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ABSTRACT

ELECTRICAL CHARACTERISTICS OF NOVEL HETEROJUNCTION 
DIODES OF THIN RELAXATION SEMICONDUCTORS / P-Si

by
Hyung Joo Lee

The relaxation semiconductor is defined as one in which the dielectric 

relaxation time (^resistiv ity  times permittivity) is greater than lifetime ( T o ) .  Non­

hydrogenated amorphous Silicon Carbide (SIC) aiiu KrF excimer laser induced 

disordered Si were used for the relaxation semiconductors. Both semiconductors 

have high resistivity, wide energy gap, and numerous defects. A novel 

heterojuncuor* diode, consisting of those semiconductors on p-type crystalline 

Silicon (c-Si), was fabricated. In the diode structure, an injecting contact was made 

on the relaxation material and a Schottky barrier contact was made on the c-Si.

Electrical characteristics of both diodes were found to have interesting 

effects: negative capacitance, negative resistance, space charge limited current, and 

bistable switching with long term memory. During the C-V measurement of a 

disordered Si/c-Si heterojunction diode, for the first time, a constant negative 

capacitance of 1520pF was observed from - lOv to lOv at 1MHz. This negative 

capacitance was considered as an inductive behavior. The measured inductance 

value was approximately 16.7/tH at 1MHz. The inductance was proportional to 

l/co2 in the variation of frequency and 14.74mH at 30KHz as measured by a LCR

analyzer. In an a-SiC/c-Si heterojunction diode, a negative capacitance was also 

observed in both biases. The inductance value was 36/iH above 3.5v and below - 

3.5v at 1MHz. The shape of negative capacitance between - 3.5v and 3.5v was
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parabolic and the inductance, near zero bias, was 30/xH. The inductance was 

almost constant between 1MHz and 30KHz.

An inductive part of the heterojunction diode was derived theoretically using 

the relaxation theory and Shockley theory. The inductance was either constant if 

(otd< I, or proportional to l/<o2 if and > 1. Moreover, a circuit model of the

heterojunction diode was also developed. The negative capacitance, C»«; showed 

\Ciesi\ ~ \ j ( 0 2 Ltest at the circuit model. Computer simulation also showed negative

capacitance similar to that of the experiment.

It was proposed that conductivity modulation, by carrier injection in a thin 

relaxation semiconductor, causes an inductive behavior, and the relaxation would 

be more pronounced by the carrier screening of impurities. The novel 

heterojunction diode may replace a physical inductor in microelectronics.
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CHAPTER 1

INTRODUCTION

The objective of this dissertation is to investigate the electrical characteristics of 

novel heterojunction diode structures consisting of excimer laser induced 

disordered Si on c-Si, as well as non-hydrogenated amorphous SiC on c-Si. The 

electrical characteristics of I-V and C-V demonstrated interesting negative 

capacitance and negative resistance effects, as well as space charge limited current 

and bistable switching with long term memory. Disordered Si and amorphous SiC 

are called relaxation semiconductors. They were proposed by van Roosbroeck in 

1970 [1], although the relaxation theory was not popular at that time. The 

relaxation state is obtained when the dielectric relaxation time Td =  p e ,  (the 

resistivity, p and the dielectric constant, £ are material constants), exceeds the 

carrier lifetime To. The opposite inequality holds for the conventional or lifetime 

semiconductor. Typical examples of a relaxation semiconductor are high- 

resistivity wide-energy-gap materials and amorphous alloys. The usual condition 

of local electrical neutrality is no longer obeyed in the relaxation semiconductors, 

and it is replaced by the condition of near-zero net recombination in space charge 

regions.

In both diodes structures, injecting contacts (Ohmic contacts) are made on the 

relaxation materials (disordered Si, and a-SiC), and Schottky barrier contacts are 

made on the p type c-Si substrate. This structure, with regard to contacts, is 

opposite to that of a conventional thin-film epitaxial diode [2], In a thin-film 

epitaxial diode, usually a Schottky barrier contact is on the epitaxial layer and an 

Ohmic contact is made on the substrate.

1
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The development of excimer lasers, which generate powerful ultraviolet light, 

has enhanced their potential use in technological application, e.g., as a lithography 

in ultra large-scale integration, and recrystallization technology etc. Laser- 

recrystallized silicon thin films are of technological interest for fabricating high 

performance thin film transistors, silicon-on-insulator devices, and 3-D integration 

[3], A KrF (248nm) excimer laser was used to make an epitaxial disordered Si 

irradiating on a p-type c-Si surface. It was also used for Ohmic contact with 

formation of the p+ layer between the A1 contact and p-type Si irradiating on the 

A1 contact.

A model, of effective barrier reduction, due to the p+ layer, was developed 

under thermionic field emission mechanism using WKB approximation [4], and 

tunneling theory [5], Computer simulation, with the model, showed that at least 

4nm of p+ layer would be needed for a complete Ohmic (field emission) contact in 

Si with doping of IO^/cm^. When a strong laser output (excitation voltages of 

24kv) was irradiated on the A1 contact, a high resistivity disordered Si was made 

just below the thin p+ layer.

During the I-V measurements, Ohmic behavior, negative resistance, space 

charge limited current, and bistable switching with memory were observed. The 

phenomenon of negative resistance is explained by both the modification of band 

structure, due to the strain effect from laser induced damage, and the decrease of 

carrier density due to the capture of the carrier by the defect which is generated 

with laser irradiation. The switching phenomenon is explained by carrier trap and 

release by the defect.

During the C-V measurements, for the first time, a very interesting negative 

capacitance was discovered from -10V to 10V in both heterojunction diodes. This 

negative capacitance phenomenon was proved to be an inductive behavior through 

the use of a LCR-Analyzer. This means that the novel heterojunction diode acts as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



an inductance diode. An inductive part of the diode was derived theoretically using 

the relaxation theory and the Shockley theory. Moreover, A circuit model of the 

diode was derived and had good agreement with both experiments when appraised 

by a LCR analyzer, C-V measurement and computer simulation.

It is proposed that conductivity modulation, by carrier injection in a thin 

relaxation semiconductor, would result in the inductive behavior of a diode. When 

the inductive behavior is dominant for the junction capacitance of a diode, 

negative capacitance, which is an inductive behavior, is demonstrated by the C-V 

measurement. In ordinary diodes, it is difficult to produce the inductive reactance. 

Even though it is developed, the junction capacitance of the diodes normally 

masks the inductive effect.

In the past, there has been considerable interest in possible ways to simulate 

inductors with semiconductor devices. Inductive behavior for forward bias was 

simulated theoretically in a narrow base PIR diode (P stands for an emitter which 

is well doped with acceptors, I stands for a high resistivity intrinsic base, R stands 

for a high recombination contact) by Ladany [6] in 1960. A decreasing negative 

capacitance was observed in a NiSi^-Si diode above 0.48V at 200K by Wu [7] in 

1990.

Inductance coils, that defy miniaturization efforts, are an order of size larger 

than those of other passive and active components. One way to circumvent this 

problem is to design all inductances out of conventional circuits before 

constructing the integrated analogs. As an example, the transistor oscillators with 

resonant L-C circuits has been replaced by an R-C phase-shift oscillator. This 

procedure is not satisfactory in all cases. Through the use of this novel 

heterojunction diode, the possibility of using the negative capacitance effect, to 

simulate inductance, is presented on the bases of theoretical and experimental 

results.
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CHAPTER 2

DEVICE STRUCTURE AND FABRICATION METHODS

2.1 Experimental Preparation
18 3 15 3P-type (100) Si wafers (doping o f 10 /cm , and 2* 10 /cm ) were used for the

substrates of devices. The wafers were cleansed chemically to remove grease, and

oxide in P-clean and HF-clean stations of the NJIT MICROELECTRONICS

CENTER'. In the P-clean station, wafers were immersed into H^O^ : H^SO^

(100:1) at 110° C for 10 minutes, and they were then washed with hot (80° C) DI

water. In the HF-clean station, H^O : HF (100:1) was used for 1 minute to remove

oxide. Wafers were also washed with DI water (23.7°C)for 2 minutes. After

cleaning the wafers, the wafers were dried by a spindryer for 3 minutes.

A pulsed KrF (248nm) excimer laser (Lambda-Physik, EMG 10IE) was used 

for irradiation on both the c-Si surface and A1 dot contacts (diameters of 1 to 3 

mm) on c-Si with excitation voltages of 20 - 24 kv, and 1-10 pulses per second. 

The laser spot size was approximately 1-3 mm x 10 mm. Laser focus was adjusted 

to avoid A1 contact evaporation.

A rough and abraded surface can be achieved with the irradiation on c-Si. It 

results in an Ohmic contact due to tunneling though the Schottky barrier by high 

surface recombination, and the laser induced numerous defects. Also, a high 

resistivity, disordered Si layer just below the rough surface can be made due to the 

damage. During the irradiation on the A1 contact, the localized heat treatment leads 

to the formation of a thin p+ layer between the A1 and p-Si. P-Si is dissolved in the 

Al, up to its solubility limit, and A1 is diffused into Si, and the thin p+ layer results 

in an Ohmic contact. Figure 2.1 shows a KrF excimer system.

4
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Figure 2.3 A LPCVD system (Linderberg)
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A 'VARIAN 3125' magnetron sputtering system was used for pure A1
-7

(99.9999 %) deposition. The first base pressure was 7.0* 10 , and the second 

base pressure was 1.0* 10 The pressure of deposition was 2.0 mTorr, and the 

deposition rate was lnm/sec. The substrate temperature was 100°C, and although 

the substrate temperature is usually set to 300° C, it was set to 100°C to avoid an 

A1 spike and to increase the A1 nucleus density. Figure 2.2 shows the 'VARIAN 

3125' sputtering system.

An LPCVD (Low Pressure Chemical Vapor Deposition) system (Linderberg) 

was used for non-hydrogenated amorphous SiC deposition. DTBS (Di-Tertiary 

Butyl Silane) was decomposed for amorphous SiC deposition. The deposition 

temperature was about 825°C, and pressure was 100 mTorr. Wafers were put far 

away from the gas inlet to make a thin a-SiC deposition. Figure 2.3 shows the 

'Linderberg' LPCVD system.

The measurements of electrical characteristics (I-V, C-V) were obtained 

through the use o f a 'KEITHLEY 236', and a 'HP-4145B Semiconductor Parameter 

Analyzer'. Interesting negative capacitance was measured by a 'HP-4145 B 

semiconductor Analyzer', a 'HP-4284A LCR Analyzer' and a 'PAR 410 C-V Plot 

system'.

A 'KRATOS X-SAM 800' AES (Auger Electron Spectroscopy), a SEM 

(Scanning Electron Microscopy), a AFM (Atomic Force Microscopy), and an 

Ellipsometry were used to acquire the structural characteristics.

2.2 Fabrication Procedure

1. The device was made by deposition of pure A1 (99.9999%) on p-type (100) Si 

(doping of 1018/cm 3) with a VARIAN-magnetron sputtering system. The 

diameters of the A1 dot contacts were approximately 1 mm. One side of the A1
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contacts was irradiated by a pulsed KrF Excimer laser (excitation voltages of 20- 

22kv, period of 1 sec) to achieve a p+ layer.

Al

laser
1 1

p-Si

Ohmic
p+layer

Figure 2.4 One side laser-Ohmic contact

2. The Excimer laser with a higher power output (excitation voltages of 24 kv, 

period of 1 sec, 200mJ/pulse) was used. A high resistivity-disordered layer (20 

nm) was made underneath the Ohmic layer contact. The thickness of the p+ (8 nm) 

and high resistivity layer were obtained by C-V doping profile.

Ohmic
!<— p+layer
I <-----------  high resistivity layer

Figure 2.5 One side laser-Ohmic contact with a high resistivity layer

3. A device structure without the p+ layer was made by high power laser 

irradiation (excitation voltages of 24kv, period of 0.1 sec) on one side of the Si 

wafer (1015 / cm3, (100)). Using this technique, Al-spike effect, Al-evaporation, 

and the effect of non-uniform Al thickness in structure 2 can be avoided.
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laser
'i \l '1 Ohmic

Al

Al

<— disordered Si

Figure 2.6 A disordered Si/c-Si heterojunction diode

4. Thin non-hydrogenated intrinsic amorphous SiC, which has lot of defects, was 

deposited on one side of the Si (1015 / cm3, (100)) by LPCVD. The Al contacts 

were sputtered on after LPCVD. The thickness of the a-SiC was much less than 

100 nm according to a measurement made at the AT&T Bell Lab. and my best 

estimate of the thickness is 20 nm through the use of Ellipsometry.

Ohmic
Al

p-Si

Al

<— a-SiC (non-hydrogenated)

Figure 2.7 An amorphous SiC/Si heterojunction diode
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CHAPTER 3

THEORETICAL WORK

3.1 Background

3.1.1 Relaxation Theory

Dielectric relaxation time (resistivity times dielectric constant), greater than 

diffusion-length life time, defines the relaxation semiconductor. Typical examples 

include high-resistivity, wide-energy-gap materials, as well as, amorphous 

materials. Van Roosbroeck [1] was the first to point out the difference in behavior, 

under minority carrier injection, between conventional lifetime semiconductors 

and relaxation semiconductors, although his suggestions were not immediately 

popular. In the relaxation case, the usual condition of local electrical neutrality is 

no longer obeyed, and it is replaced by the condition of near-zero net local 

recombination, in space-charge regions, whose decay depends on dielectric 

relaxation. A principal result of the analysis by van Roosbroeck, of carrier 

transport in relaxation-case semiconductors, is the prediction of recombinative 

injection. This effect is manifested by reduction of the density of majority carriers 

through the injection of minority carriers. The characteristic approximation of 

nearly zero recombination can actually be realized, in a stable steady-state space 

charge region, through the carrier injection. Minority carrier injection can 

accordingly give substantial depletion of majority carriers. The space charge may 

be largely that of fixed charges: ionized donors or acceptors that have become 

uncompensated and any traps that have become occupied. This depletion effect is 

directly connected with recombination = 0. Through the use of Boltzmann

statistics, the product NP, of the electron and hole concentrations, then equals its
2

thermal equilibrium value, the square of the intrinsic concentration, = n. .

9
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In terms of excess concentration AN and AP, it follows that 

NqAP+PqAN+ANAP is zero. Then, an injected steady state electron 

concentration AN gives AP = - PqAN/(Nq+AN). In a p-type semiconductor with 

Pq» N q, for example, AP = - P or substantially complete depletion of majority 

carriers, thus results for AN after recombination that need merely be large 

compared with the equilibrium concentration n^. This major effect, essentially 

non-linear and large signal, can occur whether or not there is trapping. Consider 

the diagram on the left of Figure 3.1. Here, we have rectangular hyperbola, PN = 

constant. The starting point is N^, the equilibrium concentration of electrons, P 

the equilibrium concentration of holes. We shall suppose an increase in hole 

concentration by AP^ has been brought about. We would now have a positive 

space charge. In a traditional material, like Si, in which the dielectric relaxation 

time is very small, that extra positive charge will almost immediately attract an 

extra negative charge consisting mainly of free electrons, of equal magnitude, into 

the neighborhood. Then, the extra electrons and holes (an equal number) will 

recombine in a time corresponding to the lifetime. This is the behavior that we 

traditionally associate with a lifetime semiconductor. Now let us consider 

something non-traditional, a dielectric relaxation time greater than lifetime. Again, 

let us contemplate an increase in the hole concentration by AP^. Once more, there 

is a positive space charge, but the recombination time is now very small. Very 

quickly, recombination will take us to the rectangular hyperbola, because that 

curve defines the locus where no further recombination can take place. The reason 

for this is that the recombination rate depends directly on the product PN. 

However, at this stage, the system is not yet neutral. It regains neutrality by 

creeping back to the starting point along the rectangular hyperbola, and that will 

happen roughly within a dielectric relaxation time.
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A « 1

A » 1

AP

(AN)

P. P
(a)

Figure 3.1 Minority carrier augmentation in a homogeneous space element. 
A = Tojxo. (a) Relationship between electron and hole 
concentration, (b) Time dependences. A «  1, lifetime 
semiconductors, (c) A »  1, relaxation semiconductor.
N = normalized n; P = normalized p. [8]
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Thus, the behavior is essentially different in the two cases; the majority carrier 

concentration is diminished here. The relaxation case is expected whenever a 

sufficiently short life time occurs in conjunction with sufficiently high resistivity.

For a dielectric constant of 12, the dielectric relaxation time, in seconds, is about
-12 -8 

10 times the resistivity in Qcm. Thus, with lifetime equal to 10 sec, a
4resistivity somewhat higher than 10 £2 cm. would be required. At room

temperature, such conditions may be met with Si, and are usually readily met with

GaAs, GaP, and other semiconductors whose energy gaps are appreciably wider

than about leV. Although difficult to determine with any precision in GaAs and
*8

GaP, lifetime is generally less than 10 sec in these materials. Since most studies 

have not utilized GaAs or GaP in the high resistivity range [9], the lifetime case, 

rather than the relaxation case, is the one that has usually been observed with 

crystals of these or any semiconductors. The amorphous materials [10-11], 

however, are quite generally relaxation semiconductors; through short range order, 

an energy band model applies, although with certain significant modifications. 

Typical of many are high, near-intrinsic resistivities that are generally not very 

impurity sensitive, and have very short carrier lifetimes with pronounced trapping 

that strongly limits drift mobilities. In materials that can also have a crystalline 

form, resistivities are usually orders of magnitude higher than for the crystals, and 

conductivity band gaps are wider. Disordered semiconductors are qualitatively 

somewhat similar to the amorphous ones, and means for producing relaxation 

semiconductors include subjecting crystals to beam of neutron, electrons, or other 

radiation.

3.1.2 Injecting Contact and Space Charge Limited Current

We use the terminology, Ohmic contact, reservoir contact, and injecting contact 

interchangeably. They all denote contacts capable of current injection with only a
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relatively small fraction of the applied voltage absorbed across the contact. The

energy-band basis, for the injection of electrons into an insulator or a wide-

bandgap material, is easily understood by simply inspecting the relevant energy-

band diagram. Figure 3.2(a) shows a metal vacuum contact and Figure 3.2(b) an

electron injecting, metal-insulator contact, both contacts being in thermal

equilibrium. F . is the Fermi level, E the lowest vacuum level, and E the n 0 vac c
lowest conduction band level. The two diagrams are clearly very similar. Electrons 

will boil off from the metal into the conduction band of the insulator just as they 

do from the heated cathode into vacuum. The electrons, in the metal available for 

emission, are those thermally excited to an energy sufficiently large to overcome 

the energetic barrier at the emission surface. The interface dipole energy barrier 

V, at the metal insulator contact, can be substantially smaller than the 

corresponding work function barrier <E> for the metal vacuum contact. As a result, 

even at room temperature or lower, there maybe a sufficient number of electrons 

available at the contact to support space charge limited electron flow into the 

insulator. In Figure 3.3, tunneling type metal-insulator injecting contact is shown. 

E  ̂ is a trap energy level. This contact, in thermal equilibrium, is a thin blocking 

contact. A large density, of neutral state, near the interface can be ionized, and this 

creates a thin depletion layer and a high field for the carrier's tunneling through the 

empty traps due to the field [12]. Space charge limited current injection into a 

insulator, via a tunnel-emission contact, has been studied theoretically by 

Adirovich [13].

The idea of space charge limited current was first discussed in 1940 by Mott 

and Gurney [15]. They made simple and approximate calculations to show that it 

should be possible to achieve reasonably large current by injection of mobile 

electrons into the conduction band of an insulator.
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VACUUM

METAL

(a)

INSULATOR

(b)

Figure 3.2 Schematic energy band diagrams for: (a) the contacts of a metal to 
the vacuum; (b) the contact of a metal to an insulator [14]

(a) (b)

Figure 3.3 Schematic energy band diagrams for electron tunneling (field emission) 
metal-insulator contacts: (a) in thermal equilibrium; (b) under applied 
voltage, biased for injection [14]
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When the injected carrier density rises to a value comparable to the impurity

density, the space charge limited effect, due to repulsion of carriers, causes the

current to vary less rapidly with the applied voltage. The space charge limited

current for the trap-free case is proportional to the square of the applied voltage.

At low voltage, current is carried by the thermally excited carrier hopping from

one isolated state to the next. This mechanism yields an Ohmic characteristic

exponentially dependent on temperature. A significant departure from Ohm's law

will be observed only when the injected carrier concentration becomes comparable

to the thermal concentration or, when the quasi-Fermi level, F, moves up into the

forbidden gap from thermal equilibrium Fermi level, F , by approximately an

amount kT. Let n ^  denote the total average change in occupancy of all electron

traps due to this upward motion of the Fermi level. Then, the voltage required

to support the total trapped space charge Q = en L per unit area (e is electront,x
charge and L is the length), which is the onset voltage for space charge limited

2
current flow, is V = en L /£ where £ is dielectric constant. The contributions x t,x
to n are approximated: from, (1) traps lying above F (shallow traps), theL,X \J

thermal concentrations electrons in such traps, (2) traps lying within kT of F^, the 

total concentrations of such traps, and (3) traps lying below F^ (deep traps), the 

thermal concentrations of vacancies in such traps. Any one of the three 

contributions can dominate n
t,x

The potential value of space charge limited current, for exploitation in 

devices, has seldom been recognized. The existence of high carrier velocities, 

relative temperature insensitivity of current, low noise, and unnecessary defect free 

materials, inherently available under SCL conditions, suggests that SCL solid-state 

devices should be superior in several ways to conventional semiconductor junction 

devices. A direct quantitative comparison between diffusion-limited devices and 

space charge-limited devices has been discussed briefly by Wright [16] for the
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semiconductor and dielectric diodes. Diffusion-limited solid state devices are 

particularly suitable for power applications, whereas SCL solid state devices are 

particularly for electronics applications.

3.1.3 Negative Capacitance, Equivalent Inductive Behavior

A negative capacitance effect, which can be an equivalent inductive behavior, 

above a certain forward bias, was simulated with a Schottky diode by M.. A. 

Green and J.Shewchun in 1973 [17]. It was also observed, in a NiSi^-Si diode 

above 0.48 V. at 200 K, by X. Wu [7] in 1990. Figure 3.4 shows the negative 

capacitance under forward bias. Also, above a certain forward bias, inductive 

behaviors were simulated with a planar PIR (P stands for emitter so well doped 

with acceptors, I stands for intrinsic narrow base, and R stands for infinite 

recombination contact) diode by I. Ladany in 1960 [6] and for three layer diodes in 

1961 [18], and 1963 [19]. A simple lumped component diode model by A. A. 

Bama [20] was shown to be an inductive impedance at high forward current.

Where does the negative capacitance come from? A negative capacitance 

indicates that the current variation in a device lags behind the voltage agitation. 

One possibility for this is that the alignment of the electron spin, or orbital 

magnetic momentum at the interface of metal/semiconductor makes the device act 

like an inductor under ac influence. However, this hypothesis was ruled out by an 

electron spin resonance measurement, where no appreciable enhancement of the 

negative capacitance signal was observed [7], Another possibility, which was 

presented by the above authors, is the so-called bulk conductivity modulation. 

Specifically, it means that the bulk conductivity of the semiconductor is modulated 

by the minority carrier injection [17] which results in a phase-delayed reduction of 

resistance. However, X. Wu proposed a charge delocalization mechanism under 

the impact of hot electrons. This theory is established by the following arguments.
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Figure 3.4 Susceptance and conductance as a function of bias measured 
at 200 K and 108 Hz from a NiSi^-n-Si Schottky diode [7]
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Electrons that surmount the Schottky barrier, under forward bias, do fill up the 

empty states at the interface, but because they possess excess energy, when they 

collide with the electrons trapped at the interface states, they could also knock 

electrons out of traps, provided that the binding energy of these traps is smaller 

than the Schottky barrier energy. This mechanism is similar to the impact 

ionization process [21] and electron multiplication in a superlattice [22], But, at 

high temperatures, the disturbance of the hot electrons, to the local distribution, is 

relatively small. The empty states, created by electron impact, are quickly refilled 

by the electrons from the metal. In such a case, the occupancy below the Fermi 

level of metal is virtually unaffected by the ionization process; hence, no negative 

capacitance is observed. However, to date, the cause of negative capacitance is not 

clear even though conductivity modulation, by the minority carrier injection and 

charge delocalization at interface traps, has been proposed.

Previously, there had been considerable interest in possible ways to simulate 

inductors with semiconductor devices. A mechanism, which causes an inductive 

effect in the forward biased junction diode, may be conductivity modulation as 

mentioned above. If a diode contains one lightly doped region, this region, usually 

called the base, can experience considerable conductivity modulation due to the 

injection of minority carriers at the junction. The effect of conductivity modulation 

is too small in ordinary diodes to produce useful inductive reactance. The junction 

capacitance normally masks the inductive effect except at high bias levels.

3-2 Thermionic Fi^ld Emission Model with Laser Induced 
Thin P Layer After Al Deposition

3.2.1 Introduction

In Schottky barriers, on highly doped semiconductors, the depletion region 

becomes so narrow that electrons can tunnel through the barrier near the top (see
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Figure 3.5). This process is called thermionic field emission. In degenerate 

semiconductors, especially in semiconductors with small electron effective mass, 

such as GaAs, electrons can tunnel through the barrier near the Fermi level. The 

width of the depletion region becomes so narrow that direct tunneling from the 

semiconductor to metal takes place, and this phenomenon is called field emission. 

The current-voltage characteristics of a Schottky diode, in the case of thermionic 

field emission or field emission, was calculated by evaluating the product of the 

tunneling transmission coefficient and the number of electrons as a function of 

energy [23,24],

A new method, to obtain the effective barrier height of the metal- 

semiconductor with a thin highly doped surface layer (p+), is proposed. A thin, 

highly doped layer was induced by a KrF excimer laser with several pulses. 

During high temperature (350°C - 577°C) [25], the Silicon is dissolved in the 

Aluminum film. The Al takes up to Si to its solubility limit [26], On fast cooling, 

this dissolved Si recrystallizes epitaxially in the Al-Si interface, but the 

recrystallized Si is heavily doped with Al and is therefore strongly p-type. This 

process is solid state epitaxy. Above the eutectic temperature (577°C), a thin 

highly doped layer is also formed by liquid phase epitaxy.

3.2.2 Model

A new model is proposed to obtain an effective reduced barrier height of a metal- 

semiconductor Schottky barrier diode, with a thin highly doped surface layer. 

Poisson's equation, Harrison's tunneling theory [5], and WKB approximation were 

used to calculate a tunneling transmission probability and tunneling current under 

thermionic field emission. An effective, reduced Schottky barrier is derived from 

the calculation of a minimum tunneling current and a position of maximum 

tunneling distance. The formation of a thin high doping layer by Excimer Laser,
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Figure 3.5 Thermionic field and field emission under forward bias, d is 
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rather than conventional annealing [25] or ion implementation [28-31], results in 

the reduced barrier during transition from the Schottky barrier to the Ohmic 

contact. This model has some assumptions, and simplifications. The 

recrystallization is assumed to be uniform although it is almost non-uniform in a 

actual device. Image force lowering, interface states, and minority carrier injection 

is neglected.

The potential and electric field distribution at thermal equilibrium can be 

solved using the following Poisson’s equations.

The energy band diagram of a diode under the forward bias is given in Figure 3.6. 

Using the continuity of electric field at x = x„ and boundary conditions dV2(x)/d 

x|x ^  = 0, U/x]|x_xl = Vbi, V2(x ) \x=x2 = 0 at thermal equilibrium, the potential under 

forward bias is

0 < x< x (3.1)

d 2V2(x) _ q X] < X <Xj (3.2)

0 < x < x, (3.3)

V2(x) = ^ T Nao{X2 - XY 0 < x < x2 (3.4)

where
1/2
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Al [ P+ P - Substrate

♦x

ffm

(C)

Figure 3.6 (a) Schematic diagram, (b) doping profile (c) energy band diagram 
under forward bias in metal / p / p -Si
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Using the result of Harrison, and assuming the tunneling position xT is less than x,, 

the one dimensional tunnel current is

^  E  - / . )  dE„ (3.5)

where subscript s and m refer to the semiconductor and metal [A/J2 is the matrix 

element for the transition from the semiconductor to the metal. ps, and pm are the 

density of states factors, and f s and f m are the Fermi function, K, is the crystal 

momentum component transverse to the barrier. Ex is the contribution to the 

energy due to the component of momentum perpendicular to the barrier. Using 

WKB approximation for the transmission coefficient, U

M. 1 1
"»l j=Xr pxTp m (2 t t)

~U

1
P * TP m ( 2 k )

-exp - 2 i  n *
•'V

(3.6)

U = exp
-/Am I q Na\x \ + N„ftx

K i  + Nt , + Nm (3.7)

From = 0, we get the minimum of the transmission coefficient,!/ at

+ NaQx2
KT• m s vmax \ fo\ ^  iVa0

(3.8)

From equation (3.5), the method of Gray [32] is followed, which utilizes the 

transformation
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<39)

where kr E, and mt are the components of momentum, energy and effective mass 

for valance holes with momentum transverse to the barrier. Applying the 

transformation equation (3.9) to Harrison's equation (3.5), the expression for the 

one-dimensional tunnel current becomes

2
T S \M j  pJTpm( / Jtr - / „ )  dE,dEx (3.10)
0 0 S = X f

For forward bias,X,~0 and

f s = e x p j- f^  + Et - E fi) /  KT) (3.11)

EfS, is the energy of the semiconductor Fermi level. The equation (3.10) becomes

Jx = A' T2e ^ r~xlxre-q,!'B'KTe-qV/nKT (3.12)

where
. mq | ,̂-v m ,-------------■

J  • exl|_"^“  ■ -JNoi + No0 J
m q  F 2-Jm nr; rr— \

If Nal is much greater than Na0, then xr ~ equation (3.12) becomes

i .2
Jx = A 'T 2e ^ Te-^BlKTe-qVlnKT (3.13)
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Reduction of effective hairier height is

A<pB=(vT-H'l,+ v )- (y (x ,)+ v T)

_ q
2 Xj x̂ ̂  ̂ al ^ a0 ̂  ^aOX2XT^ ^ (3.14)

using *rmax = N alX l +  N aOX 2

X ai + Ng o and

2s,
X 2 = - I qNa 0

V  — —  A/ x 2 
/* ' 2e a0 1V •? /

under quasi-equilibrium,

the barrier reduction is

A0S = —id
If AA.X, +W, 2e,

JJ
Ng\X\ + NMX2

N„i +N,a 0

(3.15)

And, ideality factor, n becomes

n =
'  dAcpB VI

1 +  -

*1 1 + —
, X2y

= 1, when x2 »  Xj

(3.16)

Figure 3.7 ,and 3.8 show the barrier reductuction, A0a of equation (3.15) , and 

effective barrier height (0.6 eV - A0s eV) vs. thickness of p+ layer by computer 

simulation when Mai  = 1019 / cm3, Ako = 10IS / cm3, = 0.5 eV, and E f  -  E v  = 0.1
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eV under quasi-equilibrium. The effective barrier height is zero at 4nm of p+ layer 

using simulation. Therefore, above 4nm of p+ layer, a complete ohmic contact 

would be formed. The current mechanism is changed to field emission from 

thermionic field emission.

0.5

c0 .4

o0.3

M O 2*10 3-10
Thickness of p+ layer (cm)

4-10

Figure 3.7 Computer simulation of barrier reduction, A$3 vs. thickness of thin p+ 
layer when Nai = 1019 /  cm3, Nao = 1018 / cm3, and Vu = 05 eV

> 0 .4o

So.3•O
V>
| 0.2
w
-o-

0.1

M 0 2-10 3-10
Thickness of p+ layer (cm)

4110

Figure 3.8 Computer simulation of effective barrier height vs. thickness of p+ 
layer when Nai = 101S> / cm3, Nao = 1018 /  cm3, and Vb, = 05 eV
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3.3 Derivation of Inductive Behavior of a Novel Heterojunction Diode

Figure 3.9 shows an a-SiC/Si diode with d.c bias V on the injecting contact. When 

sinusoidal a.c. voltage is applied, the a.c. current i, becomes

p-Si I  1
I

Injecting Barrier
Contact Contact

Intrinsic a-SiC

Figure 3.9 An a-SiC/Si heterojunction diode

i = An(Ap)q{inWE  (3.17)

where

Art(Ap); the total number of injected electrons (holes) in the a-SiC. 

p n{p)] the mobility of electrons ( holes)

E\ constant electric field, assuming only drift current 

Using Shockley Theory [33], with sinusoidal small a.c. voltage ve“°!,

the injected electron density is
f  M \  s¥_

e kTveia” (3.18)ne'm = Vh
y k T ;

where

electron density in a-SiC 

V; the d.c. bias voltage

and
vdz, ' _ i l

An{icot) = A J neiai(,' n e r“vddt'
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= Ane'at ■ Vd%d— 1 -  exp
/

1 + io)zd
-icoz, (3.19)

/
where

A; the cross section of a-SiC

rd; the dielectric relaxation time in a-SiC

vrf; the velocity of the injected electron in a-SiC

•^transit time across the a-SiC

The decay of excess carrier in the relaxation semiconductor depends on the 

dielectric relaxation time, xd. Using eq.(3.17), (3.18), and (3.19), 

with r, < zd and an, < 1

ve 'M ( l  +  Ct)2t d + i(OZt )
Z = (3.20)

i) If tm d «  1,

1 + ion,
(3.21)

therefore, inductance, L is

L = (3.22)

ii) If ond »  1
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Z =
(02X2d +iCM'

Aq/inEl kTco2r lkT j

therefore, inductance L is

r _i-, —
<o2

AqfinEl
.k T J

%TT  2

(3.23)

(3.24)

Also, we can define inductance by means of

V = L —  (3.25)

which states that if  the application of a voltage V cause the current to increase at

the rate the proportionality constant is called the inductance. The initial current
V V

I, is given by — After a transit time t„ the current has increased to I  r = — .
i\ i J Kf

Thus, ^j~can be approximated by

di , h ~ l>
dt z.

V

KRf R,
(3.26)

With light doping, — is negligible compared to — , we have
R, R■f

L = xtRf (3.27)

Rf is expected to have the form C f  (v), where C is constant then
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L = xtCf(y) (3.28)

This form corresponds to equation (3.23, or 3.25). Therefore, it is reasonable to 

suppose that the inductive behavior is due to the conductivity modulation caused 

by the carrier injection through the high resistivity relaxation material.

3.4 Circuit Model of a Novel Heterojunction Diode

3.4.1 Injecting Contact

Figure 3.10 shows the device structure and the energy band diagram, in 

equilibrium, of a novel heterojunction diode. Al was deposited for both sides of 

the contacts. One Al contact on the relaxation semiconductors (laser induced 

disordered Si and non-hydrogenated a-SiC) can be an injecting contact.

At low voltage, current is carried by thermally excited carriers hopping from 

one isolated state to the next. This occurrence results in an Ohmic characteristic. 

Above a certain threshold voltage, the space charge limited current is the result of 

a carrier injected into relaxation semiconductors, where no compensating charge is 

present. Hopping in the localized (band tail) states, and hopping in deep defect 

states (such as dangling-bond states), can be treated as carriers moving via 

phonon-assisted tunneling events.

Figure 3.11 shows a carrier's hopping mechanism through an Al injecting 

contact. When the depletion region of thin film is very small, due to numerous 

defective states, the carrier can be tunneled by field emission or direct tunneling. 

An direct tunnel process can occur by the hopping process abd or acd or abed, as 

shown in Figure 3.11(a). Such processes modify the transparency of the barrier 

quite markedly from that condition which corresponds to a direct transition. Also, 

they will normally be associated with the emission or absorption of a phonon
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injecting
contact

P type c-Si

Schottky 
contact

Al

an intrinsic 
relaxation semiconductor 
(a disordered Si, or a-SiC)

A E

Figure 3.10 A device structure and energy band diagram under equilibrium in 
a novel heterojunction diode
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(phonon assisted tunneling). A second process that can take place is that of 

indirect tunneling into a trap, followed by a thermal leap over the barrier, as 

indicated by the path ace in Figure 3.11(b).

Bottom of Conduction Bond

Fermi
Level 'C

F erm i
Level

Figure 3.11 Energy diagrams illustrating (a) the direct tunnel process abd through 
the interface barrier; and (b) the combined indirect tunneling 
and thermal activation process ace through the barrier [34]
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This processing will have a thermal activation energy that reflects the depth

of the trap or donor, that is, I  = IT exp —— I, where IT is the tunneling
v kT)

component of current and cp represents the donor or trap depth-depending on the 

center from which thermal activation takes place.

For an excimer laser induced disordered Si, A1 was deposited after laser 

irradiation on the Si surface. A good injecting contact can be made because of the 

high surface recombination velocity [35] due to the surface roughness. Also, 

carrier tunneling, via hopping mechanism in the disorder layer, can be realized..

3.4.2 Model

Single-crystalline heterojunctions have been extensively studied [36-38] from the 

view point of understanding the fundamental device physics, as well as their 

applications to many devices. Some of these are, wide band-gap emitters, majority 

carrier rectifiers, high-speed wide bandpass photodetectors, beam-of-light 

transistors, indirect gap injection lasers, and solar cells. Amorphous 

heterojunctions might also be used for some of these application. However, the 

physics of amorphous heterojunctions is clearly far from being understood; even 

the amorphous homojunctions are not yet completely understood. The study of 

amorphous-crystalline heterojunctions can thus be a first step towards 

understanding amorphous-amorphous junctions. Anderson [36], Rediker et al. 

[37], Riben et al. [38], and other groups have reported the electrical properties of 

heteijunctions of crystalline materials. Anderson initially proposed an energy band 

diagram which assumed no interface states and an extremely abrupt change from 

one material to the other. Rediker et al., and Ribon et al. reported the experimental 

evidences for supporting the abrupt heterojunction model (Anderson's model) 

through their C-V measurements. With regard to the current transport mechanism
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of heterojunctions, Anderson [36] puts the basis of his calculation on a Shockley 

diffusion model [39] and a Schottky emission model [40], respectively, while 

Riben et al., and Rediker et al. have independently published tunneling models to 

explain their own data.

Conversely, there are very few reports, concerning amorphous-crystalline 

heteijunctions, after the first report of Grigorovici on a-Ge/c-Ge junction [41]. 

According to Stourac [42], for the case of chalcogenide material, the junction is 

approximately the abrupt heterojunction, and the current transport mechanism is 

based on the space-charge-limited currents in the amorphous material.

Figure 3.12 shows the energy band diagram, in both forward bias and reverse 

bias, of a novel heterojunction diode. The hole current is injected with positive V 

at the injecting contact. Inductive behavior is developed due to the conductivity 

modulation in the disordered Si region or amorphous SiC. The inductance is 

dominant for the large series depletion capacitance near the p-Si/Al interface. The 

current mechanism, near the p-Si/Al interface, becomes thermionic field emission 

and finally, field emission even with the high barrier (0.75 eV). The hole current 

in the opposite direction is almost zero because of the high energy step of the 

valence band in the heterojunction. The band discontinuity, which is one of the 

most important parameters, is not well understood. Matsura et al. [43] 

demonstrated the conduction-band discontinuity (AEC) measured from the

capacitance-voltage (C-V) curves of glow discharge (GD) a-Si:H/c-Si junctions to 

0.2+0.07 eV, and thus, that the band discontinuity was mainly at the valence-band 

side. In contrast, Cuniot and Manfaing [44] showed AEc =0.55 ±0.7 eV and the

valence-band discontinuity AEv < 0.15 eV from the internal photoemission of 

sputtered a-Si:H/c-Si, thus insisting that the band discontinuity existed mainly at 

the conduction band side. Here, we assume that the valence band discontinuity is 

mainly at the valence-band side.
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Figure 3.12 Energy band diagram in forward bias (a) and reverse bias 
(b) in a novel heterojunction diode
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With negative V at the injecting contact, only electron current is injected. Again, 

inductance, which is developed, is dominant for the large diffusion capacitance in 

the bulk of p-Si. The electron current has no barrier near the reverse biased p-Si/Al 

interface. Therefore, a current mechanism, in both biases, is an ohmic behavior 

like a resistor. Sometimes, space charge limited current will appear, in both or 

either bias above a certain threshold voltage.

A current, through the heterojunction, might tunnel through the thin spike­

shaped barrier. The simplest tunneling mechanism consists of the tunneling of 

carriers through the spike-shaped barrier in the conduction band (Figure 3.13). 

According to Riben et al. [38], predominant tunnel flux takes place at an energy 

close to the peak of the barrier within an energy difference of approximately 0.1 

eV for the crystalline heterojunction, and this is indicated by path "A" in the 

figure. In the present heterojunction, however, the tunneling process, at an energy 

range far below the barrier peak, indicated by path "B" in the figure, is quite 

possible because the localized states are quasi-continuously distributed within the 

gap of the disordered Si or a-SiC spatially, as well as energetically.

Figure 3.13 Tunneling for heterojunction of a-SiC /Si or disordered Si/Si

c-Si

Disordered Si 
(or a-SiC]
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Figure 3.14(b) shows a simplified small signal diode model. A small parallel 

geometric capacitance is neglected. Reactance X{V) is

a > {m + B ? U v W C \V )-I? C < y ))
x<y>-  i w w n  ( j-29)

Where

R; Differential resistance of a heterojunction diode 

L(V); inductance developed in a disordered Si or a-SiC layer,

C(V); diffusion capacitance under electron injection in bulk Si, or depletion 

capacitance near Si-Al interface under hole injection

Reactance X(V) is inductive if 

2(oL{V) > R or,

2(oL{V) < R and

R2 - J r 4 -4(02L(V)2R2 
*> C^  - °

R2+ j R 4-4(02L(V)2R2
b> > m w #

_  1 - co2L ( V ) 2 

cq2 L ( V )

The, measured capacitance, CTcsl follows as the relation

_(l + a)2R2C(V)2)_______________________ 1
Ctcs' ~ ~  a>2{L(V)(\ + (o2R2C(V)2) - R 2C(Vj) ~~ co2L(V)
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Figure 3.14 (a) A small signal circuit model for a heterojunction diode of a-SiC 
(or disordered Si)/c-Si, (b) A simplified circuit model
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3.5 The Effect of C arrier Screening of Impurity in the Thin Relaxation Layer 

When the electron density is much higher than the donor impurity density, each 

impurity can then be electrically screened by many electrons and this weakens the 

donor impurity potential to bind or trap an electron. When the electron 

concentration is sufficiently high, there is no bound state solution of the 

Schrodinger equation. This gives an estimate of the critical electron concentration 

at which the impurity activation energy drops to zero.

This carrier screening is known as Debye-Huckle screening [45] in dilute 

electrolytes and semiconductors with low electron concentration. It is known as 

the Fermi-Thomas screening in degenerate semiconductors and metals. The 1/r 

Coulomb impurity potential is screened and reduced by an exponential function, 

exp(-A:Jr) where k] •' = /; is known as the screening length. The screening length is

the distance at which the potential drops by 1/e. The screened Coulomb potential 

energy of an electron is then

Note there are two screening sources: (i) the valence electrons denoted by the 

dielectric constant, es, known as dielectric screening and (ii) the carriers or 

conduction band electrons and valence band holes, denoted by rs. Figure 3.15 

illustrates carrier screening. Notice the tremendous reduction of the range of the 

Coulomb potential from carrier screening. The screened potential has the 

appearance of a square well.

In the case of carrier screening of impurity, the variation of the lifetime with 

the injection level 8p (or 8ri) can be examined. The lifetime T is

(3.31)
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1+

T =  Tn

1+ -
S/>

«o + A

(3.32)

where = ^ (« 0 + « l)  + Tno(/70+A )
«o+A )

and

«0 = ^ - e
\!KT

p Q =

n, = Nce-[E'-E']lKT 
p ,= N ve<E‘-Ê KT

(3.33)

V(r)

> r/r.

UJz
UJ

-25 -

Figure 3.15 Effect of carrier screening on the electron potential energy in 
the Coulomb electrostatic force field of a positive point charge. 
The screening length is equal to the critical length, 
r =aj/l. 19, at which the Bohr bound states disappear. [45]
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where N c , N v is die effective densities of states at the conduction and valence 

band edges. n0 , p 0 are equilibrium electron and hole concentration. Sn , Sp are 

excess electron and hole concentration. nx is the electron concentration which 

would be present in the conduction band if the Fermi level were to coincide with 

the trap Et. Pi is the hole concentration which would be found in the valence band 

if the Fermi level were at the energy of the trapping level. t p q represents the 

lifetime of excess holes in highly extrinsic n-type material and two represents the 

lifetime of excess electrons in highly extrinsic p-type material. When holes or 

electrons are injected into an intrinsic relaxation semiconductor, the holes or 

electrons are released from traps due to the carrier screening. Excess carrier 

injection, by carrier release in forward bias from the trap, will change the carrier 

lifetime. The variation of the lifetime with both the excess hole injection (8p), and 

hole concentration in the valence band (Pi) can be simulated. If 8p is sufficiently 

small, the lifetime will have To independent of 8p. For larger values of Sp, the 

lifetime will depend on Sp, and may decrease or increase from To to (= t Po +  t«0) 

with increasing values of Sp. But, in the intrinsic relaxation semiconductor, the 

lifetime will decrease because of Pi > Po, and «, > «0. Figure 3.16 shows, 

through computer simulation of equation (3.32), that the decrease of the lifetime 

with an increase o f both injection level Sp, and holes concentration Pi, in the 

valence band due to the holes release from traps. With Po, n0 ~ 104 / cm3 and 

Tpo, Tno -  10“'° sec, the lifetime was decreased in the ranges of 

1081 cm3 < Pi < 10” /cm 3, and 104 /cm 3 < Sp< \07 cm?. Therefore, in a low 

doping, high resistivity relaxation semiconductor, lifetime can be much shorter 

under high excess carrier injection due to the carrier screening of impurity. This 

can lead to a more pronounced relaxation.
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Figure 3.16 Variation of the lifetime with excess injection, dp and carrier 
concentration in the valence band, Pi, by computer simulation
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CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSION

4.11-V and Structural Characteristics

4.1.1 Ohmic Behavior with Excimer Laser Irradiation on Al Contacts 

The formation of Ohmic contacts on semiconductor surfaces is essential to the 

operation of most semiconductor devices. In general, for a semiconductor with a 

large band gap, such contacts are produced by alloying or sintering suitable metals 

on its surface. This produces a degenerate layer on the surface where contact is 

made. The degenerate layer makes the depletion layer, on the semiconductor 

surface, thin enough to allow sufficient tunneling [46,47], The contact region then 

appears 'Ohmic'. A pulsed KrF excimer laser can be used as a heat source to form 

a degenerate layer on p-Si with an Al contact. The development of excimer lasers, 

which generate powerful ultraviolet, have enhanced their potential use in 

technological application, e.g., as a lithography, in ultra large-scale integration 

technology. Laser-recrystallized silicon thin films are of technological interest for 

fabricating high performance thin film-transistors, silicon-on-insulator devices, 

and 3-D integration. Ohmic contacts on III-V compound semiconductors using a 

pulsed ruby laser (694 nm), and YAG laser (1060 nm) were successfully made in 

1973 [48], And, Ohmic contact was formed on InP using a pulsed ArF laser 

(193nm) in 1980 [49],

In my experiment, after chemical cleaning of the wafer, pure Al (99.9999%)
18 3was deposited on p-type (100) Si (doping of 10 /cm , thickness of 60 /I m) by a 

'VARIAN 31-25’ magnetron sputtering system. Al thickness, of deposited films, 

are approximately 150 nm and 700 nm. The diameters, of the Al dot contacts, were 

between 0.5mm and 1.5mm. A pulsed KrF excimer laser (248nm) was irradiated

43
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on both sides of the Al dot contacts with excitation voltages of 20-22 kv, and a 

pulse period of 1 sec. I-V characteristics were measured by a 'KEITHLEY 236' 

,and a HP-4145B Analyzer at room temperature. During the localized heat 

treatment, by the pulsed excimer laser irradiation, p-Si is dissolved in the Al up to 

its solubility limit. A metallurgical reaction, between Al and p-Si, leads to the 

formation of a thin p+ layer near the interface, and this produces an Ohmic 

contact. However, when the laser intensity was sufficient and well focused, the Al 

surface evaporated. To avoid the Al evaporation, both laser intensity and focus 

were adjusted. Figure 4.1 shows the cross section of Al/c-Si after laser irradiation 

on the Al contact by SEM (1000X). The roughness of the Al surface, due to the 

laser irradiation, is shown. Figure 4.2 shows the damage in the boundary of the Al 

contact taken by SEM. In Figure 4.3, Al evaporation, inside the Al contact, due to 

the very strong power of the well-focused laser pulses (excitation voltage 25kv) is 

shown.

Figure 4.1 SEM (1000X) cross section of Al/c-Si after laser irradiation 
(excitation voltage of 22kv, period of 1 sec)
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Figure 4.2 SEM Al contact after laser irradiation
(excitation voltage of 24kv, period of lsec)

Figure 4.3 SEM (2000X) Al evaporation inside the Al contact after strong laser 
irradiation (excitation voltage of 25kv, period 0.5 sec)
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Figure 4.4 shows the Al surface ( l^ m  ) before laser irradiation through the use of 

AFM (Atomic Force Microscope). The grain boundary, of poly crystalline Al, due 

to sputtering is shown. The maximum distance between the dark and the bright 

side in the picture is 50 nm. After uniform laser irradiation (excitation voltage of 

20.3kv) on the Al contact surface, grain boundary disappeared as shown in Figure 

4.5. The maximum distance between the dark and the bright side is 10 nm. 

Formation of crystalline Al from polycrystalline Al might be possible with excimer 

laser irradiation.

Figure 4.4 AFM Al contact surface before laser irradiation
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Figure 4.5 AFM Al contact surface after laser irradiation 
(exciting voltage of 20.3kv, period of 1 sec)
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Figure 4.6 shows ohmic behavior after several laser irradiations (excitation voltage 

of 20.3 kv) on both sides of the Al contacts. The contact resistance is 10000. 

Increasing the number of laser pulses, by a factor of 10, caused a decrease in 

contact resistance of up to 35£2. Figure 4.7(a), shows ohmic characteristic with a 

50Q contact resistance, and Figure 4.7(b) shows ohmic characteristic with a 350. 

contact resistance.

. 758

.258

5 - . 2 5 0  ------

- . 7 5 0  -----

-1
x E 0voltage (Volts)

Figure 4.6 Ohmic behavior after several pulsed laser irradiation 
(excitation voltage of 20.3 kv) on both Al contacts
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Figure 4.7 Ohmic behavior after 10 pulsed laser irradiation (excitation voltage of 
20.3kv) on both Al contacts. Contact resistance is (a) 50Q, (b) 35Q
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Figure 4.8 and Figure 4.9 show Auger analysis before and after laser irradiation on 

the Al contact. Depth-concentration profiles of Al and Si near the Al/Si interface is 

shown. The Al thickness of the deposited film is about 700nm, and the diameter of 

the Al dot contact was about 1mm. For in-depth Auger analysis, a KRATOS X- 

SAM 800 system was used. After laser irradiation, the Al was diffused up to 

approximately 200nm from the Si surface. A thin high doping layer of 200nm was 

formed near the Al/Si interface.

100

80

60

20

0 2000 4000 6000 QOOO
D ep th  (A ngstrom s)

Figure 4.8 AES depth in profiles near the Al/Si interface, before laser irradiation 
(excitation voltage o f 20.3kv) on an Al contact

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10
0

51

I"— t— • - ( '----r

o
CO

ooo10

wEoc.4JU)D1
C
<

aa)D

ooo
C\J

o
CO

oCO o•'T ocu
% -UIÔV
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4.1.2 Space Charge Limited Current, with Excimer Laser Irradiation on c-Si 
Surface, before Al contacts deposition

The C-V doping profile is shown in Figure 4.10 after strong laser irradiation 

(excitation voltage of 24 kv, period of 1 sec ) on an Al contact. A high resistivity 

layer of about 20nm was formed underneath a high doping P+ layer (8 nm). It is 

probably a result of the formation of a high density of point defects and 

dislocation, which are due to the damage incurred during the rapid freeze portion 

of the alloying process. Figure 4.11 shows a schematic drawing of the high 

resistivity damaged layer after the alloying of GaAs with Ag/In/Ge contacts at 630 

°C for 30 seconds [50]. Strain producing thermal gradients encountered in the 

alloying process can be large.

To avoid an Al spike and a non-uniform high resistivity layer due to the non- 

uniform Al thickness, the excimer laser was used to irradiate the c-Si surface 

before Al contact deposition. This Si surface is rough and abraded. Due to high 

surface recombination, an Ohmic contact can be achieved with this rough surface. 

And, a disordered, high resistivity Si layer can be made due to the damage from 

the laser irradiation. Dopant impurity is activated only in the substitutional site 

(i.e., at regular lattice site). Through the use of the laser irradiation, the dopant 

impurity can be moved from a substitutional site to a interstitial site (i.e., between 

regular lattice site). This results in a high resistivity, disordered layer. A diode 

structure, which is made using this technique, is similar to the previous diode 

which has a high resistivity layer beneath a Ohmic contact due to the thin high 

doping layer.

Figure 4.12(a) - 4.12(d) show AFM pictures of the disordered Si-surface 

after excimer laser irradiation (excitation voltage of 24kv, period of 0.1 sec) on the 

c-Si before Al deposition.
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Figure 4.10 C-V doping profile after strong laser irradiation
(exciting voltages of 24kv, period of lsec) on Al contacts
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Figure 4.11 A Schematic drawing o f a damaged region produced by the 
alloying contact of GaAs at 630°C for 30 seconds [50]
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(c) before laser irradiation

(d) after laser irradiation 
Figure 4.12 AFM disordered Si surface after laser irradiation (excitation 

voltage of 24 kv, period of 0. Isec) on Si before Al deposition
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Figure 4.13 shows a typical I-V characteristic of a disordered Si/c-Si

heterojunction diode. It shows the Ohmic behavior of large current in negative bias

and rectification behavior of space charge limited current, after Ohmic behavior up

to approximately 0.5V. In the space charge limited region, according to the

relation I = k (V-V^)m, the exponent m was determined to be 2.4. Threshold
2

voltage, is 0.5V and proportional to L [51], where L is the thickness of the 

disordered Si layer. Figure 4.14 shows in semi-log plot the I-V characteristics of 

another sample. Schottky barrier height, dte is

IrT A” T 2
= —  In ( - £ - ) ,  (4.1)

• *  2 2
where A *’ is a Richardson constant of 120 A/cm /K , and the extrapolated value

of current density at zero voltage is the saturation current, Js. From Figure 4.14, /
2 s

is 1.61E-06. Using T = 300K, and contact area = tt(0.14) , = 0.64 eV. In Al/p-

Si contact without annealing, the barrier height which has been reported [52] is 

about 0.75eV. There is small difference of 0.1 leV in Schottky barrier height.

From the straight line portion of the plot, I  ( 1.61E-06 ) can be determined 

by extrapolation when V-0, and it gives ideality factor n, from the slope S = d 

log(I )/dV.

j _ ^ _ r f |o g ( / )=  i___
23 kT dV 2 3 S kT /q  K }

The slope, S  is 3.32 in Figure 4.14. Therefore, the ideality factor n, is 5 near 0V. 

Above 0.4V, n is bigger than 5. Considering the ideality factor to be 1 to 2, this big 

ideality factor means that the current is limited as voltage increases. In some 

samples, space charge limited currents were not observed, but Ohmic behaviors
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Figure 4.13 I-V characteristic of a disordered Si/c-Si heterojunction, diode

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

I I
(A ) CURSOR ( 545E-03 , 1.03E-03, )

IE-01

d e c a d e
/ d i v

IE-071—
.0000 6 . 0 0 0

E +00.6000/div (V )VI
1/GRADGRAD Xlntercept

LINEl 3.32E+00 302E-03 1.45E+00 16.1E-06

Figure 4.14 I-V characteristic on semi-log plot of a disordered Si/c-Si 
heterojunction diode
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were observed in both biases. This means that the threshold voltage of the space 

charge limited current will be high. Figure 4.15 shows the space charge limited 

current after ohmic behavior in both biases. Threshold voltage is 0.6V and -0.6V 

in both biases.

IF
(mA)

6 0 . 0 0

1 2 . 0 0
/ d i v

- 6 0 . 0 0
- 3 . 0 0 0  0 3 . 0 0 0

. 6 0 0 0 / d i v  ( V)

Figure 4.15 A space charge limited current after ohmic behavior in both 
biases with a disordered Si/c-Si heterojunction diode
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4.1.3 Negative Resistance after Strong Laser Irradiation on A1 Contacts

Figure 4.16 shows an excellent N-type negative resistance, after strong laser 

irradiation (excitation voltage of 24kv, period of 1 sec), on an A1 contact. The peak 

current is approximately 27mA at 1.4v and the slope in the negative resistance 

region is 79H. Figure 4.17 also shows another excellent negative resistance, after 

the same strong laser irradiation, on contacts of both sides. But, those negative 

resistances were unstable and only maintained for a few days.

The requirements of a material, to show negative resistance, may be broadly 

divided into two categories, one containing intrinsic and one containing extrinsic 

properties. The intrinsic requirements concern the band structure and the scattering 

mechanisms in the material. It is apparent from what has gone before that the band 

structure should be such that hot electrons (or holes) move quickly from a high 

mobility state to a low mobility state as the field is increased. The higher energy 

band should therefore have a high density o f states or, if ellipsoidal, at least have a 

very high effective mass in the field direction relative to the lower band.

It is possible that uniaxially strained p-type silicon has the necessary 

structure. The strained region can be induced by a laser-alloying process. Under 

uniaxial strain, the degeneracy of the 'light' and 'heavy' valence bands at k = 0 is 

removed and two ellipsoids, with their major axes at right angles to one another, 

appear separated in energy at k = 0. When holes become hot, they will tend to 

move from the lower ellipsoid into the 'heavier' upper ellipsoid. Hensel and Feher 

[53] have measured inverse-mass parameters in silicon for strains in the [001] and 

[111] directions; so taking their interpretation of the band structure as being 

reasonable, and assuming that the ellipsoids actually intersect one another in the 

strain direction, we can make an estimate of the possibility of negative resistance.

The Extrinsic requirements concern the carrier density in the main. The 

capture of an electron by a negatively-charged impurity center in a semiconductor
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Figure 4.16 A negative resistance after strong laser irradiation (excitation 
voltage of 24kv, period of 1 sec) on an A1 contact
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Figure 4.17 A negative resistance after strong laser irradiation (excitation voltage 
of 24kv, period of 1 sec) on both sides of the A1 contacts
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is strongly influenced by the presence of the potential barrier, arising out of the 

Coulomb repulsion. The lower the temperature, the smaller the electronic thermal 

energy and the effect on the barrier will be greater. Heating the electrons by an 

electric field will tend to increase the probability of tunneling through the barrier, 

and so increase the capture rate. The resultant fall of electron density as the field 

increases, if  great enough, will cause a bulk differential negative resistance to 

appear. We find that this effect, the possibility of which was discussed by Ridley 

and Pratt [54], occurs in n-type gold-doped germanium at 20°K. Also, we find that 

instability, associated with the negative resistance, causes the specimen to split up 

into high field and low field regions in the manner described by Ridley and 

Watkins [55],

Let us consider the conduction band to consist of two sub-bands which may 

be represented in the (s , k) diagram, as shown in Figure 4.18. The lower band is 

denoted 'a' and the upper 'b'. The energies of the minimum are 8ib and their energy 

difference E. Their effective density of states are N^b. We assume that the k 

direction is along a principal axis which is parallel to the electric field E, and the 

effective masses and mobilities are m^b. and The numbers of electrons per 

cubic centimeter in the bands are nib. The conductivity is then given by

G e (  j ij i ,  + /y ib ) (4.3)

When a sufficiently high electric field is applied to the crystal, the electrons are 

accelerated and their effective temperature rises above the lattice temperature, and 

in most cases, we must also expect the lattice temperature to increase. The effect 

of this will be not only to alter the mobilities, but also to alter the electron 

densities in the bands. The incremental variation of conductivity with field may be 

written.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



or, putting na+nb = n, where n is constant, and taking fiab Fp,

^  = e{p.a- ^ b) ^ + e ^ L ana-fxbnb) ^  (4.5)

Since the current density

J= G F  (4.6)

£

k

Figure 4.18 Two sub-bands in a semiconductor
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and (4.7)

the condition for negative resistance is

dG

(4.8)

E

or, from Eqns (1) and (2) with /  = — ,

(4.9)

The field exponent p  is a function of the scattering mechanism and should be 

negative and large. This makes impurity scattering quite undesirable since, when 

this is dominant, the mobility rises with increasing field and thus p is positive. 

When lattice scattering is dominant, however, p is negative and will depend on the 

lattice and carrier temperatures. The first bracket in equation (4.9) is 

straightforward - we must have p a > ju6. Electrons must begin in a low mass band

and transfer to a high mass band when they are heated by the field. The maximum 

value of this term is unity i.e. when p a » jib. The second bracket is not so easy to

deal with. It represents the rate at which electrons transfer to the upper band with 

field and this will depend upon differences between the bands of effective density 

of the states, electron temperature, and the energy gap between the sub-bands. To 

obtain an idea of its value, let us assume a common electron temperature Tc and a 

Maxwell - Boltzmann distribution. If we have Tc ^ E q then
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If E  is the band separation it may be shown that with /  =

(4.11)

where Na b are the effective densities of states, which has a maximum value where

4.1.4 Bistable Switching with Memory in Both a Disordered Si/c-Si Diode and 
an Amorphous SiC/c-Si Diode

Bistable switching, between a stable low-conductivity state and a stable high- 

conductivity state, has been observed in both non-hydrogenated amorphous SiC/c- 

Si diodes and disordered Si/c-Si diodes. To make a disordered Si layer, an excimer 

laser was used to irradiate uniformly the surface of c-Si before A1 deposition. 

Typical switching I-V characteristics of both diodes are shown in Figure 4.19 and 

Figure 4.20. In a disordered Si/c-Si diode (Figure 4.19), a rectifying state was 

observed in the range between 0V and 3V. While the voltage was 4V, switching 

from a rectifying state to Ohmic state was observed. Either state was maintained 

over several months without bias. In a amorphous SiC/c-Si diode (Figure 4.20), 

after a threshold voltage of approximately 3 V was applied, switching between a 

stable low-conductivity state and a stable high-conductivity state via a transient on 

state [56], was observed. Either state was also maintained for several months like a 

disordered Si/c-Si diode. The difference of switching behavior in both diodes 

would depend on defect densities and resistivity of an amorphous SiC and a 

disordered Si layer.

l o g - ^ - I o g /  = l + / (4.12)
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Figure 4.19 Bistable switching in a disordered Si/c-Si heterojunction diode 
(a) rectifying state (b) ohmic state
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Figure 4.20 Bistable switching via the transient on state in an 
amorphous SiC/c-Si heterojunction diode 
(a) low-conductivity (b) transient-on (c) high-conductivity
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There have been several two- state nonvolatile memory devices made from a 

variety of materials and operating under a variety of physical mechanisms. The 

presence of several conductive states, in low-melting point chalcogenides [57,58], 

is generally attributed to phase transformations, while electronic mechanisms such 

as, field and impact ionization of traps are often proposed in the crystalline solid 

[59-61], Bistable switching, with memory, was observed in various n-type GaAs 

Schottky contacts and n-type Si Schottky contacts doped with trap impurities of 

Ni, Au, Pt [62]. The same general type of phenomenon was observed in ZnSe- 

GaAs [59], GaP-Ge [59], and GaP-Si [59] heterojunctions. It was postulated that 

the switching and memory behavior is the result of field or impact ionization of 

traps, causing a transition to a low-resistance state, and the resetting to high 

resistance when carrier injection, from the metal contact, results in refilling the 

traps. These two terminal switching devices offer the potential advantages for 

computer memory systems of simplicity, high packing density, and low cost.

The high, intermediate and low resistance states, and threshold voltage all 

depend to some degree on the nature of the amorphous SiC, and disordered Si 

films. And, they depend on the details of the fabrication process such as, the 

growth temperature, the growth rate, and the cooling rate. Such a dependence 

might be expected in any heterojunction device, since the two materials making up 

the heterojunction have certain natural differences, e.g., lattice constants, thermal 

expansion coefficients, elastic coefficient, etc. The stress, which results from the 

growth, is accommodated partly by strain, partly by bending and residual stress, 

and even in some cases by cracking [63,64], The bistable switching in both the 

non-hydrogenated amorphous SiC/c-Si diode and the disordered Si/c-Si diode is 

believed to be governed by the presence of defects such as traps. The defects 

consist of both intrinsic defects in the amorphous SiC, the disordered Si and
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extrinsic defects which come from lattice mismatch, and the fabrication process as 

mentioned above.

Numerous densities of neutral states near the interface of the heterojunction 

can be ionized, and this creates a high-field region through which the carrier can 

readily tunnel, probably in a multistep process through the empty traps. This 

transforms the high impedance state to an Ohmic behavior. Carrier release, due to 

both field and impact ionization of the trap could be responsible for the trap 

emptying. Tunneling through an interface, due to traps, has been proposed as an 

explanation for the conduction through metal-insulator-metal structures [12,65], 

and can lead to both Ohmic behavior [65] and low activation energy. In addition to 

the interface transformation of the heterojunction, traps can be ionized in both the 

amorphous SiC and the laser induced Si, thus freeing electrons (or holes) into 

either an impurity below the conduction band edge or into the conduction band 

itself. These electrons then provide the necessary conductivity.

Either state, of the bistable switching, was maintained at zero bias for several 

months. Since the ionized traps in the bulk must remain empty with time, in spite 

of the high free electron density, it seems necessary that they be Coulombic- 

repelling states, doubly negatively charged before ionization, and singly negatively 

charged after, so that the barrier they present to the electrons prevents them from 

refilling immediately and eliminating the memory. In Figure 4.21, switching from 

a low impedance state to a high impedance state was instantly observed after a 

3mA current pulse for 1 sec. The traps in the amorphous SiC were filled by the 

increased charge and the high impedance was attained. After that, switching from 

the high impedance state to the low impedance state was again observed above 2V 

as shown in Figure 4.22. But, the low impedance state in Figure 4.22 was not 

returned back to the original low impedance state in Figure 4.20.
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Figure 4.21 Switching from a low impedance state (a) to
a high impedance state (b) after a current pulse of 3mA 
for 1 sec in an a-SiC/c-Si heterojunction diode
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Figure 4.22 Switching from a high impedance state (a) to a low impedance state 
(b) at 2v in an a-SiC/c-Si heterojunction diode
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This phenomenon means that trap emptying is not complete because of abundant 

carrier filled by the current pulse.

Finally, it should be noted that this trap model for the switching and memory 

is speculative, and although it describes the experimental result well, other models 

may also be proposed. A dielectric relaxation model of van Roosbroeck is a 

notable example. And, An injection model was proposed by Gary Vezzoli [56],

4.2 Novel Negative Capacitance in C-V and Comparison with the Model

4.2.1 Negative Capacitance in Laser Induced Disordered Si/c-Si Diode and 
Comparison with the Model

A heterojunction diode, with a disordered Si which was induced by excimer before 

A1 deposition, showed a constant negative capacitance of - 1950pF at 1MHz from 

- 5V to 5V in C-V measurement (Figure 4.23). This phenomenon, of the constant 

negative capacitance has not yet been reported. The measured negative capacitance 

was derived from the circuit model described in section 3.4.

From the circuit model a depletion capacitance, near the interface of c-Si/Al, 

is increased in forward bias. And, a diffusion capacitance, in the bulk of c-Si, is 

increased in reverse bias. In the both biases, inductance, which is developed by the 

carrier injection through the disordered Si, is dominant for the large series- 

capacitance. The measured capacitance follows the relation of equation (3.30),

G e s r =  - ■ * (4.13)
CO Ltest

Therefore, according to the above equation, inductance is 13/zH. The inductance 

value o f this diode, measured by a LCR analyzer at 1MHz, was also 13juH. The 

theoretical circuit model had good agreement with this experiment.
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Figure 4.23 Negative capacitance in a disordered Si/c-Si heterojunction diode

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

In Figures 4.24, and 4.25, negative capacitances are also shown and their 

inductance values were approximately 17/i H, and 23/j.H at 1MHz.

In a real inductor, the series-capacitance of the circuit model is very small in

both biases. A constant negative capacitance of the real inductor was shown in C-

V measurement, and the magnitude of the negative capacitance followed the same

relation of equation (2), and this experiment conformed the theory. In Figure 4.26,

a real inductor, of which inductance is 100/iH, shows a negative capacitance. Its

magnitude of negative capacitance is approximately - 237pF at 1 MHz. From the
2relation of Ltest = \/co  jC r̂l, the inductance of IOO/xH can be derived with 

capacitance of - 237pF at 1MHz.

This constant negative capacitance of a semiconductor device was discovered 

for the first time. The C-V characteristics, of a novel heterojunction diode, is the 

same as that of a real inductor. And, Inductance values of both a diode and a real 

inductor follow the relation of Ltest = \ I co |G«r|. In the comparison of the diode 

with a real inductor, intrinsic capacitance (depletion capacitance or diffusion 

capacitance) of the diode is very large in both biases although that of a real 

inductor is very small. So far, a negative capacitance was simulated and observed 

in a Schottky diode only above a certain bias. In X. Wu's paper, he reported a 

phenomenon observed during the experiment that, under forward bias, some 

Schottky diodes manifest a negative capacitance in response to an ac signal. A new 

hypothesis, of charge delocalization at the interface of a metal/semiconductor, was 

proposed to explain this effect. It was suggested that the Shockley-Read model 

[66] was inadequate in describing the occupancy probability of interface states at a 

high incidence of hot carriers. Under this circumstance, the impact ionization 

process above a certain forward bias was taken into consideration. But, with this 

hypothesis, the negative capacitance in both biases, even at zero bias, can not be
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Figure 4.24 Negative capacitance, equivalent inductance of 17/i H 
in a disordered Si/c-Si heterojunction diode
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Figure 4.25 Negative capacitance, equivalent inductance of 23/iH 
in a disordered Si/c-Si heterojunction diode
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Figure 4.26 C-V measurement of a real inductor of 100£iH
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explained. As I mentioned in Ch. 3, this negative capacitance can be explained by 

the conductivity modulation through a high resistivity-relaxation semiconductor 

with carrier injection in both biases. Inductive reactance is developed due to the 

conductivity modulation. When the inductance is dominant for a large depletion 

capacitance or diffusion capacitance in both biases, this novel diode shows 

inductive behavior and constant negative capacitance in both biases. In ordinary 

diodes, the effect of the conductivity modulation is too small to produce useful 

inductive reactance. The junction capacitance normally masks the inductive effect, 

except at high forward bias, even though the inductive reactance appears in a low 

doping diode. In a few samples, a negative capacitance was observed only in 

negative bias as shown in Figure 4.27. This means that a large series capacitance 

was developed in only the negative bias. Near zero bias, the diode shows 

resonance ,and behaves as a pure resistance. The negative capacitance, in Figure 

4.27, is similar to that which X.Wu observed in a NiSi^-Si diode at 200K.

CAP
CPF)

MARKER ,- 5 , 0 0 0 0 V  . - 2 . 0 9 E + 0 3 .
. 2 1 5 2
E+03

- 1 .9 3 6

- 5 . 0 0 0 5 . 0 0 0
1 . 0 0 0 / d i v  ( V)

Figure 4.27 Negative capacitance only in forward bias 
with a disordered Si/c-Si diode
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In Figure 4.28, The C-V measurement of a real diode is shown. Figures 4.29 and 

4.30 show the C-V measurement of the diode connected in series with real 

inductors of 2/iH, and 100/iH. A resonance is shown at approximately 0.5V. The 

diode by itself has a large capacitance of 3800pF in positive bias. But, with the 

series connection of real inductors, negative capacitance is shown only in positive 

bias. It means that owing to a big series capacitance of a diode in positive bias, an 

inductive effect was shown as a phenomenon of negative capacitance only in 

positive bias.
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(PF)

4 .0 0 0
E+03

.4000
/ d i v

. 0 0 0 0
-5 .0 0 0  0 5 .0 0 0

V 1 .0 0 0 /d iv  ( V)

Figure 4.28 C-V measurement in a real diode
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Figure 4.29 C-V measurement in a real diode with the series 
connection of a real 2n  H inductor
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Figure 4.30 C-V measurement in a real diode with the series 
connection o f a real 100/iH inductor
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Table 1 shows variation of negative capacitance, and equivalent inductance, in a 

disordered Si/c-Si heterojunction diode listed according to various frequencies at 

zero bias, as measured by a HP-LCR Analyzer. Inductance is almost constant even 

with the variation of frequency like the characteristic of a real inductor. This is a 

case of arte < 1, where Td is dielectric relaxation time, as mentioned in 3.3. 

Approximately, 80 % of the samples showed this constant inductance even with 

the variation of frequency.

Table 1 Data - 1 of LCR Analyzer with a Disordered Si/c-Si Diode

Frequency R(Q) X(Q) C L

1MHZ 16.76 12.25 -12.98nF 1.95/i H

SOOKHz 16.61 9.86 -20.16nF 1.96/r H

500KHz 16.45 6.24 -50.94nF 1.98/i H

300KHz 16.35 3.8 -139.5nF 2.01/iH

100KHZ 16.24 1.3 -1.219/iF 2.07/xH

60KHz 16.22 0.79 -3.35/i F 2.09/iH

lOKHz 16.22 0.13 -117/iF 2.15/i H

6 KHz 16.21 0.08 -325/iF 2.16/iH
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Table 2 shows the variation of inductance with a 50% decrease in frequency

starting at 1MHz. Inductance was increased four times with a 50% decrease in

frequency. This is a case of a m  > 1, where Td is dielectric relaxation time, as
2mentioned in section 3.3. Inductance, L, is proportional to 1/(0 under the 

condition of om > 1. This inductance has a non-linear characteristic, not a linear 

characteristic like a real inductor. A large inductance value was demonstrated at 

low frequency. Approximately 20% of the samples, of disordered Si/c-Si diodes, 

showed this non-linear inductive characteristic.

Table 2 Data - II of LCR Analyzer with a Disordered Si/c-Si Diode

Frequency L (sample 1)

1MHz 10/iH

500KHz 37.4/r H

250KHz 140/i H

120KHz 585/i H

60KHz 2.29mH

30KHz 8.99mH

L (sample 2) C (sample 2)

16.713/iH -1.52nF

60.35/i H -1.684nF

230.12/i H -1.766nF

962.02/iH -1.832nF

3.76mH -1.874nF

14.74mH -1.915nF
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4.2.2 Negative Capacitance in a Non-Hydrogenated Amorphous SiC/c-Si Diode 
and a Comparison with the Model

The electrical characteristics of a non-hydrogenated amorphous SiC/c-Si diode and 

a disordered Si /c-Si are very similar in switching, and negative capacitance. Both 

diodes are a heterojunction; one has a wide energy gap semiconductor and the 

other has a small energy gap semiconductor. Numerous defective states exist in 

both non-hydrogenated amorphous SiC and Si disordered by an excimer laser. 

Both of two materials are relaxation semiconductors.

Figure 4.31 shows the negative capacitance of the C-V measurement in a 

non-hydrogenated amorphous SiC/c-Si diode (thickness of 20nm in a-SiC). Above 

4V and below -4V, the negative capacitance is constant. The inductance value is 

approximately 20.2/i H above 4V, and 20/iH below -4V. Between -4V and 4V, 

the shape of the negative capacitance is parabolic. At zero bias, inductance is 

approximately 15.5/iH. The difference o f maximum and minimum inductance is 

approximately 5juH. From the circuit model in section 3.4, the difference of 

measured inductive reactance is

R 2C
L" " = l ~ l + a 2R 1C 2 ( 4 , 4 )

^  = o) = 5 * H <4 1 5 >

where C is a junction capacitance , and R is a differential resistance at OV

In Figure 4.32, computer simulation, with cu=lMHz, and /?=100£2, shows two

solutions at point a, and b which satisfy equation (4.1) Since the inductive

reactance, L increases from OV to 4V ( Licst = 1 /eo2|G«/| ), only the capacitance
-9

at point b ( 4.417 • 10 F ) should be chosen.
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Figure 4.31 Negative capacitance in an amorphous SiC/c-Si heterojunction diode
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Figure 4.32 Computer simulation of AL(C) according to the variation of C,

where AL(C) = R ^ l + f f l V c 2) with m=lMHz, and /*=100Q.
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a = 4.963- 10 ,b  = 4.417- 10 ,c  = 8.45- 10
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When junction capacitance is larger than the capacitance at point c (8.45 -10 F ), 

the second term of equation (4.2) disappears. A measured inductive reactance is 

the same as the intrinsic inductance which is developed in the relaxation layer 

(Llcsl = L). Assuming a increasing diffusion or depletion capacitance is

C(V) = A exp(qV / BkT) (4.16)

From C(0) = 4.417- 10'9 F, and C(4) = 8.45- l(f9 F

C(V) = 4.417- KT9 exp(0.16 V) F (4.17)

Using the above capacitance, which increases with voltage, and proper inductance 

which decreases exponentially with voltage (see section 3.1), computer simulation 

of capacitance vs. voltage can be obtained from the equation (3. 30). Figures 4.33, 

4.34, and 4.35 show the results of the computer simulation (C jest(V) vs. V) using 

MATHCAD 5.0. In Figure 4.33 and Figure 4.34, the simulation of C-V is almost 

the same negative capacitance shape as the experiment of C-V with the a-SiC/c-Si 

diode shown in Figure 4.31. An approximate 50% decrease of differential 

resistance, and a small increase of the inductance value, resulted in an almost 

constant capacitance of -1500pF even with a change in voltage. This is shown in 

Figure 4.35. This phenomenon of constant negative capacitance with a change in 

voltage is the same as the experiment of the C-V with a disordered Si/c-Si diode as 

shown in Figure 4.23. Therefore, the difference of the C-V measurement between 

a disordered Si/c-Si diode and a a-SiC/c-Si diode depends on resistivity, and the 

inductance which is developed in thin relaxation layer.

Figure 4.36 also shows the negative capacitance of an amorphous SiC /c-Si 

diode (thickness of about 60nm in a-SiC). Between -3.5V and 3.5V, the shape of
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negative capacitance is also parabolic, and inductance is 3(tyxH near zero bias. 

Inductance is a constant 36/xH above 3.5V, and below -3.5V. The variation of 

inductance with a variation of frequency in a-SiC/c-Si was also examined by a 

LCR Analyzer. The inductance was almost constant between 1MHz and 50KHz, 

and this is the same result as that of a real inductor But, the inductance value 

which is proportional to was not observed. A better injecting contact on the

non-hydrogenated amorphous SiC, proper control of a-SiC thickness, and better 

barrier contact on the crystalline Si, might help to find the inductance which is 

proportional to

-3.5-10

-4-10

-4.5-10

-5-10

-15 -10 ■5 0 5 1510

Figure 4.33 Computer simulation of a circuit model (Ch.3.4) in C-V when 
frequency=lMHz, and the differential resistance, R=100f2, 
C(V) = 4.417-10"9 exp(0.16 \V\) F, L(V) = 1(T5 • e^ 001'1 V[)H,
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Figure 4.34 Computer simulation of a circuit model (Ch.3.4) in C-V when 
frequency^ 1MHz, and the differential resistance, R=45£2, 
C(V) = 4.417 • 10"9 exp(0.16 \V\) F, L(V) = 10"5 • e-(00l!
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Figure 4.35 Computer simulation of a circuit model (Ch.3.4) in C-V when 
frequency^ 1 MHz, and the differential resistance, R=45£>, 
C(V) = 4.417-10"9 exp(0.16 |F|) F, L(V) = 10^7 • fT^01'1 vl)B
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Figure 4.36 Negative capacitance of an amorphous SiC/c-Si diode. 
Inductance is 30/xH near zero voltage
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CHAPTER 5

SUMMARY OF RESULTS AND CONCLUSIONS

5.1 Summary of Results

A novel heterojunction diode, consisting of excimer laser-induced disordered Si on 

crystalline Si, was fabricated. A second type of heterojunction diode structure of 

non-hydrogenated amorphous SiC on crystalline Si was also fabricated. Both 

disordered Si and non-hydrogenated a-SiC are high resistivity, wide energy gap 

relaxation semiconductors. Compared to ordinary heterojunction diode structures, 

these heterojunction diodes have injection contacts on the relaxation 

semiconductors and Schottky barrier contacts on the c-Si.

Interesting negative capacitance effect, negative resistance, space charge 

limited current, and bistable switching with long term memory were observed in 

the electrical characteristics of I-V and C-V. The phenomena of negative 

capacitances were discovered in both heterojunction diodes from - lOv to lOv for 

the first time, and these phenomena were shown to have an inductive behavior by 

a HP-LCR analyzer. A theoretical model was developed to explain this 

phenomenon and it was compared experimentally. The possibility of using the 

negative capacitance effect to simulate inductance is proposed.

The excimer laser process was done at excitation voltages of 20 - 24kv with a 

pulse period of 0.1 - 1 second. The laser irradiated the c-Si surface before, as well 

as, after A1 contact deposition by magnetron sputtering. With the irradiation of the 

c-Si surface, an injecting contact was made with the rough surface which results in 

a high surface recombination effect. A disordered Si was made due to the damage 

from the laser irradiation. The location of dopant impurity would be changed from 

a substitutional site to a interstitial site due to the laser irradiation, and this results
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in a high resistivity disordered layer. AFM pictures, of the disordered Si surface, 

were taken. With the irradiation of the A1 contact on the p-Si, laser induced Ohmic 

contact was also achieved with a thin p+ layer. During the localized heat treatment 

by the pulsed laser irradiation, the p-Si was dissolved in the A1 up to its solubility, 

and the A1 was diffused into Si. A metallurgical reaction between A1 and p-Si led 

to the formation of a thin p+ layer near the interface and produced an Ohmic 

contact. A new theoretical model, to obtain the reduction of Schottky barrier 

height with this thin p+ layer, was proposed. Poisson's equation, Harrison 

tunneling theory, and WKB approximation were used to calculate a tunneling 

transmission probability and tunneling current under thermionic field emission. 

From the calculation of a minimum tunneling current, and the position of 

maximum tunneling distance, an effective reduced Schottky barrier was derived. 

Computer simulation with this model showed that, at least, a 4nm of p+ layer 

would be needed for a complete Ohmic (field emission) contact in Si with doping 

of lO ^/cm A  With strong laser irradiation (excitation voltage of 24kv, period of 

lsec) on the A1 contact, a high resistivity layer (20nm) was observed just below 

the p+ layer (8nm) by the C-V doping profile. Damage would be incurred during 

the rapid freeze portion of the alloying process with strong laser irradiation.

Excellent negative resistance phenomenon was observed, after the strong 

laser inadiation on the A1 contacts, through the use of I-V measurements. The 

peak current was approximately 27mA at 1.4v and the slope in the negative 

resistance region was 79Q. The reasons for the negative resistance were explained 

by the intrinsic and extrinsic properties. In the case of the intrinsic property, there 

would be a modification of the Si band structure due to the strained region that 

was induced by the laser irradiation. With the modified band structure, carriers 

would transfer from a lower valley, where carriers have high mobility and small 

effective mass, to an upper valley where carriers have low mobility and large
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effective mass. This decrease of mobility will result in a negative resistance like 

that shown in GaAs. In case of the extrinsic property, the negative resistance 

would be related to the change of carrier density due to the carrier capture of the 

laser induced trap. The capture of an electron (hole), by a negatively (positively) 

charged impurity center, is strongly influenced by the presence of the potential 

barrier arising out of the Coulomb repulsion. Heating the carriers by an electric 

field will tend to increase the probability of tunneling through the barrier, and so 

increase the capture rate. The resultant fall of carrier density, as the field increases, 

will cause a bulk negative resistance.

Bistable switching, between a stable low-conductivity state and a stable high- 

conductivity state, which was maintained without bias for several months, was 

observed in both non-hydrogenated a-SiC/c-Si diodes and disordered Si/c-Si 

diodes. This switching phenomenon is believed to be governed by the presence of 

defects. The defects consist of intrinsic defects in the non-hydrogenated 

amorphous SiC, and disordered Si, as well as, extrinsic defects which come from 

lattice mismatch between the relaxation materials and c-Si. Carrier capture and 

release by the traps could be responsible for the switching. After a current pulse of 

3 mA for 1 second, a low-impedance state was immediately switched to a high- 

impedance state. Carriers would be captured by the filling of the traps. Carrier 

density was decreased, which resulted in a switching to the high-impedance state. 

In the memory condition of the switching, it seems necessary that the ionized traps 

be Coulombic repelling states, doubly negative charged before ionization and 

singly negative charged after, so that the barrier they present to the electrons 

prevents them from refilling immediately and eliminating the memory.

Very interesting negative capacitances were discovered from - lOv to lOv in 

both disordered Si/c-Si diodes and a-SiC/c-Si diodes through the use of the C-V 

measurements. This negative capacitance phenomenon was proved to be an
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inductive behavior by a LCR Analyzer. These heterojunction diodes acted as 

inductance diodes. The C-V measurement of a real inductor also showed a 

negative capacitance in both biases. An inductive part of the heterojunction diode 

was derived theoretically using the relaxation theory and the Shockley theory. A 

circuit model of the diode was derived and it had good agreement with both the 

experiment of C-V and a LCR analyzer measurement and also with the computer 

simulation.

5.2 Conclusions

It was shown that it is possible to make a heterojunction diode structure that has 

small signal inductive behavior using a thin, less than lOOnm, high resistivity 

region. One type inductive diode had a thin region of disordered Si made using an 

excimer laser. It was also demonstrated that an inductive diode behavior could be 

obtained with a thin layer of non-hydrogenated amorphous SiC made by LPCVD. 

In the device structure of both heterojunction diodes, an injecting contact was 

made on the relaxation semiconductor, and a Schottky barrier contact was made on 

the substrate, c-Si.

It was shown that a negative resistance, space charge limited current, and 

bistable switching with long term memory could be obtained with diodes having 

high resistivity regions. An interesting small signal negative capacitance effect was 

discovered by C-V measurement over the - lOv to lOv bias range. This was the first 

reported measurement of negative capacitance for negative as well as positive bias. 

An inductive behavior was demonstrated with the negative capacitance effect 

using a LCR analyzer. In a disordered Si/c-Si heterojunction diode, a constant 

negative capacitance of 1520pF was observed from - lOv to lOv at 1MHz. The 

measured inductance value was approximately 5.5juH/mm^ at 1MHz. This 

inductance value was increased as l/o>2 from 1MHz to 30KHz. Compared to a
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microstripline-inductor in MMIC (Monolithic Microwave Integrated Circuit), this 

inductance diode could have a large inductance per area (lmH/mm^ at 30 KHz). 

The device concept could also be employed to make a inductor below microwave 

frequency range. Approximately 20% of the samples of the disordered Si/c-Si 

diodes showed this inductive dependence on frequency while 80% of the samples 

showed a constant inductance even with the variation of frequency. In an a-SiC/c- 

Si heterojunction diode a negative capacitance was also observed in both biases. 

The measured inductance value was 12^xH/mm2 above 3.5v and below - 3.5v and 

lOjtxH/mm^ near zero bias at 1MHz. The inductance was almost constant between 

1MHz and 30KHz.

A negative capacitance effect was observed in a NiSi^-Si diode only above

0.48v at low temperature, 200K by Wu [7] in 1990. But, his charge delocalization 

theoiy can not explain negative capacitance obtained with both biases at room 

temperature for this research.

The small signal inductive behavior of this diode was shown to be possible 

theoretically using the dielectric relaxation theory of Roosbroeck. Requirements of 

the inductive behavior were Tr (transit time) < Td (dielectric relaxation time). 

To (lifetime) < Td and (OTi < 1. The derived inductance value was constant with 

changes in frequencies if coTd < 1 and proportional to \/(o2 if caTd > 1. This 

dependence of L on frequency was measured with a LCR analyzer. The theoretical 

results using a circuit model showed that the negative capacitance followed the 

relation of |Cw«| = I / (co2 Lien). This relation had good agreement with the LCR 

analyzer measurement. Moreover, computer simulation of the circuit model also 

showed similar negative capacitance behavior.

It was concluded that effective inductive behavior is caused by conductivity 

modulation due to carrier injection in a thin relaxation semiconductor. In a circuit 

model, when the inductance is connected with a large series junction capacitance,
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the current lagging effect is dominant. As a result, this inductive effect can be 

demonstrated by C-V measurements. It was also pointed out that the lifetime can 

be decreased by injecting excess carriers, with carrier delocalization due to carrier 

screening of impurity, into a low doped relaxation semiconductor. This would lead 

to a more pronounced relaxation behavior.

It is suggested that a novel heterojunction diode may be suitable for an 

inductor of Integrated Circuits and an better inductance diode can be made by 

optimum thickness control of the relaxation material with a large permittivity, high 

resistivity, and short lifetime. It is also suggested that when the heterojunction 

diode has its stable negative resistance property, a low loss inductance diode with 

very high quality factor can be achieved.
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