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CHAPTER 1
INTRODUCTION

Tribology is a multi-disciplinary science which involves the study of
interfacial actions in friction, lubrication, and wear phenomena. The
importance of tribology for economic savings in modern technological
development is now universally realized. The applications of
tribology knowledge have been widespread in the such fields as
material science, machinery design, biomedical engineering, space
engineering, and electromagnetic information storage mechanisms
(Jost 1990; Bhushan 1991). Characterization and analysis of surface
topography play a crucial role in tribology.

The methodology of surface measurement and evaluation has
been developed for more than 50 years. In the last half century, with
the rapid development of precision instruments and measurements,
and the emergence of a large amount of new technologies, it has
become clear that surface characterization and analysis are not only
important in tribology but also in the study of thermal and electrical
conductance, optical scattering, electromagnetic radiation,
superconductivity etc. Roughly speaking, surface measurement and
evaluation have undergone four stages of development: the original
single-point measurement method (for example, peak-to-valley
height); statistical method (for example, arithmetic average height,
root-mean-square height, and autocorrelation function); random
process method (for example, power spectrum density moments,
mean surface slope and curvature); and the recently developed

fractal geometry method (for example, fractal dimension and



topothesy).

This thesis focuses on the methodology used in the study of
surface topography characterization and modeling, the functional
relationships between surfaces and manufacturing processes, and
engineering applications of the methodology in tribology science.

There are two major parts in the thesis. In the first part, a
three-dimensional surface evaluation system based on statistical and
random process methods is introduced. A specific kind of waterjet
generated surface is evaluated. The effects of cutting parameters and
structure dynamics on abrasive waterjet (AWIJ) generated surfaces
are investigated. This study provides useful information in surface
quality and manufacturing process control of waterjet machined
surfaces.

The statistical and random process methods have some
shortcomings in the surface topography study. It has been found that
manufactured random surfaces have a multi-scale property and they
are fractal (Jordan, Hollins, and Jakeman 1986). These findings imply
that random surfaces are non-stationary (Sales and Thomas 1978),
non-differentiable (Berry 1980), and the measured parameter values
are instrument dependent (Majumdar and Bhushan 1990). These
properties have a significant effect on quantitative analysis and
evaluations of surfaces. Fractal geometry does not have the above
shortcomings and it has great advantages in characterizing surface
contact support ability and in modeling of wear mechanism. This is a
main topic of part two, the major emphasis of this thesis, where
fractal geometry is implemented in surface topography

characterization, wear prediction modeling, and wear process testing.



The structure of this thesis is as follows. Chapter 2 applies the
statistical and random process methods to a specific kind of surface:
waterjet generated surfaces. Several classification and evaluation
methods for surface topography are introduced. The principles and
technology of waterjet machining and the striation phenomenon are
described. Waterjet machined surfaces are evaluated by separating
the surfaces into smooth and striation zones. The study is then
expanded to include the effects of cutting parameters and structure
dynamics on waterjet generated surfaces.

As an introduction to fractal geometry, chapter 3 presents a
general description of fractals and explains some basic concepts such
as self-similar fractals, self-affine fractals, and fractal dimension.
Techniques developed for determining fractal dimensions are
discussed. It is observed that the structure function method is very
useful as a tool for obtaining fractal dimension and topothesy for
fractal sets.

In chapter 4 a Gaussian random fractal model for surface
topography characterization is proposed. Based on this model it is
found that fractal geometry is directly related to the bearing area
curve. Because fractal geometry is a quantitative and concise
expression of surface contact support ability, it is possible to use
fractal parameters to replace traditional bearing area curves.
Experimental results shown agree with the analytical results based
on this model.

Since fractal geometry can be used to characterize surface
contact support ability, it is practical to apply this method to wear.

This is discussed in chapter 5. The fractal property of islands is used



to simulate a real random surface, and the fractal relation of contact
asperities is found. Based on the adhesive wear theory a wear
prediction model is developed using fractals, and in terms of this
model the effects of fractal parameters on wear rate are analyzed.
The optimum fractal dimension in wear processes is discussed. The
fractal method is implemented in a wear testing process and the
results qualitatively support the wear prediction model. Chapter 6

contains conclusions and suggested future work.



CHAPTER 2

CHARACTERISTICS OF ABRASIVE WATERJET
GENERATED SURFACES AND EFFECTS OF CUTTING
PARAMETERS AND STRUCTURE VIBRATION

2.1 Introduction

Abrasive waterjet (AWJ) machining is an emerging technology which
enables the shaping of practically all existing engineering materials.
Due to the advantages of AWIJ machining such as fast cutting speed,
no heat effect zone, and ability to cut harder materials, it has been
widely used in many industrial applications. Like other high energy
beam cuttings, AWJ cutting has the defect of leaving striation marks
on the cut surface. This significantly affects the dimensional accuracy
and surface finish. The striation marks on the surface can be
improved by adjusting the jet entrance angle (Matsui et al., 1990),
slowing down the cutting speed, and wusing multi-passes cutting
(Souda, 1991). However these are not efficient ways and striation can
not be eliminated completely. For fully understanding the processes
of AWJ machining and seeking a way to enhance dimensional
accuracy and surface finish, it is essential to study the characteristics
of AWJ generated surfaces.

The topography of AWJ generated surfaces has been studied by
several researchers. Based on a flow visualization study of waterjet
cutting process, Hashish (1984, 1991), proposed that the waterjet
erosion process consists of two cutting regimes. The first regime (on

the top of the kerf) is dominated by the cutting wear mode where



penetration occurs in a small impact angle. The second regime (on
the bottom of the kerf) is dominated by the deformation wear mode
where penetration occurs in a large impact angle. The surface is
smooth in the first regime but is marked by striations in the second
regime. Based on this study, Tan (1986) suggested a model based on
the kinematics/geometry of the cutting process to explain the
characteristics of striated surfaces. He showed the modeled results to
be in good agreement with experimentally obtained data. Hunt, Kim
- and Reuber (1988), in conducting an experimental study for AWIJ cut
metal surfaces involving striations, observed that the surface
roughness increases monotonically with increase in depth of cut or
cutting speed and that a linear relationship correlates them very
well. A similar conclusion was made by Neusen, et al. (1987) in the
cutting of metal matrix composites. Kovacevic (1991) used a second-
order mathematical model to characterize the surface roughness as a
function of several AWIJ operation parameters across the entire cut's
depth.

Despite the common observation that an AWIJ cut surface may
consist of two zones of different texture: a smooth zone near the top
of the cut and a rough striation zone below some depth from the top,
researchers have not studied the texture of a surface in the smooth
zone and how it differs from the texture of a surface in the striation
zone.

In this chapter we present an experimental study of the
topography of AWJ generated surfaces such that we are able to
reveal the distinct difference in surface texture between the smooth

zone and the striation zone. It is found that the smooth zone has a



homogeneous, random, Gaussian, and moderately isotropic texture.
The surface roughness parameters Rz and Rq in this zone depend
weakly on depth of cut, cutting speed, and orifice diameter, although
they increase monotonically with increasing abrasive particle size. In
contrast, the surface roughness and the amplitude of power spectrum
in the striation zone increases strongly with increasing depth of cut
or cutting speed.

Hashish (1991,1992) presented his recent study of the general
characteristics of AWJ machined surfaces. He proposed that there are
two types of waviness in AWJ machined surfaces. The first type of
waviness is the jet-induced waviness, which exists on the surface
dominated by the deformation wear mode. The second type of
waviness is the traverse-induced waviness, which may appear in
both the cutting and deformation wear zones. In Harshish's paper he
also mentioned that some dynamic factors and vibration may be the
causes of striation formation. However these causes remain
somewhat a conjecture, as pointed out by himself that no
quantitative data are available.

In this chapter we shall present a detailed study of the
structure dynamics of our AWJ machine to find out the role of the

vibration of the AWJ machining system in striation formation.
2.2 Evaluation of Surface Topography
2.2.1 C(lassification of Surfaces

Classification of surfaces can be done as depicted in Figure 2-1

(Nayak, 1971; Zhou, Leu, and Dong, 1990). Surfaces of solids can be



Solid
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|

Inhomogeneous
surfaces

Use the multi-parallel
profile method for
analysis.
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Non-Gaussian surfaces

analvysis,
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|
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(i. e., random
method).
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moments (i. €., random
process method).

Figure 2-1 Classification and assessment of solid surfaces
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Figure 2-2 Sampling grids for the multi-parallel profile method
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