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vcv Specific  v o lum e a t critica l void  ratio .

v c Specific  v o lum e a fte r consolidation .

Vj L ocal velocity  in the y d irection; subscrip t i= l fo r v e loc ity  at h=0,
subscrip t i=2  fo r velocity  at h=h.

v0 L in ear velocity  v ec to r at the cen te r o f  sphere (1).

v  / L in ea r velocity  v ec to r a t the cen te r o f  sphere (2).

vA V elocity  v ec to r a t p o in t A.

v B V elocity  v ec to r a t p o in t B.

Vi V elocity  at po in t A  in local x direction.

v2 V elocity  at po in t B in local y direction.

V; V elocity  at the cen te r in the local y d irection ; su b sc rip t i fo r sphere
1 and  2.

V o V elocity  v ec to r at O.

V Q; V elocity v ec to r at O '.

Vp V olum e o f  partic le  p.

V r R elative linear velocity  o f the two spheres in the local y
d irec tion .

w; L ocal velocity  in the z d irection; subscrip t i= l  fo r  velocity  at h=0,
subscrip t i=2  fo r velocity  at h=h.

w j V elocity  a t po in t A in  local z direction.

w 2 V elocity  a t po in t B in local z direction.

W ; V elocity  in the local z d irection; subscrip t i d en o tin g  fo r
sphere 1 and  2.

W r R elative  lin ear velocity  o f the tw o spheres in  the local z
d irec tion .

x,y,z D istance m easu red  in the local x, y, z d irec tions.

Xj G lobal co -o rd in a tes  o f  cen te r o f sphere (a); su b sc rip t i= l,2 ,3 -

xf P osition  v ec to r o f  co n tac t c.

xj* P osition  v ec to r o f  cen tro id , partic le p.

xv
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Xj V elocity  o f sphere (a); su b scrip t i= l  ,2,3 in global co -o rd in a te
d irec tions.

Xj A ccelera tion  o f sphere (a); su b scrip t i= l,2 ,3  in g lobal co -o rd in a te  
d irec tions.

Xj R elative  velocity  betw een the  co n tac t points P(a) and  P(b>.

yj G lobal co-ord inates of ce tn e r o f  sp h ere  (b); subscrip t i= i ,2 ,3 .

y; V elocity  o f sphere (b); su b scrip t i= l ,2 ,3  in global co -o rd in a te
d irec tions.

\ j A ccelera tion  o f sphere (b); su b scrip t i= l,2 ,3  in global
co -o rd in a te  directions.

dt Increm en tal tim e ( tN+i-tN).

A F n Increm en tal norm al force.

A F S Increm ental tangential force.

A n  Increm ental relative norm al d isp lacem en t.

A s  Increm ental relative tangential d isp lacem ent.

eq S h ea r Strain.

ev V olum etric Strain.

€\ V ertical Strain.

6j S tra in  rate in i d irection w here  i= x ,y  and  z.

;/ C oeffic ien t o f viscosity.

0(a) A n g u la r velocity vector o f  sphere  (a).

0(n) A n g u la r acceleration vector o f  sp h ere  (a).

0- A n g u la r velocity  o f  spehre j  in i d irec tion ; subscrip t i= x ,y ,z  and j= l ,2 .

0ir R ela tive  angular velocity o f  the tw o  spheres in local i d irec tio n ,
sub scrip ts  i for x, y, z d irec tions.

0O A n g u la r velocity vector at the c e n te r  o f  spher (1).

0O, A n g u la r velocity vector at the c e n te r  o f  spher (2).

C oeffic ien t o f static friction.

xvi
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/ tmic C o effic ien t o f  friction betw een  tw o  surfaces at a con tac t,

r  S h e a r  stress.

Ui; S tre ss  in  the  global i d irec tion , su b scrip t i=x,y,z.

o-jj S tre ss  tensor.

<jij A v erag e  stress tensor o f  a m acro  e lem ent.

cr|j A v erag e  stress tensor o f  partic le  p.

0 Cv A n g le  o f  in ternal fric tion  at critica l void ratio .

<?max A n g le  o f  in ternal fric tion  a t peak  strength .

<?mic A n g le  o f  in ter-particle fric tion .

<?i A n g le  sub tended  at the cen te r o f  sphere  O by in ter sphere  h e ig h t h.

(j>2  A n g le  sub tended  at the cen te r o f  sp h er O ’ by in ter sphere  he ig h t h.

Qj_i A n g le  o f  fric tion  due to fric tiona l resistance.
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CHAPTER 1
THE INFLUENCE OF PORE FLUIDS ON 

STRESS-STRAIN BEHAVIOR OF GRANULAR SOILS

1.1 Introduction

It is ev iden t that d u rin g  the  past few  decades, the in d u stria l an d  econom ic g row th  

has in tro d u ced  a large varie ty  as w ell as a large q uan tity  o f  ch em ica ls  to the w o rld ’s 

eco -system . H um an ac tiv itie s  w hich w ere un regu la ted  at that tim e h av e  g iven rise  

to  co n tam in atio n  o f  o u r p rec io u s g roundw ater system , so il and  the  en v iro n m en t 

as a w hole. H igh co n cen tra tio n s  o f organic ch em ica ls , p estic id es , petrochem ical 

p roducts , and n u m erous industrial so lvents have been  observ ed  in  the areas o f  

chem ical and p e tro leu m  sp ills and unregulated  landfills . Soil con tam ination  

observed  in the v ic in ities o f  chem ical storage fac ilities  and  hazard o u s m ateria l 

d isp o sa l sites canno t be overlooked .

C on tam in an t ch em ica ls  are e ith er adsorbed by the so il partic les o r held b e ­

tw een  soil partic les as m iscib le  o r im m iscib le liqu ids. W ith  the passage o f tim e the 

adso rbed  ch em ica ls  d isp erse  w ithin the soil m atrix  cau sin g  ex ten siv e  soil co n tam i­

nation . P erco la ting  su rface  w ater and g roundw ater m o v em en ts  ac tive ly  partic ipate  

in p ro p ag atin g  th is  co n tam in atio n . T hus the re su ltin g  co n tam in a tio n  o f  soil w ill 

no t be confined  to the im m ed ia te  locality o f  the source  o f  po llu tion , but w ill be 

sp read  u n restric ted , p erh ap s irreparably .

P ro lo n g ed  co n tam in a tio n  can partia lly  or fu lly  rep lace  the pore  fluid o f soil 

w ith co n tam in an t ch em ica ls  and thereby  change the v isco u s ch arac te ris tic s  o f  Dore 

fluid. H ow ever, re search ers  in the field o f geo techn ica l en g in ee rin g  do not have a 

fundam ental u n d erstan d in g  o f  deform ation  ch a rac te ris tic s  o f  so ils w ith  chem icals 

(pore fluids) o f  d iffe ren t v iscosities. T herefore, a fu n d am en ta l investigation  to 

ev a lu a te  the influence o f  pore  fluid viscosity  on the s tress-s tra in  b ehav io r o f  soil 

w o u ld  be useful to the G eo techn ical eng ineering  p ro fessio n .
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1.2 Soil Structure

2

T h e soil m atrix  consists o f solid , liquid  and  gaseous phases. T h ese  th ree  phases 

o f  the soil m atrix  are not p resen t as a co n tinuum  as desc rib ed  in  so lid  m echanics, 

b u t ra th e r as a  heterogeneous m ix tu re  o f  all three phases. A lth o u g h  th is m odel 

quan tifies  the  am ounts o f the th ree phases present in a soil e lem en t, it does not 

d esc rib e  the  actual soil structure. T h e  so lid  phase consists  o f  soil p a rtic le s  o f  solid 

m ateria l. C o m m o n  solid partic les in  so ils are fairly  inert so lid s (san d s), reactive 

non-c lay  m in era ls  (lim estone, m etal o res), clay  m inerals and  o rgan ic  m atter.

In g eo tech n ica l engineering  p ractice, the  structure o f  a so il is taken  to mean 

the  g eo m etric  arrangem ent of the p artic le s  or m ineral g ra in s (i.e.  so il fabric) as 

w ell as the in ter-partic le  forces. In g ra n u la r soils, the in te r-p a rtic le  fo rces are very 

sm all, so bo th  the fabric and the s truc tu re  o f  gravels, sands, and  to so m e extent 

silts a re  th e  sam e (H oltz and K ovacs, 1981).

P h o to m icro g rap h s o f natural sand and silt particles in d ica te  th a t partic les are 

m ineral ag g reg ates  having d ifferen t shapes. They could be ro u n d ed , sub-rounded, 

e longated , o r angu lar depending  on the deg ree  o f w eathering . In g ra n u la r  soils 

w a te r has very  little effect on the  s tru c tu re  since the g ra ins are  non  p o ro u s inert 

partic les. T h e  su rfaces o f g ranu lar partic les being less ac tive  ex h ib it low  water 

re ten tio n  an d  neg lig ib le  adsorption. T hey  tend to form  a  “ s in g le  g ra in  s tru c tu re”  

w ith  a  loose  o r dense packing as a re su lt o f  settling  in a so il-flu id  suspension  or 

b eing  d ep o sited  by air.

1.3 Shear Strength and Stress-Strain Behavior of Soils

In a d ry  so il, the shear strength is d ev e lo p ed  at m ineral to m in era l co n tac ts . In a 

sa tu ra ted  so il a thin layer o f fluid ex ists betw een  tw o m ineral co n tac ts . T herefore, 

the  sh ea r s tren g th  o f  a  saturated soil d ep en d s on the p ro p erties  o f  the pore  fluid 

as w ell as those o f  the m inerals.

W hen a  soil is subjected  to a change in stress, the excess load is taken  by the
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soil m atrix  and the pore fluid. A t the poin ts o f  con tac t, the contact fo rces  m ay  

have norm al as w e ll as tangential co m p o n en ts . A n increase  in the n o rm al fo rce  

causes partic les (o r  partic le clusters in the case  o f  clay  soils) to d efo rm  w hile  

the tangen tia l co m p o n en t m ay cause slippage. In the case o f  clay so ils, w hen  a 

load is app lied  on the soil m atrix, the clay  partic les  an d /o r particle c lu ste rs  m ay 

elastica lly  bend  o r  re lax  previously bent ones. F o r g ran u la r soils, this m ech an ism  

m ay o ccu r bu t to  a  lesser extent. W hen the app lied  load causes a sufficiently  large 

change in  e ffec tiv e  stress w ithin the soil m atrix , s lippage and  rotation m ay  o ccu r 

causing  p lastic  d efo rm ation .

T h e  facto rs in fluencing  the stress-strain  b eh av io r and  sh ear strength o f  g ran u la r 

m ateria ls include the effective stress, fric tional and  strength  properties o f  the 

individual g ra ins, partic le  shape, and void  ra tio /re la tiv e  density . It is reco g n ized  

that the soil fab ric  (structu re) also in fluences soil behav ior, although a  p ractical 

m ethod o f  q u an tify in g  this factor is no t cu rren tly  availab le .

For g ran u la r so ils, the predom inant e ffec t co n trib u tin g  to changes in  p artic le  

arrangem ent is the m obilized  friction. T h erefo re , un like clay  soils, at low  e ffec tiv e  

conso lidation  stresses, granular soils d o  not d isp lay  a unique specific vo lum e- 

effective co n so lid a tio n  stress re lationship . H ence no rm aliz ing  o f shear s tren g th  is 

not p ossib le  fo r g ran u la r soils.

A ttem pts to n o rm alize  the drained s tress-s tra in  b eh av io r o f  g ranular m ateria ls  

have been m et w ith  lim ited success. S laden  and  O sw ell (1989) used the  c ritica l 

state concep t to n o rm alize  the undrained b eh av io r o f  very loose sands in triax ial 

com pression . A pp lication  o f critical sta te  co n cep t to the drained stress-stra in  

behav io r o f  g ra n u la r m aterials has been  m uch less successful in ach iev in g  a 

norm alizing  re la tio n .

C asag rande (1 9 3 6 ) related the ang le  o f  fric tio n  e>max to C ou lom b’s theory . 

B eyond the peak  strength , ‘cohesionless so ils ’ show  changes in vo lum e d u ring  

shearing, and w hen  the residual shear s treng th  is  reached  shearing w ill o ccu r a t 

a constan t vo lum e w here the correspond ing  ‘ang le  o f  fr ic tio n ’ is deno ted  by </>cv.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



He also  observed  th a t the loose sand reaches its  m ax im u m  strength at the  res id u a l 

fric tion  angle, o cv w ith o u t passing a peak. R o sco e , e t al. (1958) proved  th a t 

assem blies o f p artic les  atta in  a final single p o ro s ity  fo r a  given norm al p ressu re  

the value  o f  w hich  m ay  depend on particle sh ap e  and  grading.

M any  research ers  have observed the s ig n ifican ce  o f  volum e ch an g e  on the  

b ehav io r o f  g ran u la r m ateria l. The peak s tren g th  o f  a soil com prises o f th ree  

com ponents: (a) streng th  m obilized  by fric tional re s is tan ce ; (b) strength  d ev e lo p ed  

by energy  requ ired  to  rearrange  and reo rien t so il partic les: and (c) streng th  

developed  by energy  requ ired  to  cause ex p an sio n  o r d ilatation  o f  the m ateria l. 

T aylor (1948) a ttem p ted  to identify separate ly , th e  streng th  com ponents due  to 

‘fr ic tio n ’ from  th a t d u e  to expansion  in the sh ea r box . T h is  id ea  was later ex ten d ed  

by B ish o p  (1954) and  R ow e (1962, 1971). T h ey  a ttem pted  to acco u n t fo r  the  

d ifference in peak and residual strengths as an  e ffec t o f  vo lum e change behavior.

A lthough  it has long  been recognized tha t the  true ang le  o f fric tion <^{ is less 

than the angle o f  fric tion  corrected  for d ila ta tion , m an y  researchers have a ttem p ted  

to relate o/( to the residual friction. W hen a g ra n u la r  soil reaches the critica l s ta te , 

the fric tion  angle, <?cv corresponding  to the re sid u a l s treng th  will dep en d  on the 

strength  m ob ilized  by frictional resistance fo r a  g iv en  confined  p ressure . C aq u o t 

(1934) derived  the fo llo w in g  expression:

tmiOcv =  - ~ t a n d ;/ (1-1)

w hile B ishop  (1954) p resen ted  the em pirical re la tio n sh ip :

15ta.no,,
S l U O c v  =  ------------------- 'J L -  ( 1 . 2 )

10 +  3 tan O/i

re la ting  the residual an g le  o f  friction, Ocv and  the true ang le  o f fric tion

1.3.1 In f lu e n c e  o f  P o re  F lu id

In satu ra ted  g ran u la r so ils, the m agnitude o f  e las tic  and  plastic responses to  an
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ex ternal stress depend  on the shape and surface ch a rac te ris tic s  o f  the m inerals and 

the physical p roperties  o f  the pore fluid. W hen sub jected  to  an external force, the 

increase in load is tak en  by the pore fluid increasing  the p revailing  hydrostatic  

pressure. T h is in creases  the forces acting at m ineral to  po re  fluid contacts. U nder 

d ra ined  cond itions, the pore w ater pressure in ex cess  o f  the  hydrostatic  p ressure 

w ill d issipate  causing  an increase in the load taken  by the m ineral to  m ineral 

con tac ts. U nder u n d ra in ed  cond itions, excess pore w a te r p ressu re  will bu ild  up to 

take the load thus red u c in g  the load taken a t m ineral to  m inera l contacts. A lthough  

the  shearing  m ech an ism  is not clearly  identified (S co tt, 1963), it is associa ted  w ith  

in stan taneous elastic  an d  p lastic  deform ations o ccu rrin g  sim u ltaneously  betw een 

partic les an d /o r p artic le  clusters.

Soil m oisture a lso  p lays an im portan t role in co m p ac tio n . P rocto r (1933) 

exp la ined  the role o f  pore fluid in com paction  using  the d ifference in  fric tion 

ang les betw een  the d ry  and w et sam ples o f  the sam e soil due to v iscosity  o f the 

pore fluid. H orn and D eere  (1962) stated  that as the  su rface  m oisture increases, 

the fric tional re s is tan ce  that can be developed  betw een  su rfaces o f m inerals w ith 

layered  lattice (such as m icas) decreases, w hereas the rev erse  is true fo r m assive 

structu red  m inerals (g ran u la r m aterials such as q u artz ). H ow ever, conven tional 

d ra ined  triaxial tests d o n e  on dry and saturated  g ran u la r so ils ind icate that w ith 

the in troduction  o f  w a te r, the shear strength  is red u ced  (L ee et al., 1967).

1.3.2 Effects of Chemicals

T h e  solid phase o f  a g ra n u la r  soil is re la tively  in ac tiv e  than the com bined  solid- 

fluid phase. T h ere fo re , w hen a  granu lar soil is co n tam in a ted , the con tam in an t 

ch em ica ls  w ill be held  in the pore fluid. S ince the s treng th  o f  a saturated g ranu lar 

soil depends on p ro p e rtie s  o f  both the m inerals and the pore fluids, the changes in 

the  physical p roperties  o f  pore fluid can  change the s tren g th  charac teristics.

T hus any ch an g es in the strength charac te ristics  o f  a g ranu lar soil can be 

log ically  reasoned  to b e  re la ted  to the changes in the  co n tac t properties at points
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o f  co n tac t o f  m in era l g ra ins in the p resence  o f  a pore fluid. T h erefo re , to p ro v id e  a 

m echan istic  ex p lan a tio n  to the changes in streng th  characteristics due to  ch em ica l 

co n tam in a tio n , ch an g es  in the con tac t p ro p erties  have to be studied at p artic le  level. 

T h e  co n stitu tiv e  law s fo r soils canno t be used  to study this phenom enon  s in ce  these  

law s are  d e riv ed  based  on experim ental re su lts  to m odel a m acro -e lem en t o f  soil 

w h ere  soil is  trea ted  as a continua ra th e r than  a  d iscre te  array o f  in d iv id u a l g ra in s 

and  pore fluid in  con tac t. T herefore, to s tudy  the actual m echan ism  re sp o n sib le  

fo r this b eh av io r, it is im perative that a m icro sco p ic  m odel be used.

1.4 Microscopic Modeling of Granular Soils

N um erical m e th o d s  o f  m odeling has been  in use in the field o f  g eo tech n ica l e n g i­

n eering  fo r o v e r  th ree  decades now . N u m erica l m odels can e ith e r be m acro sco p ic  

o r m icro sco p ic . T h e  m acroscopic m odels  su ch  as the C am -C lay m odel and  the  C ap  

m odel etc ., are ra tiona lly  form ulated  based  on the experim ental resu lts  o b ta in ed  

from  m ateria l co d es  o f behavior. In m acro sco p ic  m odels, the actual m ech an ism s, 

w hich  are no t ex ac tly  understood, are d isg u ised  behind the nam e o f  m acro sco p ic  

in ternal v a riab les . T he advantage o f  such  fo rm ulations is the ab ility  to  in te rp re t 

ex p erim en ta l d a ta  into straight fo rw ard  m ath em atica l re lations w hich  m ay be used  

to  p red ic t b eh a v io r o f  soil under s im ilar con d itio n s. In m acroscopic m o d els , the  

b eh av io r o f  a  m acro  elem ent is ex tended  using  a F in ite  E lem ent M ethod  to  m odel 

the labora to ry  s im u la tio n s and field b o u n d ary  value problem s.

O n the o th e r  hand , the m icroscopic m o d els  such as T R U B A L  (C undall and 

S track , 1984), b ased  on the D istinct E lem en t M ethod (D E M ), study the b eh av io r 

o f  m ic ro -e lem en ts  such as individual soil g ra ins w hich consist o f  a few  p a rtic le s  

and  th e ir am b ien t space. The m icroscop ic  m odels provide a better in s ig h t in to  the 

fundam en tal m ech an ism s responsible fo r ac tua l soil responses. T he d isad v an tag e  

o f  the m icro sco p ic  m odels is the d ifficu lty  to  bring  over from  the m icro  level to 

the real m acro  level w ithou t m any sim p lify in g  assum ptions. A lthough  the  ea rlie s t 

m odels  w ere  in sp ired  by and used in rock m echan ic  related studies (C u n d a ll, 1971),
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today there is a d riv e  to d ev e lo p , im prove and use num erical m o d els  ex tensively  in 

soil m echanics. T hough  they  are not as popu lar as their m acroscop ic  counterparts 

num erous m athem atical m o d els  have been p resen ted  in the last tw o decades, to 

m odel g ranu la r soils. T h ey  are being used w ith large num bers o f  partic les using 

su p er com puters so that the sim plify ing assum ptions can  be avoided .

T he success in p red ic tin g  the observed  b eh av io r using  a  m icroscop ic m odel 

depends on how  w ell the physically  observed  q u an titie s  can  be expressed  using 

fundam ental concep ts . O n the o ther hand fo r m acroscop ic  m o d els  one w ould not 

en co u n te r this p rob lem  sin ce  the m acroscopic m odel param eters  are  obtained from  

experim ental data . T he u ltim ate  goal o f  both  m ethods how ever is to produce a 

co n stitu tiv e  m odel for g ra n u la r m aterial that can acco u n t fo r the changes in the 

fabric  w hich  occu r d u rin g  deform ation .

A lthough it is often  trea ted  as a con tinuum , soil like m ost o th er physical 

system s, is d iscon tinuous at som e level. It is rew ard in g  to  m odel such continuum s 

as d iscre te  assem blies o f  m ateria l at m icroscopic level, because as the m icroscopic 

m echan ism s are und ersto o d , m ore know ledge about the m acroscop ic  behavior can 

be gained . B eing co m p o sed  o f solid partic les, pore fluid and  a ir, soil can be 

m odeled  as a d iscre te  g ra n u la r assem bly.

T he strength  o f a g ran u la r assem bly is the ab ility  o f its so lid  phase  to sustain 

a load w ithout ex cessiv e  deform ation . A t po in ts o f  co n tac t, the con tac t forces 

have norm al and tangen tia l com ponents. A n increase  in the norm al force causes 

partic les to  defo rm , w hile  the tangential co m p o n en t causes rig id  body m ovem ent 

(transla tion  and ro tation). W hen a load is app lied  to the so il m atrix , particles 

m ay e lastica lly  defo rm  o r  re lease  the p rev ious d efo rm atio n s. W hen  the applied 

load causes a sufficien tly  large change in effective stress w ith in  the soil m atrix , 

transla tion  and ro tation  o c c u r  causing plastic defo rm ations. M icroscop ic  m odels 

s im u la te  these in terac tions occu rring  at the con tac t po in ts. T h ere fo re  they  provide 

a  better insight into the fundam ental m echan ism s responsib le  fo r the observed 

b ehav io r o f  a soil.
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H ow ever in the field o f  soil m echanics, m icroscop ic  m odeling has so  fa r been 

used purely fo r q u a lita tiv e  studies. E xact one on one m odeling  o f  the soil fab ric , 

has not been ach iev ed  by the m odels dev e lo p ed  so far. M ost o f  the m o d e ls  that 

have been d ev e lo p ed , based on D EM  and o th er num erical schem es, use no t m ore  

than 4  partic le  s izes  in elem ent test type an a ly sis  and up to e ig h t p artic le  sizes 

in  boundary  va lue  ana lysis  (D obry and Ng, 1989). T he total num ber o f  partic les 

used and the sh ap es also have been lim ited . A s such an exact im age, rep resen tin g  

soil fabric in every  detail cannot be generated  by these m odels and th e re fo re  the 

resu lts canno t be d irec tly  quantitatively  co m p ared  w ith m acroscopic m o d els  o r 

experim ental resu lts.

1.5 Literature Survey

T he shear s treng th  o f  g ranular soils d epends entirely  on m echan ical effec ts. 

T herefo re, any ch an g es observed in the shear strength  should be asso c ia ted  w ith 

changes in co n tac t properties. Any changes in the physical p roperties o f  pore  fluid 

can bring about ch an g es in the pore fluid to m ineral contact properties.

M eegoda (1 9 8 9 ) carried  out d irec t sh ea r tests on a silt co n tam in ated  w ith 

g lycero l/w ater so lu tio n s o f  different p roportions to investigate w h e th er pore  fluid 

viscosity  has any influence on shear streng th  o f  g ran u la r soils. R esults o f  th is study  

ind icated  that the residual angle o f internal fric tion  decreased w ith the in crease  o f  

coefficient o f  s ta tic  v iscosity  of pore fluid.

E vgin  and D as (1992) studied the stress-stra in  behavior o f  loose and  dense  

sands w hen sa tu ra ted  w ith w ater and w ith  o il. S ignificant changes in  the  ang le  

o f  fric tion  w ere o bserved  fo r both sands, w hen  oil was used as the p o re  fluid. 

T he vo lum etric  stra in  versus vertical strain  cu rv e  w as also found to ch an g e , w ith  

the change in pore fluid, for both sands. W hen oil w as used as pore flu id , the 

vo lum etric strain  w as found  to be m ore co m p ressiv e  than it w as w ith w ater.

T hese  resu lts  do  conso lidate  the v iew  that the viscosity  o f  po re  fluid is 

an im portan t fac to r govern ing  the sh ea r s treng th  and stress strain b eh av io r o f
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g ra n u la r soils. H ow ever, the  exact m echanism  w hich  cau ses  th is strength  reduction  

asso c ia ted  w ith the in c rease  in pore fluid v iscosity  has h ith erto  not been exp lained . 

S in ce  the strength  o f  a  g ra n u la r  soil is governed  by the m inera l to m ineral con tac ts 

an d  m ineral to m inera l con tac ts  in the p resen ce  o f  po re  fluids, the observed  

ch an g es  should in v ariab ly  be associa ted  w ith th ese  p artic le  con tac ts . T herefo re , it 

is im pera tive  that the soil structu re  be studied a t a  m icro sco p ic  level to understand  

the  actual m echan ism  beh ind  this m acroscopic behav io r.

M any attem pts have been  m ade by prev ious re sea rch e rs  to  exp lain  m acroscop ic 

b eh a v io r o f g ranu la r a ssem b lie s  using m icroscop ic m o d els . M icroscop ic m odeling  

o f  g ran u la r m ed ia  has show n that the m icroscop ic fr ic tio n  ang le  (w hich  is based 

on the  M ohr-C oulom b fa ilu re  criteria) is a key fac to r co n tro llin g  the m acroscop ic 

b ehav io r. T herefo re  it is reasonab le to believe that it is the lub rica ting  effec t at 

m icroscop ic  level d u e  to  the viscosity  o f  the pore  fluid that is responsib le  fo r the 

o b serv ed  m acroscop ic behav io r.

M athem atical m o d e lin g  o f  sand as a g ran u la r assem b ly  w as in troduced  by 

M ogam i (1965). In 1971, the D istinct E lem ent (D isc ree t E lem en t) m ethod  w as 

in tro d u ced  by C undall, m ain ly  to m odel the b eh av io r o f  rock  elem ents. Soon afte r 

its in troduction , it w as b e in g  used to m odel g ran u la r a ssem b lie s  w ith  considerab le  

su ccess . N um erical co d es  have been developed  to m odel tw o  d im ensional assem ­

b lies  o f  discs (C undall, 1978) as well as three d im en sio n a l assem blies o f  spheres 

(S trac k  and C undall, 1984) using the DEM . In d ep en d en t to  C undall, H akuno and 

H irao  (1973) co n d u c ted  a  sim ulation  o f  a dry  g ran u la r assem b ly  o f  c ircu la r p a r­

tic les  to  study the s ta tic  deform ation  o f  sand.

T h e  D istinct E lem en t M ethod  is a num erical p ro ced u re  fo r s im ula ting  behav io r 

o f  a  system  o f  d iscre te , in te rac tin g  bodies. It is d ev e lo p ed  based on the assum ption  

th a t each  ind iv idual e lem e n t abides by the N ew to n ’s L aw s o f  m otion  and  the force- 

d isp lacem en t re la tio n sh ip  at points o f contact. T h e  in te rac tio n  o f  the partic les is 

v iew ed  as a transien t sy s tem  fo r a given tim e in crem en t w ith  states o f eq u ilib rium  

d ev e lo p in g  w henever the in ternal forces are balanced .
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S ince its in tro d u ctio n , the m icroscopic m odeling  o f  g ra n u la r  assem blies have 

been stud ied  and used  in m any app lica tions by m any re sea rch e rs . N um erous 

m odels w ith m any s im ilarities , but developed  not en tire ly  on th ese  p rincip les have 

been pub lished  (T ing e t al. (1989), H akuno and Tarum i (1 9 8 8 )). A pplication  o f 

D EM  fo r m icro sco p ic  m odeling  is also  very w ide spread  in the  geo techn ical field 

today. D EM  sim u la tio n s can  be ca tegorized  in to tw o g ro u p s , as e lem en t tests 

or boundary  value p rob lem s. In e lem ent tes t type s im u la tio n s, boundary  effects 

are e lim ina ted  or red u ced , to  study the co nstitu tive  beh av io r. W hen  a  system  

is eva lua ted  as a b oundary  value problem , the en tire  sy stem  is m odeled  w ith a 

desired  n um ber o f partic les and  the partic le behav io r w hen  su b jec ted  to specified 

boundary  con d itio n s, is s tud ied . T his has num erous lim ita tio n s, because  o f  large 

num bers o f  partic les th a t are needed  to m odel a system . F o r the sam e reason 3-D 

problem s are e ith e r avo ided  o r reduced to 2-D  cases fo r ease  in  com putations.

M icroscop ic  m o d els  based on the D EM  have been used  to  s tu d y  the constitu tive 

b ehav io r o f  a m acro -e lem en t (C undall and S track , 1979a, 1983). T h is  w ould  also 

enable the m odels to  be used as a research tool in d ev e lo p in g  m o re  represen ta tive  

constitu tive law s fo r so ils. T he success ach ieved  in p red ic tin g  the stress-strain  

b ehav io r o f  a m acro  e lem en t, has enhanced  the use o f th e  D E M  in m odeling  

physical experim en ts.

C undall and  S track  (1979b) used the 2-D  D EM  m odel to  co m p are  the force 

vec to r p lo ts ob ta ined  from  the com pu ter p rogram  B A L L  w ith  th e  co rrespond ing  

plots ob ta ined  from  a pho to -elastic  analysis. T h is q u an tita tiv e  an a ly sis  has been 

possib le  because the s im u la tio n  has been carried  ou t fo r an  a ssem b ly  o f pho to ­

e lastic  d iscs and  no t a natural g ranu lar soil. C undall (1988) co m p ared  the resu lts o f 

a num erical s im u la tion  w ith resu lts o f  a physical ex p e rim en t p erfo rm ed  on a  dense 

sphere assem bly  in 3 -D . Petrakis e t al. (1989) s im ula ted  sm all and  large strain 

responses o f  a sand u n d er dynam ic loading  using a 2D  n o n -lin ea r D E M  m odel.

T ing et al. (1 9 8 9 ) used the com p u ter program  D ISC , w h ich  is a 2-D  DEM  

source code (C o rk u m  and T ing, 1986) to sim ulate labo ra to ry  1-D com pression
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tests, d irect s im p le  sh ea r and triaxial tests, and labo ra to ry  sim ulations o f  deep  and 

shallow  foo tings w ith  a granular assem bly  o f  d iscs. T h ese  results ind icated  tha t the 

2-D  D E M  m odel co u ld  sim ulate non-linear, stress h isto ry -dependen t soil behav ior 

w hen ind iv idual partic le  rotations are inh ib ited . T h is is, in fact, qu ite  logical since 

the irreg u la r sh ap ed  soil particles w ould  no t ro ta te  as m uch as w ould  an assem bly 

o f  discs. T h ey  had  attem pted  to use the sca lin g  law s in G eotechnical C en trifuge 

m odeling  to d ec id e  on  a com putationally  p ractical size fo r the g ranu la r assem bly.

R atnaw eera  and  M eegoda (1991a) co m p ared  the pred ic ted  b ehav io r o f a soil 

u nder d iffe ren t s tress  pa ths using 3-D  D E M  m icro sco p ic  m odel, T R U B A L  w ith  the 

B ounding  S u rface  m acroscopic m odel, EV A LV P (K aliak in  and  H errm ann, 1989) 

in o rd e r to ch eck  the ability  o f T R U B A L  to m odel soil behavior. S ince an exact 

one to one rep resen ta tio n  o f a m acroscop ic  e lem en t o f  soil, using a m icroscopic 

m odel w as no t p o ssib le , a conventional d ra in ed  triax ial test w as sim ulated  using 

both  m odels and  the m acroscopic m odel param eters  w ere ad justed  so as to be 

com patib le  w ith  the m icroscopic m odel s im u la tio n s (T able A .l ,  F igure A .l) .  This 

m icroscopic m odel and the m acroscopic m odel w ere then used to sim ulate  the 

stress-stra in  b eh av io r o f  a soil in a plane strain  triax ial test. T he resu lts o f  the two 

m odels w ere co m p arab le  (F igure A .2). H o w ev er w hen the tw o  m odels w ith the 

sam e m odel p a ram ete rs  were used to s im u la te  a co n stan t pressure triaxial test, the 

vo lum e change b eh a v io r for both m odels w ere found to be incom patib le  (F igure 

A .3). T h is  s tudy  sh o w ed  that selection  o f  m icro sco p ic  m odel param eters and the 

law s o f  co n tac t b e tw een  two soil g ra ins p lay  an im portan t ro le  in p red ic ting  the 

m acroscop ic  b eh av io r o f  a soil using m icro sco p ic  m odels.

R atnaw eera  and  M eegoda (1991b) m od eled  the undrained  triaxial behav io r 

by d efo rm ing  a in 3 -D  granular assem bly  along  an undrained  stress path w hile 

m ain ta in ing  ze ro  vo lum etric  change.

T he past re search  w ork in D EM  sim u la tio n s a lso  includes m any boundary 

value type sim u la tio n s. Actual physical tests such as bearing  capacity  tests, 

geostatic  s tresses in bin o f particles, stresses in infin ite slopes, lateral earth  pressure
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tests (T ing et al, 1989) and dynam ic load ing  cond itions such  as vibration due to 

d riv in g  o f  piles (U em era and H akuno, 1987) have been sim u la ted  qualitatively  

w ith  considerab le  success. H akuno and  Tarum i (1988), and Iw ash ita  and  H akuno 

(1988) used the DEM  m odel to p red ic t soil response to  se ism ic  load ing  patterns. 

T h e  2-D  D EM  m odel developed  by C undall has been used to  m o d el ground surface 

se ttlem en ts du rin g  construction  o f  a tunnel (K iyam a e t al, 1982) and behavior o f 

gra in  partic les in a silo  (K iy am a and Fujim ura, 1983).

Izutsu et al. (1986) conduc ted  a g ranu la r assem bly  s im u la tio n  taking in to 

accoun t the pore w ater pressure but w ithou t includ ing  re la tiv e  d isplacem ents. 

H akuno and Tarum i (1988) m odeled  soil liquefaction as a b o u n d ary  value problem  

using a d isc  assem bly , taking in to acco u n t the changes in p o re  w ater pressure of 

m icro  pore volum es.

A lthough app lica tions o f  D EM  to m odel granular m ateria l have  taken  to a w ide 

range and is been num erous, these ana lysis  have only been q u a lita tiv e  that one on 

one d irec t s im ula tion  o f actual physical tests is still an im possib ility .

1.6 Objectives

T h e  prim ary  ob jective  of th is research  is to  investigate the in flu en ce  o f pore fluid 

v iscosity  on deform ation  charac te ris tic s  o f  granular so ils. A tw o  fold  approach is 

taken to ach ieve this objective. F irst an experim ental study w as carried  out with 

silty  sand sam ples and G lycero l/W ater so lu tions w ith d iffe ren t v isco sitie s  to study 

the effects o f  pore fluid v iscosity  on deform ation  ch a rac te ris tic s  o f  g ranu lar soils.

T he effec t o f  pore fluid v iscosity  on  soil b ehav io r w as then studied at a 

m icroscop ic  level, to provide a m echan istic  exp lanation  to th is  phenom enon. A 

m icroscop ic  m athem atical m odel, T R U B A L  (Cundall and  S track , 1984), based on 

D istinct E lem en t M ethod, w as m odified  to include the e ffec ts  due  to pore fluid 

v iscosity  and w as used in a qualita tive  study to verify  the re su lts  o f the physical 

tests. S im ulations o f  drained triaxial tests w ere carried  ou t fo r g ran u la r assem blies 

o f spheres w ith pore fluids o f  d iffe ren t v iscosities.
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C H A P T E R  2 

M E T H O D O L O G Y  A N D  T E S T  P R O G R A M

2.1 Methodology

A t low  effec tiv e  consolidation  stresses g ran u la r soils do no t d isp lay  a unique 

re la tio n sh ip  b e tw een  specific vo lum e and  effec tive conso lidation  s tress . T h erefo re , 

shear streng th  o f  g ran u la r soils canno t be norm alized . A lthough  a t very  high 

effec tive co n so lid a tio n  stresses sh ear s treng th  o f g ranular so ils can  be norm alized  

(Vesic and C lough , 1968), high stresses canno t be used since they  w o u ld  crush 

soil partic les. A s such  it w ill not re flect the  fric tional co m p o n en t o f  the shear 

strength  co rrec tly , because the strength  m ob ilized  in crush ing  p a rtic le s  w ill also 

be included  in the shear strength.

T h e  o th er a lte rn a tiv e  would be to s ta rt all tests w ith the sam e in itia l specific 

vo lum e and  test at the sam e effective co n so lida tion  pressure. B ut it is  n o t possib le  

to p repare  all the sam ples w ith d iffe ren t pore fluids to have the  sam e initial 

specific vo lum e since pore fluids w ith d iffe ren t v iscosities have d iffe ren t d ra inage 

properties.

S ince it  w as no t practically  possib le  to  no rm alize  the resu lts , as an  alternative , 

varia tion  o f  the resid u a l shear streng th  w ith  the critica l void ra tio  w as an a ly zed . As 

discussed  in the A rtic le  1.3, w hen a g ran u la r soil reaches its critica l v o id  ra tio , the 

fric tional re s is tan ce  o f  the soil p redom ina tes its sh ear strength. S ince  th e  fric tional 

resistance  o f soil is evolved at partic le co n tac ts , effects o f pore  fluid com position , 

if  any , w ill be in d ica ted  by changes in th e  residual shear s treng th . T h e  ch an g es in 

critica l vo id  ra tio  w ill also be ind icative  o f  e ffec ts  o f pore fluid co m p o sitio n  since 

it invo lves partic le  m ovem ents w hich ch an g e  the configuration o f  th e  soil m atrix .

Soil sam p les  w ith four d ifferen t pore  fluid v iscosities w ere  used in  th is study. 

S am ples w ere  p repared  by m ixing the  p repared  pore fluid w ith the d ry  soil instead 

o f leach ing  out p repared  sam ples w ith the  se lec ted  pore flu ids. T h is  p ro cess w as 

adopted  m ainly  to en su re  that the pore flu id  w as d istribu ted  u n ifo rm ly  w ith in  the
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soil sam ple . A n added  ad v an tag e  o f this process w as the sho rt sam ple prepara tion  

tim e co m p ared  w ith  the  leach ing  process.

2.2 Material

2.2.1 Soil

For the en tire  test p ro g ram  the sam e soil, a silty  san d  w as used. To c lassify  and 

iden tify  the soil, a p a rtic le  size d istribution test, an d  A tterberg  lim it tests w ere 

carried  out. T h e  sam ple  w as tested  for specific g rav ity  con fo rm ing  to the A S T M

D 854. T h e  specific g rav ity  w as found to be 2 .71.

W et s iev in g  o f  the soil revealed  that m ore than  50%  o f the soil re ta ined  on 

No. 2 0 0  sieve (0 .075  m m ) m aking  it a coarse g ra in ed  so il. To obtain  the partic le  

size d is trib u tio n  fo r the to tal range o f grain sizes, re su lts  o f  the w et sieve ana lysis 

and a h y d ro m ete r an a ly sis  fo r the part passing N o . 2 0 0  sieve, w ere  com bined .

T he d is trib u tio n  cu rv e  ob ta in ed  (F igure 2.1) sh o w ed  that the soil is a un iform ly  

graded  soil, 100% o f it p assing  No. 40 sieve (0 .4 2 m m ).

Portion  o f  the soil p assin g  through No. 40  s iev e  (0 .42  m m ) w as used fo r the 

A tterberg  lim it tests. T h e  U nified Soil C lassification  system  ind icated  that this 

soil a lth o u g h  fine en o u g h , (48%  passing No. 2 0 0  s ieve and 100%  passing  N o. 

40 sieve) is g ranu lar. T h e  p lastic  lim it could  no t be  es tab lish ed  since it w as not 

possib le  to  be ro lled  to  a th ick n ess  o f three m illim eters . C ru m b lin g  started  at abou t 

5 m m  th ickness. W hen the liqu id  lim it test w as ca rried  out, the soil flow ed easily  

and d id  not stick  to the bow l. E ven at the low est p o ss ib le  w ater conten t, the soil 

s lipped on the su rface  o f  the  cu p  and the grove c lo sed  a fte r abou t 5 blow s. F rom

these test resu lts  the soil w as concluded  to be a  s ilty  sand.

2.2.2 Pore Fluid

T he only  tw o fluids th a t w ere  used in co m b in atio n , as pore fluid fo r the soil 

sam ples w ere  w a te r and g lycero l. T he w ater w as d e io n ized  and deaired . G lycero l 

was se lec ted  as the co n tam in an t because it is co m p le te ly  m isc ib le  in w ate r and has
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