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ABSTRACT

ANALYSIS OF PLATES AND REINFORCED CONCRETE COLUMNS 
BY CUBIC B-SPLINE FUNCTION

Gang Wang

Applying spline functions to numerical structural analysis has been more 

common in recent years. The recent increase use of spline functions is mainly 

due to their excellent characteristics, such as sectionalized continuity, linear 

combination, flexibility, and easy use for various boundary conditions. The whole 

deformed shape of some structures or substructures can be described with one 

displacement function constructed by a series of spline functions. By doing this, 

the mesh generation and the huge computer memory space are no longer 

needed because only one single superelement can be used in the whole 

process. The choice of spline functions as displacement functions has many 

advantages that have been demonstrated by several researchers for a limited 

range of structures. More extensive research on using spline functions in 

structural analysis hereafter can be expected. This research work represents an 

effort in that direction.

Based on cubic B-spline functions, this dissertation presents static and 

free vibration analysis of arbitrary quadrilateral flexural plates with various 

boundary conditions. Combination of cubic B-spline functions in two orthogonal 

directions constructs a superelement for the whole plate. The cubic B-spline 

displacement function has been formed to efficiently model the deflection shape 

and to yield more accurate results. A further step has been taken in the present 

research to apply the cubic B-spline function to a nonlinear problem. A numerical 

method is developed for the determination of complete load-deflection and



moment-curvature relationships for slender reinforced concrete columns with 

arbitrary cross sections under combined biaxial flexure and axial load. 

Improvement of computer time and accuracy has been demonstrated obviously 

due to the application of cubic B-spline function and introduction of p-multiplier 

in the numerical formulation.

Comparison of present analysis with analytical solutions, other numerical 

methods, and experimental results, appears to have a good agreement.
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CHAPTER 1

INTRODUCTION

The finite element method (FEM) has been widely employed in structural 

analysis for last thirty years. The method has been proved to be an extremely 

powerful tool in solving various engineering problems, especially those involving 

complex geometries, arbitrary loads and rather general material properties. 

However, it has been found that FEM may be inefficient and uneconomic for 

certain types of structures. FEM becomes time consuming in preparing the 

appropriate element mesh, and requires huge memory space for computational 

purposes due to the large number of degrees of freedom involved. Some more 

efficient numerical methods, for certain types of problems, have been 

established, such as the finite strip method (FSM) and the boundary element 

method (BEM). Even though these methods can reduce the size of the problem, 

they are unable to overcome the drawbacks of FEM considerably. The reason is 

that FEM, FSM and BEM all belong to the classification of discretization method 

which requires mesh generation and element assembly.

In recent years, a new direction of research in numerical structural 

analysis has emerged. This is an application of spline functions to various 

engineering problems. Excellent characteristics from spline functions, such as 

sectionalized continuity, linear combination, flexibility, and easy satisfaction of 

boundary conditions, make it possible that the whole deformed shape of some 

structures or substructures can be described with one displacement function 

constructed by a series of spline functions. By doing this, the mesh generation 

and the huge computer memory space are no longer needed because only one 

single superelement is used in the whole process. The choice of spline functions

1



2

as displacement functions has many advantages that have been demonstrated 

by several researchers for a limited range of structures. It is expected that more 

extensive research is needed in applying spline functions to structural analysis. 

The proposed research represents an effort in that direction.

Most of the applications of spline functions are so far concentrated on 

plate and shell type structures having regular geometries. No literature can be 

found in using spline functions on nonlinear problems such as reinforced 

concrete structures. In the present research, a computationally efficient and 

highly accurate method based on the spline functions is proposed to solve the 

bending and free vibration problems of arbitrary quadrilateral Kirchhoffs plates 

with any combination of clamped, simply supported, free edge and corner point 

supported conditions. Furthermore, the first performance of spline functions in 

nonlinear structural analysis will be shown here by investigating the load- 

deformation behavior of slender reinforced concrete (RC) columns subjected to 

biaxial flexure and axial compression.

A numerical method with better computational efficiency, solution 

accuracy, and simplicity on plate and RC column analyses will be developed in 

this dissertation.



CHAPTER 2

LITERATURE REVIEW

The present research involves both linear analysis of plates and nonlinear 

analysis of reinforced concrete columns by using the spline functions for 

displacement interpolation. The spline functions, which have been used in 

engineering applications for twenty years, are an important tool for numerical 

analysis in structural engineering. Many authors have attempted to use spline 

functions for interpolation in a broad range of engineering problems, and more 

researchers are now working on the continuous development of spline function 

applications.

2.1 Linear Structural Analysis by Spline Functions

Spline function approximation was first introduced by Schoenberg (1946a, 

1946b) for solving certain data fitting problems. In engineering applications, 

Spline functions were used by Raggett, Stone, and Wilson (1974) to solve the 

bending problem of a circular plate with varying thickness. Later, Mizusawa, 

Kajita, and Naruoka (1979, 1980) used B-spline functions of various orders as 

coordinate functions in the Rayleigh-Ritz method to solve problems concerning 

vibration and buckling of skew plate structures.

Applications of spline functions in structural analysis have attracted the 

efforts from many researchers since early 1980's. Due to excellent 

characteristics of spline functions in numerical analysis, these researchers 

replaced the conventional functions, such as polynomial functions and 

trigonometric functions, with spline functions for displacement interpolation. Qin 

(1982) presented the spline finite point method (SFPM) for the analysis of linear

3
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elastic straight beams and flat rectangular plates. Based on the B-spline 

functions, the beam vibration functions and the variation principle, he displayed 

excellent analytical results on the rectangular plates. This method has been 

extended to study a variety of structures which included the static, dynamic, and 

stability problems (Qin, 1985). The conventional finite strip method was modified 

by Cheung, Fan, and Wu (1982) who then developed the spline finite strip 

method. In the spline finite strip method, the trigonometric functions for the 

interpolation of displacement used in the conventional finite strip method were 

replaced by cubic B-spline functions in the longitudinal direction. Several 

investigators have successfully solved various plate problems recently using the 

spline finite strip method (Li, Cheung, and Tham, 1986; Tham, Li, Cheung, and 

Chen, 1986). Shen and Wang (1987) investigated the vibration of flat shells and 

static behavior of cylindrical shells using the B-spline functions. Their illustrative 

examples demonstrated good agreement as compared with the exact results and 

other numerical results. Chen, Gutkowski, and Puckett (1990, 1991) used the 

spline compound strip method to analyze the stiffened plates under transverse 

loading and folded plates with intermediate supports. The convergence of the 

spline compound strip method was improved significantly in comparison to the 

conventional finite strip method, the compound strip method and the finite 

element method.

Various other authors have developed different spline finite elements for 

beams, plates, and shells, respectively. The element efficiency due to the choice 

of the spline functions has been demonstrated in their studies. In the spline finite 

elements for straight beams and rectangular plates presented by Leung and Au 

(1990), they introduced the physical coordinates into the formulation to 

overcome the drawbacks of the previous spline finite elements in which some 

spline parameters are located outside the elements. This improvement made the
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assembly of elements and the imposition of boundary conditions much easier. 

These elements, however, can only be used for plates with rectangular shape 

and more computation time is needed to carry out the analysis due to the matrix 

transformation between the spline coordinates and the physical coordinates. Fan 

and Luah (1992) employed a set of B-spline shape functions for the 

displacement interpolation to develop a new spline finite element for plate 

bending. The element has nine nodes, in the shape of an arbitrary quadrilateral 

with biquadratic Lagrangian shape functions for geometric interpolation. For thin 

plate problems, they have concluded that elements based on Kirchhoffs theory 

are more efficient and reliable than their Mindlin-type counterparts. It has also 

been shown in their research that the use of B-spline functions generally yields 

an excellent result in two-dimensional structural analysis. However, a lot of input 

data due to the mesh generation has to be prepared carefully. Also, the 

exclusion of the twisting curvatures at corner nodes impairs the accuracy of the 

element in their method.

2.2 Load-Deformation Behavior of Reinforced Concrete Columns 
Subjected to Longitudinal Load and Biaxial Bending

Information on the load-deflection and moment-curvature relations of reinforced

concrete columns under biaxial flexure and axial load is relatively scarce. Most

existing methods for the analysis of cross sections under axial load and biaxial

bending rely on the numerical integration of stress resultants on a small area of

the standard cross section (Hsu and Mirza 1973; Hsu 1974; Chen and Shoraka

1975). Each small area is treated as a constant stress or linearly varying stress

region. Recently, Rotter (1985) presented a numerical technique to provide an

exact solution for sections with rectilinear boundaries that required less

computational effort. Hsu (1985, 1987, 1989) also presented results of
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experimental and analytical studies on the strength and deformation of biaxially 

loaded short and tied columns with L-, channel, T-shaped cross sections.

For the load and deformation behavior of slender reinforced concrete 

columns, Farah and Huggins (1969), Basu and Suryanarayana (1975), Mavichak 

and Furlong (1976), Furlong (1979), Al-Noury and Chen (1982), Poston et al. 

(1885a, 1985b), and Poston (1986) have either developed a numerical 

procedure or conducted experimental tests to determine the load-deformation 

curves for biaxially loaded columns with pinned-ended and restrained-ended 

conditions. At the beginning of the typical numerical analysis, a value of 

deflection at a particular point (usually the midspan about the minor axis) is 

assigned, and a trial set of load including axial force P and end moments M x , M y  

is assumed. Then the internal moments, including second-order effects at each 

division point, are calculated. The deformation (axial strains and curvatures) at 

each division point can be obtained through the moment-curvature calculation by 

the tangent stiffness approach or other similar approaches. Curvatures along the 

column are then integrated numerically to obtain deflections at all station points. 

If the calculated deflection at the particular station point does not agree with the 

initially assumed value, the trial set of loadings must be modified, and the 

procedure will be repeated until the difference is within an appropriate limit. 

During the iteration, the internal moments for each division point are calculated 

first by taking the deflection as zero and then by taking the calculated deflection 

as the new deflection for the subsequent iteration. This procedure is repeated 

for all station points until satisfactory agreements are achieved. After a solution 

is obtained corresponding to a particular value of assigned deflection at 

midspan, a new value is assigned and the whole procedure is repeated. Based 

on the above presented analysis and theory, in principle, a load-deflection curve 

including ascending and descending branches of the curve can be drawn, and
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the strength of the column is the peak value of this curve. However, there had 

been no published literature to show how such a curve could be obtained 

numerically until the research work done by Wang and Hsu (1990, 1992). 

Different from other authors, Wang and Hsu (1990, 1992) used the secant 

modulus of elasticity and the finite difference approach to study the complete 

load-deformation behavior of biaxially loaded reinforced concrete columns. 

Deflections at the division points along the column are calculated through 

satisfaction of the section equilibrium equations at these points, and then the 

curvatures along the column are yielded by differentiating the deflections 

numerically. The load-deflection and moment-curvature curves from zero load 

until failure have been demonstrated in good agreement with the experimental 

results in their study. Tsao and Hsu (1993) also applied a similar procedure to 

analyze slender reinforced concrete columns with rectangular and L-shaped 

cross sections successfully. They developed a redivision formulation to 

investigate the column behavior after tremendous change of the midpoint 

curvature due to hinging behavior. Zak (1993) presented a modification of the 

secant modulus method on ultimate strength analysis of reinforced concrete 

sections under biaxial bending and longitudinal load. He proposed a version of 

the fictitious-domain method to allow essentially treatment of rectangular and 

nonrectangular sections in the same way and to make the presented approach 

easily programmable and readily adaptable to different sections.



CHAPTER 3

B-SPLINE FUNCTION

The definition, features, and elementary applications of B-spline function will be 

described in this chapter. Some descriptions relating B-spline function to 

numerical analysis and engineering applications are first proposed here.

3.1 Definition of B-spline Function

The B-spline function <pn(s ;k )  of n-th degree may be defined as

where
f  ( y  y  Y  \  — ’  m )  f n ( X i + 1’  ’ X m - 1 )J + >*m) Y _ v

**T+1

( 3 - 1 )

/ , « = ( * - * > : = < V ’0, s < x
. , n +1 , n +1/ = k  , m = k + ------

2 2

and x  denotes a bi-infinite sequence of real numbers

•••<*/ < *,+. < • • • < * « - 1 < * „ < " •  

when n = 3, i = k-2, and m = k+2, Eq. (3-1) becomes cubic B-spline function with 

unequal sections:

<P2(s \k )  = f 3 (xk_}, xk, xk+], xk+2) -  / 3 (xk_2, xk_{, xk, xk+i) (3-2)

Expanding Eq. (3-2) gives

<p3(s-k) =

0 ,
A , (s — xk_2) ,

s < x k_2
xk_2 < s < x,_,

A , ( s - x k_2 f  - B ^ s - ) 3, < s < xk
A 2(xk+2 - s)3 - B2(xk+, - s f ,  xk < s <  x i+1 

A 2(xk+2- s ) 3, xk+]< s < x k+2
0, xk+2 < s

(3-3)

8
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where

A ,=
1

At-l ( \ - l  + X V , ■*" At ■*" At+I )

^ ----------------------*̂+2 (At+l Ak+2 ) ( ^  + /;*+, + /?i+2)

5 ,=

5 2 =

K-\ + K +  K+\+ K+2
^ * -1  At (hk + hk+, )(hk + hk+i + hk+2)

 A t-1 At At+1 +  At+2_______

At+1 At+2 (A : "*" At+I X A t-l At A+1 )

and

h j = X j - x M j  = k - \ , - - - , k  + 2

Letting all hj = h yields a cubic B-spline with equal sections:

<P,{s\k)= 3
_1_

6 /? 3

0 ,

( * - * t - 2)3,
( ^ - ^ - 2 )3 - 4 ( 5 - x t.,)3, 
(xk+2- s f - 4 ( x k+]- s ) \  

(*t+2 -  s f ,
0 ,

s < x k.  2 

P* -2 v*-l
xk_ , < s < x k 

xk < s < x k+1 

* *+ 1  ^ < * * + 2

(3-4)

* * +2 ^  5

Cubic B-spline function ^>3 and their first and second derivatives <p2' and 

<p2" are shown in Figs. 3-1 and 3-2 with unequal and equal sections, and their 

values at spline knots are given in Appendix A.

3.2 Features of B-spline Function

B-spline function has the following main features that have been found useful in 

the numerical analysis:

1. B-spline is the smoothest interpolating function compared with other 

piecewise polynomial interpolating functions. For example, the cubic B-spline 

has C2 continuity, whereas the cubic Lagrange and cubic Hermite have only C° 

and C1 continuity, respectively.

2. B-spline function has non-zero values over a few mesh subintervals, 

thus the resulting matrix for the discretization equation is tightly banded. A cubic 

B-spline <p2(s,k) has non-zero values over four consecutive sections with the 

middle section knot s = xk (Figs. 3-1 and 3-2).



10

X  k - 2  X  k _ |  X  k X  k + 1  ^  k + 2

(a)

k + 2k+l

k - 2

k - 2 k+1 k + 2

(c)

Fig. 3-1 Cubic B-spline and Its First and Second Derivatives 
with Unequal Sections (C2 everywhere)
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X
k + 2k + l

(a)

k + 2

k - 2

k - 2 k + 2

(c)

Fig. 3-2 Cubic B-spline and Its First and Second Derivatives 
with Equal Sections (C2 everywhere)
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3. Using B-spline function with unequal sections, one can locally modify 

mesh fineness in regions of high stress gradients to achieve a fast convergence. 

Besides, B-spline functions can be easily used to deal with the problems 

involving concentrated loadings, intermediate supports, abruptly changing 

properties and plastic hinges. The first, second, or third derivatives of 

displacement are discontinuous in those cases. The C° and C1 continuities at 

spline knots in those cases can be attained by assuming \  = xk+1 and xM = xk = 

x ^ ,  respectively (Figs. 3-3 and 3-4).

4. An arbitrary deflected curve or surface can be interpolated by the 

combination of a series of cubic B-splines, such as

n+1 n+1 ot+1
w(x) = '£ a i<pi (x;i) , w(x,y) = 'JT'£iauq>i (x;i)q>3(.yJ)  (3-5)

i=-1 i= - l  j= ~ \

where w(x) or w(x,y) = deflections of a curve or surface; a\ or ay = the unknown 

spline parameters; n and m = numbers of sections in x and y directions. The 

basis of cubic B-spline expression under a length L is plotted in Fig. 3-5 with the 

number of sections n = 6 .

Cubic B-spline function will be used for the displacement interpolation in 

the proposed research. For simplicity, notation of cubic B-spline, tp^x j ) ,  will be 

replaced by <pt(x) hereafter in this dissertation.

Fig. 3-3 Cubic B-spline and Its First Derivative 
(C1 at knot X|< = x^-1 and C? elsewhere)
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xX  k - 1X k + 2k - 2

Fig. 3-4 Cubic B-spline 
(C° at knot xk..j = xk = xk+1, C2 elsewhere)

X X X XX X0 2 4 63 5

L

Fig. 3-5 Basis of Cubic B-spline Expression

3.3 Elementary Applications of Cubic B-spline Function

Prior to discussions on applications of cubic B-spline function to plates and RC 

columns, some elementary applications for beams are first introduced in the 

following. From these simple applications, some excellent characteristics of 

cubic B-spline function used in structural analysis can be demonstrated clearly.
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3.3.1 One-dimensional Deflection Function

Displacement method is the most popular approach in the structural numerical 

analysis. Establishment of an efficient displacement field is thus important and 

essential in this approach.

Deflected shape of a one-dimensional problem, such as a beam, can be 

interpolated by the combination of a series of cubic B-splines. If x0, . . . ,x„. . . ,xn 

are n+ 1  spline knots on the beam, and x0 and xn are at the left and right ends 

respectively (see Fig. 3-6), the deflection function of the beam can be expressed 

as
n+1

w(x) = y*Tcii <ps(x )  (3-6)
i= - l

where w(x)  = deflection function of the beam; at = generalized coordinates; and 

<p,(x) = cubic B-spline.

0  x n x . x . x
0 1 i n

Fig. 3-6 One-Dimensional Domain with n+1 Spline Knots

Directly applying the above deflection function to the analysis involves 

extensive modifications of the generalized coordinates at or near the 

boundaries. In order to eliminate these modifications, the above deflection 

function can be reconstructed as follows:
n+1

(3‘ 7)
( = - i

in which a, = modified generalized coordinates, and a_, = w(x0) = w0, 

a 0 = w '(*0)=  0O. « , = w(*») = w». «n+i = w '(xn)=  9n, other a ,= a r  Relating the
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first and last two generalized coordinates to the deflections and rotations at the 

left and right ends of the beam respectively makes the imposition of boundary

conditions much more convenient. During the computation, one does not need to

consider the boundary conditions at all because the deflection equation has 

already satisfied all essential boundary conditions.

Expressions for <f>t(x)  are (see Appendix B for further details)

0_, (*) = [ « X ) <P-1 00 -  <P-\'(*o) 1A

0o 0 0  = [<P-\ (*0) <Po 0 0 “ <Po(*0) <P\ (*)] I A

0! 0 0  =  { [ ( ? > o ( * 0  )  <P\ ' ( * 0  )  -  Pi ( * 0  ) <Po' ( X 0 ) ]  9 - 1 0 0  +

[<Pi( * 0) (p_x'(x0) -  <p_x(x0) (px'(x0 ) ] <p0(x) + Ac p ,(X) } /  A0

0 2 0 0 = ^ 0 0

(3-8)

</>n-2(X ) = < P n- 2 0 0

0n-I 0 0  =  iA<Pn - 1 0 0  +  W„- l  ( * B )  9 n + \ ' ( X „  )  ~  <Pn+i ( x „ ) 9 n - l \ Xn ) ]  P n( X )  +

[?„(*») P-VOO" fVlOO Pi'OO] ?Vl00}/ 4,
0„OO= [?B'0O <Pn+l ( X )~ <P n+l ' ( Xn) <Pn( X ) V  A  

0 n+l(X) = K + lO O  PB0 0 “  P„0 O  P„+I0 0 ] /  A  

where

A  = -̂i(*o) <Po'(̂ o)-<Po(X0) P- l ' (X0)

A  =  <Pn+\ ( * „  )  9 n \ Xn )  -  <Pn ( X„ )  P B+l ' ( * „  )

If the spline knots x0 to xn are placed on the beam with equal intervals 

h = xM -x,. (/ = 0 , l ,2 , - " ,w - l) ,  Eq. (3-8) becomes 

0_1(x ) = 1.5^o(x)

0o(x) = 0.5 h ^ 0 ( x ) - 2  h <p_x(x )

M x) = 9i(x)~0.5 (p0(x) + <p.x(x)

M x) = 92(x)
(3-9)
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^ - 2(* )  = «V 2OO

<pn{x) + <p„+1(x )

^n(x) = 1.5^„(x)

<*Li(*) = 2 h <pn+](x)~  0.5 h (pn(x)

It is noted that Eq (3-7) can be used as a deflection function for the 

beams with different boundary conditions, various loadings, and arbitrary cross 

sections.

3.3.2 Applications on Beams

Fig. 3-7 Cantilever Beam under n Concentrated Loads

Fig. 3-7 shows a cantilever beam under n concentrated loads Pt (/ = 1,2 ,•••,/?) and 

with n+1 nodes at the fixed end and the application points of P’s. After 

introducing the boundary conditions at the fixed end, which are w0 = a ,  = 0  and 

So = a0 = 0 , the deflection function Eq. (3-7) becomes
n+!

i=i

Eq. (3-10) can be used to exactly describe the deflection field of the beam. The 

deflection function in Eq. (3-10) contains n+1 degrees of freedom.
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If a cubic Hermite polynomial is used to construct the deflection function, 

such as in a finite element formulation, the deflection field may be expressed as

•^ 1  ,W0 '** ̂ 2\ #0 N nw, +  NAl i9j (x 0 < x ^ Xj)
Â I2Wj + N 22 «9, + N 22w2 + Na2 i92 (x, < x < x2)

With w0 = ,90 =0  and 2 DOF (w ,, &,) at each node, 2n DOF totally must be 

involved to yield an exact solution in the above deflection field by Hermitian 

interpolation.

From the above comparison, it can be seen that the deflection field 

constructed by the cubic B-splines contains less DOF than the deflection field 

constructed by a cubic Hermite polynomial to obtain results with the same 

accuracy. The ratio of DOF by the B-splines (DOFB) to DOF by a Hermite 

polynomial (DOFH) is (n+1)/2n for the given case. Some values of the ratio are 

shown in Table 3-1. It is seen from the Table that the ratio DOFB/DOFH will 

approximately be 1/2 when n>20. In other words, when compared with a Hermite 

interpolation with n>20, only about half DOF will be needed if the B-splines are 

used for the deflection interpolation. Even though this conclusion is drawn from 

the given beam, it is applicable to general cases.

w(x) = < (3-11)

+ N 2n <9„-l + + N A„&n < * < * „ )

where

N u = \ - [3(x- x,,, f  / hf ] + [2(x- xw f / h f ]

N 2, = ( x -  x,_, ) -  [2(x -  x,_, f / h , ]  + [(x -  xM f / h f ]  

)2 / h;} -  [2(x -  x,_, f / h f ]

N 4i = [—(x  — x w )2 /h,] + [(x -  x,._, )3 /hf]  

hi =x i -x ,_ , , i  = 1,2,■••,//

(3-12)
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Table 3-1 Some Values of Ratio DOFB/DOFH

n 4 8 1 2 16 2 0 40

DOFB=n+1 5 9 13 17 2 1 41

DOFH=2n 8 16 24 32 40 80

DOFB/DOFH 1/1.60 1/1.78 1/1.85 1 / 1 . 8 8 1/1.90 1/1.95

Another advantage of using the B-splines over a Hermite polynomial can 

be shown from the comparison below. Displacement field of a whole domain can 

be interpolated by only one displacement function constructed from the B- 

splines (Eq. 3-10). Therefore, neither discretization of a domain nor an assembly 

of elements are needed. On the other hand, if using a Hermite polynomial to 

describe the displacement field (Eq. 3-11), the displacement function has 

different forms within different intervals xi_] < x < x i (i  = 1,2 ,-■•,/?), or different 

elements, so a lot of work has to be involved due to the domain discretization 

and element assembly.

Also, the displacement function by the B-splines can be used to analyze 

the problems with arbitrary cross sections, various loadings, different boundary 

conditions, and geometrical and material nonlinearities. They are demonstrated 

in the following two examples.

The first example is a 3-in wide mild-steel cantilever beam with 

dimensions shown in Fig. 3-8(a). Assume the beam has an ideal plastic material 

and E  = 30 x 1 03 ksi, ar = ±40ksi.

The moment diagram is shown in Fig. 3-8(b). It is found that the largest 

stress in beam segment BC is 24.4 ksi < ar , which indicates the beam 

undergoes elastic behavior. An analogous calculation for the shallow section AB
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gives a stress of 55 ksi, which is not possible as the material yields at 40 ksi. A 

check of the ultimate capacity for the 2-in deep section gives MU|t=120 k-in > 

applied moment on segment AB = 110 k-in. This result shows that although the 

beam yields partially, it can carry the applied moment.

0.00267

0.000543

r o l o l i o n

( r o d )
0.02933 -,0.03531

(d)

d e f l e c t i o n

( i n )
0.1613

0.8943

(e)

Fig 3-8 Mild-Steel Cantilever Beam
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Using the B-spline function for deflection interpolation, one has

” '( * )  = Z a. M x ) (3_13)
t= \

with x0 = 0, xx= x 2= \ \ " ,  and x3 =33", where spline knots 1 and 2 both are at 

point B on the beam to reduce the order of continuity from C2 to C1 since the 

cross section of the beam changes abruptly at this point.

Applying the moment-curvature relation at four spline knots and solving 

the simultaneous equations yield

a, = 0.05378 a 2 = 0.3764 a3 = we = 0.8943 a4 = &c = 0.03531

Substitution of the above four parameters into Eq. (3-13) gives an exact 

deflection field of the whole beam. Data of curvature, rotation, and deflection are 

plotted in Fig. 3-8(c), (d), and (e), respectively.

The second example is an eccentrically loaded column with constant 

flexural rigidity El, as shown in Fig. 3-9.

---------------------- 1-----------------------

Fig. 3-9 Eccentrically Loaded Column

The exact equation of the elastic curve is

w ( x ) ~  e(-— cos^  sjn f a  +  cos/br - 1 )  (3 -1 4 )
sm aL

where A = <JP/ (E l) .  The maximum deflection occurs at x = L/2, which is found to 

be
I T

w ^ ^ e i s e c - - ! )  (3 -1 5 )
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Due to the second order effect, deflection of an eccentrically loaded column can 

not be exactly expressed by a polynomial any more. Approximate solution will be 

given using the B-splines for deflection interpolation and this solution will 

converge to the exact result as more spline knots are placed on the column. 

Only half column is needed for analysis due to the symmetry. Considering 

w(0 ) = 0  and >9(j-) = 0 , the deflection function from Eq. (3-7) becomes

w (*) = 2 a, A (* )  <3' 16)/=£>

Assume the width of cross section = 3, height of cross section = 4, length of 

column L = 100, elastic modulus E = 1000, and eccentricity e = 0.5. The buckling 

load for this column is 15.79. Using Eq. (3-16), one can determine the elastic 

curve of the given column. Some maximum deflection values with certain 

eccentric loads are given in Table 3-2. Exact values are also shown in the same 

Table for a comparison. The maximum deflections by Eq. (3-16) are convergent 

to the exact solutions as numbers of segments increase. It is also noted from 

Table 3-2 that when the eccentrically applied load increases, the convergence of 

numerical solutions has been found to slow down. The reason may be due to a 

second order effect when the deflected curve of the column nears the buckling 

shape.

Table 3-2 Maximum Deflections of Eccentrically Loaded Column

Eccentric

load

Maximum Deflections by Eq. (3-16) Exact

Solutionii

0
0nc n = 16

CM0
0IIc

2 0.08961 0.08974 0.08977 0.08978 0.08978

6 0.3792 0.3815 0.3820 0.3822 0.3822

1 0 1.062 1.080 1.084 1.085 1.086

14 4.505 4.834 4.925 4.948 4.956



CHAPTER 4

STATIC AND DYNAMIC BEHAVIOR 
OF ARBITRARY QUADRILATERAL FLEXURAL PLATES

Arbitrarily shaped, elastic, thin plates are widely used in civil, marine, 

aeronautical, and mechanical engineering applications. Static and dynamic 

solutions to these plate problems are strongly dependent on the geometrical 

shape and boundary conditions. Exact solutions for plates are available only for 

certain shapes, boundaries, and loading conditions (Timoshenko and 

Woinowsky - Krieger, 1959). When the solutions for arbitrary shaped plates 

supported by complex boundary conditions are needed, a numerical method 

must therefore be used. Several numerical methods are usually adopted for the 

analysis, such as the finite element, finite difference, finite strip, and boundary 

element methods. The main problem with these methods is that they involve too 

many unknowns in order to obtain sufficiently accurate results. Extensive studies 

in search of more efficient approaches have been carried out on rectangular 

plates. Very little has been accomplished for static and dynamic analysis on 

plates with other geometrical shapes. This may be due to the difficulty in 

formulating a simple and adequate deflection function which can be used to 

describe the entire plate domain and at the same time it is able to satisfy the 

boundary conditions as well. A computationally efficient and highly accurate 

numerical approach using the cubic B-spline function is proposed herein to 

study both static and dynamic behavior of arbitrary quadrilateral flexural plates 

with any combination of clamped, simply supported, free edge support, and 

corner support conditions. More research work is needed in this area since such 

structural elements are commonly encountered in modern technology.

22
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4.1 Originalities of Present Method

Using the B-spline function for displacement interpolation in structural analysis 

has been shown by many authors to have the advantages of higher accuracy 

and less degrees of freedom over other numerical methods, particularly for plate 

and shell type structures. In the present method, the efficient cubic B-spline 

functions are employed in two directions for displacement interpolation to study 

the static and dynamic behavior of thin arbitrary quadrilateral plates. Compared 

with other numerical methods of using spline functions for plate analysis, the 

present method may be found to be original in the following.

1. In the present method, the entire deformed shape of a plate can be 

described with only one displacement function constructed by a series of cubic 

B-spline functions. The mesh generation and large computer-memory space, 

drawbacks of the discretization methods, are no longer needed because only 

one single superelement is used in the whole process.

2. With the help of proper geometrical mapping, the present method can 

be used to analyze arbitrary quadrilateral plates. The plate geometries 

considered in the spline finite point method proposed by Qin (1982, 1985) and in 

the spline finite elements developed by Leung and Au (1990) were restricted to 

rectangular shape.

3. More flexibility of the displacement field in the present method can be 

obtained by applying the cubic B-spline functions in two directions. The 

displacement functions in the spline finite point method and in the spline finite 

strip method were constructed by B-spline functions in one direction and non­

spline functions in another direction.

4. Due to the appropriate combination of cubic B-spline functions in the 

displacement field, the present method avoids the inverse computation resulting 

from the matrix transformation which occurs in the spline finite element method.
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5. The necessary degrees of freedom to maintain the completeness of the 

displacement function, including the twisting curvatures at corner nodes, are all 

retained in the present method. In the spline finite elements developed by Fan 

and Luah (1992), the unavoidable approximate treatment of the twisting 

curvatures at corner nodes impairs the accuracy of the solutions.

4.2 Geometrical Mapping

An arbitrary quadrilateral plate in the x-y plane is shown in Fig. 4-1 (a). It can be 

mapped into a 2 x 2  square region in the r-s plane as a basic plate (Fig. 4-1 (b)). 

If the Cartesian coordinates x and y  within the plate are defined by

x = ' Z N<xi . y =yZ N ix< (4_1)
M l M l

where x, and yi are the coordinates of node i in x-y plane, the shape functions Nj 

for mapping can be expressed as follows:

t f ( = ( l  + /b)(l + 50) / 4  , ( M l , 2 ,3,4) (4-2)

where r0 = rtr and s0 = s,.s ; /* and s, = the coordinates of node /' in r-s plane. For 

the higher order complex shape, the analysis procedure is straightforward so 

long as the appropriate mapping functions are selected.

y  ■' s ' ,

4 -------------' -------------------- --—  \ J  1

4 3

/  \  + - r

1 ------------------2  * 1

1— 1 — 1

2

1— 1 — 1

(a) Actual Plate (b) Basic Plate

Fig. 4-1 Geometrical Mapping
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By the chain rule of differentiation, the first and second derivatives of 

displacement w for the two coordinate systems are related as

dw dw
dx ~dr

>
dw dw

ds

X

d 2w d 2w
dx2 r > dr2

dw

d 2w ~dr d 2w
dy2 ■ = h ( J i J *

dw
* -  «

ds2

ds
d 2w d 2w

dxdy dfds

(4-3)

where

dx dy

d2x
dr2

d~y
dr2 \ ( f fdr

dx dy 
dr dr

dr

dx

dr

dy
. J .=

d2x
ds2

d2y
ds2 . J2 = ( f ) !ds

dx dy 
ds ds

ds ds d2x
drds

d2y
drds

dx dx 
dr ds

dy dy 
dr ds

1 .dxdy  d x d y .
2 dr ds db dr

(4-4)

J and x = the Jacobian matrix and the plate curvature matrix, respectively.

These above relations will be used in the later derivation of the present 

numerical analysis.

4.3 Displacement Function

Dividing the basic plate in r  and s directions with n and m equal sections 

respectively, i.e.

-l = r0<r, <r2 <•••</•„ = ! , -1 = s0 <5, <s2 <— <Jm = 1
where

r,=r0+ ihr , hr = 2 /n  ; Sj = sQ+ j h s, hs = 2!m
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generates a mesh with (n+1)(m+1) spline finite knots on the plate.

The displacement function of the mid-surface is based on these spline 

finite knots and may be expressed as

A/+1 N + \

I  I ^ ^ ) ^ )  = Q C  (4-5)j=-i(=-i

where

Q = T ® 0

®  =  [ f a 1 fa  A  -  & + 1] ¥  =  [^ -1  Vo Vx —  ^ m+1]

c = [c-, cj cf -  cL.f <  = [ c _ c 0j c,, ••• W ]
and 'P®O = the Kronecker product of the row matrices 'F and <]>; C = the

modified generalized spline coordinate column matrix with dimension 

(r>+3)(m+3)] fa{r) and have the same form as Eq. (3-9).

It can be found from Eq. (3-9) that 

i) = V M )  = 0 O J  *■ -1) _̂,(r0) = ̂ _i(5b) = 1
</>,'(r0) =  y// (s0) = 0 ( i , j *  0) f a \ r 0) = i//0'(s0) = 1 (4-6)

<f>ii.rn) = V j { s m) = 0 fa(rn) =  y/m( s j  = 1

&'(?„)= Vj ' (sm) = 0 ( i * n  + \ , j * m  + l ) ^ +l'(0 = ̂ m+i'(-sm) = l
where 0,.' and y // = the first derivatives of fa and y/r  Therefore, the treatment of

the boundary conditions is easy due to the above features from the ingeniously 

combined displacement function Eq. (4-5). For example, eliminating fax term 

represents a simply supported side between node 1 and 4 (Fig. 4-1 (b)), and 

eliminating both fax and fa terms makes this side fixed. Based on Eq. (4-5), the 

corresponding displacement functions to the above two cases are

tm-l n+1 hh-1 n+1

H x )  = ^ ^ j ci j fa (r)V j(s )  and w ( x ) = ^ ^ j ci j fa(r)y/J(s) (4-7)
j = - \  1=0 >=-1 (=1
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All correspondences between boundary conditions and eliminating terms from 

Eq. (4-5) are included in Table 4-1.

Table 4-1 Correspondences Between Boundary Conditions
and Eliminating Terms

Side Simply Clamped Sliding Free

1 to 2 V'-i ¥-i, ¥o ¥o none

2 to 3 tn tm tn+1 tn+1 none

3 to 4 ¥ n ¥„, ¥n»\ ¥m« none

1 to 4 t-\ <t> -1, to to none

It is further noted that imposition of boundary conditions at corner nodes 

alone is also possible due to the relations shown in the following Table.

Table 4-2 Relations Between Corner Displacements, Rotations, Curvatures
and Generalized Coordinates

Node w(r,s) wr'(r,s) w,(r,s)

 ̂ Oo > S0 ) C0,-\ C-1.0 C0,0

2 0„, ■S’o) c-.-i Cn+1,-1 Cn,0 Cn+1,0

3 (rn,sm) Cn,m n̂,m+1

4 Ob.O C-\,m C0,m C-l,m+l C0.m+1

Numbers of side nodes in Table 4-1 and 4-2 refer to Fig. 4-1 (b).
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4.4 Formulation of Present Analysis

The total potential energy of a Kirchhoff s bending plate can be expressed as
1 1

n  = ± j J ( z r V X -  2qw)\i\dr *  = | c r G C -C r f  (4-8)
- i  - i

Using the principle of minimum total potential energy, one obtains 

GC = f

where G is the stiffness matrix
I I

G = J J b 7 DVt\3\dr ds
- i  - i

, J'FOO'l 
['F O O J

B = J
VF ® 0 >"
¥"<8 ><D
¥ ' 0 0 '

(4-9)

(4-10)

(4-11)

For a plate of isotropic material, the rigidity matrix is
1 p  0

p  1 0

0  0  (1  - / / ) / 2

D = ■
12(1- / r )

(4-12)

where E = Young’s modulus; p = Poisson’s ratio; t = thickness of the plate.

The load matrix has the form
i i

- i -i
(4-13)

where q = the intensity of applied load.

The functional of a thin plate for free vibration is
i i

n  = ̂  J J ( /  Y*x-(o2ptw2)\i\drds = ̂ C r (G -  (o2 M)C (4-14)
- i - i

According to the Hamilton’s principle, one has 

(G -c j2M)C = 0 

where co = the natural circular frequency.

The mass matrix

(4-15)
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i i

M = j j p i Q TQ\j\drds (4-16)
- i - i

where p  = the material mass density.

The integral functions of the stiffness, mass, and load matrices are quite

complicated so that they have to be evaluated numerically. Simpson’s

integration formulation is applied in the present method. The values of functions 
^  and y/j and their first and second derivatives on the spline finite knots, which

are needed in numerical integration and computation of displacements, 

rotations, and moments, are convenient to obtain.

4.5 Numerical Examples

Four plate examples with various shapes and boundary conditions are selected 

herein to demonstrate the efficiency and applicability of the present method. 

Excellent performance of the present method for this type of plate problems is 

achieved by comparing the results with analytical solutions and those of other 

numerical methods, such as the finite element method (FEM) and the spline 

finite strip method (SFSM). Some common symbols used in the Tables of results 

are defined as follows: q = the intensity of uniformly distributed load on the entire 

plate; P = the concentrated load at midpoint of the plate; D = Eti / [12(1 — //2)]; 

and Poisson’s ratio p = 0.3 for all test cases in this section.

Example 4-1: Bending of Square Plate

The investigation of square plates is fundamental in the analysis of plate 

problems. The results of a square plate using different methods are readily 

available in literature and the general characteristics of using different methods 

may be shown by comparisons of the obtained results. Both simply supported 

and clamped square plates under uniformly distributed and concentrated loads
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are discussed in this example. Only a quarter of the plate is considered due to 

dual symmetry.

Table 4-3 gives the central deflections of square plates obtained by the 

present method as well as by FEM with a basic type of element — four-node 

noncomforming C1 element with 12 degrees of freedom. Computed results from 

both the present method and the spline finite element method (SFEM) for a 

simply supported square plate under uniformly distributed load are shown in 

Table 4-4. Nine-node C1 element in SFEM here has 21 degrees of freedom and 

has shown advantages over its counterparts in FEM through research carried 

out by Fan and Luah (1992). It should be noted, before a detailed observation 

on the compared results in Tables 4-3 and 4-4, that total number of unknowns 

without imposition of nodal restraints for FEM, SFEM, and the present method 

are 3nm + 3(n + m) + 3, 2nm + 2.5(n + m) + 3, and nm + 3(n + m)+9 respectively 

under the same mesh n x m or the same number of nodes (w + 1)(tm + 1). With the 

imposition of nodal restraints, different methods may reduce a few and nearly 

the same number of unknowns for various boundary conditions. This indicates 

that the sequence of methods with fewer unknowns is the present method, 

SFEM, and FEM when they have equal number of nodes on the analyzed plate. 

By studying Tables 4-3 and 4-4, one can find that the accuracy and convergence 

of the present method are excellent and fewer number of nodes are needed than 

the other two methods to yield sufficiently accurate results. The degrees of 

freedom required using the present method are only about 30% and 50% when 

compared with the four-node element and nine-node spline element. It can be 

seen in Table 4-4 that the central deflection, the central bending moment and 

the corner twisting moment by the present method all converge rapidly, while the 

results by SFEM display a slower convergence caused mainly by the 

approximate elimination of the twisting curvatures at corner nodes.
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Table 4-3 Comparison of Central Deflections of Simply Supported 
and Clamped Square Plates under Uniformly Distributed 

and Central Concentrated Loads

Number
of

Nodes

Simply Supported Plate Clamped Plate
Uniform Load 3 Point Load b Uniform Load a Point Load 0
FEM Present FEM Present FEM Present FEM Present

9
25
49
81

Exact

0.394
0.403
0.405
0.406

0.4064
0.4062
0.4062
0.4062

1.23
1.18
1.17
1.16

1.143
1.156
1.158
1.159

0.140
0.130
0.128
0.127

0.1260
0.1265
0.1265
0.1265

0.613
0.580
0.571
0.567

0.5419
0.5567
0.5592
0.5601

0.4062 1.16 0.1265 0.560
multiplier3 = 10‘2#dr4 I D  multiplier b = 10'2.Pa2 /  D

Table 4-4 Comparison of Central Deflection and Bending Moments 
of Simply Supported Square Plates 

under Uniformly Distributed and Central Concentrated Loads

Number
of

Central Deflection3 Bending Moment0 
at Center

Twisting Moment6 
at Comer

Nodes SFEM Present SFEM Present SFEM Present
9 0.41189 0.40640 - 0.4867 - 0.3243

25 0.40675 0.40624 0.4911 0.4814 0.3554 0.3247
81 0.40627 0.40624 0.4824 0.4795 0.3390 0.3248
169 0.40624 0.40624 0.4804 0.4789 0.3330 0.3248

Exact 0.40624 0.4789 0.3248
multiplier3 = 10'2ga4 /  D multiplier0 =10‘1 <7 or2

Example 2: Bending of Skew Plate

Two types of skew plates under uniformly distributed load q shown in 

Fig. 4-2 are analyzed in this example. They are simply supported (four simply 

supported edges) and simply clamped (two simply supported edges and two 

clamped edges). Central deflections and moments of the skew plates with 

different skew angles are used to compare with those by the spline finite strip 

method (SFSM) (Tham, Li, Cheung, and Chen, 1986). The total degrees of 

freedom without the imposition of boundary conditions by using SFSM for plate 

analysis are 2nm+6n +  2 m + 6  under mesh n x m,  whereas nm+3(n + m ) + 9  is for

the present method as mentioned above. Comparative results of two methods
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shown in Tables 4-5 and 4-6 are found in a very good agreement for all different 

skew angle cases. It should be noted that the plate meshes generated to gain 

the results in Tables 4-5 and 4-6 are 17x 11 by SFSM and 16x 16 by the present 

method. The number of total parameters in the present method is about 70% of 

those in SFSM.

simply supported

simply supported or clamped

Fig. 4-2 Skew Plate

Table 4-5 Central Deflections (wc) and Moments (M x, M y) 
for Simply Supported Skew Plates under Uniformly Distributed Load

Skew Angle a A fi
& SFSM Present SFEM Present SFEM Present

90° 0.406 0.406 0.0479 0.0479 0.0479 0.0479
75° 0.376 0.376 0.0462 0.0462 0.0476 0.0476
60° 0.294 0.293 0.0409 0.0409 0.0463 0.0463
45° 0.179 0.177 0.0318 0.0315 0.0426 0.0424
30° 0.0705 0.0688 0.0190 0.0183 0.0339 0.0334

wc = aqL3Lx/(\00D), M x n M y =PyqLLx, Lx =Lsm&, t = 0.\L .
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Table 4-6 Central Deflections (wc) and Moments ( M x, M , )
for Simp y Clamped Skew Plal es under Uniformly Clistributed Load

Skew Angle 
&

a A A
SFSM Present SFEM Present SFEM Present

90°
75°
60°
45°
30°

0.192
0.176
0.135

0.0815
0.0327

0.192
0.176
0.135

0.0814
0.0326

0.0244
0.0233
0.0203
0.0156
0.0098

0.0244
0.0234
0.0204
0.0157
0.0097

0.0333
0.0328
0.0310
0.0276
0.0216

0.0333
0.0329
0.0312
0.0278
0.0217

wc = aql)  Lx / (100Z)), M x = p xqLLx, M y = 0 yqLLx, Lx =Ls\n$, t = Q.\L.

Example 3: Flexural Free Vibration of Trapezoidal Plate 

A simple supported trapezoidal plate is shown in Fig. 4-3 and it will 

become a rectangular plate when b/a = 1.0. The non-dimensionalized frequency 

parameters of the first six modes are given in Tables 4-7 and 4-8 for the 

rectangular and the trapezoidal plates respectively. An exact theoretical solution 

for the natural frequencies and normal modes of the simply supported 

trapezoidal plate is available only for the rectangular case, when b/a = 1.0 

(Leissa, 1969). For the cases of b / a *  1.0, Chopra and Durvasula (1971) 

presented an approximate solution of the problem based on trigonometric series 

expansion with coefficients determined by the Galerkin method and their results 

are generally used as a reference. Exact results for the rectangular case and 

series solution for the trapezoidal case are included in Tables 4-7 and 4-8. Orris 

and Petyt (1973) used two type of high precision, conforming, plate bending 

elements, one a quadrilateral (16 DOF) and the other a triangular (12 DOF), to 

investigate the free vibration characteristics of the same plates. For comparison, 

their FEM results are also quoted in Tables 4-7 and 4-8, where the frequency 

parameters of FEM-1 and FEM-2 were computed by using 12 quadrilateral 

elements with 95 total DOF and 12 quadrilateral plus 2 triangular elements with 

101 total DOF respectively on a half plate.
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|— b — |

d=3o

Fig. 4-3 Trapezoidal Plate

Table 4-7 Frequency Parameters X -  <o{d2 / 7?)(pt / £>)',1/2

Mode 1 2 3 4 5 6
FEM-1 3.2505 6.253 10.029 11.279 13.033 18.070
Present 3.2502 6.252 10.014 11.277 13.018 18.047
Exact 3.25 6.25 10.0 11.25 13.0 18.0

Table 4-8 Frequency Parameters X =  a ( d 2 / / D ) V2

Mode 1 2 3 4 5 6
FEM-1 5.3927 9.438 14.744 15.964 21.911 23.250
FEM-2 5.4616 9.463 14.753 16.146 21.968 23.267
Present 5.3906 9.431 14.727 15.936 21.909 23.205
Series 5.3896 9.424 14.685 15.911 21.700 23.146

The results obtained from the present method using 3x8 mesh with 66 

total DOF are shown in the same tables along with the analytical solutions and 

better accuracy by fewer unknowns than the conforming quadrilateral and 

triangular elements can again be observed. The mode shapes and 

corresponding frequency parameters obtained from the first six modes for both 

rectangular and trapezoidal cases are exhibited in Fig. 4-4. They are similar to 

the nodal patterns presented by Chopra and Durvasula (1971), and Orris and 

Petyt (1973).



x = 3.250

5.391

35

6.252 10.01 1I.2B

(a) Rectangular plate

9.431 14.73 15.94

(b) Trapezoidal plate

13.02

21.91

18.05

23.21

Fig 4-4 Nodal Patterns and Frequency Parameters for First Six Modes 
of Simply Supported Rectangular and Trapezoidal Plates

Example 4: Bending of Irregular Quadrilateral Plate 

An irregular quadrilateral plate with the coordinates of four corner nodes 

1, 2, 3, and 4 is shown in Fig. 4-5. The central lines AB and EF connect the 

midpoints at two opposite sides. Midpoint C of the plate is the intersection of the 

central lines AB and EF.

y ik 4(2.18)

3(12.16)

2(16.4)

1(0 .0)

___________sim ply supported

------------------- clam ped

Fig. 4-5 Irregular Quadrilateral Plate
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Bending analysis of this plate with two opposite sides simply supported 

and other two opposite sides clamped has been carried out. The results of 

deflection and moments at midpoint C for this plate under uniformly distributed 

load by the present method and FEM are shown in Table 4-9, and deflected 

curves along the central lines AB and EF under uniformly distributed load and a 

concentrated force at midpoint C by the present method are plotted in Figs 4-6 

and 4-7. FEM results in Table 4-9 were obtained using structural analysis 

software GTSTRUDL. Plate element type is the bending plate hybrid 

quadrilateral element (BPHQ) which uses a quadratic interpolation for the 

stresses within the element. A cubic displacement expansion is used for the 

transverse displacement along the boundaries in BPHQ. Linear normal rotations 

are assumed on the boundaries. BPHQ is compatible and yields quite good 

results when compared with other types of plate elements.

Benefits of the present method were found from the results of this 

arbitrary quadrilateral plate. From the comparison of the deflections and twisting 

moments in Table 4-9, present method uses 143 DOF to give same accurate 

results as BPHQ with 705 DOF which is five times as much DOF as the present 

method. For bending moment results, difference of accuracy between two 

methods is reduced.

Table 4-9 Deflection and Moments at Midpoint C 
for Irregular Quadrilateral Plate under Uniformly Distributed Load

Mesh DOF Deflection Bending 
Moment M x

Bending 
Moment M y

Twisting 
Moment M '

Pres. FEM Pres. FEM Pres. FEM Pres. FEM Pres. FEM

8 x8 63 161 58.88 58.78 6.082 6.002 3.717 3.649 0.215 0.218

12x12 143 385 58.92 58.89 6.010 5.973 3.705 3.675 0.209 0.211

16x16 255 705 59.93 58.92 5.984 5.963 3.700 3.683 0.207 0.209
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Distance 
from A to B

concentrated force P 
at midpoint C20

40

60

V  Deflection

Fig 4-6 Deflected Curves along Central Line AB 
(q = 1, P = 50, D = 1, mesh 16x16.)

Di s t a n c e  
I r o m  E t o  F

concentrated force P 
at midpoint C20

40

60

▼  De f l e c t i o n

Fig. 4-7 Deflected Curves along Central Line EF 
(q = 1, P = 50, D = 1, mesh 16x16.)



CHAPTER 5

NONLINEAR BEHAVIOR
OF BIAXIALLY LOADED REINFORCED CONCRETE COLUMNS

A numerical analysis using the cubic B-spline functions for deflection 

interpolation has been developed in this chapter to determine the complete load- 

deflection and moment-curvature relationships, including ascending and 

descending behavior, for slender reinforced concrete (RC) columns. A multiplier 

p to the centroidal moment of inertia of each element is introduced in the section 

stiffness equation to give better results and to broaden the application of present 

method.

5.1 Originalities of Present Numerical Analysis

There are four originalities in the present numerical analysis as follows:

1. A B-spline function has been firstly employed to investigate into the 

nonlinear behavior of RC columns under biaxial bending and axial load in the 

present research.

2. Uniformly or linearly distributed stresses are usually assumed in a 

small element of the cross section to solve the problems of biaxially loaded 

columns. Numerical approaches under these assumptions must use a lot of 

elements on each cross section in order to obtain the sufficiently accurate 

results for general nonlinear problems. Too many elements used in analysis 

require more computer time. In the present method, a multiplier p is used for the 

section equilibrium equation based on a more logical consideration. As a result, 

fewer elements are needed to attain the accurate results.

38
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3. For columns with nonrectangular sections, there is a need to use an 

additional formulation to solve the problems (Tsao and Hsu 1993, Zak 1993). 

The present method, however, can be used to analyze RC columns with 

arbitrary cross sections under a unified formulation.

4. The choice of B-spline function as a deflection function results in a 

tightly banded stiffness matrix. Based on the Gaussian elimination, an equation 

solver suitable for the simultaneous equations in the present approach is 

developed, so that the computations can be carried out more efficiently.

5.2 Basic Assumptions and Constitutive Relations

The present analysis is based on the following assumptions: (1) Plane sections

remain plane during bending; (2) The stress-strain relations for the column

materials are known; (3) No twisting occurs and the effects of axial and shear

deformation are negligible; (4) Shrinkage and creep effects are neglected; (5)

Perfect bond between steel and concrete elements; (6) The boundary conditions

at two ends are known.

Both stress-strain relationships for unconfined and confined concretes are

used here. The relationships for unconfined and confined concretes developed

by Carreira and Chu (1985) and by Mander, Priestley and Park (1988),

respectively, are used in this research. They are given below:

for nonconfined concrete/ ̂  P . { e l s e) ( 5 1 )
/ ;  pe- \ + w s et

and for confined concrete
f  : £<x) (5 2)
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where

«« = f fc P + 5 ( ^ r - i) ]
/  cc

(5-3)

where E c =5,000^[fc M pa = 60,208^/yf/w/' is the initial tangent modulus of

elasticity of the concrete.

Definition of above equations can be found from Fig. 5-1. Areas of 

confined and unconfined concrete are shown in Fig. 5-2 after consideration of 

average arch effect (Mander, Priestley and Park, 1988).

The stress-strain curve for the reinforcing steel including strain hardening 

has been idealized using piece-wise linear approximation as shown in Fig. 5-3. 

Both compressive and tensile branches of the curve consist of five straight 

segments.

Fig. 5-1 Stress-Strain Curve of Confined and Unconfined Concretes

C o m p .  S t r e s s  t

u n c o n f i n e d

c o n f i n e d

C o m p .  S t r o i n  E
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J IT

~ r

Fig. 5-2 Cross Section with Confined and Unconfined Areas

u n c o n f i n e d  c o n c r e t e

c o n f i n e d  c o n c r e l e

s t i r r u p  s p a c i n g

C o m p .  S t r e s s  I

C o m p .  S t r a i n  £

Fig. 5-3 Stress-Strain Curve of Steel
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5.3 Present Numerical Method

Present analysis of RC slender columns is based on both section level and 

member level, and they are discussed below.

5.3.1. Section Stiffness Equation

There are three approaches to integrate section equilibrium equations. The first 

is based on the exact integration rules, and it is only used for some very simple 

cases. For general and practical RC slender columns, the second and third 

approximate integration approaches have to be adopted. In the second method, 

the section is divided into strips rotating parallel to the neutral axes in the 

solution process for equilibrium equations. This approach is rather cumbersome 

due to continuous determination of varying position of neutral axis. The third 

method is the simplest of all in that the section is divided into small elements and 

these elements are fixed in the whole solution process. The third method will be 

used and modified for the present work.

Fig. 5-4 Arbitrary Column Cross Section
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On a column cross section with an arbitrary shape as shown in Fig. 5-4, 

the stress resultants P, Mx, and My with respect to Cartesian coordinate origin o 

may be expressed as follows according to section equilibrium equations:

where A = Ac + As = the total area of the cross section; f  = the normal stress at 

point (x, y); Subscripts c and s are corresponding to concrete and steel 

respectively; P and f  are positive in compression and negative in tension. It is 

not necessary that x- and y-axes are principal axes. As a matter of the fact, no 

any limitation is attributed to the position of coordinate origin o and the 

orientation of Cartesian coordinate system under the plane assumption and 

small strain theory (see Appendix C for mathematical proof).

After dividing the cross section into small elements and integrating Eq. (5- 

4) element by element, Eq. (5-4) becomes

where subscripts / and j  are corresponding to / th concrete element and j  th steel 

element, respectively.

For convenience of generating element mesh on the cross section, the 

elements of concrete may be based on the total cross sectional area and then 

the concrete portion in steel area is subtracted. Hence, Eq. (5-5) is

(5-4)

(5-5)

(5-6)
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where A/y = -  / g ; Subscript k is corresponding to k th concrete element based

on the total cross sectional area. Letting the secant modulus of elasticity for the 

materials E = f  I e and assuming constant E in each element, one has

M y  =  ' Z E d L £ * x d 4« + ' L A E j L  e * x d A ,

(5-7)

in which AE, = £ .  -  E .j sj (.7

Since plane sections remain plane during bending, the strain e at any

point (x, y) is given by
s(x,y) = £0 + x̂y + ^yx (5-8)

where eQ = strain at the coordinate origin o; <f>x and ^  = curvatures

corresponding to M x and M y, the bending moments about the x- and y-axes,

respectively.

Substituting Eq. (5-8) into Eq. (5-7) yields section stiffness equation in a 

matrix notation:
P  A,, A,2 e0

(5-9)

where

P *12 *13_ So
F = K C or M x • = ]r21 *22 *23 «

M y A . *32 Iw A

* J

Ki = IX -M *+'LAEjyA = *21
* j

*13 = EckXk̂ ck + 2  = *31

*22 =Z^(^c*+£/«i) + ZA£:/(>’X  +P*«)
k  j

*23 = T ,EckXkyAk + 'Z AEJXj y A  = *32

(5-10)
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*33 = E EJ x?Ad- +PJm ) + E AEA x]A* + P Jya)
*  i

where xk,yk and Xj,yj  = the centroidal coordinates of concrete element k  and 

steel element j, respectively; 4 * , / ^  and 4 * , /w  = the moments of inertia of 

concrete element k  and steel element j  about the centroidal axes xc and yc, 

respectively; p = multiplier to centroidal moment of inertia of each element.

The multiplier p of zero and a unit in Eq. (5-10) represents a uniform 

stress or linear stress distribution across each element. Both uniform or linear 

stress concept has been adopted by several researchers. These approximate 

approaches require many small elements in each cross section and are unable 

to give exact solutions for linear elastic and perfectly plastic columns problems, 

respectively. Introduction of the multiplier p into the present formulation 

generates a more logical and accurate approach, p = 0  represents perfectly 

plastic case and p = 1 represents linear elastic case. Thus, 0 < p < 1 may be 

rationally used to represent a general nonlinear case. The present method can 

be used to obtatin an exact solution for the linear elastic as well as perfectly 

plastic problems. For general nonlinear problems, it yields results with higher 

accuracy, using fewer elements in the cross section when compared with 

uniform stress or linear stress method. Another important feature is that the 

present method allows similar implementation of analysis for any arbitrary cross 

sections. Comparisons of computational results between the present method, 

uniform stress method, and linear stress method, are shown in 5.3.5.

5.3.2 Member Stiffness Equation

Deflected curve for a slender column under combined biaxial flexure and axial 

compression is shown in Fig. 5-5. The column is divided into n segments with 

arbitrary intervals, and the deflections in the x and y directions at division points
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between these segments are denoted by u0,i^ , •••,«„ and v0,v1,---)v(,---,vn 

respectively. After consideration of the second order effect at division point /', Eq. 

(5-9) becomes

F ^ K .C ,  (5-11)

where

F, = [P  M ^ + P v ,  +  =  P [ l  ey +  v(

C,=[*o A f - v "  -»•']; (5-12)

in which = Pey and = Pex are the end moments about the x- and y-axes

at the initial division point 0 ; w” and v" are the second derivatives of deflections 

u and v along the longitudinal direction of the column; Expressions for K, are the 

same as the ones in Eq. (5-9) and (5-10) as long as the computations are based 

on the section property of division point /'.

p
M y o

M xo

d e f l e c t e d
c u r v e

Fig. 5-5 Deflected Curve for a Slender Biaxially Loaded Column

Cubic B-spline functions are used to describe the displacement fields u 

and v as follows:
n+1 n+1

« = ! > * & ( * )  v = 2 > * & o o  (5_13)
<t=-l k=-1
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which are the same as Eq. (3-7).

Since cubic B-spline has non-zero values only over four consecutive 

sections, or on three consecutive spline knots, and <j>k{z) are combined from the

cubic B-splines (see Eq. (3-8) and (3-9)), one can have

Ui =  a i - 2  '-2 ( * , )  +  «,-! < P i-l(Z , )  +  ^  ^ ( Z i )  +  a M  0 M ( Z i )  +  a i+2 <t>i+2 ( Z i )

V, =  b i - 2  <t>,-2(z i )  +  K \  0,-1 ( * / )  +  b i M Z i )  +  b M  ( z i )  +  b M  6 + 2 ( Z i )  ( 5 - 1 4 )

where ,̂_2( r , ) = 0  when / *  1 ; <j>,+2(z,) = 0  when i * n - 1.
Similarly, the second derivatives of u and v, or the curvatures <{>y and <f>x, can be 

found to be

a,-i PM , )  +  a i-i P-,<z i ) +  “, )  +  aM Pm( zi )  +  a„i PM , )

»,"= K> PM,)+K, PM,)+h «*,)+»,., PMMKiPM,) (s-15)
where # '2( 2 ,) = 0  when / *  1 ; # '2( r ,) = 0  when i * n - 1.
Substituting Eq. (5-15) into Eq. (5-11) yields

<+2
F,= Z * U 4  (5-16)

*=/- 2

where

= h  ak]T

8l,k (5-17)
M i)/ (^a),#r(*i) (*,3)M zS 
W 2I)( (W A *,) {k^ )M zi)
A k» l  ( * » ) ,# & )  ( K ) M Z,)_

in which /?= 0  when i *  k and p =  - 1  when / = k\ gM_2 = 0  when / *  1 and gM+2 = 0

when / * / / - 1 .

Summing all equations at different division points (i = 0, 1, ..., n) from Eq. 

(5-16), the following member stiffness equation can be achieved:

G £ = R  (5-18)

where

* ■ [« ,  «  -  < arJ3(n+3)*1
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R = [ l?  F f ... f ; L m  (5-19)

G = see Eq. (D-1) in Appendix D

There are no difficulties to impose boundary conditions using Eq. (5-18) 

due to the following relationships of the deflections and rotations at two ends,

a -\ =  uo «o =  Mo a n =  u„ an+] = u'n

b-\ =  v o bo = <  K = vn bn+l = v'n (5-20)

The above relationships also make it easy to use the deflection increment to 

control the iterative solution procedure of Eq. (5-18).

If the column is pinned-ended and the loads are symmetrically applied on 

the column, only half of the column needs to be considered. Dividing this half 

column into // segments, one has the following boundary conditions:

a-\ = wo= 0 an+l =Wn = 0 b_t = v0 = 0  bn+, = v'n = 0  (5-21)

Introducing these boundary conditions into Eq. (5-18) gives

4  -

R = K  I f  -  I f L , , . ,  (5-22)

G = see Eq. (D-2) in Appendix D 

The experimental specimens that are used for comparisons of results in 5.4 have 

the same conditions as above.

Solving the member stiffness Eq. (5-18), one can determine the complete 

load-deflection and moment-curvature relationships for slender RC columns 

under combined biaxial flexure and axial load. The numerical analysis developed 

here can be used for any end conditions and variable section geometries. With 

the increment of deflection, the analysis takes into account all stages of behavior 

up to and beyond maximum load and moment. The method is also applicable to 

cases in which the cross section of the column is made up of different materials, 

and the cross section varies along the length of the column.
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5.3.3 Incremental Procedure and Flow Chart

In member stiffness equation (5-18), matrices G and R are functions of

displacement vector S due to the second order effect of slender column and

nonlinear constitutive relationships of the column materials. Incremental

approach of secant modulus is used to solve the member stiffness equation. The

reason to adopt secant-modulus approach instead of tangent-modulus one is

based on the fact that the secant-modulus approach gives more stable

computation process and avoids divergence due to the small tangent stiffness of

section. In order to determine the entire curves of load-deflection and moment-

curvature, displacement or deformation may be chosen as an incremental

parameter. The whole incremental path consists of many steps corresponding to

points in plotting the whole curves. In each step, an iterative process is

repeatedly used until it reaches convergence, then go to next step. The iterative

expression of eq. (5-18) is given by

Gj £ J+1 = Rj (5-23)

The convergence criterion for an iterative process is

|<5,.+1 -  Sj\ <  0.0000l|<S/+I| ( 5 - 2 4 )

The above criterion guarantees sufficient accuracy of the present computed 

solution.

The incremental procedure will be terminated when the strain at the point 

of extreme compressive bar reaches 0.005. This is based on the assumption that 

crushing of concrete at this moment is immediately followed by concrete 

spalling. Subsequently, buckling of the compression reinforcement occurs at 

region where the concrete has spalled.

The flow chart of the present computational process for RC slender 

columns is shown in Appendix E.
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5.3.4 Solver of Simultaneous Equations

By selecting the cubic B-splines to construct the deflection function, the member 

stiffness matrix (see Eq. D-1 and D-2) has been found to be tightly banded. The 

original sparse stiffness matrix of size 3(n+1) by 3(n+1) is compacted into a 

rectangular matrix of size 3(n+1) by 9 (see Eq. D-3). For this storage format, a 

solver based on Gauss elimination is developed, and its Fortran coding is 

provided in Appendix E. This special solver avoids storage and processing of 

zero coefficients in the stiffness matrix. Consequently it lowers the requirement 

of computer memory and reduces the time of computation. Even though the 

solver for equations with banded matrix can be found in the literature, without 

modification it is not the most efficient approach for the present formulation. It is 

because the solver has to store and process some zero coefficients in the 

present stiffness matrix.

Unlike Tsao and Hsu (1993), the present formulation maintains the well 

structured matrix form. Also the efficient solver is developed here which does not 

need to interchange columns between the stiffness matrix and load vector for 

dividing the knowns and unknowns.

5.3.5 Accuracy and Convergence

Numerical solutions are approximate, thus their accuracy and convergence must 

be studied thoroughly. There are several possibilities that may cause 

computational errors. Some o f them affect the results very little and may be 

ignored. But some of them significantly affect the results and must be taken into 

account in modeling. Modeling error refers to the difference between a physical 

system and its mathematical model. Based on the assumptions given in 5.2, the 

present slender RC column model is established. Previous studies from many 

researchers have shown that the errors due to these assumptions are minor and
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can be ignored. Discretization on the cross section and along the column are the 

major sources of computational errors, which is discussed in the following.

Errors can arise from the idealization of the cross section into element in 

which the stress distribution pattern is approximately assumed. This error can be 

reduced by increasing the number of elements in the cross section. How this 

may affect the final results and how many elements should be used for different 

sections are investigated from the analysis based on the two different reinforced 

concrete sections shown in Fig. 5-6. They are square and L-shaped cross 

sections, respectively. Basic required data are listed in Table 5-1.

Table 5-1 Data of Reinforced Concrete Sections

Cross Section fc* (ksi) ft (ksi) fv (ksi) Bar ex (in.) ey (in.)

Square 4 0.5 60 8  #14 6 6

L-shaped 4 0.5 60 12 #9 16 2 0

2.5"

it)"

12#9

1
2 0 " 1 0 ” 1 0 " — H

Fig. 5-6 Reinforced Concrete Sections
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Computational results of compressive strength and corresponding 

curvatures under different numbers of elements by the present method (using p 

= 0.2 in Eq. 5-10), uniform stress method (USM) and linear stress method (LSM) 

are given in Tables 5-2 and 5-3, respectively. Figs. 5-7 and 5-8 show the values 

and convergence of these results. It can be seen that the present method can 

give more accurate results with fewer elements than other two methods. If taking 

the result by 408 elements of square cross section as most accurate one for 

comparison, the present method needs only 17 elements to yield a result with a 

error smaller than 0.1 percent. To achieve the same accurate result, the uniform 

stress method needs 44 elements and the linear stress method 108 elements. 

Similar conclusions can be drawn from the results of L-shaped cross section. In 

order to obtain sufficiently accurate results, numbers of elements required by 

uniform stress method and by linear stress method are more than 2  times and 1 0  

times of that by the present method respectively. It is also noted that from Figs. 

5-7 and 5-8 the results from all three methods converge to the same solution as 

increasing the number of elements. However, linear stress method seems to give 

a upper-bond solution, while uniform stress method yields a lower-bond solution. 

The present method generates a nearly horizontal line to which the other two 

methods converge.

Analysis of a slender column involves second order effect, so that the 

column has to be discreted into segments for analysis. Accuracy can be 

improved as more segments are used to model the column. Two pin-ended 

slender columns discussed here have different lengths and cross sections. One 

with square cross section is 40 ft long and another with L-shaped cross section 

is 30 ft long. Sizes and properties of these sections are the same as those 

shown in Fig. 5-6 and Table 5-1. Only half of the column is analyzed here due to 

its symmetry. The square and L-shaped cross sections are divided into 72
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elements and 60 elements, respectively. Compressive strength, corresponding 

deflections and maximum moments, corresponding curvatures are computed by 

the present method using different numbers of segments and the computational 

results are shown in Table 5-4 and 5-5. Sufficiently accurate results can be 

obtained by 8  segments or above for both slender columns.

LSM - o -  PresentUSM
920 -  *

20 40 60
Number of Elements

so 100 120o

Fig. 5-7 Convergence of Compressive Strength for Square Cross Section

310

300 • •

LSM -e -  PresentUSM
£  290 • •

260 - *

270 • •

260
50 100 150 200 2500 300 350

Number of Elements

Fig. 5-8 Convergence of Compressive Strength for L-shaped Cross Section
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Table 5-2 Compressive Strength and Curvature of Square Section 
with Different Numbers of Elements

No. of 

elements

uniform stress method linear stress method present method

Pmax

(kips) (1 0 ‘ 3  in/in)

Pmax

(kips)

t x = <t>y

(1 0 “ 3  in/in)

Pmax

(kips) (1 0 " 3  in/in)

1 2 833.7 0 . 2 2 1014 0 . 2 2 872.7 0 . 2 2

17 871.6 0 . 2 2 940.4 0 . 2 2 885.8 0 . 2 2

24 879.0 0 . 2 2 915.4 0 . 2 2 8 8 6 . 2 0 . 2 2

44 882.4 0 . 2 2 905.7 0 . 2 2 885.4 0 . 2 2

72 882.7 0 . 2 2 894.0 0 . 2 2 884.8 0 . 2 2

108 882.9 0 . 2 2 890.8 0 . 2 2 884.5 0 . 2 2

408 883.5 0 . 2 2 887.4 0 . 2 2 884.3 0 . 2 2

Table 5-3 Compressive Strength and Curvature of L-Shaped Section 
with Different Numbers of Elements

No. of 

elements

uniform stress method linear stress method present method

Pmax

(kips)

4x f t y  

(1 0 " 3  in/in)

Pmax

(kips)

* J i y

(1 0 " 3  in/in)

Pmax

(kips)

* J * y

( 1 0 - 3  in/in)

24 260.2 0.443/0.4 305.2 0.674/0.4 268.2 0.468/0.4

60 266.8 0.460/0.4 275.9 0.462/0.4 268.6 0.460/0.4

87 267.1 0.459/0.4 273.1 0.460/0.4 268.4 0.459/0.4

312 267.5 0.459/0.4 269.8 0.459/0.4 268.0 0.459/0.4
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Table 5-4 Computational Results of Square Section Column 
with Different Numbers of Segments

No. of 

segments

Pmax

(kips)

dv = du 

(in.)

Max. Mx = My 

(kip-in)

4>x = <t>y

( 1 0 - 3  in/in)

4 502.6 4.0 5552 0.2661

8 501.5 4.0 5544 0.2637

16 501.4 4.0 5542 0.2634

2 0 501.3 4.0 5542 0.2632

Table 5-5 Computational Results of L-Shaped Section Column 
with Different Numbers of Segments

No. of 

segments

Pmax

(kips)

dv

(in.)

du

(in.)

Max. Mx 

(kip-in) (1 0 ‘ 3  in/in)

Max. My 

(kip-in)

+>

(1 0 - 3  in/in)

4 175.7 4.46 4.0 4352 0.3865 3571 0.4263

8 175.6 4.46 4.0 4351 0.4786 3572 0.4333

16 175.5 4.46 4.0 4351 0.4784 3572 0.4331

2 0 175.5 4.46 4.0 4351 0.4796 3572 0.4342

5.4 Comparison with Experimental Results

In the test program performed at New Jersey Institute of Technology (NJIT) by 

Tsao (1991), six square and eight L-shaped slender RC columns were 

constructed and tested to failure under combined biaxial loading and axial 

compression. Different eccentricities were used to examine the behavior of the 

slender columns. The entire experiments were carried out using MTS loading 

system. The longitudinal concrete strains were measured at midheight by pairs 

of mechanical strain gages with a 6 -in. gage length. The deflection components
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along the x- and y-axes were also measured at midheight using dial gages. The 

concrete properties and maximum compressive strength were determined using 

3x6 in. cylinders. C series represents square slender columns and B series 

denotes L-shaped slender columns. Details of the test specimens, experimental 

method, and test results can be found in Tsao (1991).

It was found that both the ascending and descending branches of the 

experimental load-deflection and moment-curvature curves as shown in 

Appendix G were successfully attained using MTS loading system. In the 

present numerical analysis, the cross sections of square column specimens are 

divided into 32 unconfined concrete elements, 4 confined concrete elements, 

and 4 steel elements. A total of 40 elements are used for square cross section. 

The cross sections of L-shaped column specimens are divided into 20 

unconfined concrete elements, 9 confined concrete elements, 8  steel elements. 

Totally 37 elements are used for each L-shaped cross section. Both types of 

columns have the total length of 48 inches. Only half length of columns divided 

into 8  segments longitudinally due to its symmetry is used for analysis. Based on 

the present numerical analysis, the theoretical load-deflection and moment- 

curvature curves shown in the same figures as the experimental curves in 

Appendix G are computed using deflection control. They are noted to be in 

satisfactory agreement through all loading stages from zero load up to failure. It 

should be noted that the theoretical computations of biaxial load-deflection and 

moment-curvature curves were terminated when the strain at the point of 

extreme compressive bar reaches 0.005 according to the assumption in 5.3.3.

Maximum axial loads and corresponding midheight deflections for each 

specimen are given in Table 5-6 and 5-7. Results from the tests by Tsao and 

Hsu (1994), numerical approach by Tsao and Hsu (1993), and present method 

are listed in the same Tables for comparison. Maximum axial loads obtained by
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Tsao and Hsu yield results close to those obtained by present method. However, 

It should be noted that the former method used more elements for each cross 

section ( 6 8  elements for square section, 108 elements for L-shaped section) 

than those used by present method (40 elements for square section, 37 

elements for L-shaped section). Both methods used the same number of 8  

segments for half column longitudinally. When compared with the experimental 

deflection results, the present method yields a more accurate values generally. 

Improvement in deflection accuracy by present method results from the 

introduction of cubic B-spline displacement function and a more logical concrete 

stress-strain relationship for confined elements.

Another significant advantage using the present method is that the same 

numerical formulation can be applied to any arbitrary cross sections for all 

phases of behavior from zero load to failure. Based on the approach for a 

rectangular section, Zak (1993) introduced an indicator function for the geometry 

of nonrectangular sections to determine the ultimate strength of nonrectangular 

biaxially loaded columns. The approach developed by Tsao and Hsu (1993) had 

to transform the deflections between two coordinate systems for L-shaped cross 

section. They also proposed redivision along the column when tremendous 

change in curvature near the midheight of the column due to hinging behavior. 

However, all of the above additional treatments become unnecessary in the 

present approach.
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Table 5-6 Maximum Axial load and Deflections for B Series Columns

Specimen

Number

Test Analysis Analysis

Tsao and Hsu (1994) Tsao and Hsu (1993) Present Method

Pmax u .  v Pmax u V Pmax u V

B2 10045 0.69 0.40 10500 0.48 0.37 9928 0.55 0.41

B3 12565 0.72 0.28 11890 0.55 0.31 11243 0.62 0.34

B4 9915 0.82 0.38 9416 0.54 0.31 9215 0.63 0.36

B5 27955 0.37 0 . 2 0 25781 0.35 0.18 25563 0.38 0 . 2 0

B6 15750 0.61 0.28 16718 0.44 0.25 16009 0.54 0.29

B7 15740 0.48 0.27 17365 0.41 0.26 16578 0.50 0.30

B8 10310 0.65 0.46 10055 0.55 0.35 9819 0.59 0.37
units; (,bs)- u & v (inches)

Table 5-7 Maximum Axial load and Deflections for C Series Columns

Specimen

Number

Test Analysis Analysis

Tsao and Hsu (1994) Tsao and Hsu (1993) Present Method

Pmax u V Pmax u V Pmax u V

C1 15210 0.24 0 . 6 8 14659 0.31 0.59 14839 0.32 0.62

C2 12565 0.47 0.49 14109 0.47 0.47 14023 0.44 0.44

C3 8810 0.52 0.56 10195 0.47 0.47 10068 0.49 0.49

C4 18640 0.38 0.40 16465 0.35 0.35 16296 0.41 0.41

C5 10495 0.38 0.64 10345 0.26 0.53 10233 0.30 0.60

C6 18300 0.30 0.55 16945 0.24 0.47 16841 0.28 0.54
units: P^  (lbs), u & v (inches)
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A test program for rectangular and partial circular columns under biaxially 

eccentric thrust was carried out by Mavichak and Furlong (1976) at University of 

Texas. These specimens were slender enough to deform laterally during the 

application of load. Twenty-four columns of the same length with two different 

shapes were tested to failure. Nine specimens with rectangular cross section 

were designated as RC-1 through RC-9. Fifteen partial circular columns were 

named as C-1 through C-15. During the sequence of loading, thrust was 

maintained at one of three different load levels, 0.2Po, 0.35Po, or 0.5Pq, while 

the eccentric loads were increased to produce failure. Po was the squash load 

capacity of the section. Each type of cross section for the column was tested 

with one of three nominal skew load angles, 22-1/2°, 45°, or 67-1/2°, and at one 

of the three axial load levels. Uniaxial bending tests were made on partial 

circular columns (specimen C-1 to C4, C14, and C15), but not on rectangular 

columns. Fig. 5-9 show the dimensions and reinforcement of both cross 

sections. Measurements of longitudinal strain using a 6 -in. gage length and 

lateral displacement along the length of each loaded specimen were used for 

plotting the experimental moment-curvature curves and the determination of 

experimental deflection at the mid-height of the columns. More details of 

experimental method, test results, and test specimen can be found in Mavichak 

and Furlong (1976).

Biaxial moment-curvature relations were computed using present method 

by assuming the same constant thrust on the specimens as Mavichak and 

Furlong (1976). At the same time the eccentricity along the direction of skew 

load angle was increased. Moment-curvature curves from both experimental and 

present analysis results are shown in Appendix H. As can be seen, the present 

analysis gives good agreement between the observed and computed values 

form zero up to ultimate moment capacities of the column specimens. No
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comparison was made after the peak moments because the descending branch 

of the moment-curvature curves was not attained in the experiments. The 

maximum experimental moments about the strong axis in specimens C-5, C-6 , 

and C-7 were reported greater than the maximum moments about the weak axis 

by Mavichak and Furlong (1976) which were not consistent with the rational 

behavior of these biaxial specimens with 45° loading angles. The present 

analysis results show a more rational behavior.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

The purpose of this research is to develop a more efficient numerical method for 

flat plate and slender RC column analyses by using the cubic B-splines as 

displacement functions. The cubic B-spline function is a valuable tool for 

structural analysis in that it can be used to efficiently construct a displacement 

field for an entire structural element, such as a plate or a column. Compared with 

other discretization methods, the present method does not need mesh 

generation and element assembly, and yields more accurate results from a 

model with fewer degrees of freedom. Also, good agreement of results obtained 

from the present method and the RC column experiments has been 

demonstrated.

6.1 Conclusions for Plate Analysis

Cubic B-spline functions for interpolation of displacement in two directions are 

employed herein to analyze the arbitrary quadrilateral plate problems. From the 

theoretical considerations and the numerical examples, the present method can 

be summarized to achieve the following three advantages for this class of plate 

problems, as compared with other numerical methods.

1. By using the efficient and flexible cubic B-spline displacement 

function in a whole plate, the present method involves only one single 

superelement and does not require domain discretization and element assembly. 

More rapid convergence and better accuracy than those discretization methods 

have been demonstrated from the present method.
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2. Under the mesh of nxm  for an arbitrary quadrilateral plate, the 

present method with (w + 3)(/w + 3) parameters for the interpolation of 

displacement requires less degrees of freedom and yields more accurate results 

than other numerical methods, such as the conventional four-node element with 

3(n + lX»» + l) parameters, the nine-node spline element with 2(n + l)(/w+l) + 

(n + m+2 ) / 2 parameters, and the spline finite strip method with 2(n + l)(w + 3) 

parameters.

3. Unlike other discretization method, the present method does not 

require mesh generation so that only minimal input data is needed. Also this 

method avoids the additional moment modifications which occur in discretization 

methods due to the different moment values at the sharing nodes.

6.2 Conclusions for RC Column Analysis

An analytical model using B-spline displacement function is presented to 

simulate the load-moment-curvature-deflection behavior of slender reinforced 

concrete (RC) columns subjected to biaxial bending and axial compression. With 

control of deflection increments and secant stiffness approach, the present 

method addresses complete relationships of load-deflection and moment- 

curvature of RC columns with arbitrary cross sections and boundary conditions.

Introduction of the p-multiplier enables the present method to give 

accurate results using fewer elements than other numerical methods. Good 

agreement was obtained between the experimental strengths and the analytical 

values calculated by the present computer program. The experimental curvature 

and deflection data obtained from the tests were noted to be in better agreement 

with the present analytical results through all load stages from zero load up to 

failure. The reason may be attributed to the applications of flexible B-spline
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displacement function and the rational concrete stress-strain relationships for 

confined elements in the present analytical model.



APPENDIX A

VALUES OF CUBIC B-SPLINE FUNCTION 
AND ITS FIRST AND SECOND DERIVATIVES

Table A-1 Values of <pit ^3', and <p” at Spline Knots (hj *  constant)

Knot <p3(x,k) <p3'(x ,k) <P"(x ',k)

Xk-2 0 0 0
( V , ) 2 3^., 6

Xk-1 rjk Tjk+1 
“ *-1 “ it-1

t t *  rrt+1 
“ k-1 ^ t - l

r/Jt zrAr+1 
“  Jt-1 “ *-1

2hkhk, H kk: ;+ K -A *H kk:?+hkhk+2H kk_, 3 { i , C - A X , ) - 6 ( H k̂ + H k+])
Xk Tjk+1 rrit+1 rjk+2 

1
rri r+l r r k + 1  t j * + 2  “ *-1 **k Tjk+\ rjk+1 rjk+2

“ jt-1

(**+2)2 ~3hk+1 6
Xk+1 jjk+2 rrk+2 

“ *+1
ljk+2 llk+2
**k+1

r/Jt+2 r/Jr+2 
“ jt+1 “ it

Xk+2 0 0 0

Note: H to li

Table A-2 Values of ^3, <p3', and <p" at Spline Knots and 
Midpoints between Each Two Adjacent Knots ( hj = A=constant)

Knot X k~2 X k - lS * * - 0 5 x k * * + 0 5 * * + i *■*+1.5 * * + 2

vAx>k) 0 1/48 1/6 23/48 2/3 23/48 1/6 1/48 0

<p}'(x,k) 0 1/(8h) 1/(2h) 5/(8h) 0 -5/(8h) -1/(2h) -1/(8h) 0

< P s"(x ’. k ) 0 1/(2h2) 1/h2 -1/(2h2) -2/h2 -1/(2h2) 1/h2 1/(2h2) 0
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APPENDIX B

DERIVATION OF EQUATION (3-8)

Eqs. (3-6) and (3-7) can be expressed in a matrix form as follows:

w(x)=<p&  (B -1 )

and w(x)=<I>a (B-2)

where

<P = [<P-, W  <P0i.x) ••• <Pn+x(xj\ ®  = [0_,(x) & ( * )  ••• ^ n+1( x )

a = K ,  « 0  • "  1] «  = [«-! « 0  " •  an+X]

According to Eq. (B-1) and the relations of a_,=w'(x0), a 

a n =  w ( x n ) >  a n+1 = M''On)> and other a t = a i t  one has

a  = Ta =
T„ 0 0
0  1 0  

0 0 T
(B-3)

where T = 10

>-1 <pQ <P\' 1 0 0

<P- / Vo <Px Tn = <Pn-1 <Pn V  n+\

_ 0 0 1 _ x=x0 y - i tin <P'n+X_

I  = unit matrix with (n-3) by (n-3) dimension. 

Inversion of Eq. (B-3) gives

j - i 0 0
a = T_1 a = 0 I 0 a (B-4)

0 0

in which T’1 and Tn_I = inverse matrices of T0 and Tn 

Substituting Eq. (B-4) into (B-1) yields 

w(x) = pT '1 a (B-5)

•0 = w'(x0)<
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By comparing Eq. (B-5) with (B-2), one has 

O = <p1-' 

which is a matrix form of Eq. (3-8).

(B-6 )



APPENDIX C

STRAIN UNDER TWO ARBITRARY CARTESIAN COORDINATE SYSTEMS

Fig. C-1 shows two arbitrary cartesian coordinate systems on a cross section

which is corresponding to a division point along the column. Points 0 and 1 are

the origins of coordinate systems xOy and u1v respectively. System u1v is

gained by translating the xOy system in x direction, y, in y direction and then

rotating it 0 counterclockwise. Point P is an arbitrary point on the cross section 

with coordinate (xp,yp) at system xOy and (up,vp) at system u1v. Deflections at

this division point under system xOy are denoted by dx and dy in x and y 

directions, and deflections under system u1 v are expressed by du and dv in u 

and v directions. According to the formula of coordinate transformation, one has

I p
[y>\
\d. 1

cosi9 -sin 9 
sin 9 cos 19

■ = T<

(C-1)

(C-2)

where

T =
cosi9 -sin 9 
sin 9 cos 9

Tt  = T " 1 T t T = I  (unit matrix) (C-3)

— xH

Fig. C-1 Two Arbitrary Cartesian Coordinate Systems on a Cross Section
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The strain at point P is not varying with the different coordinate systems 

under plane section assumption. In other words, the strain at point P under 

system xOy

^Oy=S0 + <t>*yp + </>yXP = *o+ [ 0 ,  & ] { ^ }  (C"4 )

must equal the strain at the same point P under system u1v, which is

<!v = *l +</>uVp + ^ p  = ^+[<f>V , ] f )  (C' 5)

where

*. = * 0  + ^  + <PyXX = * 0  + [ ^  # j { j  |  (C-®)

In the above equations, e0 and ei = strains at points 0 and 1; </>x,0y and = 

curvatures at this division point under xOy and u1v coordinate systems. These 

curvatures can be always numerically related to the deflections along the column 

by deflection interpolation if the deformation is small, that is

(5:l-?43 lc-"
where p, = the parameters depending on the types of interpolation functions. 

Substituting Eq. (C-1) into Eq. (C-4) and noting Eq. (C-6 ) gives

= «,- ]T{ v ' l  (C-9)

By using Eq. (C-7), (C-2), (C-3) and (C-8 ) one by one, Eq. (C-9) will be

4, = *,+(2>R <1)ttt|”'J = £.+[<*. A]{“'} <c-1°)
Comparing Eq. (C-10) with Eq. (C-5), one concludes

C = < 4 .



APPENDIX D

MEMBER STIFFNESS MATRIX

Before imposing the boundary conditions, the stiffness matrix of a column can be 

expressed as:

G =

§0,-1 §0,0 §0,1

§1,-1 §1,0 §1,1 §1,2

§ 2 ,1  § 2 ,2  § 2 ,3

§ n - 2 ,n - 3  § n - 2 ,n - 2  § n - 2 , n - l

§ n - l , n - 2  § n - l , n - l  § n - l , n  § n - l ,n + l

§ n , n - l  § n ,n  § n ,n + l

(D-1)

Xn+D»3(n+3)

For a symmetrical and pinned-ended column, only half of the column with 

n segments should be considered. The stiffness matrix is

G =

§0,0 §0,1 

§1,0 §1,1 §1.2 

§2,1 §2,2 82,3

§ n - 2 ,n - 3  § n - 2 ,n - 2  § n - 2 , n - l

§ n - l , n - 2  § n - l , n - l  § n - l , n  

§ n , n - l  § n ,n

(D-2)

Xn+0*3(n+l)

All coefficients in the above stiffness matrix can be stored in a compact 

matrix of size 3(n+1) by 9 under the algorithm of equation solver described in 

5.3.4. This compact matrix is
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G  =

§0,0 So.i

8  i.o 8l.l Si,2
• J •
• * •

Sn-l,n-2 Sn-l.n-1 Srr-l,n

Sn.rt

(D-3)

3(n+l)*9

Coefficients gik in G of Eq. (D-1), (D-2) and (D-3) are referred to Eq. (5-

17).



APPENDIX E

FLOW CHART

n oZ -— ■— - y /  Herotive Step>Mox7Check Convergence

Check Termination

Stop

Input Doto

Give Deflection Increment

Compute and Print Results Modify Deflection Increment

Impose Boundary Conditions

Solve Member Stiffness Eq.

Update Stiffness Matrix 
and Load Vector

Fig. E-1 Flow Chart of Present Computational Process
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APPENDIX F

FORTRAN STATEMENTS OF PRESENT SOLVER

The following subroutine is based on Gauss elimination and it is specially 

developed for solving the present member stiffness equation, where A = the 

compact stiffness matrix (see Eq. (D-3)) in the simultaneous equations A  x = c; 

MB = an integer matrix to store the position of diagonal coefficients in original 

stiffness matrix; NON = number of spline nodes along the column; N03 = 3 times 

NON.

SUBROUTINE S0LVER(A,C,X,MB,N0N,N03)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION A(N03,1 ),C( 1 ),X( 1 ),MB( 1)

C Forward reduction phase.
DO 20 K=2,3 
DO 10 I=K,3
R=A(I,MB(K-1 ))/A(K-1 ,MB(K-1))
C(I)=C(I)-R*C(K-1)
DO 10 J=K,6 

10 A(I, J)=A(I, J)-R* A(K-1, J)
DO 151=4,6
R=A(I,MB(K-1 ))/A(K-1 ,MB(K-1))
C(I)=C(I)-R*C(K-1)
DO 15 J=K,9 

15 A(I,J)=A(I,J)-R*A(K-1, J)
20 CONTINUE

DO 50 L=2,NON-2 
L3=L*3
DO 50 K=L3-2,L3
KL2=K-L3+2
KL3=KL2+1
KL5=KL3+2
KL6=KL5+1
DO 41 I=K,L3
R=A(I,KL5)/A(K-1 ,MB(K-1))
C(I)=C(I)-R*C(K-1)
IF(K.EQ.L3-2.AND.K.NE.4) THEN
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DO 42 J=4,6 
42 A(I,J)=A(I,J)-R*A(K-l,J+3)

GO TO 41 
END IF
DO 40 J=KL6,9

40 A(I, J)=A(I, J)-R* A(K-1, J)
41 CONTINUE 

IF(K.EQ.L3-2) GO TO 50 
DO 31 I=L3+l,L3+3 
R=A(I,KL2)/A(K-1 ,MB(K-1)) 
C(I)=C(I)-R*C(K-1)
DO 30 J=KL3,6

30 A(I, J)=A(I, J)-R* A(K-1, J+3 )
31 CONTINUE 
50 CONTINUE

DO 80 K=N03-5,N03
KN8=K-N03+8
KN9=KN8+1
DO 71 I=K,N03
R=A(I,KN 8)/A(K-1 ,MB(K-1))
C(I)=C(I)-R*C(K-1)
IF(K.EQ.N03-5) THEN 
DO 72 J=4,6 

72 A(I, J)=A(I, J)-R* A(K-1, J+3)
GO TO 71 
END IF
DO 70 J=KN9,9

70 A(I,J)=A(I,J)-R*A(K-1, J)
71 CONTINUE 
80 CONTINUE

C Back substitution phase (results stored in X). 
X(N03)=C(N03)/A(N03,MB(N03))
DO 130 K=N03-l,N03-2,-l
KK=MB(K)-K
X(K)=C(K)
DO 120 J=K+1,N03 

120 X(K)=X(K)-A(K,J+KK)*X(J)
130 X(K)=X(K)/A(K,MB(K))

DO 160 L=NON-l, 1,-1 
L3=L*3
DO 150 K=L3,L3-2,-l
KK=MB(K)-K
X(K)=C(K)
DO 140 J=K+l,L3+3 

140 X(K)=X(K)-A(K,J+KK)*X(J)
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150 X(K)=X(K)/A(K,MB(K))
160 CONTINUE 

RETURN 
END



APPENDIX G

LOAD-DEFLECTION AND MOMENT-CURVATURE CURVES FOR 
NJIT COLUMN SPECIMENS
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Fig. G-1a Load-Deflection Curves in X-Direction for Specimen B2
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Fig. G-1b Load-Deflection Curves in Y-Direction for Specimen B2
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H-7 Moment-Curvature Curves about Strong and Weak Axes 
for Specimen RC-7
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