fitness (objective or cost) function is necessary to ensure efficient
utilization of computational resources and quick convergence to a global optima.
For our problem it should incorporate the error (based on the optimal parameters)
due to improper assignments and also reflect the existence of incomplete data sets.
Furthermore, a good assignment should yield high fitness values and vice-versa. The
match error as defined earlicr in equation (2.8) meets all the above requirements and
is used as the fitness evaluator. A fitness value that is inversely proportional to the

maitch error is used.

4.3.5 Reproduction
After each iteration the solution set undergoes a selection process based on the
principal of survival of the more fit individual, whereby good chromosomes are chosen

to contribute their gene inherited knowledge to form potential chromosomes for the

31

next generation after undergoing re-combination. This selection process in a GA is

quite straightforward wherein the selection is performed as follows:

e Normalize the fitness value of each string such that the sum of the fitness values

of all the strings in the current population equal 1.

e Partition a unit-length scale into N (the number of population size) slots, each
slot size in proportion to the normalized fitness value of a string in the current

population.

e Generate N random numbers ranging from 0 to 1 and see where the number
falls on the scale. The string corresponding to the division where a random

number falls is selected to be a member for the new population.?

e The best chromosome is always passed on to the next population pool, deter-

ministically with a probability 1.

The above technique has its drawbacks. A chromosome whose fitness is considerably
higher than the rest of the population stands a good chance of being selected many
times according to the above mechanism, thereby overcrowding the population space
and also narrowing down the search space considerably as its repetitive selection
(or the repetitive selection of a few of its kind) would force out potential promising
chromosomes from the population pool, thereby throwing away useful genetic infor-
mation! Furthermore, a large number of the same set of chromosomes results
in wasteful use of computational resources (as the information utilization factor
from a good chromosome is not infinite) along with an effective reduction in the
population space utilization; infinite population size being one of the requirements

of the theoretical foundations of the GAs.

2Note that strings which have higher fitness values and hence good gene representation
are more likely reproduced in the new population.

32

To overcome these aforementioned shortcomings of genetic algorithms, the
evolutionary programming technique presented herein makes use of a particular
mechanism to bring about efficient offspring reproduction. Not only does the
following remedy the previous mechanism’s shortcomings [27], but it also has its
advantages that contribute significantly to faster convergence leading decidedly to a

global optima:

1. Select r (not necessary distinct) chromosomes from P(t) as parents for repro-
duction. This selection is based on the selection technique described above
utilizing relative fitness. This brings in r chromosomes with good genetic infor-

madtion.

2. Select r (distinct) chromosomes from P(t) to die (independent of the above
selection). This is achieved by deterministically choosing the best (N — r)
individuals from the population and passing them on to the reproduction pool

and leaving the other r chromosomes to die.

3. From this reproduction pool of N strings obtained from P(t), as a result of the
above steps, the r parents from the first step are now recombined (by being

operated upon exclusively by one of the genetic operators) to yield r offspring.

4. The new population P(t + 1) is then formed from the (N — r) chromosomes
from the second step and the r offspring from the third step. This completes
the selection process of the new population, an important preprocessing step
before re-combination. The advantage of this technique is providing for
re-combination r offspring generated from highly fit parents, each offspring
different from the other in some manner. This mechanism results in formation
of offspring which may have a slightly higher value than the parents and yet
be passed on to the next generation pool for re-combination. This may be

taken as analogous to the concept of occasionally accepting a chromosome

33

with higher fitness, as in simulated annealing. This concept is crucial to fast

convergence.

Furthermore, by virtue of the second step, the best chromosome is always
passed on to the new generation along with an (N — r — 1) number of highly fit
individuals. From the above discussion it is clear that this population space is richer
in genetic information and has a greater potential to produce offspring, thus leading

decidedly to global optima.

4.3.6 Genetic Operators

The genetic or the re-combination operators control the means by which new infor-
mation is formed and also existing information exchanged between chromosomes to
facilitate their subsequent evolution into chromosomes with higher survival proba-
bility with every iteration. For the EP algorithm, three such operators are used,
which facilitate a fast evolution leading to quick and optimal convergence. It is a
point to observe that all operators satisfy the constraint that the mapping is single
and there is no need for repair algorithms. Each of these will now be discussed in

detail.

4.3.6.1 Mutation In a GA the concept of mutation refers to randomly flipping
each bit of a chromosome to one or zero. Moreover, the probability of mutation
is kept low since its random nature and successive implementation on each gene of
the chromosome serves more to explore the solution space rather than exploit it.
Contrary to the above notion the mutation operator implemented herein operates
once on a chromosome on a single gene, mostly chosen deterministically based on the
knowledge extracted from the fitness computation of each gene of the assignment.
Thus, the role of this operator is more that of exploitation rather than exploration; it

is then implicit that this knowledge-based operator be applied with high probability.

34

Furthermore, as mutation herein is only on a single gene basis per chromosome, as
opposed to generating a probability and testing every bit for mutation as in GA,
the former is much more efficient and faster. Moreover as the string size grows (for
real-world cases) the latter technique is computationally expensive. There are three
types of mutation operators defined for our problem and each is used with a varying

degree as explained below.

Mutation-1 Herein the gene contributing the most to the square error of the
chromosome, as per equation (2.5), is chosen to undergo mutation; it is
exchanged with the gene with the next highest contribution to the overall
square error. This is deterministic and is always performed on the best
chromosome of the population, at every iteration. It is also performed with
some probability on the other chromosomes within the population. The
rationale behind this can be explained by considering the following example.

Suppose after a number of iterations we have the string shown in Fig. 4.2. It

[1]2|3]4]5]9]7]8[6[10]11]12]|

Figure 4.2 Solution Depicting the Need for Mutation-1 Operator

is evident that the genes in positions nine and six need to be mutated in order
to arrive at the optimal match. This is efficiently achieved by the technique
described above as only these genes are likely to contribute most to the square
error. Had conventional mutation been carried out on this string, the proba-
bility that it selected for swapping, the sixth gene followed by the choice of the
ninth gene, would be very low. Furthermore, convergence would result only
if the mutation operator left the other genes untouched. Thus, it is evident
that a large number of iterations may be required for convergence, whereas in

mutation-1 convergence would be obtained in the next iteration with proba-

35

bility one. Therefore, the contribution of this operator to convergence speed is

quite significant prior to the stages of achieving global optima.

Mutation-2 The selection of the first gene remains the same, as in the case of
mutation-1. The second gene is chosen randomly from the chromosome string
and is mutated with the first. The need for this version of the operator arises
wherein a gene with the highest error contribution needs to be mutated with
a gene other than the one with the next highest error contribution. This
is possible when three or more genes are not in their proper positions. This
operator may also be devised such that the second gene selected is the one with
the third highest error contribution. In fact, one could extend this principle
to include all combinations of the genes with high contributions to the square
error. The search would then be faster. For our illustrative case of 12 points,
this extension has not been implemented as a random pick of one right gene
is highly possible considering the population size. This technique may yield
significant improvement in real-world cases wherein the strings are large and
t he knowledge and successful manipulation of high error contributing genes

might result in a significant saving of computational resources.

Mutation-3 It may happen that mutating the highest error contributing gene with
any other gene will not result in a proper assignment and increase signifi-
cantly the overall square error. This situation would render the above two
variations useless and the solution would get stuck in a local optima. The
mutation-3 version of mutation remedies this situation by selecting both the
genes randomly for mutation. Thus, its contribution is more of an exploratory
nature rather than to exploit the solution space; hence its probability of
execution is kept quite low. Nevertheless, it plays an important role, as it

provides a mechanism to escape from such apparent local optima.

36

4.3.6.2 Uniform Crossover The classical Crossover operator is an effective tool
when the genetic order in a chromosome needs to be preserved. Digressing briefly
from the topic of point pattern matching to the dilemma of The Travelling Salesman,
wherein a salesman needs to visit each city exactly once and return to the starting
point, it is the order of the cities that is important and not their respective positions

as illustrated by identical tours.

[1[3]2]5[4]7[8]6]
(4]7]8]6]1]3]2]5]

Figure 4.3 Identical Tours of a TSP

It should be clear, then, that crossover results in effectively combining good
partial tours with lower costs from two or more complete tours to form another
complete tour with a lower anticipated cost. Returning back to our task of point
pattern matching, it should then be implicit that a high crossover rate will result
in poor performance, as here the genetic positions and not the genetic order is
important. This is implicit in the representation wherein, for example, a value of 5
in cell 7 means an assignment of the 5th observed point to the Tth observed point
and hence is position dependent. However, each positionwise mapping does form a
complete assignment, based on which the square error is computed, and this aspect
may make it seem that the individual error is dependent on the relative order of the
points. This is not true because preserving the partial genetic order and changing
their positions results in a fitness change which provides a mechanism of changing
connectivity order along the length of the chromosome; a useful concept in The
Travelling Salesman Problem but an useless one for our task. Furthermore, with the
age of the population it is noticed that the individual genes need to be exchanged

with other individual genes, and not an ordered group of genes with another ordered

37

group of genes. Thus, the importance of the crossover operator is not pronounced

for this problem.

However, in large solution representations, where the points are quite close by
or cluttered in groups, a clustering of neighboring points might occur (as the low
Euclidean distance between them results in an apparently optimal set of transfor-
mation parameters) leading to local minimas. The crossover operator may then be
useful, but these cases are rare and usually don’t survive long enough to hamper
the convergence speed. In fact, as soon as the central gene from the cluster changes
position, the entire solution shifts to a different search space, driven by the drastic

change in the optimal transform parameters.

It is interesting to note that when incomplete data sets are being considered,
situations do arise where the positional assignments of a group of genes appears
shifted by one or two gene positions (depending on the number of missing points)
and the use of the crossover operator seems promising, but then choosing the correct
crossover site randomly is a very low probability. Moreover, the determination of
the fact that some genes have shifted assignments is not possible because no a prior:
knowledge of the sequential order of the pattern sets is provided to the algorithm.
Thus, interestingly, even though this situation is evident to an observer viewing the

iterations, not much can be done to remedy it.

The above discussion of the crossover operator makes it clear that any
segment-based operator (or order-preserving operator, for that matter) is futile
and one should design a problem specific, position-based crossover that results in
positionwise-genetic-information interchange among chromosomes. Based on the
concept of generalization of a multi-point crossover [55] [56], a problem specific

uniform crossover is defined as follows:

38

e select two strings for crossover based on the probability of the crossover

operator

e for each gene position in the 1st chromosome, if the error contribution of the
gene is high relative to the other genes, and the error contribution of the
corresponding gene in the 2nd chromosome is low relative to the other genes
of this chromosome, copy the gene from second chromosome into the corre-
sponding position of the first chromosome; simultaneously replace the original
location occupied by the second chromosome gene in the first chromosome by

the replaced gene (to preserve one-to-one mapping)
e repeat the above step for the 2nd chromosome

This crossover generates two offspring from two parents preserving the good gene
posttions and overwriting the bad gene positions with the good gene positions from
the other chromosome. As is evident, this form of crossover can be very powerful
since it can replace multiple gene positions leading decidedly to a lower error value.
Its use in real-world application would significantly improve the convergence speed
and with some fine tuning of the error comparisons, this operator can also be used
effectively to escape local minimas, as the mechanism of overwriting a higher error
contributing gene with a lower error contributing gene would surely result in an
improvement of the resulting offsprings. According to [27] it has been emphasized
that the role of the mutation operators is stronger citing [57] than that of the
crossover operator to the point of ignoring it altogether, but it seems that such
a generalization is not applicable since in any EP the operators are most useful when

they embody knowledge-based domain information, and because of their problem

dependent nature their efficient design depends on the implementor of the algorithm.

39

4.3.6.3 Inversion The Inversion operator brings about a complete change in
the search space being traversed as it carries out an (n + 1) complement of the
chromosome string it operates upon. It is best to shut off the probability of this
operator with the age of the population (provided that a certain meaningful fitness
value has been obtained); the use of this operator would then render the previous
iterations futile, as it is analogous to generating a new search node altogether without
the concept of evolution from the previous iteration. However, the use of this
operator can be quite meaningful if the solution seems stuck for over a large number
of iterations. Moreover, based on simulations, it is somehow felt that this operator
would prove useful if there exists some geometric axis-symmetry between the pattern

sets resulting in a mirror image assignment for ncar points, resulting in a local optima.

4.4 Simulation Results
Experimental results demonstrate that the EP technique highly outperforms all other
conventional algorithms in convergence speed. This is because of the exploitation
of domain-knowledge by the genetic operators and the elimination of prohibitively
inefficient computing environments inherent in other algorithms. The results tend
to substantiate the robustness of the proposed approach using EP for point pattern
matching, as even with high error and missing points the convergence speed docs
not undergo significant degradation. The new versions of mutation and crossover
operators defined are the instrumental factors contributing to the speed of the
algorithm. A large number of simulations, which can be categorized into several
cases, has been carried out. For illustrative purposes, results using four point patterns
sets, each consisting of 12 points are shown and tabulated. Average results have been
presented; best cases have iteration values around 6 and worst cases go up to iteration

values of around 30 (provided the solution does not get stuck in a local minima).

40

| Case | Iterations | Matching | Error 1
(1) clean and complete 8 100% 0
(2) clean and incomplete | 11 100% 0
(3) noisy and complete | 6 100% 43.62
(4) noisy and incomplete | 12 100% 90.6721

Table 4.1 EP Results Compared for the Mentioned Incomplete and Noisy Cases
We consider four cases, namely:

e Case 1: Observed Pattern = T[Model Pattern].
Scale factor = 3; Rotation = = /4; translation in the x-axis = 100;

translation in the y-axis = 300.

e Case 2: Observed Pattern = T[Model Pattern] - n points.
Scale factor = 3; Rotation = 7/4; translation in the x-axis = 100; translation

in the y-axis = 300; n = 3; 2nd, 5th and 10th point is missing.

o Case 3: Observed Pattern = T[Model Pattern] + noise.
Scale factor = 3; Rotation = 7 /4; translation in the x-axis = 100; translation
in the y-axis = 300; Gaussian noise with zero mean and variance equal nine is

introduced into the observed point pattern.

e Case 4: Observed Pattern = T[Model Pattern] + noise - n points.
Scale factor = 3; Rotation = 7 /4; translation in the x-axis = 100;
translation in the y-axis = 300; Gaussian noise with zero mean and variance
equal nine is introduced into the observed point pattern; n = 3; 2nd, 10th and

11th point is missing.

The following pages present the plots of model and observed points followed
by the convergence and error plots for each of the above cases. They should be self

explanatory.

300

250}
200
150}

100

o1

o6

o107]

02
o9

o5
o012

o1t o8
o3

1

100 200
Model Points

Figure 4.4 Case 1: Model Point Pattern

800

4001

2001

* 1 J

*9 107)
* &
*12
*11

x4

*2 4
x 8

*31

Figure 4.5 Case 1: Observed Pattern = T[Model Pattern]

200 400 600 800 1000 1200 1400 1600

Observed Points

300 400 500

41

A2

1 A
\erations » 8
Figure 4.6 Cas® 1: Plot Showing the Rapid Trrof Convergence with Fach teration
Convergence grror = o

3°‘““°“5"3° 00 erations =8
Titness Values of golutions for Fach of

06
250} o107 .
200}t o4 1
o1
150 02
09
ob
100} 1
012
50f |
o11 o8
o3
% 100 200 300 400 500
Model Points
Figure 4.8 Case 2: Model Point Pattern
Match =102304567089
* 1

600 1

x4
400t 7 x5 1
200" .o 1

X8
of |
*3
-200¢ 1
400" 1
*6
x2
-600 L i L 1 L L
0 200 400 600 800 1000 1200 1400
Observed Paints

Figure 4.9 Case 2: Observed Pattern = T[Model Pattern] - 3 Points

43

44

Convergence Error = 0

12

Iterations =11

! Il 1 L 1 (=)

16

14}

1

N

-
60+0

o @© ©o < (Y] o

-—

662p°'9 = sseulid

Figure 4.10 Case 2: Plot Showing the Rapid Error Convergence with Each Iteration

Convergence Error = 0

lterations = 11

Solutions = 30

-]
(=}
Pt

x

4 7 7 7

A
w ~ N (=] o]
]

©
60+96621'9 = sselqly

Figure 4.11 Case 2: Mesh Plot Showing the Fitness Values of Solutions for Fach

of the 11 Iterations

300 T T T T
o6

250! o107 .

2001 o4 1
01

1501
o9

100} °5 1
o012

50 .
of1 o8
03

0 100 200 300 400 500
Model Points

Figure 4.12 Case 3: Model Point Pattern

8°c T T T T T T T
x1

400+ *10}*6]
%9
*5

2001 %12 4
*11

%4

*8

*3

_600 1 1 1] 1 i 1
0 200 400 600 800 1000 1200 1400 1600
Observed Points

Figure 4.13 Case 3: Observed Pattern = T[Model Pattern] + Noise

46

x10° Convergence Error = 43.62

1 2 3 4 5 6
lterations =6

Figure 4.14 Case 3: Plot Showing the Rapid Error Convergence with Each Iteration

Convergence Error = 43.62

0.025+

0.02

0229

> 0.015+

0.014

Fitness = 0

0.005+

Solutions = 30 0 1

Iterations = 6

Figure 4.15 Case 3: Mesh Plot Showing the Fitness Values of Solutions for Each
of the 6 Iterations

300 ‘ . . .
[oX:}
250} o107 ;
200} 04]
o1
150} 02
09
o5
100(o012
so}]
o1 o8
03
% 100 200 300 400 500
Mode! Points
Figure 4.16 Case 4: Model Point Pattern
Match= 102345678009
800 . — - . , .
*1
600 1
*
400f 8 x6" o .
%4
200' *9 "
o+]
*B
200} 1
-400} _
x7
600 1 i 1 1 1 *2 1
o 200 400 600 800 1000 1200 1400

Observed Points

47

Figure 4.17 Case 4: Observed Pattern = T[Model Pattern] + Noise - 3 Points

48

o
4

6
lterations = 12

Convergence Error = 90.6721
4

Each Weration

Error Convergence with

18 Case 4: Plot Showing the Rapid

Figure 4.

Convergence Error = 90.6721

Wterations = 12

of the 12 Tterations

49

4.5 Summary

A highly robust, knowledge-based and efficient technique has been introduced as a
new approach to point pattern recognition. This technique has the uncanny ability
to perform without significant degradation in the presence of noise and in the absence
of complete pattern sets. Additionally, pattern sets with a higher number of model
points have been worked on and the results are quite interesting. As mentioned
in the previous sections, the involvement of some otherwise lesser used genetic
operators becomes quite significant as the data set increases. The robustness and fast
convergence rates speak highly of the proposed algorithm. To find the best match
between a set of m model points and a set of n observed points, the algorithm only
neceds to evaluate N x G search nodes where N is the population size and G is the
number of generations at which the algorithm converges or stops. It should be noted
that not all search nodes are unique as multiple copies of a good chromosome do
exist due to the very nature of the evolution program.

There is no unique way of predicting the probabilities of the reordering
(crossover), mutation, and inversion operations. The most efficient use of these
operators would result from dynamic variation of the operation probability. This
gives a greater control over the utilization of the environment knowledge with
increase in the age of the population. The probability is best determined heuris-
tically and also depends on the strength and the capability (the amount of knowledge
used effectively) of the operator in question. The results presented herein are from
an illustrative point of view only and the algorithm is not limited to 2-D pattern
sets or the similarity transformation. It can be applied to n-dimensions and to any

transformation.

CHAPTER 5
MEAN FIELD ANNEALING

5.1 Introduction
The Hopfield neural network is a recurrent network that has been successfully applied
to many optimization problems [28]. Using the Hopfield neural network to solve an

optimization problem involves two major tasks:

1. Constructing an appropriate Hopfield Energy Function for the problem.

2. Adopting and designing a recursive mechanism for minimizing the energy

function.

The construction of the energy function should incorporate all aspects (i.e.,
constraints) of the solution domain, which, when met, tend to lower the energy
of the function, along with the cost. This gives an indication of the feasibility of
the potential solution. For the minimization of the Hopfield Energy Function, Mean
Field Annealing (MFA) has been proposed [29] [30] and the approach has been

demonstrated to be robust and efficient.

5.2 The Hopfield Energy Function

One of the most important contributions in Hopfield’s pioneering work [28] [32] [33] is
the concept of an energy function. Hopfield and Tank [28] formulated the Travelling
Salesman Problem (TSP) to a highly interconnected neural network,! and made
exploratory numerical studies on modest-size problems by minimizing the Hopfield
energy associated with the network.

The most important property of an energy function is that it should decrease
dynamically as the system evolves, and must be minimized once a stable or optimum

state is reached.

!Neural networks are being considered as a good alternative for solving difficult
optimization problems [31].

50

51

5.3 The Hopfield Neural Network
A simple Hopfield neural network is depicted by the block diagram shown in Fig.

5.1.

000

%
S

Figure 5.1 The Hopfield Neural Network Model

After each iteration,

e neuron excitation = weighted sum of its inputs,
EJ' = Zw,-jS,- + wjo, (5.1)
i#]
where FEj; is defined as the jth component of the energy function; w;; is the

weight connection between neuron ¢ and neuron j; S; is the state of neuron 2

e S;, the output of a neuron, equals one if the weighted sum of its inputs is

greater than a threshold wjo, and zero otherwise:

L, i E; >0,
5= { 0 otherwise (52)

52

¢ cquilibrium is obtained when all the constraints (weights) are met

The Hopfield neural network can be operated in two modes. In the first mode,
where the state of the neurons is assumed known, the corresponding weights of the
connections are to be determined. In the second mode, where the connections among
the neurons are given, the corresponding states of the neurons (i.e., some specific
constraints or requirements are met) are to be determined. The second mode is used

for our task.

5.4 Mean Field Theory
The mean field theory approximation is a well known technique in physics. It was
first introduced for neural network applications by Peterson [37]. A brief description
of the mean field theory, as relevant to our task, is given below. For an elaborate
analysis, readers are referred to [29] [30] [36] [37] [38] [39].

The Mean Field Theory was derived incorporating the SA technique of thermo-
static operation, which schedules the decrease of temperature and a relaxation
process that searches for the mean value of the solution as the equilibrium solution,
at each temperature. Thus the statistical mechanism of thermostatic operation is

maneuvered according to the Boltzmann distribution,

exp[—E(S")/T]

B(S') = 7 , (5.3)
where S’ = one of the possible configurations
E(S) = the energy of the configuration
T = the temperature, and
Z = the partition function given by
Z = ¥ expl—B(S")/T), (5.4)
5

where)" denotes the sum over all possible neuron state configurations.

53

In the MFA theory, we consider the means of the neuron outputs; defined by

V. = < 5>
= I'P(S,'=1)+(O)°P(Si=0)

= P(S5i=1), (5.5)

where the value, S;, is 1 for a neuron that is ON and 0 for a neuron that is OFF;
P(S; = 1) and P(S; = 0) are the probabilities for S; = 1 and S; = 0, respectively;
and V is the mean configuration corresponding to S.

Then the Boltzman Distribution, in terms of means, can be expressed as:

exp[—E(V)/T]

P(V) = 5.6
v) : (56)
as given by equation (5.3). The Local Field may then be defined as
oF
hi = ——, 5.7
a5, (5.7)
wherein
1 ifh; >0
&‘{0 ifh <0 (5-8)
The probability of any neuron S; being “on” or “off” is given by
e FTIT
P(Si = 1) = e_hngT/T T 6h£wFT/T (5'9)
e_hIIMFT/T
P(Si = 0) = e_h')y!FT/T i ehIMFT/Tﬂ (5'10)
where
OF
RMFT = <hi>=<———> (5.11)

oV

wherein the local field h; is approximated by its thermal average (i.c., the mean

field).

54

Combining equation (5.5) and equations (5.9) (5.10) and (5.11), the neuron

outputs may be determined from

hMFT/T
V= —mrrr (5.12)

or, equivalently,
Vi = %[1 + tanh(AMFT /21)). (5.13)

5.5 Modeling the PPM Task onto the Hopfield Network

In brief, the construction of the framework for any problem consists of:
1. Defining an appropriate neuron encoding.

2. Constructing the Hopfield energy function which appropriately reflects the

constraints and costs of the problem.
3. Deriving the mean field equations from the Hopfield Energy Function.

4. Selecting the Lagrange parameters in accordance with the significance of each

component of the encrgy function.
5. Updating the mean field variables by annealing according to a cooling schedule.

The difficulty generally lies in mapping a problem onto a framework that is solvable
by mean field annealing.

In order to employ the MFA algorithm, the task needs to be mapped onto
a neural network. The output of the neurons of the network thus obtained is
then monitored according to the problem specific constraints and cost, embodied
in an energy function. The algorithm proceeds by minimizing this energy function
and at the same time striving to maintain a stable output value for the neurons
in the network, leading to a global optima. This optimal value of the neural net

indicates a mapping between the model and the observed points such that the error

55

is minimum. To incorporate the above strategy, the neurons are encoded to represent

the parameters used in modeling the energy function.

5.5.1 Neuron Encoding
A neuron, i.e., its output, is denoted by V;;, where the subscript ¢ corresponds to
the ith cell (model point) and the subscript j denotes the corresponding cell value

(observed point).

1 if the 7z th model point is matched with
Vij = the j th observed point, (5.14)
0 otherwise.

The Associative Matrix, A, can then be defined as:

an Q12 ' @iNy
az Q2 -+ ANy

A=) .) . R (5.15)
a'NNl aAnNy2 a’NNNN

where

1 if there is an assignment between the
a;; = tth model point and jth observed point. (5.16)
0 otherwise.

For our problem the associative matrix, defined above, must meet certain constraints,

which are described in section (5.6.1).

5.6 Formulation of the Energy Function
As mentioned earlier, the Energy Function is made up of the cost and constraint
terms which, ideally, must characterize the solution space completely in order for

fast convergence to a global minima.

5.6.1 Cost and Constraint Terms

The cost term is modeled as the weighted sum of all outputs V;; times the cost C;;:

E = Y. vicy, (5.17)
i

56

where V;; is the mean of a neuron assigning the 1th model to the jth observed point,
and Cj; is the cost associated with the above defined assignment.

The cost C;; is based on equation (2.5) and is given by the error matrix E:

Cll Cl2 ot CINN
I (5.18)
C.NNl CNN2 e CNNNN

The following are the constraints characterizing the associative matrix completely:

1. The total number of neurons, V;;, that may be ON equal to the number of

observed points, Nop.:

Ey= (3 Vi = Naw)* (5.19)

2. Bach model point can be assigned to only one observed point:

E, = }: Z Z Vi;Vijr (5.20)
P i
3. Similarly, an observed point, once assigned, cannot be assigned to any other

model point:

By =330 VisVai (5.21)

IR
4. Lastly, the requirement that a neuron’s output value be either 1 (ON) or 0

(OFF) is monitored by the following equation:
Ey=33 Vi(1-Vy) (5.22)
7o
The Total Energy is then given by

E=(axE)+(BxE)+(yxE)+(kx E)+(CxEg), (523)

57

where a, 3, v, &, and (are the Lagrange parameters which serve to maintain

a proportional contribution of each of the cost or constraint terms to the energy

function. The choice of the Lagrange parameters is critical because otherwise not all

constraints will be able to contribute proportionately to the energy function, thereby

hampering the convergence speed and/or failing to achieve convergence to a global

minima.

5.7 Evaluation of the Thermal Average

The Thermal Average may then be evaluated as

RFT = <hij>=<—

where

OF,
c’)V,-j
OF,
170% 3
OE,
Vi,
0FE;
oF,
6V,~i

oF

v,

= C"-j,
= 2(2 Z ‘/z] Nob
= Z VIJ'I,

Iy

= Z Vi'J')

ey

= 2(2 Z(l -2 x Vij).

From the above, the Total Thermal Average may then be written as

oF OE,

0F, 0E, 0Ls 0F,

=

aV; ~ Cov;

+ﬂ6K1+76V awj+Can

(5.24)

(5.25)

(5.26)
(5.27)
(5.28)

(5.29)

(5.30)

58

5.8 Cooling Schedule
As is the case with SA, a cooling schedule specifying the initial temperature, the
stopping criterion, the number of iterations at each temperature before moving on

to the next temperature, and a temperature updating rule are required.

5.8.1 Initial Temperature
The initial temperature is preferably chosen just below the critical temperature where
the energy function has a significant low value. The proper choice of this parameter

is essential to preserve computational resources.

5.8.2 Stopping Criterion

The annealing process comes to an end when the following conditions are met.

1. All neuron outputs € [0.0,0.1] or € [0.9,1.0]; signifying that the outputs have

converged to a minimum or maximum value.

2. When
i (Vi)

0.95 :
N > 0.95, (5.31)

where N is the number of neurons with output values € [0.9,1.0].

5.8.3 Number of Iterations at each Temperature
At each temperature, the network is annealed until the following convergence

criterion is met
220 | Vis(t+1) = Vis(1) |< 0.001N,, (5.32)
i

where N,, is the number of neurons with non-zero output values.

59

5.8.4 Temperature Updating Rule

The updating rule is defined exactly as used in SA:
T =To(1 - (n/maz)), (5.33)

where n is the number of iterations at which the temperature is being decreased and
Nmaz 18 the maximum number of iterations after which the annealing is brought to

an end. It should be noted that linear updating is used.

5.9 The Mean Field Annealing Algorithm

The task of annealing can be broken down into the following steps:

1. Initialize the neurons randomly

V; = rand[0, 1]n,;. (5.34)

2. Anneal the network until the saturation criterion, as defined above, is met.

3. At each temperature, iterate the MFT equations until convergence:

MFT

L i
Vij = ?][1 + tanh ZJT ni;]. (5.35)

5.10 Inherent Limitations in the MFA Algorithm
The above formulation of the MFA infrastructure could not be applied to the task
of point pattern matching because of the following limitations inherent in the MFA

algorithm:

1. Judging from step (1) in section (5.9) we see that each neuron will have an initial
value € [0,1] and will violate the implicit requirement of the problem; namely,
any valid assignment should form a one-to-one mapping from the observed to

the model points.

60

2. During the course of the algorithm as well, the constraint of one-to-one mapping
will never be met, as shown by the following illustrative output of the neurons

during a sample run:

[0.51 000 1 028 039 079 1 031 0.38 0.94 052 045
0.88 0.77 0.76 0.77 0.60 069 1 0.13 027 032 1 081
043 0.73 062 078 1 0.75 058 052 1 046 0.01 0.02
046 0.31 0.21 0.42 0.82 0.66 0.32 0.31 036 051 027 1
080 1 0.21 0.28 0.15 063 0.72 1 0.25 0.66 0.64 0.70
036 1 008 0.19 098 1 014 051 1 040 0.54 0.7
0.21 068 038 0.01 025 059 0.16 043 1 060 0.91 043
1 020 095 0.19 0.23 0.22 0.48 0.25 0.51 0.98 0.26 0.58
0.15 0.83 094 098 0.10 0.31 0.86 0.37 0.72 1 1 0.75
063 1 039 1 021 069 1 039 0.72 067 0.24 0.99
0.61 082 1 0.81 063 011 0.55 044 094 034 0.84 0.69

[0.00 1 1 013 069 0.7 0.73 0.47 0.46 0.54 0.69 0.27

Here each row, ¢, corresponds to a model point and each column, j, to an
observed point. It is clear that one-to-one mapping is not preserved as a model

point is assigned to more than one observed point.

3. The absence of desired mapping makes it impossible to calculate the optimal
parameter vectors and hence the cost C;;, which forms the error matrix as
defined in equation (5.18), cannot be computed. So the algorithm fails as soon
as the constraints of the solution domain are not met because further annealing

is impossible as the required parameters become unavailable.

4. There is no remedy to this problem in the algorithm, as constraints can never

be matched throughout the algorithm; in fact, the necessity of the constraint as

61

an algorithm parameter would have been obviated had there been a technique

to satisfy it with probability one.

5.11 Summary
From the discussions above it is clear that this technique cannot be applied to our
task of point pattern matching. Had the cost function not been dependent on the
constraint of one-to-one mapping the MFA technique could have proved a useful
tool in that the convergence to the global optima is faster when the mean value
is used by the relaxation parameter to search for the solution. Nevertheless, this
chapter serves as a guide to how the problem may be mapped to a neural network
and what constraints would come into play. Perhaps it may be possible to use some
other algorithm based on the neural-network-mapped approach of the task of point
pattern matching, in which the basic constraint used to calculate the error is not

violated along the length of the algorithm.

CHAPTER 6

CONCLUSION

6.1 Overview
The techniques of SA and EP were successfully applied to the task of Point Pattern
Matching. MFA could not be applied beacause of the constraint limitations inherent
in the algorithm, as discussed. Fust convergence was obtained using the EP approz;Ch
and it was noted that the implementation of environmental knowledge results in a
robust algorithm, as it performs well even in the presence of high noise and in the
absence of a complete data set.

New, knowledge-based variations of the Mutation and Crossover operator were
defined in the EP algorithm, which contributed significantly to the convergence
speed. It should be mentioned again that the importance of an operator lies in
its definition and the way it is used. Hence, it would not be quite appropriate to

classify operators as useful or useless in general, specifically in the case of EPs, where

each operator can be custom engineered.

6.2 Extensions on this Work
In this work, only 2-D patterns and similarity transformations have been considered.
[t would be interesting to extend the algorithms presented herein, to handle n-
dimension cases and other non-linear or affine transformations.

In the SA technique, instead of regular (random) perturbation, one could use
knowledge-based perturbation. This, however, would need to be done carefully, as
perturbation is the only mechanism of traversing the solution space in the algorithm
and the search is done one node at a time. It is evident that during the use of
knowledge-based perturbation, not all regions of the solution space stand an equal
chance of being searched, and any over-zealous knowledge-based technique might

actually slow down the convergence speed rather than improve on it.

62

63

Furthermore, based on heuristics, more specific versions of the mutation and
crossover operators can be defined in the case of EP, so as to control the re-
combination of offspring at different ages of the evolving population more effectively

and efliciently, leading to faster and more robust algorithms.

10.

11.

12.

REFERENCES

F. Attneave, “Some Informational Aspects of Visual Perception,” Psychol. Rev.,
vol.61, no.3, pp.183-193, 1954.

N. Ansari and E. J. Delp, “Partial Shape Recognition: A Landmark-Based
Approach,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol.12, no.5, pp.470-483, May 1990.

. N. Ansari and E. J. Delp, “Recognizing Planar Objects in 3-D Space,” Proc.

SPIE Automated Inspection and High-Speed Vision Architectures IlI,
vol.1197, Nov.5-10, 1989, Philadelphia, PA, pp.127-138.

R. C. Bolles and R. A. Cain, “Recognizing and Locating Partially Visible
Objects: The Local-Feature-Focus Method,” Int. J. Robotics Res., vol.1,
no.3, pp.57-82, Fall 1982.

D. P. Huttenlocher and S. Ullman, “Object Recognition Using Alignment,” Proc.
IEEFE 1st Int. Conf. Computer Vision, London, pp.102-111, 1987.

M. C. Ibison and L. Zapalowski, “On The Use of Relaxation Labeling in
the Correspondence Problem,” Paltern Recognition Letters, pp.103-109,
April 1986.

M. W. Koch and R. L. Kashyap, “Using Polygons to Recognize and Locate
Partially Occluded Objects,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. PAMI-9, no.4, pp.483-494, July 1987.

S. Ranade and A. Rosenfeld, “Point Pattern Matching by Relaxation,” Pattern
Recognition, vol.12, pp.269-275, 1980.

N. Ayache and O. D. Faugeras, “HYPER: A New Approach for The Recog-
nition and Positioning of Two-Dimensional Objects,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. PAMI-8, no.1, pp.44-54,
Jan. 1986.

B. Bhanu and O. D. Faugeras, “Shape Matching of Two-Dimensional Objects,”
IEEFE Trans. on Pattern Analysis and Machine Intelligence, vol. PAMI-6,
no.2, pp.137-156, Mar. 1984.

B. Bhanu and J. C. Ming, “Recognition of Occluded Object: A Cluster-
Structure Algorithm,” Pattern Recognition, vol.20, no.2, pp.199-211,
1987.

L. S. Davis, “Shape Matching Using Relaxation Techniques,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. PAMI-1, no.1, pp.60-72,
Jan. 1979.

64

65

REFERENCES
(Continued)

13. K. E. Price, “Matching Closed Contours,” Proc. Seventh Int. Conf. Pattern
Recognition, Montreal, Canada, July 30—-Aug. 2, 1984, pp.990-992.

14. G. J. Ettinger, “Large Hierarchical Object Recognition Using Libraries of
Parameterized Model Sub-Parts,” Proc. IEEE Comput. Soc. Conf.
Computer Vision and Pattern Recognition, Ann Arbor, MI, pp.32-41,
June 5-9, 1988.

15. J. W. Gorman, O. R. Mitchell, and F. P. Kuhl, “Partial Shape Recognition
Using Dynamic Programming,” IEEE Trans. on Paitern Analysis and
Machine Intelligence, vol. PAMI-10, no.2, pp.257-266, Mar. 1988.

16. W. E. L. Grimson, “On Recognition of Curved Objects,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol.PAMI-11, no.6, pp.632-
643, June 1989.

17. A. Kalvin, E. Schonberg, J. T. Schwartz, and M. Sharir, “Two-Dimensional
Model-Based, Boundary Matching Using Footprints,” Int. J. Robotics
Res., vol.5, no.4, pp.38-51, Winter 1986.

18. T. F. Knoll and R. C. Jain, “Recognizing Partially Visible Objects Using Feature
Indexed Hypotheses,” IEEE Trans. Robotics and Automation, vol.RA-2,
no.l, pp.3-13, Mar. 1986.

19. J. L. Turney, T. N. Mudge, and R. A. Volz, “Recognizing Partially Occluded
Parts,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol.PAMI-7, no.4, pp.410-421, July 1985.

20. Y. Lamdan, J. T. Schwartz, and H. J. Wolfson, “Object Recognition by Affine
Invariant Matching,” Proc. IEEE Conf. Computer Vision and Paltern
Recognition, Ann Arbor, MIL., June 5-9, 1988, pp.335-344.

21. Y. Lamdan, J. T. Schwartz, and H. J. Wolfson, “On Recognition of 3-D Objects
From 2-D Images,” Proc. IEEE Int. Conf. Robotics and Automation,
Philadelphia, PA., Apr. 1988, pp.1407-1413.

22. W. K. Pratt, Digital Image Processing, 2nd edition, New York: Wiley, 1991.

23. S. Kirkpatric, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by Simulated
Annealing,” Science, Vol. 220 (1983): 671-680.

24. D. L. Ackley, G. E. Hinton, and T. J. Seijnowski, “A Learning Algorithm For
Boltzman Machines,” Cognitive Science, Vol. 9 (1983): 147-169.

25.

26.

217.

28.

29.

30.

31.

33.

34.

35.

36.

37.

33.

66

REFERENCES
(Continued)

P. J. M. van Laarhoven, and E. H. L. Aarts, Simulated Annealing: Theory And
Applications, Netherlands: Kluwer Academic Publishers, 1992.

D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine
Learning, Reading, MA: Addison Wesley, 1989.

Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag, Berlin Heidelberg, 1992.

J. J. Hopfield and D. W. Tank, “Neural Computation of Decisions in
Optimization Problems,” Biological Cybernetics, Vol. 52, No. 4, p.141-
156, 1985.

C. Peterson and E. Hartman, “Explorations of The Mean Field Theory Learning
Algorithm,” Neural Networks, Vol. 2, p.475-494, 1989.

C. Peterson and B. Soderberg, “A New Method fof Mapping Optimization
Problems Onto Neural Network,” International Journal of Neural System,
Vol. 1, No. 1, p.3-22, May 1989.

J. A. Anderson and E. Rosenfeld, Neurocomputing, Foundations of Research.
Cambridge, MA:MIT Press, 1988.

. J. J. Hopfield, “Neural Networks and Physical Systems With Emergent

Collective Computational Abilities,” Proceedings of The National
Academy of Science, Vol. 79, p.2541-2554, 1982.

J. J. Hopfield, “Neurons With Graded Response Have Collective Computa-
tional Properties Like Those of Two-State Neurons,” Proceedings of The
National Academy of Science, Vol. 81, p.3088-3092, May 1984.

R. Hecht-Nielson, Neurocomputing, Reading, MA: Addison Wesley, 1989.

M. Cohen and S. Grossberg, “Absolute Stability of Global Pattern Works,”
IEEE Trans. System, Man, and Cybernetics, SMC-13, p. 815-926, 1983.

C. Peterson and J. Anderson, “Neural Networks and NP-Complete Optimization
Problems: A Performance Study on The Graph Bisection Problem,”
Complex System, Vol. 2, p. 59-71, 1988.

C. Peterson, “A Mean Field Theory Learning Algorithm For Neural Networks,”
Complez System, Vol. 1, p. 995-1019, 1987.

C. C. Galland and G. E. Hinton, “Experiments on Discovering High Order
Features With Mean Field Modules,” Technical Report CS-115, Dept. of
Computer Science, U. of Toronto, May 1989.

67

REFERENCES
(Continued)

39. C. Peterson, “Applications of Mean Field Theory Neural Networks,” Dept.

of Theoretical Physics, Technical Report CS-1153, University of Lund,
August, p.1-27, 1989.

40. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller,

41.

42,

43.

44.

45.

46.

47.

48.

49.

50.

51.

S.

S.

B

S.

P.

C

C

C

G

J.

K

“Equations of State Calculations by IFast Computing Machines,” J. of
Chemical Physics, no.21, pp.1087-1091, 1953.

Kirkpatrick, C. D. Gelatt Jr. and M. P. Vecchi, “Optimization by Simulated
Annealing,” Science, vol.220, pp.671-680, 1983.

Gemen and D. Gemen, “Stochastic Relaxation, Gibbs Distributions and
Baysian Restoration of Images,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol.6, pp.721-741, 1984.

. Gidas, “Non-stationary Markov Chains and Convergence of The Annealing
Algorithm,” J. of Statistical Physics, no.39, pp.73-131, 1985.

B. Gelfand, “Analysis of Simulated Annealing Type Algorithms,” Ph.D.
Thesis, Massachusetts Institute of Technology, 1987.

J. M. Van Laarhoven and E. H. L. Arts, Simulated Annealing: Theory and
Applications, Dordrecht, Holland: Reidel Publishing Company, 1987.

. Peterson, “A Mean Field Theory Learning Algorithm for Neural Networks,”
Complex System, Vol. 1, pp.995-1019, 1987.

. Peterson, “Neural Networks and NP-Complete Optimization Problem; a
Performances Study on The Graph Bisection Problem,” Complex System,
Vol. 2, pp.59-89, 1988.

. Peterson and E. Hartman, “Explorations of The Mean Field Theory Learning
Algorithm,” Neural Network, Vol. 2, pp.475-494, 1989.

. Bilbro and R. Mann, et al, “Optimization by Mean Field Annealing,”
Advances in Neural Information Processing System 1, D. S. Touvetzky
(ed.), pp.91-98, 1989.

J. Hopfield and D. W. Tank, “Neural Computation of Decisions in
Optimization Problems,” Biological Cybernetics, Vol. 52, pp.141-152,
1985.

. A. De Jong, “Genetic Algorithms: A Ten Year Perspective,” Proceedings
of The First International Conference on Genetic Algorithms, pp.169-
177, J. J. Grefenstette (ed.), Lawrence Erlbaum Associates, Hillsdale,
NJ, 1985.

68

REFERENCES
(Continued)

52. Z. Michalewicz, C. Janikow, and J. Krawczyk, “A Modified Genetic Algorithm
for Optimal Control Problems,” Computers and Mathematics With Appli-
cations, vol.23, no.12, pp.83-94, 1992.

53. C. Janikow, and Z. Michalewicz, “Specialized Genetic Algorithms for Numerical
Optimization Problems,” Proceedings of The International Conference on
Tools For Al, pp.798-804, 1990.

54. Z. Michalewicz, G. A. Vignaux, and M. Hobbs, “A Non-Standard Genetic
Algorithm for the Non-Linear Transportation Problem,” ORSA Journal
on Computing, vol.3, no.4, pp.307-316, 1991.

55. W. M. Spears and K. A. De Jong, “On The Virtues of Parameterized
Uniform Crossover,” Proceedings of The Fourth International Conference

on Genetic Algorithms, pp.230-236, Morgan Kaufman Publishers, Los
Altos, CA, 1991,

56. G. Syswerda, “Uniform Crossover in Genetic Algorithms,” Proceedings of The
Third International Conference on Genetic Algorithms, pp.2-9, Morgan
Kaufman Publishers, Los Altos, CA, 1989.

57. J. Schaffer, R. Caruana, L. Eshelman, and R. Das, “A Study of
Control Parameters Affecting Online Performance of Genetic Algorithms
for Function Optimization,” Proceedings of The Third International
Conference on Genetic Algorithms, pp.51-60, Morgan Kaufman
Publishers, Los Altos, CA, 1989.

	Fast point pattern matching by heuristic and stochastic optimization techniques
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Point Pattern Matching
	 Chapter 3: Simulated Annealing
	 Chapter 4: Evolutionary Programming
	 Chapter 5: Mean Field Annealing
	Chapter 6: Conclusions
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

