
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Theses Electronic Theses and Dissertations 

Spring 5-31-1995 

Application of signal processing techniques for measurement of Application of signal processing techniques for measurement of 

muscle fiber conduction velocity muscle fiber conduction velocity 

Satheesh Kumar Swaminathan 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/theses 

 Part of the Biomedical Engineering and Bioengineering Commons 

Recommended Citation Recommended Citation 
Swaminathan, Satheesh Kumar, "Application of signal processing techniques for measurement of muscle 
fiber conduction velocity" (1995). Theses. 1145. 
https://digitalcommons.njit.edu/theses/1145 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons 
@ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=digitalcommons.njit.edu%2Ftheses%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1145?utm_source=digitalcommons.njit.edu%2Ftheses%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

APPLICATION OF SIGNAL PROCESSING TECHNIQUES FOR
MEASUREMENT OF MUSCLE FIBER CONDUCTION VELOCITY

by
Satheesh Kumar Swaminathan

The objectives of this study were to evaluate if muscle fiber conduction velocity

(MFCV) could be used as a reliable indicator of fatigue and to characterize the recovery

of MFCV after a fatiguing contraction. The decline of MFCV with fatigue was modelled

using linear regression and compared with the decline in median frequency (MF). It was

found that the percent decline in MF with fatigue was greater than that of MFCV with

fatigue and that the decline of MFCV was consistent in all subjects tested. It was thus

determined that MFCV could be used as a reliable indicator of fatigue. Possible

explanations for the recovery of MFCV after fatigue were given. The recovery curves for

all subjects were curve fit using the exponential peeling technique. A comparison of the

time constants showed that 8 out of 9 subjects had values between 2-4 minutes,

indicating that the recovery process had a similar response in these 8 subjects.

Decomposition of the EMG is a useful tool which helps us better understand the

functioning of the neuromuscular system. An algorithm was developed to decompose the

EMG into its constituent motor units based on the work done by Deluca et al. Preliminary

results were obtained. However, further research is needed in this area.
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CHAPTER 1

INTRODUCTION

Biomedical Engineering is an interdisciplinary field. It requires inputs from physicians,

physiologists and engineers. The contribution of each of the three groups of people is

essential to the understanding of certain pathological problems in the human body. As an

engineer in the field of Biomedical Engineering, I have used engineering tools to estimate

and characterize the myoelectric signal, namely the electrical signal that is picked up

from electrodes , as a result of the activity of the underlying muscle fibers. The following

document describes the research conducted in, developing a method for estimating the

conduction velocity of the muscle fiber using the technique of cross correlation, and

developing and implementing a method for decomposing a myoelectric signal into its

constituent motor units.

1.1 Physiology of the Muscle

Muscles are tissues that tend to shorten upon chemical and electrical stimulation [4]. The

underlying mechanisms of contraction of the muscle and certain fundamental concepts

will be discussed below.

1.1.1 Resting and Action Potential

A cell(muscle or nerve cell) has two environments namely, the internal environment and

the external environment [1]. A muscle/nerve cell contains a high concentration of
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potassium ions and a lower concentration of sodium and chloride ions in its internal

environment. Conversely, the external environment of the muscle cell/nerve cell contains

a larger concentration of sodium and chloride ions and a lesser concentration of

potassium ions.

The cell membrane of a muscle cell (sarcolemma) is selectively permeable. This

means that the membrane is more permeable to certain ions and less permeable to others.

There are other mechanisms which are responsible for the establishment of the resting

membrane potential. One of these is active transport and in the case of muscle cells the

active transport pump (Na - K- ATP ase Pump ) transports 3 sodium ions out of the cell

(into the interstitial fluid) in exchange for 2 potassium ions (into the intracellular fluid) at

the expense of 1 molecule of ATP (Adenosine Triphosphate) [1]. As a result of this pump

we have a charge separation across the plasma membrane of the muscle cell i.e greater

concentration of sodium ions outside the plasma membrane and larger concentration of

potassium ions inside the membrane (inside the cytosol ). A definition of equilibrium

potential at this point will help us better understand the establishment of the resting and

action potential. The equilibrium potential is that potential at which the electric force is

equal to the concentration force (gradient) across the membrane. At the equilibrium

potential there is no net movement of the ion, because the opposing forces acting on it are

exactly balanced [1].

With these concepts in mind we can go into the mechanisms which are

responsible for establishment of the resting and action potential. As described earlier a

muscle cell has a larger intracellular concentration of potassium ions and a larger



3

extracellular concentration of sodium and chloride ions. It is also known that the plasma

membrane of the muscle cell is 75 times more permeable to potassium than to that of

sodium. Hence the inner side of the plasma membrane is negative as compared to the

outside due to the increased concentration of the K+ ions inside the cell and Na+ ions

outside the cell. Due to the increased permeability of the plasma membrane to the K+

ions, the resulting potential across the membrane, which is often referred to as the resting

membrane potential, is closer to the equilibrium potential of the K+ ions than that of the

Na+ ions. The role of the chloride ions is relatively minor because the cell membrane is

permeable to chloride ions and so the equilibrium potential of the chloride ions is equal to

the resting membrane potential of the plasma membrane[1].

A typical value for the resting membrane potential is -90 my, the inside of the

membrane being more negative than the outside. The equilibrium potential of potassium

is -94 mV and that of sodium is +61mV [1]. Referring to figure 1.1b we observe that

there is a diffusion of K+ and Na+ ions into and out of the cell. The net equilibrium

potential (EP) across the cell membrane depends upon the EPs of all the interacting ions.

Hence the resting membrane potential or the net equilibrium potential (measured with

respect to the inside of the cell) has a value closer to that of the EP of potassium, owing

to the higher concentration of potassium ions inside the cell membrane.

Whenever the plasma membrane is subjected to a stimulus eg. electrical, the permeability

of the membrane changes due to the opening up of voltage gated sodium channels. This

causes an influx of sodium ions into the cell thereby changing the membrane potential of

the plasma membrane from its resting potential value. As a result the potential of the
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membrane rises rapidly in the positive direction. The normal polarized state of -90 mV is

lost and in most cases the potential overshoots beyond the zero level and becomes

positive, a typical range being 20 - 35 mV [2]. This rapid change in the potential of the

membrane from a value of -90mV to +20 my is called depolarization and it is the

depolarization which results in an action potential. Following the depolarization (within

0.0001 seconds) the sodium channels begin to close and potassium channels open more

than normally. Then, rapid diffusion of potassium ions to the exterior re-establishes the

normal negative resting membrane potential. This is called repolarization of the

membrane [2]. The typical duration of a muscle action potential is 1 millisecond. Figure

1.2 illustrates a typical action potential.

Figure 1.1 a
Diffusion Potential

A) Establishment of Diffusion Potential due to Potassium ions diffusing from inside the
Cell to the outside through a membrane that is permeable only to potassium.

B) Establishment of Diffusion Potential when the membrane is permeable only to Sodium
ions.
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Figure 1.1b
Establishment of Resting Membrane Potentials in Muscle Fibers

A)When the Membrane Potential is caused by Potassium diffusion alone.
B)When the Membrane Potential is caused diffusion of both Sodium and

Potassium ions.
C)When the membrane potential is caused by the diffusion of both Potassium and

Sodium ions and the pumping of the ions by the Na - K -ATP ase Pump.
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Figure 1.2
A Typical Action Potential

1.1.2 Mechanism of Contraction of Muscle

Figure 1.3 gives the basic structure of a muscle and its constituent elements. As seen in

the figure, a muscle is composed of several muscle fibers. Each muscle fiber in turn is

made up of a number of myofibrils which are cylindrical elements located perpendicular

to the axis of the muscle fiber [1]. Each myofibril in turn is composed of number of thick

and thin filaments arranged in a repeating pattern along the length of a myofibril. One

unit of this repeating pattern is referred to as a sarcomere. The thick filaments are

composed entirely of a contractile protein myosin and the thin filaments contain the

contractile protein actin as well as two other proteins troponin and tropomyosin.
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