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ABSTRACT

CONCURRENT USE OF TWO PROGRAMMING TOOLS
FOR HETEROGENEOUS SUPERCOMPUTERS

by
Javier G. Vasquez

In this thesis, a clemostration of the heterogeneous use of two programming

paradigms for heterogeneous computing called Cluster-M and HAsC is presented.

Both paradigms can efficiently support heterogeneous networks by preserving a level

of abstraction which does not include any architecture mapping details. Furthermore,

they are both machine independent and hence are scalable. Unlike, almost all

existing heterogeneous orchestration tools which are MIMD based, HAsC is based on

the fundamental concepts of SIMD associative computing. HAsC models a hetero-

geneous network as a coarse grained associative computer and is designed to optimize

the execution of problems with large ratios of computations to instructions. Ease

of programming and execution speed, not the utilization of idle resources are the

primary goals of HAsC. On the other hand, Cluster-M is a generic technique that

can be applied to both coarse grained as well as fine grained networks. Cluster-M

provides an environment for porting various tasks onto the machines in a hetero-

geneous suite such that resources utilization is maximized and the overall execution

time is minimized. An illustration of how these two paradigms can be used together

to provide an efficient medium for heterogeneous programming is included. Finally,

their scalability is discussed.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Heterogeneous Computing (HC)[16, 14] provides an environment where a parallel

application is executed utilizing a number of autonomous computers communicating

over an intelligent network, and offering more than one type of parallelism. This

approach aims at providing high performance by executing portions of code on

suitable machines offering similar types of parallelism. The hardware and software

requirements of HC can be classified into three layers: network layer, communication

layer, and intelligent layer [20]. The network layer deals with the physical aspects

of interconnecting the autonomous high performance machines in the system. This

includes low level network protocols and machine interfaces. The communication

layer provides a uniform system-wide communication mechanism operating above

native operating systems to facilitate the exchange of information between different

machines. The intelligent layer provides system-wide tools that insure proper and

efficient execution of tasks using the heterogeneous suite of computers. The services

provided by this layer include language support, task decomposition, mapping and

scheduling.

A number of existing parallel programming tools developed for homogeneous

systems may be used in the intelligent layer, but may not be suitable for the hetero-

geneous systems. These tools can be classified into two categories; machine specific

and machine independent. Machine specific tools such as Linda [5] and Poker [21]

are only suitable for the corresponding architectures they are designed for, and

therefore not generic enough to support the heterogeneous networks. For example,

Linda [5] is a parallel programming tool developed for shared memory architectures.

The tuple space defined in Linda is a logically shared data structuring memory

1
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mechanism. Tuple space holds two kinds of tuples: process tuples which are under

active evaluation, and data tuples which are passive. Process tuples execute simul-

taneously, and exchange data by generating, reading, and consuming data tuples.

Once a program is written based on Linda, each step must get implemented using

the underlying architecture. However, it is difficult to implement Linda on archi-

tectures not supporting shared memory structure.

Machine independent programming tools can be further categorized into two

groups, with respect to how the mapping of the problem tasks is done onto the target

architectures. The first group uses a library of pre-defined routines for mapping

[1, 23]. This may not be suitable for HC systems due to the limitation on the

number of mapping techniques stored and available in the library. In the second

group, the mapping is determined online based on graph matching technique. The

mapping problem here is the same as the classic one defined and studied by several

researchers over the years [22, 3, 17, 4, 8, 18]. The input to the mapping problem

is two graphs. The first graph is called the problem graph which is similar to the

data flow representation of the execution process, where each node is a computation

task and edges represent dependency and flow of data. The second graph is called

the system graph which is a trivial representation of the underlying architecture.

The mapping problem is defined as the matching of these two graphs such that the

overall execution time is minimized. This problem has been proven to be computa-

tionally equivalent to the graph isomorphism problem and hence is an NP-complete

optimization problem [3]. Tools that use this approach are not time efficient to be

used in heterogeneous computing.

To reduce the complexity of the mapping problem, a number of approaches

such as graph contraction and clustering have been studied [7, 2, 15, 24, 25, 18].

However, in all these graph matching based techniques, still the entire problem

graph is considered against the entire system graph, which results in an embedded
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huge time complexity. In this thesis, we propose to use Cluster-M programming

paradigm for heterogeneous computing. Cluster-M, introduced recently in [9], has a

mapping module which does multi-level clustering on the problem graph as well as

the system graph. Also, presented in this thesis is HAsC programming paradigm [19],

which models a heterogeneous network as coarse grained associative computer and

is designed to optimize the execution of problems with large ratios of computations

to instructions. Ease of programming and execution speed, not the utilization of idle

resources are the primary goals of HAsC. On the other hand, Cluster-M is a generic.

technique that can be applied to both coarse grained as well as fine grained networks.

Cluster-M provides an environment for porting various tasks onto the machines in

a heterogeneous suite such that resources utilization is maximized and the overall

execution time is minimized. We illustrate how these two paradigms can be used

together to provide an efficient medium for heterogeneous programming.

The rest of the thesis is organized as follows. In chapter 2, Cluster-M

components and mapping methodology are presented. Presentation of HAsC in

chapter 3. Introducion of the concurrent use of HAsC and Cluster-M in chapter

4. The definitions of scalability for hardware, tasks, and software are presented in

chapter 5. The conclusion of this thesis is described in chapter 6.



CHAPTER 2

CLUSTER-M MODEL

Cluster-M is a novel parallel programming model which facilitates the effchaptericient

design of highly portable software. Cluster-M has three main components: Cluster-M

Specifications, Cluster-M Representations and Cluster-M mapping module [9, 11, 10].

Cluster-M Specifications are machine independent algorithms represented in a multi-

layered problem graph, such that each layer represents concurrent computations. A

Cluster-M Representation on the other hand, represents a multi-layered partitioning

of a system graph corresponding to the topology of the underlying architecture or

heterogeneous network. The mapping module then generates an efficient mapping of

the Specification graph onto the Representation graph. Using Cluster-M, portable

and scalable software can be developed.

2.1 Cluster-M Specifications

A Cluster-M Specification of a problem is a high level machine-independent program

that specifies the computation and communication requirements of a solution to a

given problem. A Cluster-M Specification can be translated into a graph consisting of

multiple levels of clustering. In each level, there is a number of clusters representing

concurrent computations. Clusters are merged when there is a need for communi-

cation among concurrent tasks. For example, if all n elements of an array are to be

squared, each element is placed in a cluster, then the Cluster-M specification would

state:

For all n clusters, square the contents.

4
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Figure 2.1 Cluster-M Specification graph of a unary operation on an array of
size n.

Note, that since no communication is necessary, there is only one level in the

Cluster-M Specification graph as shown in Figure 2.1. The mapping of this Specifi-

cation to any architecture having n processors would be identical.

The basic operations on the clusters and their contained elements are performed

by a set of constructs which form an integral part of the Cluster-M model. For a

complete listing and description of these constructs which are essential for writing

Cluster-M Specifications, refer to [11, 10]. All these constructs have been imple-

mented in PCN [10, 12]. Below we show an example for computing the associative

binary operation * of N elements of vector A, using the constructs implemented

in PCN. The resulting Cluster-M specification will be as follows, where CMAKE,

CMERGE and CBI are Cluster-M specification constructs. The Cluster-M Speci-

fication graph of this example is shown in Figure 2.2.

Figure 2.2 Cluster-M Specification of associative binary operation.

ASSOC_BIN(op, N, A, Z) /* op: operation, Z: return value */

int N, A[ ];

{ ; lvl	 0,



make_tuple(N, cluster),

; i over 0 .. N-1 ::

; CMAKE(lvl, [A[i]], c),

cluster[i] = c

}

} ,

Binary_Op(cluster, N, op, Z)

Binary_Op(X, N, op, B)

int N, n;

{ ? N > 1 -> ; n := N / 2,

make_tuple(n, Y),

; i over 0 .. n-1 ::

; BI_MERGE(op, X[2 * i], X[2 * i	 1], Z),

Y[i] = Z

}

Binary_Op(Y, n, op, B)

default -> B = X

}

BLMERGE(op, X1, X2, M)

int e;

{ ; CBI(op, Xl, 1, X2, 1, e),

CMERGE(X1, X2, [e], M)

6
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The above constructs have been implemented using PCN (Program Compo-

sition Notation). PCN is a system for developing and executing parallel programs.

It comprises of a high-level programming language with C-like syntax, tools for

developing and debugging programs in this language, and interfaces to Fortran and

C allowing the reuse of existing code in multilingual parallel programs. Programs

develop using PCN are porable across many different workstations, networks, parallel

computers. The code portability aspect of PCN makes it suitable as an implemen-

tation medium for Cluster-M.

2.2 Cluster-M Representations

For every architecture, at least one corresponding Cluster-M Representation graph

can be constructed. Cluster-M Representation of an architecture is a multi-level

nested clustering of processors. To construct a Cluster-M Representation, initially,

every processor forms a cluster, then clusters which are completely connected are

merged to form a new cluster. This is continued until no more merging is possible.

In other words, at level LV L of clustering, there are multiple clusters such that each

cluster contains a collection of clusters from level LV L — 1 which form a clique. The

highest level consists of only one cluster, if there exists a connecting sequence of

communication channels between any two processors of the system. A Cluster-M

Representation is said to be complete if it contains all the communication channels

and all the processors of the underlying architecture. For example, the Cluster-M

Representation of the n-cube architecture is as follows: At the lowest level 1, every

processor belongs to a cluster which contains just it self. At level n, every two

processors (clusters) which are connected are merged into the same cluster. At level

2, clusters of previous level which are connected belong to the same cluster, and so on

until level n + 1. The complete Cluster-M Representation of a :3-cube, a completely
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connected system of size 8, and of a system with arbitrary interconnections are shown

in Figures 2.3, 2.4 and 2.5, respectively.

Figure 2.3 Cluster-M Representation of n-cube of size 8.

An algorithm for generating a Cluster-M Representation for any given archi-

tecture has been presented and implemented in [10]. The algorithm has a running

complexity of 0(N3 ) where N is the number of processors.

2.3 Mapping Specifications to Representations

The most challenging task in the Cluster-M model is the mapping of the Specifi-

cations onto the fixed Cluster-M Representations of various architectures. Although

in some cases this may appear simple, the mapping of certain Specifications may be

non-trivial. For example, consider the associative binary operation example of the

last section. We assume that it will take one time unit for a single communication

along a link. Its mapping onto a 3-cube is shown in Figure 2.6 and is straight forward

and can be done in 3 steps.

On the other hand, to map the same onto a ring of size 8 will lead to a greater

time complexity since there are not enough communication channels available

to support the communication request specified in the Cluster-M Specification.

Similarly, there is going to be a slow down if there are not enough processors in the
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Figure 2.4 Cluster-M Representation of a completely connected system of size 8.

Figure 2.5 Cluster-M Representation of an arbitrarily connected system of size 8.
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Figure 2.6 Mapping onto n-cube of size 8

Representation available as specified in the Specification. For example, the same

problem described above, will take at least twice as much time if it to be mapped

on a Cluster-M Representation having half the number of processors. Mismatch of

the number and structure of clustering in Cluster-M Specification versus Cluster-M

Representation may lead to a significant slow down in performance. In the following

section we present an efficient methodology for mapping an arbitrary Specification

to an arbitrary Representation.

2.3.1 A mapping methodology

The Cluster-M paradigm simplifies the mapping process by formulating the problem

in the form of Cluster-M problem Specification (a layered problem graph) empha-

sizing its computation and communication requirements independently from the

target architecture. Similarly, the Cluster-M Representation of the system emphasizes

the topology of the target multi-processor system (a layered system graph). Once
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both, the Cluster-M problem Specification and system Representation, are obtained

the mapping process proceeds as follows:

Start from the root of Cluster-M Specification. At level i, there is a number

of clusters. Each cluster has a size K which is defined by the cumulative sum of

the number of computations involved in all its nested subclusters. On the other

hand, in Cluster-M Representation, there is a collection of subclusters as part of a

Cluster-M Representation of a single connected system. We next look for a number

of clusters in the Representation to match the number of clusters at the ith level

of the Specification. Furthermore, we select the clusters such that the size of the

corresponding pair matches. The details of this algorithm are beyond the scope of

this paper. For more information, see [6]. As part of the proposed algorithm, several

graph theoretic techniques have been used. In the next section, we give an example

to illustrate the functionality of the mapping module.

2.3.2 An Example

In this section, we present a complete example to illustrate the Cluster-M mapping

methodology presented above.

Figure 2.7 shows the mapping from a Cluster-M Specification to Represen-

tation. First, two clusters at the top level of Specification are mapped onto two

clusters of Representation. The Specification cluster of size 5 is mapped onto the

Representation cluster of the same size, however the Specification cluster of size 4

has to be mapped onto the Representation cluster of size 3 since this is the closest

matching of sizes. Then the same procedure is applied for the clusters at the lower

level of Specification. As shown in step 2 in Figure 2.7, Specification cluster a is

mapped onto Representation cluster H, which is a single processor. In step 3, Speci-

fication clusters b, e, f, g, h and i are mapped onto corresponding processors. Finally

in step 4, Specification cluster c and d are both mapped onto processor F.



Figure 2.7 Au example for mapping algorithm
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CHAPTER 3

HETEROGENEOUS ASSOCIATIVE COMPUTING

Heterogeneous Associative Computing (HAsC) models a heterogeneous network as

a coarse grained associative computer. It assumes that the network is organized

into a relatively small number of very powerful nodes. Basically, each node is a

supercomputer architecture (vector, SIMD, MIMD, etc). Thus each node of the

network provides a unique computational capability. There may be more than one

node of a specific type in the case that special properties are present. For example,

one SIMD node may be specialized for associative processing, a second SIMD node

may contain a very powerful internal network configuration.

Figure 3.1 illustrates the logical similarity of an associative machine and a

heterogeneous network. In particular, a disk- computer node on a network can be

compared to an associative memory-PE cell. That is, effectively, the node's computer

is dedicated to processing the data on the node's disk(s). The disk-to-machine data

transfer rate is much more efficient than the node-to-node transfer rate, just as the

memory-to-PE transfers are much faster than PE-to-PE transfers. Note that the

SIMD and network diagrams are quite different from the shared memory MIMD

models. The shared memory configurations emphasize the concept that all data

is equally accessible from all processors. This is not the case in a heterogeneous

network.

HAsC is "layered" in that any node in the HAsC network may again be

another network. Thus a HAsC node may be a HAsC cell containing more than

one computer, or may be a port to another level of computing in the HAsC network.

For example, most nodes may contain general purpose computers in addition to

a supercomputer, to function as the node's port to the rest of the HAsC network

13
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Associative Cells

a — An Associative Computer

HAsC Nodes

b — Associative Configuration of a Network

Figure 3.1 Associative Configuration of a Network.

and for file management and other support roles. Figure 3.2 shows a typical HAsC

network organization. Such a port, or transponder node will accept a high level

command and "translate it" into the commands(s) appropriate for the subnetwork.

Figure 3.2 A Heterogeneous Network as a SIMD.

Some of the properties of the associative computing paradigm which make it

well suited for heterogeneous computing are: i) efficient programming and execution

with large data sets and small programs, ii) optimal data placement, iii) scalability,

iv) cellular memory allocation, and v) search-process-retrieve synchronism [19].
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3.1 Instruction Execution

In conventional machines, instructions are delivered to a CPU and they are executed

without question. In HAsC, instructions are broadcast to all of the cells listening to a

channel, but each individual cell must determine whether to execute the instruction.

This determination is performed as follows: Upon receipt of an instruction, a node

"unifies" it with its local instruction set and data files.

The unification process is borrowed from Artificial Intelligence. Several

languages such as Prolog and STRAND [13] incorporate the process. HAsC is

different in that it uses unification only at the top level. Thus there is only one

unification operation per data file, as opposed to one per record or field. This

difference is critical in a heterogeneous network where communication of individual

data items would be prohibitively expensive.

If there is a match, the appropriate instruction is initiated. The "instruction"

may in turn issue more instructions. Thus control is distributed throughout HAsC.

That is, a "program" starts by issuing a command from a control node. If a

receiving node receives a command that is in effect a subroutine call, it may become

a transponder control node. It may first perform some local computations and then

start issuing (broadcasting) commands of its own. If the node happens to be a port

node, the commands are issued to its subset as well as to its own network. Thus it

is possible for multiple instruction streams to be broadcast simultaneously at several

different logical network levels in a HAsC network.

In general, HAsC assumes that data is resident in a cell. As a result, data

movement is minimal. However, it is common for one cell to compute a value and

broadcast it to other cells. Thus, in general, there is a need to synchronize the

arrival of commands and data. There are basically two cases which are handled

automatically by the HAsC administrator as a part of the search-process-retrieve

protocol.
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The normal case is for data to be resident at a cell when the HAsC command

arrives. Instruction unification and execution proceeds as described above. HAsC

allows data transfers, but protocol insists that the data transfer be complete before

any associated commands are broadcast.

The second case involves command parameters. When a command arrives and

is unified with resident data at a node, but parameter data is missing, the unified

command is stored in a table to wait for the parameter in a synchronism process

called a data rendezvous. When parameter data arrives, the rendezvous table is

searched for a match. If found, the associated command is executed.

3.2 HAsC Administration

HAsC uses network administrators and execution engines to effect the paradigm.

Each HAsC network level has a system administrator and each node in a network

has its own local administrator. The local administrator monitors network traffic

capturing incoming instructions and checking for illegal commands. It is also

responsible for maintaining the local HAsC instruction set.

The administrator receives all incoming HAsC instructions from the local

network. It then verifies if each instruction is a legal HAsC instruction. If it is,

the administrator puts it in the Execution Engine queue. Otherwise, it attempts to

identify the source and makes a report to the system administrator. Repeat offenses

cause escalating diagnostic actions as determined by the network administrator.

If a Meta HAsC instruction such as (un)install, (un)extencl, or (un)augment,

is received, it is processed immediately. The Meta instructions will create, modify

and delete HAsC instruction from the local HAsC instruction set respectively.

The administrator contains logic which prevents it from installing duplicate HAsC

instruction. Meta instructions can also modify local data structure definitions.
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Since the instruction set can be dynamically expanded by the users, it is

possible for two users to install the same instructions. The node administrator distin-

guishes between the two instructions by a user id and program id which is broadcast

with every HAsC instruction.

Instructions can be added at several different logical levels: i) system, ii)

project, iii) user. Typical systems level instructions would be data move and

formatting commands. Project commands would be project oriented. For example,

a numerical analysis project would have a matrix multiply and vector-matrix

multiply instructions, while a logic programming project might have specialized

logic instructions, such as unification. At the user level, one user might specify a

SAXPY operation while another might want a dot product. Scalable libraries may

exist at any level, but most commonly at the project level.

Each node/cell has an execution engine which controls instruction execution

at that node. The execution engine selects the next instruction, makes the bindings

specified by instruction unification and causes the instruction to be executed. The

execution engine performs the following tasks:

Get Next Unified Instruction
Establish Environment
Save Local Variables
Bind Unified Variables
Execute Unified Instruction
Restore Environment

Instruction execution may take two basic forms. First the instruction may be a

HAsC program which is executed in the transponder mode. Second, the instruction

may be a library call written in FORTRAN, C, LISP, etc. In this case, the established

environment restrictions, produces the proper interface for the appropriate language.
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3.3 HAsC Instruction Set

This section defines the nature of the operations, the instruction format and the

instruction synchronization classes of the HAsC instruction set.

HAsC is dynamic. As such, it must allow for a dynamic instruction set and

data structure modifications. Thus the HAsC install meta instruction consist of an

associative pattern and a body of code. When it is broadcast to the system, all nodes

which successfully unify with the instruction gather the body of code and install it

on the local node. The extend instruction consists of a pattern and a data definition.

Responding nodes add the data definition to the local associations. Extend may add

a named row or column to an existing association. Augment can be used to add an

entire new association.

The patterns in these instructions contain administrative data. Such as job id,

project id, etc. If the node is not participating in the project or job, then it does

not unify and the instruction is not installed or the data definition not extended.

Uninstall, unextend and unaugment perform the inverse operations.

Basic to the HAsC philosophy is the concept that data when initially loaded

into the system is sent to the appropriate node and never moved. While this would be

ideal, there will always be a need to move data from one node to another. Accordingly

there are a number of HAsC move commands. Move commands can be divided into

intra-association and inter-association instructions. Intra-association instructions

are very much like expressions in conventional languages and are not discussed here

because of lack of space. Inter-association instructions include file I/O as a special

case. Inter-association moves must have node identifiers and for I/O, a disk or other

peripheral is a legal node.
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3.4 Associative Instruction Levels

This section describes a hierarchy of instructions from the highest, most global (least

responsive) to the most local (most responsive). HAsC will perform most efficiently if

the programs are written using top level commands. The lower the level of command,

the more inter-node communication is required. Five levels of instruction coupling

are required to implement all of the HAsC statements.

The communication and synchronization are built into the HAsC instruction.

There is no need for the programmer to be aware of the degree of instruction commu-

nication. The five levels of instructions are presented here to more clearly delineate

the relationship between associative and heterogeneous computing.

The highest level of instruction synchronization is pure associative data paral-

lelism and involves the use of the local channel registers only - i.e. there is no global

coupling. There are two types of top level instructions: i) ones which execute based

on the channel register content only, such as logical and arithmetic expressions and

ii) ones which set the channel register. Data parallel logical expressions (associative

searchers) can be used to set the channel registers and are "automatically" incor-

porated into many HAsC statements. Thus a data parallel WHERE consists of only

an associative search, followed by a sequence of data parallel expressions. It is a top

level instruction. Top level instructions execute in real time and require no global

response or communication. Most computation is done at the top level.

Figure 3.3 gives some examples of instruction synchronization. In Figure 3.3,

$ is the parallel marker and is read as a plural. That is, A$ is read as As. Result$

is a data parallel pronoun referring to the last performed data parallel computation.

"It" is a reduction pronoun referring to the last performed reduction. The top level

synchronization shows the programming style for algebraic expressions supported by

HAsC.



      

20        

add the b$ to the c$
subtract the result$ from the d$
convolve the result$ with the e$
save the result$ in the f$
compare the a$ with the b$
where the result$ are equal do ... elsewhere do ...  

Top level synchronization

Expressions and WHERE commands         

move the a$ to the b$
save the a$ in the b$
read c$  

Second level synchronization

Data move and I/O commands         

any a$ greater than 5 Third level synchronization
ANY command         

pick one of the responder$
any a$ greater than the b$ 

Fourth level synchronization
Item selection          

read matrix a$
exit if EOF
convolve a$ with image$
display result$
repeat
sum the salary$

Fifth level synchronization

Iteration        

Figure 3.3 Instruction Synchronization

The second level of instruction coupling requires only global synchronism.

Prime examples are the data transfer and I/O commands. I/O is always local to

the virtual PE, but in general the virtual PE's may be quite different physically

and therefore I/O times may vary dramatically requiring synchronization before the

next HAsC command is issued. Again, the programmer need not be aware of the

synchronization requirements of this class of instructions. The synchronization is

automatic. The programmer only recognizes the need for I/O or data movement.

The third level of complexity consist of simple responder commands. These

commands require the ORing of the responder results of all PEs (i.e. an OR

reduction). On a SIMD this is a single instruction. In HAsC, it is the simplest form

of a HAsC reduction communication. The instructions at this level, such as ANY,

are used to check for error conditions, or determine whether special case computing

needs to be done.
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The fourth level is random selection. The HAsC commands in Figure 3.3 at this

level consist of an associative search, followed by the selection of a responder by the

"first reduction" operation. The data object of the selected responder is broadcast

to the entire HAsC network for further processing.

The fifth level is iteration. The only use for iteration at the top level of HAsC

is for user interaction. For example, a typical program might be one which allows

the user to interactively specify kernels to be convolved with an image and to review

the results, as shown in Figure 3.3.

HAsC is a programming paradigm designed to facilitate the utilization of

heterogeneous networks. The parallel associative programming techniques are well

suited for this purpose.



CHAPTER 4

CONCURRENT USE OF CLUSTER-M AND HASC

As shown in the previous sections, HAsC is most suitable for coarse grain hetero-

geneous parallel computing. It is to ease programming and increase execution speed,

while not taking into account resource utilization. Cluster-M, on the other hand,

provides both coarse grain and fine grain mapping in a clustered fashion. It aims

at maximizing both execution speed as well as resource utilization. Therefore, both

paradigms can be used concurrently to achieve a better overall performance. In the

following, we show two possible concurrent use of these two paradigms.

4.1 Switching between Cluster-M and HAsC

Before we run an application task on a HAsC system, we first generate Cluster-M

Specifications of that task, which are multi-level clusters preserving information of

computation and communication at each step. Since all the clusters of the same level

represent concurrent computations at a certain step, therefore this set of clusters can

be sent to the HAsC control unit, and then be broadcast to HAsC nodes (Figure

4.1). Each node then decides which clusters out of all the clusters received are most

suitable to itself, according to the type of parallelism labeled to each cluster. After

all the nodes finish computation of the corresponding clusters, the results are sent

back to control unit. Then at the next level clusters are fetched to the control unit

to start next step computations. Therefore, there is a switching between Cluster-M

and HAsC at each clustering level of Cluster-M Specification.
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Figure 4.1 Switching between Cluster-M and HAsC
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Figure 4.2 Cluster-M aided HAsC computation within HAsC nodes

4.2 Cluster-M aided HAsC

Cluster-M mapping can be applied to HAsC in two ways. First, Cluster-M mapping

can be used to decide where the data is to be mapped onto before HAsC computation

begins so that the overall execution time is minimized. Secondly, Cluster-M mapping

can be used to decide the fine grain mapping of HAsC nodes as shown in figure 4.2.



CHAPTER 5

SCALABILITY

One of the basic issues related to and addressed in both HAsC and Cluster-M, as

well as many HPC (High Performance Computing) and MPP (Massively Parallel

Processing) schemes, is that of scalability. Scalability is often understood differently

by different authors. For our purposes we will consider scalability to refer to

hardware, tasks, and software in roughly analogous fashion. In addition scalability

may refer to both homogeneous or heterogeneous architectures.

5.1 Homogeneous Case

The homogeneous case refers to multiple machines which are of the same basic

architectural type, typically various-sized versions of the same vendor product. For

example an eight processor CRAY is a hardware example of "scaled"-up version of

a two-processor CRAY.

Definition 1 We define the hardware scalability function, x(a,b), between two

homogeneous architectures, a (the larger) and b (the smaller), to be the rational-

valued function giving the size multiple of a over b. In the example above, the

eight-processor Cray has a x 4 over the two-processor.

Task scalability is more complex. What is typically implied is the ability to

take a task (algorithm plus data) executing on a small machine and execute the

"same" task on a "scaled"-up machine, using the additional resources of the larger

machine, with performance reasonably close to x. One ambiguity in this concept

is what we mean by the "same" task. If it means only the same algorithm, but

with possibly different, i.e., larger data, then tasks often "scale", particularly if the
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scaling factor of the data size is equal to x. However, if we follow the definition of task

given above, fixed data and algorithm, then tasks often do not scale, even on scaled

up homogeneous hardware. To give a simple example, suppose we are computing a

pixel-based imagery problem on a SIMD machine in which both the number of pixels

and the number of processors is 1K. If we scaled-up to a 16K processor (x = 16),

typically this task would not scale, i.e., it would not be able to exploit the additional

15K processors, and we would get no increased performance. However if our original

task had started with a 16K pixel problem, we would typically be able to scale in

performance, on the 16K machine over the 1K machine.

Definition 2 We define task scalability, between two homogeneous architectures, a

(the larger) and b (the smaller), to be the potential to exploit the inherent hardware

scalability between them on some task of a size that fills a.

Software scalability refers to the ability to exploit task and hardware scalability,

with little or no changes, other than parameters.

Definition 3 We define the software scalability function, a(a, b), in the case of

software scalability between two homogeneous architectures, a (the larger) and b

(the smaller), to be the real-valued function giving the increase in performance of

a over b. Typically we do expect some increase in performance but we do not

generally (at least in the homogeneous case) expect "super-linear" performance, i.e.,

1 < o- (a,b) < x(a,b). In most cases we expect c to be a simple multiple of x, i.e.,

a(a, b) = A x x(a,b), where 1/x(a, b) < A < 1.0. If A is close to 1.0, i.e., A = 1 —

we usually feel we have scaled up well.

Many examples exist of scaling up in this homogeneous sense, though, since

it depends on a problem data size large enough to "fill" the large machine, it thus

sometimes depends on an unrealistically large data size. In particular it appears to
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us that some of the most recent HPC machines are "scalable" only in the sense that

they could run matrix or other similar scientific problems of a size that no one is yet

ready to do.

5.2 Heterogeneous Case

The heterogeneous case is clearly more complicated, though it is also the case in which

we can aspire to the ultimate in heterogeneous computing potential, i.e, to achieve

a's significantly greater than x; this is what we mean by super-linear performance.

In the heterogeneous case, there may be no commonality between two different archi-

tectures, so that the only way to talk about "scaling" is based on the performance

potential. That means, we will have two different scalability standards, namely peak

MFLOPS (in either fixed 6:3 or 32 bit mode) or CBS ("gibbs"), billions of bits per

second (processed). Using this, we can extend the x function to the heterogeneous

case. For example if we had a large vector machine, a, capable of processing 8.7

billion bits per second or 8.7 CBS, and a small SIMD machine, b, of 1.3 CBS, then

x(a, b) = 8.7/1.3 = 6.69. Having extended the hardware concept of scalability to

heterogeneous cases, the task and software scalability follow immediately.

5.2.1 Fundamental Theorem of Scalability

To understand this theorem, we need to look at the figure 5.1.

We consider there to be at least four levels at which a task is defined. One is

at the overall functional level, here considered to be the problem "Find a datum".

Next, below this is the approach. By "approach" we mean something at a higher

level than algorithm, perhaps meta-algorithm would be another term. In any case,

for this problem, there is a radical difference in the approach for SIMD machine, used

associatively (see [19]) or non-SIMD machines. In the former case, we can use simple

associative search, which is 0(1); in the latter case we would typically use a sort, then
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Non-SIMD	 SIMD

Approach Sort, then search

i.e., >= 0 (log n)

Associative Search

(not sort), i.e., 0 (1)

Algorithm Various Sorts (Quicksort, Bubblesort, etc.)

A A
Code 	 Various encodings for any	 Single Associative command,

specific algorithm e.g., find datum

Figure 5.1 Hierarchical breakdown of a task

search operation, i.e., the asymptotic performance is bounded by 1 -2(log n). For the

associative search on a suitable SIMD machine, there is really only one instruction

"find datum", so that there is no room for differing algorithmic or code variations.

However in the case of non-SIMD, non-associative sort and search, there are many

variations possible. For example, depending on data, parameters, architecture, etc.,

we could use a number of different search techniques, and similarly we could use a

number of different coding schemes for each algorithm.

In this context, most researchers, when describing "scalability", certainly do

not mean that the specific code is heterogeneously scalable, and generally do not

mean that the the algorithm is heterogeneously scalable. For example, a matrix times

vector operation might best be done with a SAXPY style algorithm on one machine

and an SDOT on another. At the same time, the term "scalability" almost never

applies to the functional level, since this is far too general to have any real meaning

(in the usual context of scalability). WHAT IS ALMOST ALWAYS INTENDED

IS THAT THE TERM "SCALABILITY" APPLY TO THE APPROACH LEVEL.

However the example above shows that this is inadequate to support efficient
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MPP/HPC performance. That is, a "scalable" approach to finding data would

almost certainly be based on the non-SIMD, non- associative approach of "sort, then

search". This might get maximal performance on non-SIMD machines, and might

also work on SIMD, but certainly not optimally! That is the scalable approach is

9(log n), whereas the non-scalable SIMD version is 0(1). This example illustrates

two thing:

a. A case where the non-scalable (at the approach level) SIMD implementation

is inherently more effective than the scalable approach implemented on the same

machine.

b. In this case suppose the non-SIMD machine has a hardware scalability factor

of K, over the SIMD, i.e., x(non-SIMD,SIMD) = K. However if n (the data size) is large

enough, i.e., n > 2't, then the SIMD machine would have a task scalability OVER

the non-SIMD, i.e, a(SIMD,non-SIMD) > 0(log n/ic). That is we have hardware

scalability one way, and task/software scalability the other! In other words the

scalable approach is inherently ineffective in this case. Thus we get:

Theorem 1 Issues of hardware, algorithmic, and software scalability are inherently

insufficient to exploit the potential of HPC in heterogeneous parallel environments.

5.3 Scalability of HAsC and Cluster-M

Both programming paradigms presented in this paper are machine independent as

explained in detail and are therefore scalable. In HAsC, a program is broadcast to the

entire network, the individual nodes determine locally which instructions to execute.

The global broadcasting approach means that there is no need to know how nodes

are interconnected in the network, or how data is distributed across the nodes. This

allows data files to be analyzed dynamically at run time as they enter the HAsC

system and to be directed to the node(s) (i.e. computers) best suited to process

them. Broadcasting allows scalability. That is, the hardware can be expanded or
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modified and the problem can be changed without having to reprogram or recompile

the basic HAsC program. New nodes consisting of new machines with installed

HAsC software can be added to a network at any time, and at any location. HAsC

is not dependent on any physical machine or network configuration. This is because

the instruction broadcast, cell memory organization and associative searching allows

the removal of any reference to data set size and type from the program. The basic

component of a HAsC command is to "process all data which matches the following

specifications." Changes in file sizes and data types are handled automatically at

the node level. Similarly, Cluster-M is also scalable. When a new machine is added

to the heterogeneous networks, a new Cluster-M representation of the new suite can

be generated and a Cluster-M specification can be efficiently executed without any

change. Also, an appropriate new mapping function can be computed to map the

Cluster-M specification to the new Cluster-M representation.



CHAPTER 6

CONCLUSION AND FURTHER RESEARCH

In this thesis, two programming paradigms for heterogeneous computing called

Cluster-M and HAsC has been presented. HAsC models a heterogeneous network as

a coarse grained associative computer. In HAsC a program is broadcast to the entire

network, the individual node determines which instruction to execute. Broadcast

allows scalability. Cluster-M also allows scalability since programs written using

Cluster-M are machine independent and can be efficiently mapped and ported among

different systems. Both mechanisms were discussed in detail and their scalability

and merits for heterogeneous computing were studied. Concurrent use of HAsC

and Cluster-M was also presented. Cluster-M paradigm can be used to aid the

shortcomings of HAsC, while HAsC can be used when the associative computing

features is more desirable.
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