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A B ST R A C T
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A N D  STO CH ASTIC O PTIM IZATIO N TEC H N IQ U ES

by
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This work is concerned w ith one of the methodologies used in the final 

stages of machine vision: the  m atching of model point patterns to observed point 

patterns. Conventional search m ethods not only fail to arrive at the optim al 

m atch, but are also com putationally expensive and tim e consuming. To arrive at the 

optim al pa ttern  m atch, stochastic and heuristic optimization as the search technique, 

exploiting Simulated Annealing (SA), Evolutionary Programming (EP) and Mean 

Field Annealing (MFA), are explored in detail. A comparison of results obtained 

using SA versus “hill-climbing” and “exhaustive search” techniques, and results of 

EP are presented. The relative effectiveness of these optimizing search algorithms 

over other conventional algorithms will be demonstrated. Finally, the lim itations of 

MFA are discussed.



FAST P O IN T  PA TTER N  M ATCH ING  B Y  H EUR ISTIC  
A N D  STO C H A STIC  O PTIM IZATIO N TEC H N IQ U ES

by
Ashish Agrawal

A Thesis  
Subm itted  to the Faculty of  

N ew  Jersey Institu te o f Technology  
in Partial Fulfillm ent o f the R equirem ents for the D egree of 

M aster of Science in Electrical Engineering

D epartm ent of Electrical and C om puter Engineering

January 1994



Copyright ©  1994 by Ashish Agrawal 

ALL RIGHTS RESERVED



APPROVAL PAGE 

FAST POINT PATTERN MATCHING BY HEURISTIC 
AND STOCHASTIC OPTIMIZATION TECHNIQUES 

Ashish Agrawal 

Dr: Nirwan Ansari, Thesis Advisor 	 Date 
Associate Professor of Electrical and Computer Engineering, NJIT 

Dr. Edwin S. H. Hou, Committee Member 	 Date 
Assistant Professor of Electrical and Computer Engineering, NJIT 

Dr. Y. Shi, Committee Member 	 Date 
Assistant Professor of Electrical and Computer Engineering, NJIT 



BIOGRAPHICAL SKETCH 

Author: 	Ashish Agrawal 

Degree: 	Master of Science in Electrical Engineering 

Date: 	January 1994 

Undergraduate and Graduate Education: 

• Master of Science in Electrical Engineering, 
New Jersey Institute of Technology, Newark, NJ, 1993 

• Bachelor of Science in Electrical Engineering, 
Manipal Institute of Technology, Manipal, India, 1990 

Major: 	Electrical Engineering 

Presentations and Publications: 

N. Ansari, E. S. H. Hou and A. Agrawal, "Point Pattern Matching using Simulated 
Annealing," Proceedings of the 1993 Regional IEEE Control Conference, 
pp.215-218, August 1993. 

A. Agrawal, "Backpropagation Techniques in Neural Networks: A Quantitative 
Analysis of Various Algorithms," 1993 International MATLAB Conference, 
Cambridge, MA, October 18-20, 1993. 

iv 



I dedicate this thesis to my parents for 
their eternal love, support and understanding



A C K N O W LED G M EN T

The author wishes to express his sincere gratitude to his advisor, Professor 

Nirwan Ansari, for his guidance, friendship, and moral support throughout this 

research.

Special thanks to Professors Edwin S. H. Hou and Y. Shi for serving as members 

of the committee.

The author would also like to thank Lisa F itton for her help with proofreading, 

and Chris Peckham for carefully preparing the impeccable DTj?X infrastructure which 

enabled an overnight compilation of this document.



TABLE OF CONTENTS

Chapter Page

1 IN T R O D U C T IO N ...................................................................................................... 1

2 PO IN T PATTERN M A TC H IN G ...........................................................................  3

2.1 An O v e rv ie w .......................................................................................................  3

2.2 Problem S ta te m e n t............................................................................................  5

2.3 Generic A pproach ...............................................................................................  5

3 SIMULATED A N N EA L IN G ...................................................................................  8

3.1 General Fram ew ork............................................................................................  8

3.2 Im plem entation of SA to  Point Pattern  M atching ..................................  9

3.2.1 The Coding S c h e m e ............................................................................  9

3.2.2 The Energy F unction ............................................................................  10

3.2.3 The Perturbation Rule ......................................................................  10

3.2.4 The Acceptance Rule .........................................................................  11

3.2.5 The Cooling S c h e d u le .........................................................................  11

3.2.6 The Stopping C r i te r io n ......................................................................  12

3.3 Simulation R e s u l t s .............................................................................................  13

3.4 S u m m ary ............................................................................................................... 23

4 EVOLUTIONARY P R O G R A M M IN G ................................................................. 24

4.1 In tro d u ctio n .......................................................................................................... 24

4.2 Genetic Algorithms - Precursors to Evolutionary P ro g ram s.................... 24

4.2.1 The Point P a tte rn  M atching P ro ced u re ........................................... 28

4.3 Im plem entation of EP to  Point P attern  M a tc h in g .................................. 29

4.3.1 Representation of Solution S p a c e .....................................................  29

4.3.2 Population S ize .......................................................................................  29

4.3.3 Initial P o p u la tio n ..................................................................................  30

vii



C hapter Page

4.3.4 Fitness F u n c tio n .....................................................................................  30

4.3.5 R ep ro d u c tio n ..........................................................................................  30

4.3.6 Genetic O p era to rs ..................................................................................  33

4.4 Simulation R e s u l t s ............................................................................................ 39

4.5 S u m m ary ..............................................................................................................  49

5 MEAN FIELD A N N E A L IN G ..................................................................................  50

5.1 In tro d u ctio n .........................................................................................................  50

5.2 The Hopfield Energy F u n c tio n ....................................................................... 50

5.3 The Hopfield Neural N etw ork.........................................................................  51

5.4 Mean Field T h e o ry ............................................................................................ 52

5.5 Modeling the PPM  Task onto the Hopfield N etw ork ............................... 54

5.5.1 Neuron E n c o d in g ..................................................................................  55

5.6 Form ulation of the Energy F u n c tio n ............................................................  55

5.6.1 Cost and Constraint T e r m s ................................................................ 55

5.7 Evaluation of the Thermal Average ............................................................  57

5.8 Cooling S c h e d u le ..............................................................................................  58

5.8.1 Initial T em p era tu re ................................................................................ 58

5.8.2 Stopping Criterion ................................................................................ 58

5.8.3 Number of Iterations at each T em perature .....................................  58

5.8.4 Tem perature Updating R u le ................................................................ 59

5.9 The Mean Field Annealing A lgorithm .........................................................  59

5.10 Inherent Limitations in the MFA A lg o r ith m ............................................  59

5.11 S u m m ary .............................................................................................................. 61

6 C O N C L U S IO N ............................................................................................................. 62

6.1 O verv iew ..............................................................................................................  62

6.2 Extensions on this W o r k .................................................................................  62

REFEREN CES ..................................................................................................................  64

viii



LIST OF TABLES

Table

3.1 SA Results Compared with “Hill-climbing” and “Exhaustive Search” .

3.2 SA Results Compared for the Mentioned Incomplete and Noisy  Cases

4.1 EP Results Compared for the Mentioned Incomplete and Noisy  Cases

Page

. 14 

. 14 

. 40

ix



LIST OF FIGURES

Figure Page

3.1 An A rbitrary Assignment of Observed Point Labels to Model Point Labels
Depicting th e  Scheme of “String” Representation.......................................  10

3.2 A “String” Representation Illustrating the Technique of Perturbation. . . 11

3.3 Plot Illustrating the  Result of A High Scheduling Tem perature T. Herein
Every Other Search Node is Accepted as a  Solution Thereby Failing to 
Converge Even after Over 1500 Iterations.....................................................  12

3.4 Plot Illustrating the Result of A Low Scheduling Tem perature T . Herein
the Solution Gets “Stuck” at A Local M inima for Over 750 Iterations. 13

3.5 Case 1: Model Point P a t t e r n ...............................................................................  15

3.6 Case 1: Observed Pattern  =  TfModel Pattern] .............................................  15

3.7 Case 1: Plot Showing the Error Convergence with Each Iteration for the
Clean and Complete Pattern  Set......................................................................  16

3.8 Case 2: Model Point P a t t e r n ...............................................................................  17

3.9 Case 2: Observed Pattern  =  T[Model Pattern] - 2 P o in t s ........................... 17

3.10 Case 2: Plot Showing the Error Convergence with Each Iteration for the
Clean and Incomplete Pattern  Set...................................................................  18

3.11 Case 3: Model Point P a t t e r n ...............................................................................  19

3.12 Case 3: Observed P attern  =  T[Model Pattern] +  N o is e .............................  19

3.13 Case 3: Plot Showing the Error Convergence with Each Iteration for the
Noisy and Complete Pattern  Set......................................................................  20

3.14 Case 4: Model Point P a t t e r n ...............................................................................  21

3.15 Case 4: Observed Pattern  =  T[Model Pattern] T  Noise - 2 P o in ts   21

3.16 Case 4: P lot Showing the Error Convergence with Each Iteration for the
Noisy and Incomplete P attern  Set...................................................................  22

4.1 G A - Coded String: Binary Representation of Integer V alues......................  25

4.2 Solution Depicting the Need for Mutation-1 Operator ................................  34

4.3 Identical Tours of a T S P ........................................................................................ 36

4.4 Case 1: Model Point P a t t e r n ................................................................................  41

x



Figure Page

4.5 Case 1: Observed P a tte rn  =  T[Model Pattern] ................................  41

4.6 Case 1: Plot Showing the Rapid Error Convergence with Each Iteration 42

4.7 Case 1: Mesh Plot Showing the Fitness Values of Solutions for Each of
the 8 I te ra tio n s ..................................................................................................... 42

4.8 Case 2: Model Point P a t te r n ....................................................................... 43

4.9 Case 2: Observed P attern  =  T[Model Pattern] - 3 P o in ts ..............  43

4.10 Case 2: Plot Showing the Rapid Error Convergence with Each Iteration 44

4.11 Case 2: Mesh Plot Showing the Fitness Values of Solutions for Each of
the 11 I te ra t io n s ..................................................................................................  44

4.12 Case 3: Model Point P a t te r n ....................................................................... 45

4.13 Case 3: Observed Pattern  =  T[Model Pattern] +  N o is e ................. 45

4.14 Case 3: Plot Showing the Rapid Error Convergence with Each Iteration 46

4.15 Case 3: Mesh Plot Showing the Fitness Values of Solutions for Each of
the  6 I te ra tio n s ..................................................................................................... 46

4.16 Case 4: Model Point P a t t e r n ......................................................................  47

4.17 Case 4: Observed Pattern  =  T[Model Pattern] +  Noise - 3 P o in ts   47

4.18 Case 4: Plot Showing the Rapid Error Convergence with Each Iteration 48

4.19 Case 4: Mesh Plot Showing the Fitness Values of Solutions for Each of
the 12 I te ra t io n s ..................................................................................................  48

5.1 The Hopfield Neural Network M odel..................................................................  51

xi



C H A P T E R  1 

IN TR O D U C T IO N

Point p a tte rn  m atching is a troublesome but crucial task in machine vision. Existing 

algorithm s employing conventional search techniques usually fail to arrive at a global 

optim al m atch and, moreover, require a priori knowledge of certain a ttributes of the 

search points. Algorithms th a t arrive at an optim al pattern  m atch in the presence 

of noise and an incomplete data  set are presented herein. The techniques of Evolu­

tionary Program m ing (EP), Simulated Annealing (SA), and Mean Field Annealing 

(MFA) are exploited and the entire task is m apped on to a stochastic and heuristic 

optim ization framework.

These techniques provide an efficient means of traversing the search space 

combining the elements of “gradient descent” and “random search,” thereby incorpo­

rating strategies which not only exploit the concept of a “depth first search” but also 

bring in the advantage of a “breadth first search.” In fact, it is this characteristic of 

these algorithm s to  prevent the search from being limited to a subset of the search 

nodes, thereby escaping local optim a, which would otherwise result in an inefficient 

cost realization.

For illustrative purposes, a two-dimensional (2 — D) framework and a sim ilarity 

transform ation are considered. The pattern  sets (model and observed) are compared 

for a sim ilarity transform ation such tha t the resulting error between the model points 

undergoing the similarity transform ation and the observed pattern  is minimized. The 

error is form ulated as a cost function using the transform param eters as its variables. 

The task finally boils down to evaluating the search space such th a t this cost is 

minimized, thereby arriving at a global minima.

To enable an efficient realization of the above strategies, various param eters, 

such as, the  energy function (a function tha t relates a solution node with its corre­
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sponding cost), the acceptance rule (which determines whether a particular search 

node should be accepted), a  cooling schedule (an algorithmic param eter used to 

model the  concept of stability a t lower tem peratures) and a  perturbation rule (which 

enables one to traverse the search space), etc. are defined. Most of these are problem 

specific and are best designed heuristically.

Results show th a t the above techniques perform well in the presence of noise 

(interestingly, when the number of points constituting a pattern  is significantly 

higher, the  com putation of the transformation param eters is less prone to error, 

resulting in a convergence with a lower m atch error). Graphs of model and observed 

points along with a  m atch error plot at every search a ttem p t are presented for ideal 

and noisy cases in the presence of complete and partial data  sets. Not only is the 

m atching optim al, but also efficient in th a t the algorithm needs to search a fairly 

low num ber of nodes constituting the solution space.



C H A PT E R  2 

PO IN T  PA TTER N  M ATCHING

2.1 An Overview

Shape recognition is an im portant task in machine vision and pattern  recognition. 

We use the term  shape to refer to the invariant geometrical properties of the relative 

distances among a set of static spatial features of an object. These static spatial 

features are known as the shape features of the object. For the purpose of recognition, 

much of the visual d a ta  perceived by the human eye is highly redundant. It has been 

suggested from the point of the human visual system [1] th a t some dom inant points 

along an object contour are rich in information content and sufficient to characterize 

the shape of the object.

Numerous studies on planar object recognition have been carried out. The 

recognition task  can be modeled as searching for an assignment between two features. 

Commonly used features are holes and points [2, 3, 4, 5, 6, 7, 8], line-segments 

[9, 10, 11, 12, 13], curve-segments [14, 15, 16, 17, 18, 19], or a combination of these 

features [20, 21]. These features are obtained by a preprocessing step such as edge 

detection, polygonal approximation, and corner extraction. Among the methods 

mentioned above, [6, 8] which use relaxation labeling for point pattern  matching 

do not assume, sim ilar to our proposed algorithm, knowledge on the order of the 

points. However, a  good estim ate of the initial assignment between the points of the 

two point patterns is im portant relative to the convergence of the algorithm and the 

validity of the result. These methods [6, 8], inheriting the drawback of relaxation 

labeling, are complex, and computationally expensive because of their sequential 

nature. Moreover, existing methods tha t use points as their features, usually require 

a priori knowledge of the order of the arrangem ent of the points.

Evidently, the problem addressed here is th a t of recognizing and locating 

objects which are represented by a set of points. T hat is, each object is repre­
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sented by a set of dom inant points (shape features). Information about the order 

of these points is not known or provided. The task is to find a subset of points in 

a point pa ttern  th a t m atch to  a subset of points in another point pattern  through 

a transform ation in a certain optim al sense with the constraint th a t the mapping is 

single. In a general setting, the points are arranged in rc-dimensional space, and the 

transform ation is specified according to the geometric and environmental constraints 

of the problem. Exhaustive search to find the best assignment mapping one set of 

points to another set is, if the num ber of points th a t are to be m atched is large, 

com putationally expensive. Thus, point pattern  matching, wherein points are used 

as shape features, is a crucial vision task.

The current literature identifies three main types of search methods:

• calculus-based

• enum erative

• random

Random search algorithms have achieved increasing popularity as researchers have 

recognized the shortcomings of calculus-based and enumerative schemes. Random 

search schemes, though robust, are computationally inefficient. The conventional 

search m ethods do not meet the robust requirement, because they are local in scope. 

However, as m ore complex problems are attacked, other methods will be necessary.

We take a similar view by posing the recognition task as a point-pattern 

m atching problem. Our approach is more general in th a t it assumes no knowledge on 

the sequential order of the points. For the computations, only two-dimensional point 

patterns (because images are inherently 2 — D) and the similarity transform ation is 

considered, however, the algorithm  itself is not restricted to 2 — D  point patterns 

o r/and  the  sim ilarity transform ation.



2.2 Problem  Statem ent

Given two sets of points defined as follows:

P  =  [P{ : Pi £ R N ] i = 1 ,2 ,3 , • • ■, m )  

O =  {Oi : Oi G R N;i =  1 ,2 ,3 ,- ,n} , (2 .1)

find an assignment P ' O ', where P ' C P  and O' C O, such tha t the match error

between T (P ')  and O' is minimized. The m atch error, defined later, indicates the 

degree of match; the lower the m atch error, the better the quality of the m atch. T  is a 

predefined sim ilarity transform ation; T  =  {rotation, translation, scaling}. It should 

be noted here th a t the problem is different from that of image registration wherein 

the objective is to align two images [22] through a geometric transform ation.

Let O be an observed point pattern  and P  a model point pattern. The 2-D 

sim ilarity transform ation T  is defined by the mapping X  —> U; X  and U €  R 2 such 

th a t

u
= S

V

sin 9 X e

cos 9
. y

+
f

(2.2)

where

X

u
}TX y j ,

T
U V

S  = scale factor, 0 = angle of rotation, e =  translation in the x-axis and /  =  

translation in the y-axis. By letting a =  S  cos 0 and b =  S' sin 6, the sim ilarity 

transform ation can be rew ritten as

(2.3)
u a  b X e
V

~~~
— b a . y .

+

2.3 G eneric Approach

In order to  determ ine the degree of m atch between the model and the observed 

points, the  param eters of the similarity transform ation which map P optimally to O
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need to  be found; in this case, in the minim um  least squared error sense. Mapping 

P  under the transform ation, T[(xi,yi)\ = [(w.(, u,')], we have

(2.4)

The squared error between the model and observed point sets may then be defined 

as

u'i a b Xi e

A .
—

—b a . .
+

e2 =  £ (« .' “  u ' i f  + v 'i ?
i~  1 
n

-  ~  aXi ~  ~  e)2
»=1
+  ()’, +  bxi -  atn -  J f . (2.5)

In order to find the param eters tha t minimize the squared error, we take partial 

derivatives w .r.t. a,b, e and /  of the squared error defined in equation (2.5) above 

and equate them  to zero. Thus, we have 

de2
da

db

de2
de
de2

=  ~  a X i  ~  ~

t= l

+  (m +  bxi -  ay{ -  / ) ( —yt-) =  0,
n

=  ~  ( lXi ~  bVi ~  e ) ( - V i )
2 —  1

+  (Vi  +  b x i  -  a y i  -  =  0 ,

n

=  ^2 (u i  — axi —  by, — e ) (  —1) =  0, and
«=i

n

q j  =  Y liV i + bxi -  aVi — / ) (  — !) =  0.

Solving the above equations and rewriting the same in terms of matrices, we have

A ^ a  b e f  J =  C, (2 .6 )

where

£ (* ?  +  »?) 0 5 > i  E  Vi
o E(*? + »?) E»i - E b

E  Xi E  S/f n 0
E  2/* -  E  Xi  0 n



and

C

E ( U i X i  + V i l j i )  

J 2 ( u i V i  -  V i X i )

Z V i

Then the optim al transform ation param eters yielding the minimum least squared 

error may be obtained as

(2.7)

The least squared error thus obtained, however, quantifies the degree of match 

only between the model points’ subset P ' and the observed points’ subset O'. To 

obtain a measure of the overall m atch between the two pattern  sets, the following 

heuristic measure [2, 3] is used

A eU +  (t 3 )1 o*2(K?)
oo k = 0,1,2-

( 2 .8 )

defined as the m atch error, which penalizes for an incomplete m atch. Herein, k 

denotes the num ber of model points th a t m atch the observed points, m  denotes the 

num ber of model points, and S  denotes the scale factor. From the equation above, 

it should be noted th a t a m atch between two or fewer points is considered an under­

determ ined case. The logarithmic term  serves as the penalty factor for incomplete 

m atching of the pattern  sets. W hen all points of the two patterns m atch (k = m), 

the  m atch error equals the normalized least squared error. The problem defined 

above is a  combinatorial optimization problem (COP) and can be best approached 

by techniques suited for problems of this class.



C H A P T E R  3 

SIM ULATED A N N E A L IN G

3.1 General Framework

Sim ulated annealing, first introduced by K irkpatric et al [23] is analogous to the way 

liquids crystallize: at high tem peratures the energetic molecules are free to move and 

rearrange, and with a decrease in tem perature, lose mobility as a result of decreasing 

energy, finally settling down to an equilibrium state resulting in the formation of a 

crystal having m inim um  energy. Equivalently, in simulated annealing, there are two 

operations involved: a therm ostatic operation [24] which schedules the decrease of 

the  tem peratures (an algorithm  param eter), and a random relaxation process which 

searches for the equilibrium solution at each tem perature.

The SA technique [25] elim inates most disadvantages of the “hill-climbing” 

m ethods: solutions do not depend on the starting point any longer and are usually 

close to the  optim al point. Moreover, the SA algorithm can escape local optim a for 

a  COP. It is essentially a  stochastic search algorithm; at a given temperature, it 

arrives at a possible subsequent state II,+i (i.e., IIj )  by ‘perturbation’ o f the present 

state II, . The transition is carried out based on the following rule:

IT — I  ^ ^   ̂ 11n'+' - \ n , < 3 J >

where q 6 [0,1] and is a uniform random  num ber, and A,j, the acceptance probability, 

is defined as

A j  = e%-, (3.2)

where T  = scheduling temperature and A f  is a measure of the energy change between 

subsequent states and is defined as

a  /  =  - ( / ( n , )  -  / ( n f))+, (3.3)

where / ( I I n) =  energy at state n, and

8
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(*)+ =  / *  if3^ °  (34)
W  \  0 if x <  0. ( j

The num ber of transitions a t a particular tem perature is determ ined heuris-

tically as some fraction of the  to ta l num ber of search nodes th a t constitute the

solution space. The scheduling tem perature T  is determined using the cooling

schedule which, again, is chosen heuristically based on the size of the solution space

and the num ber of transitions involved at each successive tem perature.

The search is said to converge to its optim al solution when the scheduling

tem perature reaches its minim um  level and all transitions at this tem perature have

been exploited for a possible subsequent state. The number of transitions at a

given tem perature may be curbed to a minimum if, for a predefined num ber of

such consecutive transitions, the  cost of the subsequent states does not change much

(again a  problem-dependent, predefined value).

3.2 Im plem entation o f SA to Point Pattern M atching

To m ap the point pattern  m atching problem onto the S A framework we now explicitly 

define the coding scheme (a way of representing the point pattern), a perturbation 

rule for generating new assignments (configurations or states), the acceptance rule, 

the cooling schedule, and the convergence criterion.

3.2.1 T he C oding Schem e

We code the point pa ttern  as a string representation constituting of nodes (i.e., 

labels for different point co-ordinates), thereby forming the search/solution space. 

Thus each code is an assignment between two sets of points; each cell value of a 

string indicates an observed point th a t is assigned to a model point which is, in 

tu rn , denoted by the cell number. Suppose we have m model points and n observed 

points. Accordingly, we choose a code consisting of m cells, wherein each cell may
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take on any integer value from 0 to n (a value of zero denotes tha t no observed point 

could be m atched with a model point). Thus, the cell position-value (corresponding 

to the model point) in the string and the value within each cell (corresponding to 

the observed point) indicates an assignment of match from the model point to an 

observed point, with the constraint of one to one mapping. For example, consider 

the following assignment for 12 cells as shown in Fig. 3.1. The cell position from

2 5 7 0 9 1 3 4 6 11 10 12

Figure 3.1 An A rbitrary Assignment of Observed Point Labels to Model Point 
Labels Depicting the Scheme of “String” Representation.

the left indicates the label of the model point; for example, the sixth cell corresponds 

to the sixth model point. Then, accordingly, the first model point is assigned to the 

second observed point, the second to the fifth, the third to  the seventh, the fourth 

is not assigned, the fifth to the ninth, and so on. Thus, each code (an assignment) 

is analogous to the state  of a liquid.

3.2.2 T he Energy Function

The energy (cost associated with each node of the solution space) function, analogous 

to the energy of a state  of the liquid, is defined as the match error of the assignment. 

Restating equation (2.8), it is defined as

E  — i  .
\  oo k =  0,1,2 v ’

3.2.3 T he Perturbation Rule

Consider the string assignment depicted above in Fig. 3.1. We generate randomly, 

two numbers within the ranges 1 and m  (the num ber of model points) and 1 and n 

(the num ber of observed points), respectively; say, “1” and “6.” The first random 

num ber indicates the cell of the string whose value will be replaced by the second 

num ber representing the observed point. The next step is to substitute the replaced
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num ber in the cell from which the  original replacement came from. Thus, after the 

replacement we have the sting assignment as depicted in Fig. 3.2.

1 5 7 0 9 2 3 4 6 11 10 12

Figure 3.2 A “String” Representation Illustrating the Technique of Perturbation.

3.2 .4  T he A cceptance R ule

This rule is used for deciding whether to accept or ignore the subsequent search node. 

Assignments with lower energies are always accepted, and to provide a mechanism 

to  escape a local optim a, a new assignment with a higher energy is occasionally 

accepted. Equations (10), (11), and (12) define the probability of accepting a new 

assignment based on the acceptance probability AtJ. It should be noted th a t as the 

tem perature T  is decreased A,j —> 0, thereby reducing significantly the probability 

of accepting assignments with higher energy states at low tem peratures. This is the 

reason why, a  search space with local minima, whose energy is nearly equal to  th a t 

of the global minima, may sometimes yield solutions close to the optim al one a t very 

low tem peratures.

3.2.5 T he C ooling Schedule

As m entioned earlier, the cooling schedule is problem-dependent. Based on a cooling 

schedule where the tem perature is decreased linearly, such th a t its final value for a 

heuristically pre-determ ined num ber of maximum search attem pts (i.e., to tal num ber 

of transition a ttem pts) is zero, we define the scheduling tem perature T  as follows:

T  -  7o( 1 -  (n /n max)), (3.6)

where To is chosen (again, heuristically) as the starting (initial) temperature, n 

denotes the n th  search a ttem p t, and n max denotes the maximum number of such 

search attem pts.
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x 104 SA -- Choice of Scheduling Temperature
9

8

7

6

5

4

3

2

1

0
200 400 600 800 1000 1200 1400 16000

Number of iterations =1501

F ig u re  3 .3  Plot Illustrating the Result of A Fligh Scheduling Tem perature T . Herein 
Every Other Search Node is Accepted as a Solution Thereby Failing to Converge Even 
after Over 1500 Iterations.

The choice of this param eter plays a  crucial role in the entire algorithm and 

often proves to be the deciding factor behind the convergence speed. As an illus­

tra tion  of this fact, consider Fig. 3.3. Choosing a high value of T0 results in alm ost an 

unstable sta te  (i.e ., almost every other search node is accepted as a  possible solution, 

causing the search to  oscillate through the solution domain, proving detrim ental to 

the convergence speed. Furthermore, a low value of T0 may cause the  search to get 

stuck in a local minim a, as illustrated by Fig. 3.4, affecting the convergence speed.

3 .2 .6  T h e  S to p p in g  C r i te r io n

In this algorithm , the process of annealing is term inated naturally  when an optim al 

solution (with m atch error i  «  0) is obtained, or else when the  scheduling 

tem perature T  cannot be decreased anymore (i.e., when it reaches its lowest value 

of zero), which happens when the predetermined number of search a ttem pts have
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been exhausted. Usually, term ination due to the la tte r case is an indication that 

the scheduling tem perature needs to be remodeled o r/and  a larger num ber of search 

a ttem pts be allowed.

xlO4 SA -  Choice of Scheduling Temperature

j=ia
OS

S

16

14

12

10

0
0 200 400 600 800

Number of iterations = 851

1000

F ig u re  3 .4 Plot Illustrating the Result of A Low Scheduling Tem perature T . Herein 
the Solution Gets “Stuck” at A Local M inima for Over 750 Iterations.

3 .3  S im u la tio n  R e su lts

Experim ental outcomes depicting average results have been presented. For any 

particular sim ulation the same may vary by 20 to  30 iterations on an average. 

F irst we present results which compare the SA technique with “hill-climbing” , and 

“exhaustive search,” for the ideal case, i.e.,

e clean and complete pattern  set.



14

Algorithm used Iterations M atching Error
Exhaustive search refer eqn. (15) 100% ps  0

Hillclimbing >
10,000 (rarely 
converges)

<  25 % >  3 x 104

SA «  130 100% ps  0

T a b le  3.1 SA Results Compared with “Hill-climbing” and “Exhaustive Search”

Next, we present results for four cases; namely, (1) clean and complete pa ttern  

set, (2) clean and incomplete pattern  set, (3) noisy and complete pattern  set, and (4) 

noisy and incomplete pa ttern  set. We define as an incomplete pattern  set wherein 

2 observed points are missing out of a  to ta l of 12 points and as a noisy pattern  set 

wherein the observed points have been corrupted w ith a Gaussian random variable 

of m ean — 0 and variance  =  4.

The results mentioned in Table 3.2 are depicted by their respective model pattern ,

Case Iterations M atching Error
( 1 )  clean and complete 105 1 0 0 % =  0

(2) clean and incomplete 298 1 0 0 % «  0

(3) noisy and complete 197 1 0 0 % ps  0

(4) noisy and incomplete 500 1 0 0 % ps  0

T a b le  3 .2  SA Results Compared for the M entioned Incomplete and Noisy Cases 

observed pattern , and m atch error plots, for each of the four cases. One should note 

th a t a  complete m atch is always obtained regardless of the quality of the data set; it 

is almost always possible to realize this a t the cost of a slightly higher convergence 

value, using SA. Situations where this might fail are those solution spaces wherein 

exist local optimas of nearly the same low energy as th a t of the global optima., 

regardless of the  physical (co-ordinate) proximity. This happens because at energies 

close to  the  global optim a the low scheduling tem perature might not allow further 

“breadth  first search” to  be incorporated in the algorithm.
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SA -  Model Point Pattern
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Figure 3.5  Case 1: Model Point Pattern

SA — Observed Point Pattern
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Figure 3 .6  Case 1: Observed Pattern  =  T[Model Pattern]
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xlO4 SA - Search Plot Depicting Convergence
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F ig u re  3 .7  Case 1: Plot Showing the Error Convergence with Each Iteration for the
Clean and Complete P a tte rn  Set.
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SA ~  Model Point Pattern
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Figure 3.8  Case 2: Model Point P attern

SA — Observed Point Pattern
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Figure 3 .9  Case 2: Observed Pattern  =  T[Model Pattern] - 2 Points
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xlO5 SA -- Search Plot Depicting Convergence
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Figure 3.10 Case 2: Plot Showing the Error Convergence with Each Iteration for
the Clean and Incomplete Pattern  Set.
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12
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Figure 3.11 Case 3: Model Point Pattern

SA — Observed Point Pattern
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Figure 3.12 Case 3: Observed Pattern  =  T[Model Pattern] +  Noise
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xlO4 SA -- Search Plot Depicting Convergence
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Figure 3.13 Case 3: Plot Showing the Error Convergence with Each Iteration for
the Noisy and Complete P attern  Set.
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SA -  Model Point Pattern
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F ig u re  3.14 Case 4: Model Point Pattern

SA — Observed Point Pattern
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F ig u re  3 .15  Case 4: Observed P attern  =  T[Model Pattern] +  Noise - 2 Points
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xlO4 SA -  Search Plot Depicting Convergence
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Figure 3.16 Case 4: Plot Showing the Error Convergence with Each Iteration for
the Noisy and Incomplete Pattern  Set.
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3.4 Sum m ary

A heuristic m ethod for point pattern  recognition is introduced. The robustness 

(ability to carry out the m atching efficiently even in case of noisy o r/and  incomplete 

observed point sets) and fast convergence of the algorithm is established through 

the presented results. As mentioned earlier, the SA algorithm  yields results th a t are 

close to  the global optima. Exhaustive search would surely get to the global optim a, 

but it would require a total of

m (  m  \  (  n \  ( M r, . . (n — ?)! for n < m ,. y m — n +  i )  \  n — i J v '

and

£  (  m -  i )  (  7  )  ^  ~  f° r U ~  m

search nodes to be evaluated. Hill-climbing, on the other hand, depends on the

starting  point of the search space, and the search herein is almost always not able

to converge to an optimal (or even close to optim al) global minima, as it always 

gets stuck in a local minima, there being no mechanism to escape the same in this 

algorithm.



C H A P T E R  4 

EV O LUTIO NARY PR O G R A M M IN G

4.1 Introduction

Evolutionary Program m ing stem med as a result of lim itations inherent in the theory 

of classical Genetic Algorithms. 1 As will be m ade clear shortly, GAs evolved into 

Evolutionary Programs as a result of multiple modifications, incorporating domain 

knowledge w ith a view to  performance enhancem ent of the former. To understand 

and appreciate the mechanism of EPs, one needs to recognize the strengths and 

weaknesses of GAs. The following sections introduce the reader to the practical 

(im plem entation) aspects of the GA, with comments on its shortcomings. Where 

appropriate, the EP approach as applied to  our task of point pattern  matching, will 

be introduced and built upon. A detailed discussion of the m athem atical foundations 

of GAs can be found in [26]. It should be mentioned th a t adequate theoretical basis 

for the theory of EPs is not established as of this work [27],

“. . .  On the other hand we have to adm it the poor theoretical basis of 
evolutionary programs.”

nevertheless, EPs outperform  GAs significantly, as will be evident from the results 

presented herein.

4.2 G enetic A lgorithm s - Precursors to Evolutionary Program s

As opposed to conventional search techniques which evaluate potential search nodes 

from the solution space sequentially, a genetic algorithm  evaluates them  sim ulta­

neously; th a t is to say, genetic algorithms are parallel operationally and algorith­

mically. They [26] were first introduced by John Holland, his colleagues, and his 

students at the University of Michigan. They are a class of general purpose (domain

1The term Genetic Algorithm (GA) refers to classical Genetic Algorithms, unless stated 
otherwise.

24
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1 1 0 1 0 1 0 1 0 0 1 1

F ig u re  4 .1 G A -  Coded String: Binary Representation of Integer Values

independent) search m ethods which strike a remarkable balance between explo­

ration and exploitation of the search space. Herein, each search node or potential 

chromosome is represented as a string, and with subsequent iterations search nodes 

are arrived a t by using genetic operators on these strings. A search node replaces 

the previous one if it is judged as a better chromosome. Finally, after m any such 

iterations one arrives at an optim al search node which is taken to represent the 

best assignment. This technique is based on the mechanics of natural selection and 

genetics combining the notion of survival of the fittest; random and yet structured 

search; and parallel evaluation of search nodes in the solution space. A genetic 

algorithm  consists of

•  a  coded binary string representation (genes) of the search node in the solution 

space,

•  an evaluation function th a t plays the role of the environment, rating chromo­

somes in term s of their “fitness,”

• fitness function to evaluate the  search nodes,

• a  set of binary genetic operators for generating new search nodes, and

• a  stochastic assignment to control the genetic operators.

Suppose, we want to represent values 0 to 4. Consider an arbitrary  binary string 

representation, as in Fig. 4.1. Each group of three bits represents an integer value, 

namely, 6, 5, 2, and 4. We see th a t illegal codes are inherent in this scheme and 

it would need repair algorithms to  be able to work efficiently. The coding o f the 

problem often moves the GA to operate in a different space than that o f the problem
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itself. The application of genetic operators may again give rise to strings outside the 

solution space, requiring recursive use of repair algorithms which results in wasteful 

com putational resources.

In 1985 De Jong rem arked [51]:

“W hat should one do when elements in the space to be searched are 
most naturally  represented by more complex da ta  structures such as 
arrays, trees, digraphs, etc. Should one a ttem pt to ‘linearize’ them  into 
a  string representation or are there ways to creatively redefine m utation 
and crossover to  work directly on such structures. I am unaware of any 
progress in this area.”

Realizing the above m ajor shortcoming of GAs, reports citing implementations of 

modified GAs appeared, e.g., “A Modified Genetic Algorithm . . . ” [52], “Specialized 

Genetic Algorithms . . . ” [53], “A Non-Standard Genetic Algorithm . . . ” [54], paving 

the way for a  technique coined as Evolutionary Programs.

Evolution programs can be perceived as custom genetic algorithms. Classical 

genetic algorithm s operate on fixed length binary strings, which need not be the case 

for evolution programs. Also, evolution programs usually incorporate a variety of 

“genetic” operators, whereas genetic algorithms use binary crossover and m utation. 

The m ajor factor behind the failure of GAs is the same one responsible for their 

success: domain independence. EPs, by virtue of being domain dependent, result 

in a be tter constraint satisfaction. The construction of an EP framework for any 

problem can be separated into four distinct and yet related tasks:

•  choice of the data-structure which represents the solution domain most 

naturally  and efficiently,

•  the design of problem specific, knowledge-based genetic operators incorporating 

environment information with each iteration,

•  choice or formulation of a robust fitness function enabling efficient evaluation 

of potential chromosomes, and



27

• preferably, dynamic determ ination of the stochastic param eters controlling the 

genetic operators in order to ‘explore’ and ‘exploit’ efficiently.

The algorithm  for an evolutionary program may be depicted [27] as follows:

T he structure o f an Evolution Program  

procedure evolutionary program m ing  

begin

t <— 0

i n i t i a l i z e  P ( t ) 

e v a lu a te  P ( t)

w hile (not term ination-condition) do 

begin

t  <- t +  1

s e l e c t  P(t )  from  P(t  — 1) 

recom bine P(t )  

e v a lu a te  P(t )

end

end

Evolution Programs outperform other traditional algorithms because:

•  they work directly on the data-structure of the problem domain and not on 

any coding or linearization of the same

•  they search from a genetically-rich population of chromosomes rather than 

evaluating genetically-poor population as in the case of GAs or individual 

solution points as in the case of linear algorithms

they eifectively use payoff (objective function) information built into the 

knowledge-based genetic operators



28

•  they use probabilistic and knowledge-based transition rules and not arbitrary  

determ inistic rules.

4.2.1 T he Point P attern  M atching Procedure

The core of any Evolutionary Program  consists of the following necessary steps as 

implem ented herein (detailed descriptions are provided in the following subsections):

1. Initialization o f the starting population: The pool of an initial population of 

the search nodes is random ly generated.

2. Cost evaluation o f strings in the population: The fitness function determines 

the fitness of each chromosome in the population space.

3. Reproduction o f offspring: Based on the fitness values of strings in the 

population, a population of strings is produced as outlined in the selection 

strategy for EP.

4. Re-combination o f reproduced offspring: The reproduced population then

undergoes a subsequent re-combination using genetic operations such as 

crossover, m utation and inversion.

5. Convergence criteria: Steps (2)-(4) are repeated until convergence or a

predefined num ber of generations have been reached.

From the  above description, we can see th a t the notion of survival of the fittest, 

passing good genes to the next generation of strings, and combining different strings 

to explore new search nodes are present in an evolutionary program.
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4.3 Im plem entation of EP to  Point Pattern M atching

To m ap the task of pattern  matching onto the EP framework, we need to define a 

representation scheme, a fitness function, a set of genetic operators, and the rules to 

control the  genetic operators.

4.3.1 R epresentation of Solution Space

As we are interested in finding the best assignment, a data-structure depicting 

assignments between the model points and the observed points forms the most ideal 

representation in th a t it:

•  is a simple and direct labeling and assignment in the problem domain and a 

compact (minimum storage space) representation of the pattern  points,

•  is robust as it spans the entire range of all possible assignments and hence the 

solution space, w ithout the possibility of illegal assignments, with the natural 

provision of a  null label in case of incomplete pattern  sets, and

•  can be efficiently operated on by genetic operators yielding only valid 

assignments, thereby avoiding the  need for computationally expensive repair 

algorithms.

Thus by using a  string representation as explained in section (3.2.1), Fig. 3.1, each 

assignment is depicted by a label; th a t is, as discussed for the case of SA, each 

string indicates which of the model points are assigned to the observed points, and 

vice-versa.

4.3.2 Population Size

Theoretically, the num ber of chromosomes available at each iteration should be 

infinite in order to  realize the highest degree of operational parallelism of the 

evolution program. Practically, this is impossible and a reasonable balance has
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to be struck between the number of such available chromosomes and com puta­

tional resources. Moreover, desired are the efficient utilization of the available 

population size by avoiding overcrowding, and m aintaining a pool of chromosomes 

which is significantly exploratory in nature initially and evolves into an exploitative 

search of the solution domain. In our algorithm, the size chosen is 30. Efficient 

utilization of this population space is brought about by an efficient reproduction 

of the chromosome strings based on deterministic, knowledge-based, stochastic and 

heuristic genetic operators.

4.3.3 Initial Population

The initial population is a set of chromosomes generated by random ly meeting 

the one-to-one mapping constraint and it contains both good and bad strings 

(assignments). The population size is chosen to be TV =  30.

4.3.4 F itness Function

A customized fitness (objective or cost) function is necessary to ensure efficient 

utilization of com putational resources and quick convergence to a global optim a. 

For our problem it should incorporate the error (based on the optim al param eters) 

due to im proper assignments and also reflect the existence of incomplete data sets. 

Furtherm ore, a  good assignment should yield high fitness values and vice-versa. The 

m atch error as defined earlier in equation (2.8) meets all the above requirements and 

is used as the fitness evaluator. A fitness value tha t is inversely proportional to the 

m atch error is used.

4.3 .5  R eproduction

After each iteration the solution set undergoes a selection process based on the 

principal of survival of the more fit individual, whereby good chromosomes are chosen 

to  contribute their gene inherited knowledge to form potential chromosomes for the
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next generation after undergoing re-combination. This selection process in a GA is 

quite straightforward wherein the selection is performed as follows:

• Normalize the fitness value of each string such th a t the sum of the fitness values 

of all the strings in the current population equal 1.

•  Partition a unit-length scale into N (the num ber of population size) slots, each 

slot size in proportion to  the normalized fitness value of a string in the current 

population.

• G enerate N random  numbers ranging from 0 to  1 and see where the num ber 

falls on the  scale. The string corresponding to the division where a  random 

num ber falls is selected to be a  m ember for the new population.2

•  The best chromosome is always passed on to the next population pool, deter- 

m inistically w ith a  probability 1.

The above technique has its drawbacks. A chromosome whose fitness is considerably 

higher than the rest of the  population stands a good chance of being selected many 

times according to the above mechanism, thereby overcrowding the population space 

and also narrowing down the search space considerably as its repetitive selection 

(or the repetitive selection of a few of its kind) would force out potential promising 

chromosomes from the population pool, thereby throwing away useful genetic infor­

mation! Furtherm ore, a large number of the same set of chromosomes results 

in wasteful use of com putational resources (as the information utilization factor 

from a  good chromosome is not infinite) along with an effective reduction in the 

population space utilization; infinite population size being one of the requirements

of the theoretical foundations of the GAs.

2Note that strings which have higher fitness values and hence good gene representation 
are more likely reproduced in the new population.
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To overcome these aforementioned shortcomings of genetic algorithms, the 

evolutionary programming technique presented herein makes use of a particular 

m echanism to bring about efficient offspring reproduction. Not only does the 

following rem edy the previous mechanism’s shortcomings [27], but it also has its 

advantages th a t contribute significantly to faster convergence leading decidedly to a 

global optim a:

1. Select r  (not necessary distinct) chromosomes from P ( t ) as parents for repro­

duction. This selection is based on the selection technique described above 

utilizing relative fitness. This brings in r chromosomes with good genetic infor­

mation.

2. Select r (distinct) chromosomes from P(t )  to die (independent of the above 

selection). This is achieved by deterministically choosing the best (N  — r ) 

individuals from the population and passing them on to the reproduction pool 

and leaving the other r  chromosomes to die.

3. From this reproduction pool of N strings obtained from P(t ) ,  as a result of the 

above steps, the r parents from the first step are now recombined (by being 

operated upon exclusively by one of the genetic operators) to yield r offspring.

4. The new population P( t  +  1) is then formed from the ( N  — r ) chromosomes 

from the  second step and the r offspring from the third step. This completes 

the selection process of the new population, an im portant preprocessing step 

before re-combination. The advantage of this technique is providing for 

re-combination r  offspring generated from highly fit parents, each offspring 

different from the other in some manner. This mechanism results in formation 

of offspring which may have a slightly higher value than the parents and yet 

be passed on to the next generation pool for re-combination. This may be 

taken as analogous to  the concept of occasionally accepting a  chromosome
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with higher fitness, as in simulated annealing. This concept is crucial to fast 

convergence.

Furtherm ore, by virtue of the second step, the best chromosome is always 

passed on to  the new generation along with an ( N  — r — 1) num ber of highly fit 

individuals. From the above discussion it is clear that this population space is richer 

in genetic information and has a greater potential to produce offspring, thus leading 

decidedly to global optima.

4 .3 .6  G e n e tic  O p e ra to rs

The genetic or the re-combination operators control the means by which new infor­

m ation is formed and also existing information exchanged between chromosomes to 

facilitate their subsequent evolution into chromosomes with higher survival proba­

bility with every iteration. For the EP algorithm, three such operators are used, 

which facilitate a fast evolution leading to quick and optimal convergence. It is a 

point to observe tha t all operators satisfy the constraint th a t the mapping is single 

and there is no need for repair algorithms. Each of these will now be discussed in 

detail.

4 .3 .6 .1  M u ta t io n  In a GA the concept of m utation refers to randomly flipping 

each bit of a chromosome to one or zero. Moreover, the probability of m utation 

is kept low since its random  nature and successive implementation on each gene of 

the chromosome serves more to explore the solution space rather than  exploit it. 

Contrary to the above notion the m utation operator implemented herein operates 

once on a chromosome on a  single gene, mostly chosen deterministically based on the 

knowledge extracted from the fitness computation of each gene of the assignment. 

Thus, the role of this operator is more tha t of exploitation rather than exploration; it 

is then implicit tha t this knowledge-based operator be applied with high probability.
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Furt hermore, as m utation herein is only on a single gene basis per chromosome, as 

opposed to generating a probability and testing every bit for m utation as in GA, 

the former is much more efficient and faster. Moreover as the string size grows (for 

real-world cases) the la tte r technique is computationally expensive. There are three 

types of m utation operators defined for our problem and each is used with a varying 

degree as explained below.

M u ta t io n -1  Herein the gene contributing the most to the square error of the 

chromosome, as per equation (2.5), is chosen to  undergo m utation; it is 

exchanged with the gene with the next highest contribution to the overall 

square error. This is determ inistic and is always performed on the best 

chromosome of the population, at every iteration. It is also performed with 

some probability on the other chromosomes within the population. The 

rationale behind this can be explained by considering the following example. 

Suppose after a  num ber of iterations we have the string shown in Fig. 4.2. It

1 2 3 4 5 9 7 00 6 10 11 12

F ig u re  4 .2 Solution Depicting the Need for Mutation-1 Operator

is evident th a t the genes in positions nine and six need to be m utated in order 

to arrive at the optim al match. This is efficiently achieved by the technique 

described above as only these genes are likely to contribute most to the square 

error. Had conventional m utation been carried out on this string, the proba­

bility th a t it selected for swapping, the sixth gene followed by the choice of the 

ninth gene, would be very low. Furthermore, convergence would result only 

if the m utation operator left the other genes untouched. Thus, it is evident 

that a large number of iterations may be required for convergence, whereas in 

m utation-1 convergence would be obtained in the next iteration with proba­
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bility one. Therefore, the contribution of this operator to convergence speed is 

quite significant prior to the stages of achieving global optima.

M u ta t io n -2  The selection of the first gene remains the same, as in the case of 

m utation-1. The second gene is chosen randomly from the chromosome string 

and is m utated  w ith the first. The need for this version of the operator arises 

wherein a gene w ith the highest error contribution needs to be m utated with 

a gene other than  the one with the next highest error contribution. This 

is possible when three or more genes are not in their proper positions. This 

operator may also be devised such tha t the second gene selected is the one with 

the third highest error contribution. In fact, one could extend this principle 

to include all combinations of the genes with high contributions to the square 

error. The search would then be faster. For our illustrative case of 12 points, 

this extension has not been implemented as a random pick of one right gene 

is highly possible considering the population size. This technique may yield 

significant improvement in real-world cases wherein the strings are large and 

t he knowledge and successful manipulation of high error contributing genes 

might result in a significant saving of computational resources.

M u ta t io n -3  It may happen th a t m utating the highest error contributing gene with 

any other gene will not result in a proper assignment and increase signifi­

cantly the overall square error. This situation would render the above two 

variations useless and the solution would get stuck in a local optim a. The 

m utation-3 version of m utation remedies this situation by selecting both the 

genes random ly for m utation. Thus, its contribution is more of an exploratory 

nature rather than  to exploit the solution space; hence its probability of 

execution is kept quite low. Nevertheless, it plays an im portant role, as it 

provides a mechanism to  escape from such apparent local optima.
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4 .3 .6 .2  U n ifo rm  C ro sso v e r The classical Crossover operator is an effective tool 

when the  genetic order in a chromosome needs to be preserved. Digressing briefly 

from the topic of point pattern  matching to the dilemma of The Travelling Salesman, 

wherein a salesman needs to visit each city exactly once and return to the starting  

point, it is the order of the cities tha t is im portant and not their respective positions 

as illustrated by identical tours.

1 3 2 5 4 7
00 6

4 7

00 6 1 3 2 5

F ig u re  4 .3 Identical Tours of a TSP

It should be clear, then, tha t crossover results in effectively combining good 

partial tours w ith lower costs from two or more complete tours to form another 

complete tour with a lower anticipated cost. Returning back to our task of point 

pa ttern  m atching, it should then be implicit th a t a high crossover ra te  will result 

in poor performance, as here the genetic positions and not the genetic order is 

im portant. This is implicit in the representation wherein, for example, a value of 5 

in cell 7 means an assignment of the 5th observed point to the 7th observed point 

and hence is position dependent. However, each positionwise mapping does form a 

complete assignment, based on which the square error is computed, and this aspect 

may make it seem th a t the individual error is dependent on the relative order of the 

points. This is not true  because preserving the partial genetic order and changing 

their positions results in a fitness change which provides a mechanism of changing 

connectivity order along the length of the chromosome; a  useful concept in The 

Travelling Salesman Problem but an useless one for our task. Furtherm ore, with the 

age of the  population it is noticed tha t the individual genes need to be exchanged 

with other individual genes, and not an ordered group of genes with another ordered
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group of genes. Thus, the im portance of the crossover operator is not pronounced 

for this problem.

However, in large solution representations, where the points are quite close by 

or cluttered in groups, a clustering of neighboring points might occur (as the low 

Euclidean distance between them  results in an apparently optim al set of transfor­

m ation param eters) leading to local minimas. The crossover operator may then be 

useful, but these cases are rare and usually don’t  survive long enough to ham per 

the convergence speed. In fact, as soon as the central gene from the cluster changes 

position, the entire solution shifts to  a different search space, driven by the drastic 

change in the optim al transform param eters.

It is interesting to note th a t when incomplete da ta  sets are being considered, 

situations do arise where the positional assignments of a group of genes appears 

shifted by one or two gene positions (depending on the number of missing points) 

and the use of the crossover operator seems promising, but then choosing the correct 

crossover site randomly is a very low probability. Moreover, the determ ination of 

the fact tha t some genes have shifted assignments is not possible because no a priori 

knowledge of the sequential order of the pattern sets is provided to the algorithm. 

Thus, interestingly, even though this situation is evident to an observer viewing the 

iterations, not much can be done to remedy it.

The above discussion of the crossover operator makes it clear th a t any 

segment-based operator (or order-preserving operator, for tha t m atter) is futile 

and one should design a problem specific, position-based crossover tha t results in 

positionwise-genetic-information interchange among chromosomes. Based on the 

concept of generalization of a m ulti-point crossover [55] [56], a problem specific 

uniform crossover is defined as follows:
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• select two strings for crossover based on the probability of the crossover 

operator

•  for each gene position in the 1st chromosome, if the error contribution of the 

gene is high relative to the other genes, and the error contribution of the 

corresponding gene in the 2nd chromosome is low relative to  the other genes 

of this chromosome, copy the gene from second chromosome into the corre­

sponding position of the first chromosome; simultaneously replace the original 

location occupied by the second chromosome gene in the first chromosome by 

the replaced gene (to preserve one-to-one mapping)

• repeat the above step for the 2nd chromosome

This crossover generates two offspring from two parents preserving the good gene 

positions and overwriting the bad gene positions with the good gene positions from  

the other chromosome. As is evident, this form of crossover can be very powerful 

since it can replace multiple gene positions leading decidedly to a lower error value. 

Its use in real-world application would significantly improve the convergence speed 

and w ith some fine tuning of the error comparisons, this operator can also be used 

effectively to escape local minimas, as the mechanism of overwriting a higher error 

contributing gene with a lower error contributing gene would surely result in an 

improvement of the resulting offsprings. According to [27] it has been emphasized 

th a t the role of the m utation operators is stronger citing [57] than th a t of the 

crossover operator to the point of ignoring it altogether, but it seems th a t such 

a  generalization is not applicable since in any EP the operators are most useful when 

they em body knowledge-based domain information, and because of their problem 

dependent nature their efficient design depends on the implementor of the algorithm.
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4 .3 .6 .3  In v e rs io n  The Inversion operator brings about a complete change in 

the search space being traversed as it carries out an (n +  1) complement of the 

chromosome string it operates upon. It is best to shut off the probability of this 

operator with the age of the population (provided th a t a certain meaningful fitness 

value has been obtained); the use of this operator would then render the previous 

iterations futile, as it is analogous to generating a  new search node altogether w ithout 

the concept of evolution from the previous iteration. However, the use of this 

operator can be quite meaningful if the solution seems stuck for over a large num ber 

of iterations. Moreover, based on simulations, it is somehow felt th a t this operator 

would prove useful if there exists some geometric axis-symmetry between the pattern  

sets resulting in a m irror image assignment for near points, resulting in a  local optim a.

4 .4  S im u la tio n  R e su lts

Experim ental results dem onstrate th a t the EP technique highly outperforms all other 

conventional algorithms in convergence speed. This is because of the exploitation 

of domain-knowledge by the genetic operators and the elimination of prohibitively 

inefficient computing environments inherent in other algorithms. The residts tend 

to substantiate  the robustness of the proposed approach using EP for point pattern  

m atching, as even with high error and missing points the convergence speed does 

not undergo significant degradation. The new versions of m utation and crossover 

operators defined are the instrum ental factors contributing to the speed of the 

algorithm. A large num ber of simulations, which can be categorized into several 

cases, has been carried out. For illustrative purposes, results using four point patterns 

sets, each consisting of 12 points are shown and tabulated. Average results have been 

presented; best cases have iteration values around 6 and worst cases go up to iteration 

values of around 30 (provided the solution does not get stuck in a local minima).
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Case Iterations Matching Error
(1) clean and complete 8 100% 0
(2) clean and incomplete 11 100% 0
(3) noisy and complete 6 100% 43.62
(4) noisy and incomplete 12 100% 90.6721

T a b le  4 .1  EP Results Compared for the Mentioned Incomplete and Noisy Cases 

We consider four cases, namely:

•  Case 1: Observed Pattern  =  T[Model Pattern].

Scale factor =  3; Rotation =  7r/4; translation in the x-axis =  100; 

translation in the y-axis =  300.

•  Case 2: Observed Pattern  =  T[Model Pattern] - n points.

Scale factor =  3; Rotation =  7t/4; translation in the x-axis =  100; translation 

in the y-axis =  300; n — 3; 2nd, 5th and 10th point is missing.

•  Case 3: Observed P attern  =  T[Model Pattern] +  noise.

Scale factor =  3; Rotation =  7t/ 4; translation in the x-axis =  100; translation 

in the y-axis =  300; Gaussian noise with zero mean and variance equal nine is 

introduced into the observed point pattern.

•  Case 4: Observed P attern  =  T[Model Pattern] +  noise - n points.

Scale factor =  3; Rotation =  7r/4; translation in the x-axis =  100; 

translation in the y-axis =  300; Gaussian noise with zero mean and variance 

equal nine is introduced into the observed point pattern; n — 3; 2nd, 10th and 

11th point is missing.

The following pages present the plots of model and observed points followed 

by the convergence and error plots for each of the above cases. They should be self 

explanatory.
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Figure 4.11 Case 2: Mesh Plot Showing the Fitness Values of Solutions for Each
of the 11 Iterations
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4.5 Sum m ary

A highly robust, knowledge-based and efficient technique has been introduced as a 

new approach to  point pa ttern  recognition. This technique has the uncanny ability 

to perform without significant degradation in the presence of noise and in the absence 

of complete pa tte rn  sets. Additionally, pattern  sets with a  higher num ber of model 

points have been worked on and the results are quite interesting. As mentioned 

in the previous sections, the involvement of some otherwise lesser used genetic 

operators becomes quite significant as the data  set increases. The robustness and fast 

convergence rates speak highly of the proposed algorithm. To find the best m atch 

between a set of m  model points and a set of n observed points, the algorithm only 

needs to evaluate N  x G search nodes where N  is the population size and G  is the 

num ber of generations a t which the algorithm converges or stops. It should be noted 

th a t not all search nodes are unique as multiple copies of a  good chromosome do 

exist due to the very nature of the evolution program.

There is no unique way of predicting the probabilities of the reordering 

(crossover), m utation, and inversion operations. The most efficient use of these 

operators would result from dynamic variation of the operation probability. This 

gives a greater control over the utilization of the environment knowledge with 

increase in the age of the population. The probability is best determ ined heuris- 

tically and also depends on the strength and the capability (the am ount of knowledge 

used effectively) of the operator in question. The results presented herein are from 

an illustrative point of view only and the algorithm is not lim ited to 2-D pattern  

sets or the sim ilarity transformation. It can be applied to n-dimensions and to any 

transform ation.



C H A PT E R  5 

M E A N  FIELD A N N E A LIN G

5.1 Introduction

The Hopfield neural network is a recurrent network tha t has been successfully applied 

to many optim ization problems [28]. Using the Hopfield neural network to  solve an 

optim ization problem involves two m ajor tasks:

1 . Constructing an appropriate Hopfield Energy Function for the problem.

2 . Adopting and designing a recursive mechanism for minimizing the energy 

function.

The construction of the energy function should incorporate all aspects (i.e., 

constraints) of the solution domain, which, when m et, tend to lower the  energy 

of the function, along with the cost. This gives an indication of the feasibility of 

the potential solution. For the minimization of the Hopfield Energy Function , Mean 

Field Annealing (MFA) has been proposed [29] [30] and the approach has been 

dem onstrated to be robust and efficient.

5.2 T he Hopfield Energy Function

One of the most im portant contributions in Hopfield’s pioneering work [28] [32] [33] is 

the concept of an energy function. Hopfield and Tank [28] formulated the Travelling 

Salesman Problem  (TSP) to a highly interconnected neural network , 1 and made 

exploratory numerical studies on modest-size problems by minimizing the Hopfield 

energy associated w ith the network.

The most im portant property of an energy function is tha t it should decrease 

dynamically as the system evolves, and must be minimized once a stable or optim um  

state  is reached.

aNeural networks are being considered as a good alternative for solving difficult 
optimization problems [31],
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5.3 T h e  H o p fie ld  N e u ra l N e tw o rk

A simple Hopfield neural network is depicted by the block diagram shown in Fig. 

5.1.

F ig u re  5.1 The Hopfield Neural Network Model

After each iteration,

• neuron excitation =  weighted sum of its inputs,

Ej = wijS i + W]0,
«A?

n

(5.1)

where E j  is defined as the j th  component of the energy function; Wij is the 

weight connection between neuron i and neuron j ; 5,- is the state  of neuron i

• S{, the output of a  neuron, equals one if the weighted sum of its inputs is 

greater than a threshold Wj0, and zero otherwise:

' 1, if E j  > 0,
S- =3 1 0 otherwise (5.2)
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• equilibrium  is obtained when all the constraints (weights) are m et

The Hopfield neural network can be operated in two modes. In the first mode, 

where the sta te  of the neurons is assumed known, the corresponding weights of the 

connections are to  be determ ined. In the second mode, where the connections among 

the neurons are given, the corresponding states of the neurons (i.e., some specific 

constraints or requirem ents are m et) are to be determined. The second mode is used 

for our task.

5.4 M ean Field Theory

The mean field theory approximation is a well known technique in physics. It was 

first introduced for neural network applications by Peterson [37]. A brief description 

of the mean field theory, as relevant to our task, is given below. For an elaborate 

analysis, readers are referred to [29] [30] [36] [37] [38] [39].

The Mean Field Theory was derived incorporating the SA technique of therm o­

static operation, which schedules the decrease of tem perature and a relaxation 

process th a t searches for the mean value of the solution as the equilibrium solution, 

at each tem perature. Thus the statistical mechanism of therm ostatic operation is 

m aneuvered according to  the  Boltzmann distribution,

(5.3)z

where S '  =  one of the possible configurations 

E ( S )  = the energy of the configuration 

T  = the tem perature, and 

Z  = the  partition function given by

Z  = J 2 e M - E ( S ' ) / T ] ,  (5.4)
S'

where Yls> denotes the sum over all possible neuron state  configurations.
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In the MFA theory, we consider the means of the neuron outputs; defined by

Vi = < S i >

= 1 • P{Si =  1) +  (0) • P(Si = 0 )

=  P (S i = 1), (5.5)

where the value, Si, is 1 for a neuron tha t is ON  and 0  for a neuron th a t is O FF ; 

P(S{ =  1) and P (S , = 0 ) are the probabilities for 5, =  1 and S, =  0 , respectively; 

and V  is the  mean configuration corresponding to S.

Then the  Boltzm an D istribution, in term s of means, can be expressed as:

p { y )  =  ex.\>[—E ( y ) j T \ ' (5 6)
Zj

as given by equation (5.3). The Local Field may then be defined as

. . - I .

wherein
f 1 if hi >  0
1 0  if /l; <  0 ' (5 8)

The probability of any neuron 5, being “on” or “off” is given by

hffFTfT
e •

P ( S i  -  1) -  e_hMFT/T +  ehMFT/T (5.9)

e _hMFT/T

P (Si = 0) =  — h^ FT/T ^  ehMFT/T , (5.10)

where

—< Q'y. \^ 'H )

wherein the local field hi is approximated by its therm al average (i.e., the mean 

field).
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Combining equation (5.5) and equations (5.9) (5.10) and (5.11), the neuron 

outputs may be determ ined from

5.5 M odeling the P P M  Task onto the Hopfield Network

In brief, the construction of the framework for any problem consists of:

1 . Defining an appropriate neuron encoding.

2 . Constructing the Hopfield energy function which appropriately reflects the 

constraints and costs of the problem.

3. Deriving the mean field equations from the Hopfield Energy Function.

4. Selecting the Lagrange param eters in accordance with the significance of each 

component of the energy function.

5. Updating the mean field variables by annealing according to a  cooling schedule.

The difficulty generally lies in mapping a problem onto a framework tha t is solvable 

by m ean field annealing.

In order to employ the MFA algorithm, the task needs to be m apped onto 

a  neural network. The output of the neurons of the network thus obtained is 

then  m onitored according to  the problem specific constraints and cost, embodied 

in an energy function. The algorithm proceeds by minimizing this energy function 

and at the same tim e striving to m aintain a stable output value for the neurons 

in the network, leading to a global optima. This optim al value of the neural net 

indicates a m apping between the model and the observed points such th a t the error

h M F T / T

e-h ^ FT/ T eh ^FT/T ( 5 . 1 2 )

or, equivalently,

(5.13)



55

is m inimum. To incorporate the above strategy, the neurons are encoded to represent 

the param eters used in modeling the energy function.

5.5.1 N euron Encoding

A neuron, i.e., its output, is denoted by V(j, where the subscript i corresponds to 

the ith  cell (model point) and the subscript j  denotes the corresponding cell value 

(observed point).

Vij =
1 if the i th  model point is matched with 

the j  th  observed point,
0  otherwise.

The Associative M atrix, A, can then be defined as:

(5.14)

where

a n a 12 a lAfjv

A =
«21 a 22 a 2AfN

. a N N \ a 2 ' • 0-Nn N n  .

—

1 if there is an assignment between the 
«th model point and j th  observed point. 

0  otherwise.

(5.15)

(5.16)

For our problem the associative m atrix, defined above, must meet certain constraints, 

which are described in section (5.6.1).

5.6 Formulation of the Energy Function

As mentioned earlier, the Energy Function is made up of the cost and constraint 

term s which, ideally, m ust characterize the solution space completely in order for 

fast convergence to a global minima.

5.6.1 Cost and Constraint Terms

The cost term  is modeled as the weighted sum of all outputs V,j times the cost C,y:

E °  =  ( 5-17)
« j
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where V*j is the m ean  of a neuron assigning the ith  model to  the j t h  observed point, 

and Cij is the cost associated with the above defined assignment.

The cost Cij is based on equation (2.5) and is given by the error m atrix E:

' C n C\2 C i n n

E  =
C21 C22 C 2n n

: ;

.  C n n  1 C n n  2 • ■ C n n n n  .

The following are the constraints characterizing the associative m atrix completely:

1. The to tal num ber of neurons, V}j, tha t may be O N  equal to the num ber of 

observed  points, N 0b.'-

^ ( E E K j - A U . ) 2 (5.19)
* j

2 . Each model point can be assigned to  only one observed point:

(5-20)
« j r ti '

3. Similarly, an observed point, once assigned, cannot be assigned to any other 

m odel point:

&  = £ £ £ » W i  (5.2i)
j i

4. Lastly, the requirem ent th a t a neuron’s output value be either 1 ( ON)  or 0 

( OF F )  is m onitored by the following equation:

j •
£ 4 =  £ £ K 9 ( 1 - K , )  (5.22)

The Total Energy is then given by

E  — (a  x  E q) +  (/? x E\) +  ( 7  x E 2 ) +  (k x ET) +  (C x E 4 ), (5.23)
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where a , /?, 7 , k , and (  are the Lagrange param eters which serve to m aintain 

a  proportional contribution of each of the  cost or constraint term s to the energy 

function. The choice of the  Lagrange param eters is critical because otherwise not all 

constraints will be able to contribute proportionately to the energy function, thereby 

ham pering the convergence speed and /or failing to achieve convergence to a global 

minim a.

5.7 Evaluation of the Therm al Average

The Thermal Average may then be evaluated as

d E

where

foMFT _  <  ^ <  ^  (5.24)

d E 0 
dV{j 
d E ,

d v « .■ i
dEo

Cij, (5.25)

2 ( £ £  V i j - N ob.), (5.26)

d VU V '3 j ' ± J

d E .3

£  Vij', (5.27)

d VU V '3 i ' ^ I

d E x

£  Vv j , (5.28)

2 ( £  £ ( 1  — 2  x Vij). (5.29)
9 * i  , ,■

From the above, the Total Thermal Average may then be written as

d E  dEo a dEx d E 2 d E 3 8E 4
dVij ~  a dVt] + &dVij + 1 dVij +  KdVn +  CdVtJ' (5.30)



58

5.8 C ooling Schedule

As is the  case with SA, a cooling schedule specifying the initial tem perature, the 

stopping criterion, the num ber of iterations at each tem perature before moving on 

to the next tem perature, and a tem perature updating rule are required.

5.8.1 Initial Tem perature

The initial tem perature is preferably chosen just below the critical temperature where 

the  energy function has a significant low value. The proper choice of this param eter 

is essential to  preserve com putational resources.

5.8 .2  Stopping Criterion

The annealing process comes to an end when the following conditions are met.

1. All neuron outputs £ [0.0,0.1] or £ [0.9,1 .0 ]; signifying th a t the outputs have 

converged to a minimum or maximum value.

2. W hen

> °-95’ (5-31)

where N  is the  number of neurons with output values £ [0.9,1.0].

5.8.3 N um ber o f Iterations at each Tem perature

At each tem perature, the network is annealed until the following convergence 

criterion is m et

£  £  I Vij(t +  1) -  Vij(t) |<  0 .0 0 1  N on, (5.32)
» j

where N on is the num ber of neurons with non-zero output values.



59

5.8.4 Tem perature U pdating Rule

The updating rule is defined exactly as used in SA:

T  = T0(l -  (n /n max)), (5.33)

where n is the num ber of iterations at which the tem perature is being decreased and

nmax is the m axim um  num ber of iterations after which the annealing is brought to

an end. It should be noted th a t linear updating is used.

5.9 T he M ean Field A nnealing A lgorithm

The task of annealing can be broken down into the following steps:

1 . Initialize the neurons randomly

V{j — rand[0, l]n ,j. (5.34)

2. Anneal the network until the saturation criterion, as defined above, is met.

3. At each tem perature, ite ra te  the M FT equations until convergence:

n -  h ^ FT
Vij = y  [1 +  tanh ~ ^ r r i i3]. (5.35)

5.10 Inherent L im itations in the MFA A lgorithm

The above form ulation of the MFA infrastructure could not be applied to the task 

of point pa tte rn  m atching because of the following lim itations inherent in the MFA 

algorithm:

1 . Judging from step ( 1 ) in section (5.9) we see tha t each neuron will have an initial 

value £  [0 ,1] and will violate the implicit requirement of the problem; namely, 

any valid assignment should form a one-to-one mapping from the observed to 

the model points.
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2. During the  course of the  algorithm  as well, the constraint of one-to-one m apping 

will never be m et, as shown by the following illustrative output of the neurons 

during a  sample run:

0.51 0 .0 0 1 0.28 0.39 0.79 1 0.31 0.38 0.94 0.52 0.45

0 . 8 8 0.77 0.76 0.77 0.60 0.69 1 0.13 0.27 0.32 1 0.81

0.43 0.73 0.62 0.78 1 0.75 0.58 0.52 1 0.46 0 .0 1 0 . 0 2

0.46 0.31 0 .2 1 0.42 0.82 0 .6 6 0.32 0.31 0.36 0.51 0.27 1

0.80 1 0 .2 1 0.28 0.15 0.63 0.72 1 0.25 0 .6 6 0.64 0.70

0.36 1 0.08 0.19 0.98 1 0.14 0.51 1 0.40 0.54 0.70

0 .2 1 0 .6 8 0.38 0 .0 1 0.25 0.59 0.16 0.43 1 0.60 0.91 0.43

1 0 . 2 0 0.95 0.19 0.23 0 .2 2 0.48 0.25 0.51 0.98 0.26 0.58

0.15 0.83 0.94 0.98 0 .1 0 0.31 0 .8 6 0.37 0.72 1 1 0.75

0.63 1 0.39 1 0 .2 1 0.69 1 0.39 0.72 0.67 0.24 0.99

0.61 0.82 1 0.81 0.63 0 .1 1 0.55 0.44 0.94 0.34 0.84 0.69

0 .0 0 1 1 0.13 0.69 0.76 0.73 0.47 0.46 0.54 0.69 0.27

Here each row, i, corresponds to a model point and each column, j ,  to an 

observed point. It is clear th a t one-to-one mapping is not preserved as a model 

point is assigned to more than one observed point.

3. The absence of desired mapping makes it impossible to calculate the optim al 

param eter vectors and hence the cost C,j, which forms the error m atrix as 

defined in equation (5.18), cannot be computed. So the algorithm fails as soon 

as the constraints of the solution domain are not m et because further annealing 

is impossible as the required param eters become unavailable.

4. There is no remedy to this problem in the algorithm, as constraints can never 

be m atched throughout the algorithm; in fact, the necessity of the constraint as
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an algorithm param eter would have been obviated had there been a technique 

to  satisfy it with probability one.

5.11 Sum m ary

From the  discussions above it is clear tha t this technique cannot be applied to our 

task of point pattern  matching. Had the cost function not been dependent on the 

constraint of one-to-one mapping the MFA technique could have proved a useful 

tool in th a t the convergence to the global optim a is faster when the mean value 

is used by the  relaxation param eter to search for the solution. Nevertheless, this 

chapter serves as a guide to how the problem may be mapped to a neural network 

and w hat constraints would come into play. Perhaps it may be possible to use some 

other algorithm  based on the neural-network-mapped approach of the task of point 

pa tte rn  m atching, in which the basic constraint used to calculate the error is not 

violated along the length of the algorithm.



C H A P T E R  6 

C O N C LU SIO N

6.1 O verview

The techniques of SA and EP were successfully applied to the task of Point Pattern  

M atching. MFA could not be applied beacause of the constraint lim itations inherent 

in the algorithm , as discussed. Fast convergence was obtained using the EP approach 

and it was noted th a t the im plem entation of environmental knowledge results in a 

robust algorithm , as it performs well even in the presence of high noise and in the 

absence of a complete da ta  set.

New, knowledge-based variations of the M utation and Crossover operator were 

defined in the EP algorithm, which contributed significantly to the convergence 

speed. It should be mentioned again th a t the im portance of an operator lies in 

its definition and the way it is used. Hence, it would not be quite appropriate to 

classify operators as useful or useless in general, specifically in the case of EPs, where 

each operator can be custom engineered.

6.2 E xtensions on th is Work

In this work, only 2 -D patterns and sim ilarity transformations have been considered. 

It would be interesting to extend the algorithms presented herein, to handle n- 

dimension cases and other non-linear or affine transformations.

In the SA technique, instead of regular (random ) perturbation, one could use 

knowledge-based perturbation. This, however, would need to be done carefully, as 

perturbation is the only mechanism of traversing the solution space in the algorithm 

and the search is done one node at a tim e. It is evident tha t during the use of 

knowledge-based perturbation, not all regions of the solution space stand an equal 

chance of being searched, and any over-zealous knowledge-based technique might 

actually slow down the convergence speed rather than improve on it.
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Furtherm ore, based on heuristics, more specific versions of the m utation and 

crossover operators can be defined in the case of EP, so as to control the re­

com bination of offspring at different ages of the evolving population more effectively 

and efficiently, leading to  faster and more robust algorithms.
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