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CHAPTER 1

INTRODUCTION

Tribology is a multi-disciplinary science which involves the study of

interfacial actions in friction, lubrication, and wear phenomena. The

importance of tribology for economic savings in modern technological

development is now universally realized. The applications of

tribology knowledge have been widespread in the such fields as

material science, machinery design, biomedical engineering, space

engineering, and electromagnetic information storage mechanisms

(Jost 1990; Bhushan 1991). Characterization and analysis of surface

topography play a crucial role in tribology.

The methodology of surface measurement and evaluation has

been developed for more than 50 years. In the last half century, with

the rapid development of precision instruments and measurements,

and the emergence of a large amount of new technologies, it has

become clear that surface characterization and analysis are not only

important in tribology but also in the study of thermal and electrical

conductance, optical scattering, electromagnetic radiation,

superconductivity etc. Roughly speaking, surface measurement and

evaluation have undergone four stages of development: the original

single-point measurement method (for example, peak-to-valley

height); statistical method (for example, arithmetic average height,

root-mean-square height, and autocorrelation function); random

process method (for example, power spectrum density moments,

mean surface slope and curvature); and the recently developed

fractal geometry method (for example, fractal dimension and
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topothesy).

This thesis focuses on the methodology used in the study of

surface topography characterization and modeling, the functional

relationships between surfaces and manufacturing processes, and

engineering applications of the methodology in tribology science.

There are two major parts in the thesis. In the first part, a

three-dimensional surface evaluation system based on statistical and

random process methods is introduced. A specific kind of waterjet

generated surface is evaluated. The effects of cutting parameters and

structure dynamics on abrasive waterjet (AWJ) generated surfaces

are investigated. This study provides useful information in surface

quality and manufacturing process control of waterjet machined

surfaces.

The statistical and random process methods have some

shortcomings in the surface topography study. It has been found that

manufactured random surfaces have a multi-scale property and they

are fractal (Jordan, Hollins, and Jakeman 1986). These findings imply

that random surfaces are non-stationary (Sales and Thomas 1978),

non-differentiable (Berry 1980), and the measured parameter values

are instrument dependent (Majumdar and Bhushan 1990). These

properties have a significant effect on quantitative analysis and

evaluations of surfaces. Fractal geometry does not have the above

shortcomings and it has great advantages in characterizing surface

contact support ability and in modeling of wear mechanism. This is a

main topic of part two, the major emphasis of this thesis, where

fractal geometry is implemented in surface topography

characterization, wear prediction modeling, and wear process testing.
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The structure of this thesis is as follows. Chapter 2 applies the

statistical and random process methods to a specific kind of surface:

waterjet generated surfaces. Several classification and evaluation

methods for surface topography are introduced. The principles and

technology of waterjet machining and the striation phenomenon are

described. Waterjet machined surfaces are evaluated by separating

the surfaces into smooth and striation zones. The study is then

expanded to include the effects of cutting parameters and structure

dynamics on waterjet generated surfaces.

As an introduction to fractal geometry, chapter 3 presents a

general description of fractals and explains some basic concepts such

as self-similar fractals, self-affine fractals, and fractal dimension.

Techniques developed for determining fractal dimensions are

discussed. It is observed that the structure function method is very

useful as a tool for obtaining fractal dimension and topothesy for

fractal sets.

In chapter 4 a Gaussian random fractal model for surface

topography characterization is proposed. Based on this model it is

found that fractal geometry is directly related to the bearing area

curve. Because fractal geometry is a quantitative and concise

expression of surface contact support ability, it is possible to use

fractal parameters to replace traditional bearing area curves.

Experimental results shown agree with the analytical results based

on this model.

Since fractal geometry can be used to characterize surface

contact support ability, it is practical to apply this method to wear.

This is discussed in chapter 5. The fractal property of islands is used
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to simulate a real random surface, and the fractal relation of contact

asperities is found. Based on the adhesive wear theory a wear

prediction model is developed using fractals, and in terms of this

model the effects of fractal parameters on wear rate are analyzed.

The optimum fractal dimension in wear processes is discussed. The

fractal method is implemented in a wear testing process and the

results qualitatively support the wear prediction model. Chapter 6

contains conclusions and suggested future work.



CHAPTER 2

CHARACTERISTICS OF ABRASIVE WATERJET
GENERATED SURFACES AND EFFECTS OF CUTTING

PARAMETERS AND STRUCTURE VIBRATION

2.1 Introduction

Abrasive waterjet (AWJ) machining is an emerging technology which

enables the shaping of practically all existing engineering materials.

Due to the advantages of AWJ machining such as fast cutting speed,

no heat effect zone, and ability to cut harder materials, it has been

widely used in many industrial applications. Like other high energy

beam cuttings, AWJ cutting has the defect of leaving striation marks

on the cut surface. This significantly affects the dimensional accuracy

and surface finish. The striation marks on the surface can be

improved by adjusting the jet entrance angle (Matsui et al., 1990),

slowing down the cutting speed, and using multi-passes cutting

(Souda, 1991). However these are not efficient ways and striation can

not be eliminated completely. For fully understanding the processes

of AWJ machining and seeking a way to enhance dimensional

accuracy and surface finish, it is essential to study the characteristics

of AWJ generated surfaces.

The topography of AWJ generated surfaces has been studied by

several researchers. Based on a flow visualization study of waterjet

cutting process, Hashish (1984, 1991), proposed that the waterjet

erosion process consists of two cutting regimes. The first regime (on

the top of the kerf) is dominated by the cutting wear mode where
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penetration occurs in a small impact angle. The second regime (on

the bottom of the kerf) is dominated by the deformation wear mode

where penetration occurs in a large impact angle. The surface is

smooth in the first regime but is marked by striations in the second

regime. Based on this study, Tan (1986) suggested a model based on

the kinematics/geometry of the cutting process to explain the

characteristics of striated surfaces. He showed the modeled results to

be in good agreement with experimentally obtained data. Hunt, Kim

and Reuber (1988), in conducting an experimental study for AWJ cut

metal surfaces involving striations, observed that the surface

roughness increases monotonically with increase in depth of cut or

cutting speed and that a linear relationship correlates them very

well. A similar conclusion was made by Neusen, et al. (1987) in the

cutting of metal matrix composites. Kovacevic (1991) used a second-

order mathematical model to characterize the surface roughness as a

function of several AWJ operation parameters across the entire cut's

depth.

Despite the common observation that an AWJ cut surface may

consist of two zones of different texture: a smooth zone near the top

of the cut and a rough striation zone below some depth from the top,

researchers have not studied the texture of a surface in the smooth

zone and how it differs from the texture of a surface in the striation

zone.

In this chapter we present an experimental study of the

topography of AWJ generated surfaces such that we are able to

reveal the distinct difference in surface texture between the smooth

zone and the striation zone. It is found that the smooth zone has a
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homogeneous, random, Gaussian, and moderately isotropic texture.

The surface roughness parameters Ra and Rq in this zone depend

weakly on depth of cut, cutting speed, and orifice diameter, although

they increase monotonically with increasing abrasive particle size. In

contrast, the surface roughness and the amplitude of power spectrum

in the striation zone increases strongly with increasing depth of cut

or cutting speed.

Hashish (1991,1992) presented his recent study of the general

characteristics of AWJ machined surfaces. He proposed that there are

two types of waviness in AWJ machined surfaces. The first type of

waviness is the jet-induced waviness, which exists on the surface

dominated by the deformation wear mode. The second type of

waviness is the traverse-induced waviness, which may appear in

both the cutting and deformation wear zones. In Harshish's paper he

also mentioned that some dynamic factors and vibration may be the

causes of striation formation. However these causes remain

somewhat a conjecture, as pointed out by himself that no

quantitative data are available.

In this chapter we shall present a detailed study of the

structure dynamics of our AWJ machine to find out the role of the

vibration of the AWJ machining system in striation formation.

2.2 Evaluation of Surface Topography

2.2.1 Classification of Surfaces

Classification of surfaces can be done as depicted in Figure 2-1

(Nayak, 1971; Zhou, Leu, and Dong, 1990). Surfaces of solids can be
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Figure 2-2 Sampling grids for the multi-parallel profile method


