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ABSTRACT

DEVELOPMENT OF A MULTI-LEAD TRANS-THORACIC IMPEDANCE
PNEUMOGRAPH FOR HEART RATE VARIABILITY STUDIES

by
Curtis Bashford

In this study, a device that measures respiratory tidal volume and ECG for use in
heart rate variability studies, was designed, built and tested. The device developed is a
Multi-Lead Trans-Thoracic Impedance Pneumograph, which determines tidal volume on a
breath by breath basis, utilizing both hardware and software. It uses standard ECG
electrodes which provide increased comfort and mobility to the subject over traditional
spirometry methods. The device operates similar to traditional bipolar impedance
pneumographs except that instead of only one lead (electrode pair), four leads are
acquired simultaneously using time-division multiplexing; providing data from different
locations and vectors on the subjects chest.

Respiration, ECG and spirometry data were collected using the device from 6
normal, healthy subjects for several trials of normal and paced breathing. Results were
correlated against the spirometry data to determine whether sufficient data are provided by
the four leads and also to determine the accuracy of the device. It was concluded that
combining data from all 4 leads using generalized additive modeling results in correlations
in the range of 0.8 - 1.0, but more investigation is needed to determine usefulness in actual

HRYV applications.
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CHAPTER 1

BACKGROUND

1.1 Introduction
This thesis involves the measurement of physiological signals and quantities. Knowledge
of both engineering and physiology are combined in an attempt to move one step closer to
understanding and solving one of the many unknowns of the workings of the human body.
This chapter contains background information that forms the foundation upon which the

thesis is based.

1.2 Objective

The objective of this thesis is to design, build and test a device that can be used to measure
both electrocardiogram (ECG) and respiratory tidal volume. This study is part of ongoing
research in heart rate variability (HRV) at the Kessler Institute for Rehabilitation in West
Orange NJ. For the HRV studies it is desired to be able to measure respiratory tidal
volume by a method that does not restrict motion, cause discomfort or cause the subject
to be overly conscious of the breathing effort. Traditional spirometry provides accurate
measurements, but can cause discomfort when used for any length of time, limits motion
and inherently makes the subject very conscious of their breathing effort.

Since it is necessary to acquire the patients ECG, it was decided to use trans-

thoracic (across the thorax or chest) impedance pneumography which also connects to a



subject using only electrodes and lead wires.  Trams-thoracic impedance (TTI)
pneumography is a technique that has been used for years to determine respiration rates,
but has had only limited success for measuring respiratory volumes consistently. Prior
research has shown that different electrode placements yield varied results and that there is
no one optimal position for different subjects or even for different breathing patterns in
any one subject [3], [8]). Based on this it was decided to develop a device that can acquire
respiration data from multiple leads or electrode pairs (thus the name Multi-Lead)
positioned around the patients chest simultaneously in the hopes that there is enough
information in the data to accurately determine tidal volume under varied conditions. To
evaluate the performance of the device, data would also be acquired from a spirometer so
that the results could be correlated and accuracy accessed. The device developed in this
study is a Multi-Lead Trans-Thoracic Impedance Pneumograph, which determines tidal
volume on a breath by breath basis, utilizing both hardware and software. If successful,
the intended operation would be such that a spirometer would only be used at the
beginning of a clinical trial for calibration purposes, after which the multi-lead TTI
pneumograph would acquire ECG and respiration data and the tidal volumes be

determined.

1.3 The Heart and the Electrocardiogram
The heart is a muscular organ located in the chest (thoracic) cavity and enclosed in a
fibrous sac, the pericardium. The heart is divided longitudinally into right and left halves,

each consisting of two chambers, an atrium and a ventricle [15]. The heart is actually two



separate pumps, a right heart that pumps the blood through the lungs and the left heart

that pumps the blood through the peripheral organs as shown in Figure 1.3.1 [2].

[HEAD and UPPER EXTREMITY|

Aorta

Pulimonary aitery

Superior

vena cava
Pulmonary vein

Pulmanary Left atrium
vaive Aortic valve

; itral valve
Right Mitral valve
atrium

Left ventricle

Tricuspid
valve
inferiar
vena cava

Right
"\ ventricle §

[TRUNK and LOWER EXTREMITY]|

Figure 1.3.1 Structure of the heart and course of blood flow through the chambers [2].

The pumping action for each heart beat or cardiac cycle, is initiated and controlled
by an organized sequence of electrical activity through a specialized excitatory and
conducting system. The conducting system of the heart is shown in figure 1.3.2. The

origin of the heart beat is a small strip of specialized muscle in the anterosuperior wall of



the right atrium called the sinoatrial (S-A) node. The S-A node is refereed to as the
pacemaker of the heart because it contains cells that are autorhythemic, i.e. they are
capable of autonomus rhythmical self-excitation. The inherent rhythm of the S-A node is
approximately 100 beats per minute (BPM). The heart is provided with a rich supply of
both sympathetic and parasympathetic nerves which serve to control heart rate by
modifying the inherent thythms of the S-A and atrioventricular (A-V) nodes. Sympathetic
stimulation has the effect of increasing heart rate while parasympathetic stimulation has
the opposite effect and tends to slow heart rate. This neural intervention is of interest for

heart rate variability (HRV) studies.
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!
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~- Right bundle
branch

Figure 1.3.2 Conducting system of the heart [2].



Action potentials that are generated in the S-A node trigger the sequence of
electrical activity that cause a heart beat. From the S-A node, the wave of excitation
spreads over the atria, causing them to contract and through the internodal pathways to
the A-V node at the base of the right atrium. The only electrically conductive path
between the atria and ventricles is through the A-V node. Once at the A-V node the
signal is delayed by approximately 0.1 second and is then enters the ventricles via the
bundle if His. It is then spread rapidly down the right and left bundle branches to the
Purkinje fibers which spread the signal to all parts of the ventricles, causing the ventricles

1o contract.
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Figure 1.3.3 The normal electrocardiogram (ECG) [2].



The spread of the electrical activity throughout the cardiac tissue can be detected
and recorded at the surface of the skin as a sum of many action potentials and is refereed
to as the electrocardiogram (ECG). The normal ECG shown in figure 1.3.3 is composed
of a P wave, a “QRS complex,” and 2 T wave. The QRS complex is often three separate
waves, the Q wave, the R wave, and the S wave [2]. The P wave is caused by electrical
currents generated as the atria depolarize prior to contraction, and the QRS complex is
caused by electrical currents generated as the ventricles depolarize. The T wave is
generated as the ventricles repolarize. Repolarization of the atria is masked by the QRS
complex. The rates of conduction can be seen by observing the ECG. The PQ interval
represents the delay at the A-V node. The Q-R interval identifies the ventricular
depolarization phase as being fast and strong, while the ventricular repolarization shown
by the T wave is much slower.

The electrical connections for the standard bipolar limb leads is shown in figure
1.3.4, The limb leads are bipolar in that the ECG is recorded from two specific electrodes
on the body. The ECG is typically recorded using silver-silver-chloride type surface
electrodes. The limb leads use three electrodes placed on the body (or chest) and are
referred to by their placement as right arm (RA), left arm (LA) and left leg (LL). Ofien a
ground or guard electrode is applied to the right leg (RL).

This configuration of electrodes provides for ECG measured from three leads
(electrode pairs), lead I, lead I and lead ITI. Lead I is measured with the negative terminal
at RA and the positive at LA. Lead II is measured with the negative terminal at RA and

the positive at LL and lead III is measured with the negative terminal at LA and the



positive at LL. Each lead provides a different vector or electrical view of the heart. Lead
11 is commonly used for monitoring because it provides the largest QRS of the three leads
and it is of positive polarity. Devices for the recording of ECG are specialized high gain
amplifiers with a means for recording or displaying the amplified signal Since the
amplitude of a typical lead II QRS is only ImV special attention must be given to noise

rejection.

Figure 1.3.4 Conventional arrangement of electrodes for recording of the standard
electrocardiogram (ECG) [2].



In this study, only a lead I ECG is acquired. This is all that is necessary for HRV
studies since lead II provides a large QRS and the only information required is accurate
detection of the R wave (peak of the QRS). A detailed description of the circuitry used to

acquire the ECG is provided in chapter 2.

1.4 Heart Rate Variability Studies

Heart rate is the rate at which the heart repeats it’s pumping cycles and is typically
expressed in beats per minute (BPM). By observing electrical activity of the heart with
surface electrodes and viewing the electrocardiogram or ECG, the different waveforms
that occur for each cardiac cycle (heart beat) can be seen; P-wave, QRS complex and T-
wave. The standard method of heart rate measurement is to detect the R-waves and
determine the average count over some fixed time frame. If the R-R intervals (time
between successive beats) are measured accurately, it can be observed that there is
variability in heart rate. The basis for heart rate is the intrinsic pacemaker of the sinoatrial
node. This pacemaker action is modified by neurohumoral mechanisms since the heart
receives a rich supply of parasympathetic and sympathetic neural fibers. The fluctuations
m heart rate, known as heart rate varability, discloses activities of both the
parasympathetic and sympathetic nervous systems. Generally, sympathetic input increases
beart rate while parasympathetic input decreases it[lé]. Investigation of these neural
control mechanisms is the basis for heart rate variability ( HRV) studies.

A HRYV signal can be formed by transforming R-R intervals into a time series. As

noted by Kamath and Fallen [7], only through a transformation of the time series events to



the frequency domain can one appreciate the existence of physiological rthythms oscillating
at specific frequencies. Over the last 20 years, the power spectrum (PS) has come to
dominate the quantitative methods. The heart rate power spectrum has been found to be
an effective noninvasive measure for studying neural modulation of the heart in a variety
of clinical and research settings [17]. The power spectrum analysis of heart rate PS-HRV
yields three major bands. A low-frequency peak that appears within the spectral band
ranging from 0.06 to 0.15 Hz is associated with baroreceptor-mediated blood pressure
control. A high-frequency peak in the range 0.15 to 0.4 Hz is strongly correlated with
respiratory sinus arthythmia. A very-low-frequency peak below 0.05 Hz has been linked
with vasomotor control and/or temperature control [7}, [18]. Figure 1.4.1 shows the

spectrum of inter-beat intervals (IBI) from a subject, in which there is a peak at the

respiration frequency.
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Figure 1.4.1 A spectrum of a heart rate variability signal [18].
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Zhang [18] has noted that respitation-asscoiated heart rate variability (RA-HRV)
has recently become a topic of considerable interest for investigations of normal
physiology and disease because the potential utility of RA-HRV as an index of vagal
effects on the heart assumes special importance in understanding of the complexities of
autonomic control. It is known that inspiration increases heart rate and expiration
decreases heart rate. Conventional time-series techniques such as power spectrum
analysis and complex demodulation have been used to quantify RA-HRV. Power
spectrum analysis separates the power on the basis of the frequency components in the
interbeat intervals. Complex demodulation enables the amplitude and phase of respiration
frequency components to be displayed as functions of time [18].

Since the present study is part of ongoing research in HRYV, its purpose is to
develop a device that measures both ECG and respiratory tidal volume, ultimately to be
used for HRV studies. The respiration measurement technique selected is impedance
pneumography. This method was selected in part because it complements the HRV
methods since both impedance pneumography and ECG use electrodes. Impedance
pneumography also allows greater comfort and less restriction for the subject as opposed

to using a spirometer for respiration measurements.

1.5 Respiratory Measurements
The process of respiration can be divided into four major mechanistic events: (1)
pulmonary ventilation, which means the inflow and outflow of air between the atmosphere

and the lung alveoli, (2) diffusion of oxygen and carbon dioxide between the alveoli and
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the blood, (3) transport of oxygen and carbon dioxide in the blood and body fluids to and
from the cells, (4) regulation of ventilation and other facets of respiration [2]. Within the
scope of this study we are concerned only with the first of these aspects and only as it

pertains to lung volumes and their measurement.

nasal cavity

nasal
nasal passage ==~

» oral pharynx
oral cavity eee""
~laryngeal
larynx
trachea

left
lung

diaphragm

Figure 1.5.1 Organization of the respiratory system [15].
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The respiratory system as shown in figure 1.5.1 comprises the lungs, the series of
airways leading to the lungs, and the chest structures responsible for movement of air in
and out of the lungs. The thoracic cavity is filled by the lungs together with the heart,
great vessels, esophagus, thymus and certain nerves. The lungs are not simply hollow
balloons but have a highly organized structure consisting of air-containing sacs and tubes,
blood vessels, and elastic connective tissue [15]. The conducting portion of the
respiratory system is composed of a series of branching tubes that begin at the nose and
mouth and continually branch and become smaller until they finally terminate in the sacs
called the alveoli. The alveoli are surrounded by capillaries, the total area of which is
approximately 135m’ or roughly 80 times the external surface area of the body. This
immense interface between the alveoli and capillaries is the site where gas exchange takes
place.

To exchange air, the lungs can be expanded and contracted in two ways: (1) by
downward and upward movement of the diaphragm to lengthen or shorten the chest
cavity, and (2) by elevation and depression of the ribs to increase and decrease the
anteroposterior diameter of the chest cavity [2]. Figure 1.5.2 demonstrates how the
muscular movements (diaphragm, abdominal and intercostal) change the dimensions of the
chest cavity during inspiration and expiration. Alveolar pressure changes are caused by
these dimensional changes of the lungs. Air moves into (inspiration) and out of
(expiration) the lungs because the alveolar pressure is made, alternately, less than and

greater than atmospheric pressure [15].
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Figure 1.5.2 Expansion and contraction of the thoracic cage during expiration and
inspiration, illustrating especially diaphragmatic contraction, elevation of the rib cage, and
function of the intercostals [2].

The volume movement of air into and out of the lungs can be recorded using a
process called spirometry. There are many types of spirometers, most of which generate a
tracing or output signal as a subject breaths into a tube connected to a gas chamber. The
spirometer tracing shown in figure 1.5.3 shows changes in lung volume under different
conditions of breathings. From the figure it can be seen that there are four volumes and
four capacity regions identified, which are defined and typical volumes indicated as
follows:

o Tidal volume is the volume of air inspired or expired with each normal breath,

~ 500 mi.

e Inspiratory reserve volume is the extra volume of air that can be inspired over

and beyond the tidal volume, ~3000 mL.
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e Expiratory reserve volume is the volume of air that can still be expired by
forceful expiration at the end of a normal tidal expiration, = 1100 mL.

o Residual volume is the volume of air remaining in the lungs after the most
forceful expiration, ~ 1200 mL.

e Ingpiratory capacity equals the tidal volume plus the nspiratory reserve
volume, = 3500 mL.

e Functional residual capacity equals the expiratory reserve volume plus the
residual volume, =~ 2300 mL.

o Vital capacity equals the inspiratory reserve volume plus the tidal volume plus
the expiratory reserve volume, ~ 4600 mL.

e Total hung capacity is equal to the vital capacity plus the residual volume, =

5800 mL.

6000~ ﬂ
inspiratory
§ reserve
5 volume | i\ oiratory vital
§ capacity capacity
3
C
"~ 2900+
s tidal total
2 volume lung
5 00 volume
§ expiratory
“,’ reserve
volume | fynctional
1200 - residuat
" cit
residual capacity residual
volume volume
0

time

Figure 1.5.3 Lung volumes and capacities as measured on a spirograph. When the
subject inspires the pen moves up; with expiration it moves down [15].
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Another respiratory term, minute volume, is the total amount of new air moved into the
respiratory passages each minute, and this is equal to tidal volume times the respiratory
rate.

For heart rate varability studies, the only respiratory measurement of interest is
tidal volume. Traditionally these measurements are performed with a spirometer.
Spirometry provides accurate results but requires the subject to wear a face mask with
connective tubing which is uncomfortable for long term use and restricts motion. In the
following chapters the development of an alternate method of tidal volume measurement,

Multi-lead trans-thoracic impedance pneumography, is discussed in detail.

1.6 Impedance Pneumography
Impedance pneumography is an indirect technique for the continuous, dynamic
measurement of respiratory volume. The impedance pneumograph is a specialized type of
impedance recorder and measures respiration through the relationship between thoracic
electrical impedance and respiratory volume [10]. The basic quantity measured by the
impedance pneumograph is trans-thoracic electrical impedance change [10]. The
measurements are trans-thoracic in that the impedance is measured across the thoracic
cavity or chest of a subject. The impedance pneumograph operates on the concept that
trans-thoracic impedance changes in proportion with changes in the geometry of the
thoracic cavity that occurs with breathing. Typically, on inspiration the diaphragm lowers,
the lungs fill with air and the chest expands resulting in an increase in impedance. As

stated by Hamilton [3] and Wadhwani et. al.[16], trans-thoracic impedance measurements
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of tidal volume have been studied by many investigators, but there is a lack of agreement
about the nature of the impedance signal associated with breathing. Possible sources of
the impedance changes that have been cited by investigators include artifact at the
electrode-skin interface, current flow through the posterior path of the thorax and changes
deep within the chest. As noted by Nyboer[9], bioelectric impedance has a frequency
dependent component as related to reactive impedance. Capacitive impedance 1s present
at audio and intermediate radio frequencies at the boundaries of cells. Above 5SMHz, the
membranes of cells are well shunted to the extracellular matter and other cells.

Studies dating back to the early 1900’s by researchers such as Cremer (1907),
Atzler (1935), Fenning (1937) and Nyboer et. al.(1940) have documented thoracic
dielectric changes. Early instrumentation techniques included modulated oscillator and
bridge circuit approaches. The most common of recent approaches is the constant current
pneumograph. This technique uses a constant current AC voltage that is passed through
the subject so that the peak to peak carrier voltage anmﬁtude across fhe subject is
proportional to the magnitude of the subject impedance. Any variation in the impedance
magnitude causes modulation of the carrier amplitude. The impedance information is
recovered by a demodulator such that the output signal is proportional to changes in the
magnitude of the subject impedance[10]. The frequency of the constant current signal that
is applied to the electrodes is typically 50-100KHz. The high frequency is necessary for
two reasons, to reduce effects caused by contact impedance at the electrode to skin
interface, and to preclude the possibility of subject stimulation. Furthermore, frequencies

above 100KHz are not practical because of hardware constraints. Research done by
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Rosell et. al.[11], shows that skin impedance at a frequency of 1Hz, can vary anywhere
from 10KQ to IMQ) for measurements at various sites on the chest. It was also noted
that the impedance becomes relatively constant at high frequencies for the different sites;
about 200Q2 at 1KHz and 120€) at 1 MHz. Pacela [10], recommends a constant-current
value on the order of 0.1 to 1.0 mA p-p.

As discussed by Hamilton[3], Hua et. al.[6], Luo et. al.[8], Pacela[10], Sahakian
et. al.[12], there are two basic electrode systems that have been used in bioimpedance
measurements. These are the four-electrode (tetrapolar) and two-electrode (bipolar)

configurations, shown i figures 1.6.1 and 1.6.2 respectively. Both systems offer unique

advantages [10].

Amplifier & Amplifier &
Demodulator Demodulator
|l| r|‘1 r‘L ™M ™M
I1 E1 E2 I2 11 Iz

Thoracic Thoracic
Cross section Cross section

I I
«— —

\_/ N

50 Khz current source 50 Khz current source

Figure 1.6.1 Tetrapolar electrode system. Figure 1.6.2 Bipolar electrode system.
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In the tetrapolar electrode system, the carrier oscillator signal (current) is applied
to one pair of electrodes (I1 and I2) and the desired voltage signal is measured at the
second pair of electrodes (E1 and E2). This scheme offers superior rejection of noise due
to motion artifacts since changes in impedance at the electrodes does not significantly
affect the signal voltage. In the bipolar electrode system, the carrier oscillator signal
(current) and the desired voltage signal is applied to the same pair of electrodes (I1 and
I2). While this system is more sensitive to motion artifact noise, it is simpler and less
restrictive because there are less electrodes on the subject. Another approach to noise
reduction is the addition of a guard ring around the electrodes or the use of a unilateral
guard. As noted by Sahakian et. al.[12], applications that include ECG monitoring may
already have a reference electrode and therefore no additional electrodes or connections
are required to provide a unilateral gnard. It was concluded by Cheng et. al[1] that in
multiple electrode systems, current should be applied and voltage measured from all
available electrodes.

Electrode type and placement are important considerations for volumetric
measurements. A comprehensive study by Luo et. al.[8] evaluates several electrode types
and sizes in addition to comparing electrode placements. They concluded that the
electrodes should meet the following requirements: low baseline impedance, high
adhesion, high physical stability, thin electrode with‘ high flexibility and an optimal
electrode size of 70cm’. Electrode placement was evaluated for 171 electrode pair
combinations for optimal signal to artifact ratios, based on 32 electrodes placed evenly
around the body trunk at four levels. Electrode placement locations suggested for

multiple electrode measurements are shown in figure 1.6.3. As noted by Hamilton[3], the
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greatest sensitivity for the impedance signal is seen with the electrodes placed at about the
eighth intercostal space, but is linear only at higher levels. Commonly used placement for
two electrode systems for respiration measurements is at the fourth mtercostal space in

line with the nipples on the mid-axillary lines.

Figure 1.6.3 Suggested electrode placement locations for multiple electrode

measurements [8].

In this study a variation on traditional impedance pneumography methods is
discussed (Multi-lead TTI pneumography). This method involves bipolar impedance
measurements from four electrodes using time-division multiplexing. The multiplexing
allows 4 separate channels or leads to be simultaneously acquired. By having 4 leads of
respiration, measurements from 4 different positions on the thorax are provided in the
hopes that the data may be combined such that respiratory tidal volume may be
determined with accuracy and consistency that is superior to that of single lead impedance

pneumography.
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1.7 Prior Research

As already noted by Hamilton[3], trans-thoracic impedance measurements of tidal volume
have been studied by many investigators. Results of the study by Hamilton [3] showed
errors of the system on the order of +/- 10% for both adults and infants as long as the
subject is quiet and inactive. These findings are typical of attempts at impedance
pneumography for volumetric measurements. It is also generally accepted that there is no
one optimal electrode placement for all subjects and that calibration is necessary for each
subject. Typically these measurements are evaluated by comparison with readings from a
spirometer. Hansen et. al.[4], [S] suggests and demonstrates connecting the output of a
spirometer to an analog to digital (A/D) converter and inputting the data into a personal
computer. This allows for easy post processing of the data and comparison with other
measurement techniques.

This study is part of ongoing research at Kessler Institute for Rehabilitation in
West Orange. Prior research done by Seshadri [13] and others provided background
information on signal processing methods and correlation of impedance pneumograph and
spirometer data. In Seshadn’s study, data from a spirometer and from two impedance
pneumograph devices were evaluated quantitatively using linear and nonlinear regression
algorithms. Several of the suggestions of Seshadri’s work are addressed in this study
namely; investigation of a multiple electrode system to acquire data for different electrode
positions simultaneously, and combining data from different electrode positions in such a
way to improve the correlations. Insight to the use of modeling techniques was obtained

from the work of Sheshadri [13] and Zhang[18] and is later discussed in chapter 3.



CHAPTER 2

HARDWARE DEVELOPMENT AND EQUIPMENT

2.1 System Requirements

2.1.1 Overview

The stated objective of this thesis is the development of a device that acquires both ECG
and respiration data for use in heart rate variability (HRV) studies. The front-end circuitry
is the core of this device, which when used in conjunction with the data acquisition
software provides the data for collection and processing. The front-end circuitry
interfaces the human body to the data acquisition card, and was designed specifically for
this thesis. In addition to the bio-potentials measured on the body, the output of a
spirometer was to be interfaced to the data acquisition card for calibration and validation
of the TTI pneumograph readings. Design criteria included the number of channels,
sampling rates, bandwidth, isolation, power, and A/D card interfacing.

Although it is necessary to minimize the number of electrode/leads that connect to
the patient for comfort and simplicity, it was determined that a total of seven would be
required. Four leads of respiration were to be acquired using a time-division multiplexing
scheme. A bipolar impedance measurement configuration was chosen, and therefore, at
least four electrodes were required for respiration alone. Three more electrodes would be

required, two for ECG and one for guard.
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2.1.2 Specifications

The following is a list of the specifications to
and built:

CHARACTERISTIC

TTI Pneumograph Front End
Oscillator frequency

....................................................

.................................................

Bandwidth............c.ooi

ECG Front End

....................................................

.................................................

Bandwidth...........c.coooii
Gain

......................................................

....................................................
.................................................
.............................................

Fvent Marker

Isolation/Protection

......................................

Connectors
Patient Cable
Spirometer POT/TTL.........ccccoooovinne.
Event Marker.......coocvvviiiiiveerecee s
Scope ECG/RESP out

.........................................

...........................
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which the front-end hardware was designed

SPECIFICATION

Four bi-polar electrode pair positions RA-
LA (leadl), RA-LL (lead II), LA-LL (lead
HI), and LL-RL (lead IV) utilizing standard
silver-silver-chloride ECG electrodes.

One scope (multiplexed) BNC connector,
four Respiration A/D channels, Biploar +/-
SV.

0.1to 25 Hz

One differential electrode pair RA-LL (lead
Mutilizing standard silver-silver-chloride
ECG electrodes.

One scope, one ECG A/Dchannel, Biploar
+/-5V.

0.5to 100 Hz

X1000 (1V=1mV RTI)

Both potentiometer and TTL output types.
One spirometer A/Dchannel, Biploar +/-5V.
DC to 50 Hz

Momentary switch closure, TTL.

Less than 100uA leakage current between
patient connections and other equipment
(computer/ACline)  and defibrillation
protection as per AAMI standards.

AAMI standard 6-pin patient cable.
3.5mm stereo / 3.5mm mono phone jacks.

3.5mm mono phone jack.
BNC female / BNC female.



Battery ..ot 1.3mm DC jack.

Charger...........oooeeieiieiiiiceecee e 2.5mm DC jack

CIO-DASO08 analog/digital .................... DB37 female / DB37 male
Indicators

Battery Power ..., Red LED

Computer Power...........coccoineninn, Red LED
Logic control..........ccccoovvirniiicrnniiiiieen, TTL from CIO-DAS08
Power control..............ccoeoiviiininiiiiee Toggle switch, DPDT
Battery .......oooeiieee s 12.0V, 1.0AH NICd

2.2 Front End Design

2.2.1 Number of Channels

In designing the front end circuitry to meet the system specifications, the number of
channels was an important consideration because it directly affects the amount of
hardware required. This is most evident when the isolation circuitry required per channel
is considered. In order to minimize the number of channels, a multiplexing scheme was
devised by the author in which the four respiration leads (channels) are time division
multiplexed onto one channel for A/D conversion. This scheme resulted in a significant
reduction in hardware and isolated power requirements by requiring only two channels to
cross the isolation barrier, the multiplexed respiration channel and the ECG channel. The
spirometer had no electrical connections or risk current paths with the patient and
therefore was able to be connected through a non-isolated channel. A total of three signal
channels (one with four sub-channels) are output by the front end for analog to digital

conversion by the CIO-DASO08 data acquisition card.
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2.2.2 Sampling Rates
Sampling rate requirements dictated the bandwidths of the front end circuitry. A different
sampling rate was chosen for each of the acquired signals based on their specific
requirements. The software used for data acquisition limits the maximum trial run time
because of the fixed size memory array utilized. Therefore sampling rates chosen were
optimized to allow the maximum length trial run while retaining sufficient signal integrity.

For heart rate variability studies, the ECG waveform is not important, but accurate
peak detection is required. The ECG sampling rate was chosen to be 200Hz. This rate
provides both good waveform reproduction and a resolution of 5mS for peak detection.
This resolution allows accurate peak detection for ECG up to a rate of 120 beats per
minute (BPM) since the R-R interval (time interval from R wave to R wave of successive
beats) difference for rates above 120 is less than 5mS. The scope of this study would not
involve heart rates above 120 BPM, typical rates being within the range of 60-100 BPM.

The respiration sub-channels were sampled at 25Hz each which is more than high
enough since most of the frequency content of respiration signals is below 10Hz. For
paced breathing as in this study, the respiration signal is quasi-sinusoidal with a frequency
range of 0.1 to 0.4 Hz corresponding to 6 to 24 breaths per minute. The composite
respiration channel operates at a 100Hz rate (25Hz per sub-channel with four sub-
channels).

In order to determine the sampling rate required for the TTL spirometer signal, the
maximum expiration rate had to be considered (refer to section 2.5 for a detailed

description of the spirometer). A realistic maximum rate was determined experimentally
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as 2.5L per second which is a much higher rate than will be achieved in this study. The
maximum signal transition rate is therefore 2.5 L/sec divided by 0.05L/transition which
gives 50 transitions/sec. max.. Since the signal is either TTL high or Low, only one
sample is required to determine the logic state and therefore a sampling rate of S0Hz was

selected.

2.2.3 Bandwidth

The ECG hardware bandwidth is 0.5 to 100Hz which gives a good quality signal without
the excessive baseline wander associated with a full diagnostic bandwidth (0.05 - 100Hz).
The low frequency end of the respiration hardware bandwidth had to be as close to DC as
was practical so that the signals at low respiration rates were not attenuated significantly.
As with the ECG signal, there is a trade off between low end bandwidth and baseline
wander. Overall individual respiration channel bandwidth was 0.05 to 25Hz, while the
high end of the bandwidth for the multiplexed portions of the circuitry was required to be
ten to twenty times higher so as not to cause degradation or mixing of the individual

channels.

2.2.4 Isolation and Defibrillation Protection

For the purpose of patient safety, any device that is directly connected to a patient by
conductive materials must have its patient connections electrically isolated from A/C line
power and earth ground. This requirement is to preclude the possibility of electrical shock

by risk currents should the patient come in contact with other non isolated equipment or
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earth ground (risk current paths). The Association for the Advancement of Medical
Instrumentation (AAMI) publishes specific requirements and specifications for medical
equipment relating to patient safety. For patient connected equipment, risk currents must
not exceed 10 micro amps between all patient connections and earth ground and between
all patient connections and A/C line power. Additionally, patient connected equipment
must be protected from defibrillation potentials. This requirement is to protect the
equipment from failure and to assure that the full defibrillation energy is delivered to the
patient. Because the front end circuitry of the device for this study connects directly to
the patient by means of wires and electrodes, the AAMI requirements apply but are not
required because the device is for experimental purposes only. Even though not required,
the author chose to include the safety requirements in the design as it is of good
conscience and practice to do so. The front end circuitry design incorporates industry
standard technology including battery power and opto-coupling isolators to achieve the
safety requirements. The inputs from patient connections are protected from defibrillation
potentials by means of spark gaps and current limiting resistors which clamp high voltage
potentials to 90V. Diode clamping is also used to further protect the circuitry by clamping

the inputs to the +/- supply rails.

2.2.5 Power
Power for the front end circuitry is from two sources, a 12V 1.0Ah NICd battery and the
personal computer’s (PC) power supply via the CIO-DASO08 card. The isolated portion of

the circuitry was powered by the battery exclusively. This simplified the design by not
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having to incorporate or design an expensive DC-DC converter with sufficient isolation
between primary and secondary to meet the isolation specifications. The isolated 12V was
used directly in some circuits and was used to generate -12V and +/-6.6V for others by
the use of linear voltage regulators and charge-pump iverters. By generating the
additional voltages from the single battery, the need for multiple batteries was negated and
thus improved reliability by minimizing battery maintenance needs. The non-isolated
portion of the front end circuitry was powered by the PC’s power supply exclusively.
Connection to the PC’s power supply was available through the interconnecting cables
from the CIO-DASO08 card. The +/-12VPC and +5VPC supplies were used directly for
the non-isolated circuits and no additional regulation was required. In addition, the PC’s
+10.0Vref was used as a reference in the pot-type spirometer drive circuit. Battery
charging was provided by an external 24VDC wall adapter module (WAM) through a
current limiting resistor which provided a semi-constant current at 62mA. For NICd
batteries, a constant current charge is desired and if the charge is at a “trickle” charging
rate, it may be applied for extended periods of time without damaging the battery. The
WAM is only connected to the battery when the power switch is in the CHARGE
position. During charge, the front-end circuitry is disconnected in order to maintain

isolation, and is therefore not functional.

2.2.6 Data Acquisition Card Interfacing
The CIO-DASO8 data acquisition card was installed in an 8-bit slot of the computer.

Connections from the card to the front end is by means of two DB-37 patch cables. The



28

connectors were configured as both male and female types at both the CIO-DAS08 card
and front end i order to provide automatic cable keying. A total of three signal channels
were applied to the CIO-DASO08 card for A/D conversion. All three signal channels were
bipolar and scaled for a full scale of +/-5V to correspond with the input range of the C10O-
DASO08 card. ECG channel gain and scaling is such that a 1volt output corresponds to
1mV relative to input (RTI). The respiration channels provided nominally a 0.5 to 2 VP-P
signal to the A/D card. The spirometer output signal was 0-5V logic level transitions.
The fourteen digital control signals for the front end circuitry were generated under
software control and outputted by the peripheral input output (PIO) feature (8255) of the
CIO-DASO08 card. The two digital outputs from the front end circuitry were input to two
of the fixed digital inputs of the CIO-DASOS card since all the PIO ports were configured
as outputs. These I/O lines are TTL levels and are connected directly to the non-isolated

portion of the front end circuitry.

2.2.7 Circuit Design

The circuitry used in the front-end is industry standard analog type technology, mostly
utilizing commonly available integrated circuits and other standard components. The
circuitry is divided into two main sections, isolated and non-isolated. In compliance with
the isolation specifications, all the circuitry directly connected to electrically conductive
patient connections is contained within the isolated section. Because the isolated section
is battery powered, where possible, low power devices were chosen and the amount of

isolated circuitry was minimized to reduce power consumption.
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The amount and type of circuitry required is directly related to the nature of the
signals of interest. In this study, the signals of interest are bio-potentials and as such are
very small in amplitude, thus requiring sufficient amplification and processing so that they
may cross the isolation barrier and be applied to the analog to digital (A/D) converter. An
ECG signal for example, has a nominal amplitude of only ImV on the body. In order to
amplify a signal that small to an amplitude of practical size say 1V, amplification of 1000
is required. Gains of that magnitude require very high CMRR so that the signal of interest
is not obscured by unwanted noise. For bio-potential signals, the most common source of
noise is 60Hz pickup. The human body picks up the 60Hz signal from nearby power lines,
lighting and other electrical equipment. This type noise may be several magnitudes higher
in amplitude than the signal of interest. Because the noise is distributed across the body, it
is seen as common-mode noise to the instrumentation. For a good quality ECG, a CMRR
on the order of at least 90dB is desired. The most common method and the method
chosen in this design for achieving a high CMRR is the use of an mstrumentation
amplifier. However, an instrumentation amplifier alone is not sufficient and additional
noise canceling techniques are needed. Two methods used in this design are a driven
guard and notch filtering. The driven guard is a signal that is composed of the sums of
the input signals and is driven by an amplifier through an electrode back onto the body in
order to make the noise signal more truly common mode. The notch filter circuit used is
an active twin-T type which yields a very deep yet narrow reject band at 60Hz. A
downfall of the notch filter is that it rings in response to high frequency tramsients.

Typically circuitry is implemented to suppress pace-maker spikes from causing ringing and
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also injecting a pacer marker after the notch filter. Pacer detection and marking is beyond
the scope of this thesis and was not included in the design. The front-end schematic was
drawn using PC based SCHEMA schematic capture software. Copies of the schematics

are provided in appendix 1.

2.3 Front End Theory of Operation
The front end circuitry can be divided into five main sections, the respiration channel, the
ECG channel, the spirometer channel, control logic and power supply. Each section is
divided into subsections or functional blocks. The organization of these functional blocks
is shown in figure 2.3.1. For detailed understanding, refer to the front-end schematic

located in appendix 1 and the theory of operation provided in appendix 2.

2.4 Front-End Construction
After designing the front end schematic usmg SCHEMA schematic capture software, an
assembly drawing was created using PADS printed circuit board layout software. The
components were arranged on a 0.1” grid for easy transfer perforated proto-board.
Copies of the assembly drawings showing component outlines and reference designators
are provided in appendix 1. Factors affecting component placement included connection
length minimization, feedback paths, isolation spacing requirements and enclosure
dimensions. A 0.1” grid perforated board was cut to drawn dimensions and components
were positioned directly from the assembly drawing. A smaller board was added after

design changes required additional components which would not fit on the main board.
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Figure 2.3.1 Front-end function block diagram.
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Bifurcated and trifurcated wire wrap pins were installed for most components and DIP
sockets were used for integrated circuits. Connections were made using wire wrap
techniques because of the large number of components and its advantages for proto-
typing. When done correctly, wire wrap provides very reliable connections. This is due to
its inherent redundancy since there are typically seven wraps, each of which forms four
gas-tight connections for at total of twenty eight connections on average at each pin
connection. Three wire colors, red, green, and copper where used to distinguish between
power, ground and signal connections respectively.

The circuit boards were mounted in a 3.25H x 10.25W x 7.5D desk top enclosure.
Connectors were provided in the enclosure’s end panels for connection to external
equipment. End panel mechanical drawings and labeling art were created using AutoCAD
drafting software. All the front end circuitry is contained within the front end enclosure
except for the battery which is connected via a rear panel mounted jack. The jacks for the
battery and wall adapter module were chosen as 1.3 and 2.lmm DC power jacks
respectively so that their plugs could not be incorrectly connected and break the isolation.
The patient cable connector is an AAMI standard 6-pin. Three 3.5mm phono type jacks
are provided for connection to the spirometers and event marker. Two BNC jacks are
provided for monitoring the ECG and Respiration signals on an oscilloscope. LED
indicators are provided to indicate power status labeled BATTERY and COMPUTER. A
three position toggle switch for selecting power as ON (battery), OFF and CHARGE is
mounted on the rear panel as are the two DB-37 connectors for connection to the CIO-

DASO8 card. Copies of the engineering drawing are provided in appendix 1.
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2.5 Spirometer

2.5.1 TTL Type
The TTL type spirometer used is a Harvard Instruments Dry-Gas Meter. This device is
essentially a standard utility type natural gas meter with a special electronic reader
attached to the mechanical meter drive. The gas input and output fittings are modified to
fit standard respirator tubing. The spirometer is use& in conjunction with a face mask that
is fitted with a one-way valve assembly. The one-way valve allows inspired air to enter
from one port and exhaled air to exit through another. The gas input is connected by a six
foot length of tubing to the expiration port of the valve assembly on the face mask. This
configuration ensures that the patient inhales fresh air directly through the inspiration port
of the valve assembly and not through the spirometer or tubing as a measure of infection
control. This configuration limits the measurements to exhalation volumes only.

The electronic reader of the spirometer displays the total volume on an LCD and is
reset to zero with a reset button. The reader also outputs TTL (0 or 5V) levels to a
3.5mm mono jack where each tramsition corresponds to 0.05L of air expired. The
resolution of the spirometer is 0.05L and therefore for each breath there is a +/- 0.05L
tolerance in the readings. A software or hardware counter must be used to convert the
number of transitions into volume readings. During inspiration or pauses in breathing no
air passes through the spirometer and therefore the output does not change level and
remains at the previous logic state. For this study, the output of the spirometer was
connected to the TTL SPIROMETER jack of the front-end with a 3.5mm mono patch

cable.
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2.5.2 Potentiometer Type
A second type spirometer, a potentiometer type, was considered for use. This spirometer
is mechanically coupled to the shaft of a continuous rotation potentiometer with contacts
which are available for connection to external equipment. One complete revolution of the
potentiometer corresponds to 10L of air expired. This type spirometer uses the same
mask/valve assembly used with the TTL type spirometer. To measure volumes, a stable
voltage source is applied to one of the leg terminals of the potentiometer and ground to
the other leg. The voltage measured at the wiper terminal of the potentiometer
corresponds to the volume of air expired. In order to determine the volume expired for
each breath, the voltage difference between the start and end of expiration has to be
measured or calculated with consideration for rotation of the potentiometer past 360
degrees since the voltage goes from full scale to zero.

The front-end provided a 3.5mm stereo jack for connection to the potentiometer.
The voltage supply provided at this jack is a precision 5.0VDC which vields a scale factor
of 1V = 2L since the full scale range will be 5V corresponding to one rotation which
corresponds to 10L. The resolution of this device is limited only to the resolution of the
potentiometer which is high since it is a precision type wire-wound potentiometer. There
is also a portion of the rotation at the transition near 360 degrees where the output is open
circuit and accurate readings may not be possible if expiration starts or ends in this region.
Although accommodated for, this spirometer was not used because it was taken out of

service for repair prior to performing the clinical trials for this study.
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2.6 Data Acquisition Card
The data acquisition card selected is CIO-DAS08 manufactured by Computer Boards
INC. of Mansfield, Ma. The CIO-DASO08 is a multifunction analog and digital I/O card
designed to be compatible with MetraByte’s DAS08. The CIO-DASO08 also features a
PIO-12 compatible 8255 and 37 pin connector which provides 24 programmable TTL /O
lines in addition to the 3 fixed digital inputs and 4 digital outputs. The on board Analog to
Digital (A/D) converter is an industry standard 574 with 12 bit resolution connected to a
multiplexor that provides 8 single ended channels with a 2uSec. sample and hold. Input
ranges are DIP switch selectable as +/-5V, +/-10V or 0-10V. An on board 8254 provides
33 16 bit counter/timers. Connection to the front-end is provided by 2 DB37 connectors
1 male and 1 female for keying along with 6 patch cables. The CIO-DASO08 can be
controlled by programs in BASIC, C, FORTRAN or PASCAL, for this application the C
language was used. In order to simplify programming the “Universal Library” software
was purchased with the board so that canned functions could be used where possible.
Refer to the schematics in appendix 1 for connection information and pin-outs for the

CIO-DASO0S card’s connectors.

2.7 Computer
The computer used for all the Computer Aided Drafting, data acquisition, signal
processing and data analysis is an AT type Personal Computer with a 486-33DX CPU,
VESA local-bus, 256K Cashe, 8M RAM, 250M hard drive and dual floppies. The CIO-

DASO08 acquisition card was installed on an 8-bit card slot with it’s base address at 300H.
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The data acquisition program runs under DOS while the signal processing and data
analysis was performed using MATLAB and S-Plus software which run under Windows
3.1. No additional computer hardware was required, although the signal processing

would run faster with additional RAM.



CHAPTER 3
METHODS

3.1 Overview
In order to determine respiratory tidal volume by trans-thoracic impedance
pneumography, data were acquired by using both hardware and software designed
specifically for this thesis. Acquired data included 4 channels (leads I, II, IIT and IV) of
respiration, a spirometer channel, and 1 channel of ECG (lead II}. The respiration data
were acquired as 4 time-division multiplexed channels. The respiration signal was
acquired by biploar trans-thoracic impedance pneumography. It was bipolar because the
oscillator signal input was applied to the same 2 electrodes as the signal was measured
from. The muitiplexing allows 4 separate channels or leads to be simultaneously acquired
onto 1 A/D channel. By having 4 leads of respiration, measurements from 4 different
positions on the body were provided so that the data may be combined such that
respiratory tidal volume may be determined with accuracy and consistt?ncy that is superior
to that of single lead impedance pneumography. The ECG channel data provides a lead II
ECG for direct use in heart-rate variability studies. It would advantageous to obtain the
ECG from the RA-LL pair of respiration electrodes since it would eliminate two
electrodes and lead wires that connect to the ksubject. Unfortunately it was determined in
testing that this method is not possible beéause the as the impedance signal is switched in

and out of the electrodes, changing offsets result in noise which totally obscures the ECG
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signal. The spirometer data is used for determining the accuracy of the impedance based
tidal volume calculations and ultimately for calibration of the impedance measurement.
Data were collected from a total of 6 subjects, 3 males and 3 females, varying in
age from 28 to 38. This chapter discuses the methods used in conjunction with the
equipment described m chapter 2. Methods of clinical trial protocol, data acquisition and

signal processing are discussed in detail.

3.2 Clinical Trial Protocol

In preparation for testing the subjects were briefed on the test protocol and equipment to
which they were to be connected and were assured of its safety and cleanliness to reduce
possible anxiety. A standardized protocol for acquiring data was used for each subject.

Setup involved affixing the electrodes to the subject. Standard ECG silver-silver-
chloride electrodes, 3M Red Dot type were used. Electrode placement sites were prepped
by abrading the skin with a scratcher and cleaning with alcohol wipes as recommended by
Smith [14]. A total of 7 electrodes were used, 4 for respiration, 2 for ECG and 1 for
guarding for. Electrodes were placed on the subject as shown in figure 3.2.1. Respiration
electrodes (RA, LA, LL and RL) were placed in the standard ECG chest locations. Right
Am (RA) and Left Arm (LA) electrodes were placed on the right and left anterior
tespectively at the first intercostal space just below the clavicles. The Right Leg (RL) and
Left Leg (LL) electrodes were placed laterally over the last intercostal space on the right
and left respectively. The guard electrode was placed just posterior to the RL electrode.

The two ECG electrodes (ECG-RA and ECG-LL) were placed in the standard ECG Lead
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II configuration adjacent to the respiration RA and LL electrodes. The respective patient
cable lead wires were connected to the electrodes and the patient cable plugged into the

front-end.

RAECG. )= LA

LL-ECG
RL
Guard LL

Figure 3.2.1 Electrode placement locations used.

The face mask was positioned over the subject’s mouth and nose and secured in
place with the cap and Velcro straps. Tension was adjusted so the that air did not leak
from the sides of the mask. The spirometer tubing was connected to the mask and the
spirometer output connected to the front-end with the patch cable.

With the subject in a seated position, the acquisition program was run for several

seconds so that the data displayed could be checked to assure proper setup. When ready,
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the actual trials were begun by re-starting the acquisition program. The protocol included
5 - 90 second trials for each subject for a total of 30 trials. The 5 trials included one
random (non-paced) breathing, 1 paced breathing at 8 breaths per minute (BPM, not to
be confused with beats per minute referring to heart rate), 1 paced breathing at 12 BPM, 1
paced breathing at 18 BPM and 1 combination paced breathing at 30 seconds each of 8,
12 and 18 BPM. Paced breathing was accomplished by having the subject synchronize
his/her breathing with the LEDs on a custom pacing device. This device sequenced a
series of dual color LEDs from one end to the other and back at the selected rate. The
LEDs alternate color between red and green for each direction of the sequencing. The
subject was instructed to synchronize his/her breathing such that inspiration coincided with
the green phase and expiration with the red phase.

After running a trial, a data file containing raw ASCII data for the 4 respiration

leads, ECG lead IT and spirometer output was created and saved for each trial.

3.3 Data Acquisition
3.3.1 General
The trial data was acquired by the front-end and the CIO-DASO08 card under control of
the ACQUIRE.EXE acquisition program. This program was written in the “C”
programming language. The acquisition program controls the front-end by use of the
programmable digital I/O provided on the CIO-DASO8 card. Functions of the acquire

program include control of respiration lead selection and multiplexing, gain control, A/D
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channel control and data conversion, graphical display of data waveforms and file storage

of 6 channels of acquired data arranged as columns in ASCII format..

3.3.2 Running the Acquire Program

The ACQUIRE.EXE program runs under DOS and is executed by typing “ACQUIRE” at
the prompt. Once started, the operator is prompted to wait at least 15 seconds before
pressing any key to start the acquisition. This delay allows time for the data array to be
cleared to zeros and for the signal baselines to settle. An oscilloscope can be connected to
the BNC outputs if desired to view the signals before beginning the acquisition. After
starting the acquisition the display prompts the operator that the program is acquiring and
that pressing any key will cancel the acquisition. When the acquisition is completed or
canceled, the acquired signal waveforms are displayed and advanced one screen at a time
by pressing Enter. The display sequence is 8 screens of ECG, then 2 screens of
Spirometer followed by 1 screen each of respiration leads Resp 1 to Resp 4. After all the
waveforms have been displayed the operator is prompted to respond Yes or No to save
the data to a file named TRIALX.DAT. The program has now completed and the saved

file can be renamed to a different name (usually replacing the X with the trial number).

3.3.3 Acquire Program Theory of Operation
Refer to the block diagram of figure 3.3.1 and the ACQUIRE.CPP program source code
listing located in appendix 3 to aid in understanding the following detailed description of

the operation of the ACQUIRE program.
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The first section of the program sets the “include” function libraries and declares
and initializes the variables. The variable “MAXSAMPLE” is the maximum number of
samples for the respiration lead variables Respl to Resp4. The number of samples for
spirometer data “Spiro” is 2 x MAXSAMPLE since it is at twice the sampling rate of the
Resp data. Likewise ECG is 8 x MAXSAMPLE since it is at 8 times the sampling rate of
the Resp data. The largest number allowed for MAXSAMPLE is limited to what will
compile and link for the array size used and is approximately 2300. A MAXSAMPLE of

2250 was chosen which gives a run time of 90 second since,

1

Runtime = MAXSAMPLE x (Eq. 3.1)
Resp sample rate
Runtime = 2250 x L. 90 sec. (Eq. 3.2)
S5Hz

The next section in the program defines the function prototypes, which are
functions that will be called by the main loop. The “Sdelay” function is a short delay loop
which is a simple incrementing ‘for” loop used by the ADCIn function. The “ADCIn” is
the routine for reading a single sample by the A/D converter. It sets the CI0O-DAS08’s
multiplexer channel (to 1 of 8), starts a 12 bit conversion, waits for end of conversion and
scales and outputs the data. The “plot” function has separate routines for displaying the
acquired data on the screen for each of the 6 channels using graphics mode. The
waveforms are displayed as cascading from top left to bottom right and multiple screens

are used for Spiro and ECG since they are sampled at higher rates than the Resp data.
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Figure 3.3.1 Flow chart for the ACQUIRE program.
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The main loop of the program begins by declaring the pointers for each of the 6
channels of data and setting all the data in the array to zero. The next section sets the gain
control outputs by writing to the 8255 of the CIO-DASO08 card with the cbDOut
command. Next the first set of prompts are written to the display by the “printf”
statements. The program then scans for a key press before jumping to the acquisition
routine. While it is scanning, a lead selection routine is running to activate the front end
circuitry and stabilize the baseline. The lead selection sequence is critical to define the
sampling rates and to suppress switching transients that occur with lead selection. The
sequence is as follows:

1) Set the lead select to lead I and switch the baseline select switch to disabled.

2) Wait 3 mS to allow the switching transient to pass.

3) Enable the baseline select switch.

4) Wait 7mS, the period of valid data.

5) Switch the baseline select switch to disabled.

6) Go to the next case

7) Select the next lead (i.e. lead IT).

8) Repeat the above steps for each of the 4 leads and loop.
Once a key is pressed, the acquisition routine is started. The “Acquiring data !”” prompt is
written to the display and the keyboard is again scanﬁed for a key press to cancel the
acquisition routine. During acquisition a lead selection sequence similar to the one during
acquisition start is looped. In addition to lead selection, A/D conversions are called and

the data is acquired. The acquisition sequence is as follows (case 0):
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1) Read the spirometer channel with the A/D and increment its pointer.

2) Set the lead select to lead I and switch the baseline select switch to disabled.
3) Wait 3 mS to allow the switching transient to pass.

4) Enable the baseline select switch.

5) Wait 2 mS for sampling timing.

6) Read the ECG channel with the A/D and increment its pointer.

7) Wait 2 mS for to be in the center of the valid Resp data period.

8) Read the Respl channel with the A/D and increment its pointer.

9) Wait 3 mS for sampling timing.

10) Read the ECG channel again with the A/D and mcrement its pomter.

11) Switch the baseline select switch to disabled.

The above sequence is repeated for cases 1, 2, and 3 with the exception that the
spirometer channel is only read during case 0 and case 2. It can be seen that the
processing time for each case is the sum of the delays which is 10mS since execution time
is negligible. Since there are four cases the total processing time for one complete loop is

40mS. The sampling rates can be determined knowing that in one complete loop;

e The Spirometer channel is sampled twice, once every 20mS or at S0Hz.
o The Resp channels are sampled once each, once every 40mS or at 25Hz.

s The ECG channel is sampled 4 times, once every SmS or at 200Hz.
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The acquisition loop is repeated until the number of passes equals MAXSAMPLE (2250)
or a key is pressed to cancel the acquisition. When the acquisition loop is exited the
“plot” function is called and the waveforms are displayed on the screen. After the
operator pages through the waveforms by pressing any key, the “Save data to file:
TRIALX.DAT ? [Y/N]” prompt is written to the display. The Y and N keys are then
scanned. If a N is pressed (no save), no action is taken and the program exits. If the Y
key is pressed (save data), a file named “TRIALX.DAT” is opened and the data is written
as ASCII in columns defined by the fprintf statements.

The first line of the file contains the value of MAXSAMPLE in the first column
and zeros in each of the other 13 columns. This automatically provides the number of
data samples per column for post processing analysis programs. The remaining lines of

the file contain the acquired data in 14 columms where:

Columns 1 and 2 = Spiro data (alternating).
e Column 3 =Respl data.
o Column 4 = Resp2 data.
o Column 5 = Resp3 data.
e Column 6 =Resp4 data.

o Columms 7 through 14 = ECG data (alternating).
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3.4 Signal Processing

3.4.1 General

Once acquired and stored in files, the signal data is processed using programs written for
use with MATLAB software. The raw acquired data is not in a directly useable format.
The desired information is buried within the raw data and needs to be extracted. The
purpose of the signal processing programs is to process the raw acquired data into a form
from which it can be used and to extract the desired information. This information can
then be applied to the data analysis programs. Because the spirometer that was used
supplies only expiration volume data, it is not possible to properly evaluate inspiration
data. The following signal processing programs function under the premise that
respiratory tidal volume for a particular breath is directly related to the difference in signal
amplitude from the start of expiration to the end of expiration for that breath. Refer to the
MATLAB program listings located in appendix 3, to aid in understanding the following

detailed descriptions of the signal processing programs.

3.4.2 RUNTRIAL Program

The RUNTRIAL program is the master “batch” program. It serves to simplify and
automate the MATLAB signal processing programs. The first operation of RUNTRIAL
loads the raw ASCII trial data from a file named TRIAL** dat (** = the trial #.). Once
loaded, batch programs for the three signal types are executed, SPRUN which processes
spirometer data, [PRUN which processes impedance pneumograph data and ECGRUN,

which processes ECG data. After these programs have run, the new data is saved for
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future use. The flow chart for the RUNTRIAL program is shown in figure 3.4.1 and the

individual batch programs are discussed in detail in the following sections.

Load data from ASCII
TRIALX.DAT file

I
CALL SPRUN.M
Process the
spirometer data

CALL IPRUN.M
Process the
IP data
!
CALL ECGRUN.M
Process the
ECG data

Save results

Figure 3.4.1 Flow chart for RUNTRIAL program.
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3.4.3 SPRUN Programs

The program SPRUN is the batch program called by RUNTRIAL to execute the
spirometer signal processing programs. Its only function, as shown by the flow chart of
figure 3.4.2, is to call the programs SPLOAD, SPRANGE, SPINDEX, and SPVOL.

The first function of SPRUN is to call the program SPLOAD. SPLOAD first
loads the number of samples stored in the data at row 1 col.1 “MAXSAMPLE”). It next
loads the spirometer data as SPIRO from columns 1 and 2 by alternating them until
MAXSAMPLE is reached. The SPIRO data is initially scaled to correspond to +/-5V, and
is then compared to a threshold of 2 and scaled as a 1 or 0. Figure 3.4.3 shows a sample
of the scaled spirometer data plotted against the index.

The next program called by SPRUN is SPRANGE. SPRANGE determines the
ranges of mspiration (0) and expiration (1) from the SPIRO data. It does this by testing
for transitions within the SPIRO data since the spirom&er generates transitions every
0.05L during expiration and none during inspiration. The program looks ahead over the
next 1 sec. of data as it tests for transitions between inspiration and expiration in order to
distinguish between a slow expiration and the true end of expiration. An envelope of the
spirometer data is generated where periods of inspiration are “0” and periods of expiration
are “1”, a sample of which is shown in figure 3.4.4.

Once the spirometer ranges of inspiration and expiration are determined, the
SPINDEX program determines and stores the number of valid breaths (totalnb) and the
inspiration and expiration starting and ending indexes. For a breath to be valid, it must be

a complete cycle with both a start of inspiration and end of expiration.
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CALL SPLOAD.M
Load the spirometer
data and scale
.

CALL SPRANGE.M
Find insp. & exp range
in the spiro data
Il
CALL SPINDEX.M
Index start & end of each
nsp. & exp.

CALL SPVOL.M
Determine volume in Liters
for each breath

Clear unused
variables & END

Figure 3.4.2 Flow chart for SPRUN program.

The last program called by SPRUN is SPVOL. SPVOL determines the spirometer
volume for each breath using the indexes determined by SPINDEX. It accomplishes this
by counting the number of transitions in the indexed expiration range (spexstart to
spexend) and multiplying by 0.05 since each spirometer transition corresponds to 0.05L of
air expired. The calculated spirometer volumes are saved as SPVOL. A sample plot of

SPVOL data is shown in figure 3.4.5.



51

TRIAL 21 (RANDOM) - SPIRO
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Figure 3.4.3 Sample plot of scaled spirometer transition data plotted against the index.
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Figure 3.4.4 Sample plot of SPRANGE Vs. index, an envelope of the spirometer data.
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Figure 3.4.5 Sample plot of SPVOL data, amplitude in (L) Vs. breath number index.

3.4.4 IPRUN Programs
The program IPRUN is the batch program called by RUNTRIAL to execute the
impedance pneumograph signal processing programs. As shown in the flow chart of
figure 3.4.6, its only function is to call the programs IPLOAD, IPINTREP, IPFILT,
IPINDEX, and IPDIFF.

The first function of IPRUN is to call the program IPLOAD. IPLOAD first loads
the number of samples stored in the data at row 1 col.1 “MAXSAMPLE”). It next loads
the 4 sets (leads) of respiration data as IP1 to IP4 from columns 3,4,5 and 6 respectfully,
until MAXSAMPLE is reached. FEach lead of the IP data is scaled in amplitude to

correspond to +/-5V.
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CALL IPLOAD.M
Load the 4 sets of Resp.
data and scale

CALL IPINTERP.M
Interpolate 2X to match
the slgfo data
CALL IPFILTM
Perform bi-directional
2-ploe LPF

CALL IPINDEX.M
Determine exp. data &
mdexes for each breath

CALL IPDIFF.M
Calculate exp. difference
for each breath

Clear unused
variables and
END

Figure 3.4.6 Flow chart for IPRUN program.

The respiration data is sampled at 25 Hz, while the spirometer data is sampled at
50 Hz. In order to simplify the signal processing, a linear interpolation routine in
MATLAB is applied to the respiration (IP) data so that the amount of data samples is
doubled in order to match the amount of spirometer data samples. The program
IPINTERP performs this function for each of the 4 sets of IP data. The scaled IP data is

noisy and needs to be filtered to remove high fiequency noise introduced during
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acquisition. The next program, IPFILT, filters each of the IP data with a 2-pole bi-
directional low pass filter with Fc=6.25 Hz. The bi-direction is required to cancel time
domain phase shift that occurs with the software filtering. The MATLAB function
“filtfilt” performs this function automatically. Sample plots of unfiltered and filtered IP
data Vs. their index are shown in figures 3.4.7 and 3.4.8 respectively.

Once the IP data is filtered, program IPINDEX is run. IPINDEX is similar to
SPINDEX in that it determines the start and end indexes for the inspiration and expiration
of each breath. The peaks and valleys (maximum and minimum) of the IP signal
correspond to transitions between inspiration and expiration. IPINDEX uses the indexes
determined by SPINDEX as a range in which to test for a minimum or maximum. The
slope of the IP signal is first tested to determine if it is polarity inverted, in which case a

maximum instead of a minimum indicates the start of an inspiration. The converse is true

TRIAL 21 (RANDOM) - IP2 (UNFILTERED)

15

Scaled Amplitude in Volts (V}

0 500 1000 1500 2000
Time index {1 Sec. = 50} samples)

Figure 3.4.7 Sample plot of unfiltered IP data.



55

TRIAL 21 (RANDOM) - P2 (FILTERED)
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Figure 3.4.8 Sample plot of filtered IP data.

for the start of expiration. This process is performed for each valid breath (as determined
by SPINDEX) for each lead of [Pdata (IP1 - IP4). The plot of figure 3.4.9 shows one
lead of IP data (IP1) plotted with the corresponding SPRANGE data for the same index.
From the plot it can be observed that there is a time lag between the IP lead data and the
SPRANGE spirometer data that must be accommodated for when determining the peaks
and valleys of the IP signals.

The last program called by IPRUN is IPDIFF. IPDIFF calculates the amplitude
difference between the maximum and minimum for each breath of each lead of IP using
the data determined by IPINDEX. The generated data, IP1DIFF, IP2DIFF, IP3DIFF and
IP4DIFF are the impedance pneumograph (difference) volumes that will be used in the

data analysis.
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TRIAL 21 (RANDOM) - SPRANGE & IP2
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Figure 3.4.9 Sample plot of an IP lead signal overlaid onto the corresponding SPRANGE
data, showing the time lag between the two.

3.4.5 ECGRUN Programs

The program ECGRUN is the batch program called by RUNTRIAL to execute the ECG
signal processing programs. As shown in the flow chart of figure 3.4.10, its only function
is to call the programs ECGLOAD and ECGFILT.

The ECG data is processed only for noise removal and scaling to determine if it is
adequate so that it may be available for future processing. The program ECGLOAD, first
loads the number of samples stored in the data at row 1 col.1 “MAXSAMPLE”). It next
loads the ECG data from colunms 7 through 14 by altemating columns until
MAXSAMPLE is reached. The ECG data is scaled to correspond to +/-5V. It should be
noted that the time scale index is 4X the time scale for SP and IP data because the

sampling rate is 4X greater.
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CALL ECGLOAD.M
Load ECG data from 8
columns and scale

CALL ECGFILT.M
Perform bi-directional
2-ploe LPF

END

Figure 3.4.10 Flow chart for ECGRUN program.

The scaled ECG data is noisy and requires filtering to remove high frequency noise
introduced during acquisition. The program, ECGFILT, filters each of the ECG data with
a 2-pole bi-directional low pass filter with Fc=50 Hz. As with the IP data, the bi-direction
is required to cancel time domain phase shift thét occurs with the software filtering. A

sample plot of an actual acquired in trial 16 ECG is shown i figure 3.4.11.

3.5 Data Analysis
3.5.1 General
The results of the signal processing programs provides two sets of data for analysis.
These are the spirometer volumes (SPVOL) and the impedance pneumograph peak-valley

differences (IP1DIFF, IP2DIFF, IP3DIFF and 'IP4DIFF). In order to determine how well
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the IPDIFF data relates to the SPVOL data, different methods of analysis were

performed. These methods involved correlation and modeling of the IPDIFF data vs the

SPVOL data.

TRIAL 16 - ECG

Amplitude inmv RT!
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Figure 3.4.11 Sample plot of an actual acquired ECG, amplitude in milliVolts (mV)
relative to input (RTT) Vs. index of samples.

3.5.2 Correlation

Correlation coefficients were generated using MATLAB for comparison of the SPVOL
data (accepted) with the IPDIFF data (unknown). A correlation coefficient is a
dimensionless number that measures the strength of the linear association between two
variables. The correlation coefficient (r) is equal to covariance divided by the product of

the estimated sample populations.

r = Covariance/product of estimated sample populations (Eq.3.3)
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Covariance (cov) is a measure of how two random variables vary together either in a
sample or in the population, when the values of the two random variables occur in

pairs[13]. If C = cov(x) then r(x) is the matrix whose element (7,j) is:

€@, J)

i,j)= Eq. 3.4
D= NG (B34

A correlation coefficient of 1 indicates that all the points lie on a straight line with positive
slope, and a -1 indicates a negative slope.
In MATLAB, the function;
corrcoef(x,y)
is used to determine the correlation coefficients between functions x and y. For this study,

x is the SPVOL data and y is the IPDIFF data.

3.5.3 Modeling

In order to perform modeling on the data, the S-Plus for windows version 3.1 software
package was used. S-Plus is both a language and an interactive programming environment
for data analysis and graphics. Two modeling functions that are available in S-Plus were
used to attempt to combine the different leads of impedance volume data (IPDIFF) in such
a way that the result might provide a good correlation to the spirometer (SPVOL) data.
The functions chosen were the generalized additive mode]l (GAM) and the generalized

linear model (GLM).
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The GAM uses an adaptive approach to model the terms nonparametrically using a
scatter plot smoother. In S-Plus, the output of the GAM function gives numbers for
degree of freedom, residuals and the residual deviances. The degree of freedom
represents the total number of data points. The residual represents the difference between
the actual and simulated data and the residual deviance is the summation of the square of
the residuals. The value of the residual deviance determines how good a fit the model is.
The smaller the deviances, the better the model. The output of the GAM can estimate the
coefficients, evaluate and examine the fits. In particular, the estimated residual and partial
residual plots can be used to illustrate discrepant observations and to identify
nonlinearities.

The general form of the GAM is as follows:

nfe) =fl(cl) + f2(c2) +.... +fp(xp) (Eq. 3.5)

where xi and fi (i=1,2,3...p) are the predictors and the transform functions of the
predictors respectively. In this study four transform functions were used with the GAM,
no transform, “poly”, “s” and lo. The ‘poly function is a smoothing transform which
generates a basis of polynomial regression. The “s” function is a smoothing transform that
uses the spline method. The “lo” function is a scatter-plot smoothing transform and uses
the robust locally linear fit. The generalized linear model (GLM) is another modeling
function supported by S-Plus. It functions similarly to GAM except the model is fit using

iterative reweighted least squares (IRLS).
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In addition to the default output provided by GAM or GLM, there are “extractor”
functions available in S-Plus for extracting additional data. The extractor “coefficients”
extracts the transfer function coefficients for each predictor function. The “fitted”
extractor extracts the fitted model data, and “residuals” extracts the residuals. The usage
of the extractors is of the form:

coefficients(object)
residuals(object)
fitted(object)
Modeling (both GAM and GLM) was performed on the IPDIFF (impedance peak to
valley difference) data in order to fit it to the spirometer data (SPVOL). Models were
evaluated for each of the transform functions (s, poly and lo) and also with no transform in
order to determine which provided the best fit. In addition, several combinations of the
IPDIFF data were tested; each lead independently, leads I and II, leads I, II and III, leads
I, II, I and IV and lead I and IV. This was done in order to determine what leads or
combinations of leads provided the best fit. The direct results of the modeling are
presented in numerical form, specifically as residual deviances. To view the results
graphically, the fitted model must be extracted. Extracted fitted data can be plotted
against SPVOL to graphically see how well the data fits since for an exact fit the data will
be aligned in a straight line. Figures 3.5.1 and 3.5.2 show sample plots of GAM and GLM
fitted data using the lo transform function for the combination of all leads (IPDIFF of
leads LILII and IV) respectively. It is apparent from the plots that for the case shown,

GAM provided a much better fit than did GLM.
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Figure 3.5.1 GAM fitted data using the lo transform function for the combination of all
leads (IPDIFF of leads LIIIII and IV) for trial 21.
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Figure 3.5.2 GLM fitted data using the lo transform function for the combination of all
leads (IPDIFF of leads LIIIII and IV) for trial 21. '



CHAPTER 4
RESULTS AND DISCUSSION

4.1 Results and Discussion
Data were collected from a total of 6 subjects, 3 males and 3 females, varying in
age from 28 to 38. For each subject 5 sets of trial data was acquired for a total of 30 trials
identified as trial 11 through trial 40. For each subject there is one trial of data for each of
the clinical protocol methods identified as random, paced 8, paced 12, paced 18 and paced
8,12,18. The data file for trial 15 (subject 1, paced 8,12,18) was later found to be
corrupted and unusable. Trial numbers; for each subject and their associated protocol are

shown in table 4-1.

Table 4-1 Clinical trial designations (trial #’s).

SUBJECT RANDOM | PACED | PACED | PACED | PACED

8 12 18 8,12,18

1 - female, age 28 11 12 13 14 15 - N/A
2 - female, age 32 16 17 18 19 20
3 - male, age 34 21 22 23 24 25
4 - male, age 37 26 27 28 29 30
5 - male, age 33 31 32 33 34 35
6 - female, age 35 36 37 38 39 40

The data file for each trial was loaded into MATL.AB with the RUNTRIAL
program and processed by the signal processing programs it called. Output data was

saved as trial** mat (** = trial #) ﬁles for ﬁlture’ processing. For each trial, the signal
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processing programs generated two sets of output data, SPVOL and IPDIFF. The
SPVOL data was a single matrix of spirometer volumes in liters, for each breath identified
by a breath number. The IPDIFF data (IP1DIFF, IP2DIFF, IP3DIFF AND IP4DIFF) was
the impedance pneumograph (IP) difference data for each of the four leads. Data for each
lead was a matrix of the expiration peak to valley differences in volts for each breath
identified by breath numbers that corresponded to breath numbers in the SPVOL data.
Plots of these data for trial 21 are combined in figure 4.1, where each lead is represented
by a different symbol. As can be observed from the figure, each IP lead yields different

amplitudes for any given breath.
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Figure 4.1 IPDIFF, peak-valley differences.
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Data analysis was necessary do determine which IP lead or combination of leads
would provide the best correlation to the SPVOL data. Since it was not known what
combinations of the IPDIFF data or what the weights for each lead should be (i.e. what
the contribution of each lead is), the data was analyzed for each lead independently and for
two methods of combining the IPDIFF leads. The two combination methods were;
calculating a simple mean using the IPMEAN program in MATLAB (no model, mean of
IPDIFF leads) and modeling in S-Plus with GAM and GLM functions. In addition,
different transform functions for the GAM and GLM were tested, including no function, s,
poly and lo transforms in order to determine the optimal model. For each of the analysis
methods, the SPVOL data was used as the accepted standard to which the results were
compared. The IPMEAN program listing used in MATLAB and examples of functions
used in S-Plus are provided in appendix 3.

As a preliminary analysis, the mean of the IPDIFF data was determined by running
the IPMEAN program in MATLAB. The correlation coefficients for the individual leads
IP1DIFF, IP2DIFF, IP3DIFF, [P4DIFF and IPMEAN Vs SPVOL were calculated using
the MATLAB function “coorcoef’ and are shown in table 4-2 as rl, 12, 13, 14 and rm
respectively. It can be seen from the correlation coefficients r1-r4 vand rm, that the results
are not consistent, some show good correlation’s (above 0.7) while most are poor (below
0.5). Although there is no supported basis for weighting the individual leads as a mean,
the results do show that correlations for IPMEAN (rm) are generally better than those for
the individual leads. This lends support to the rational for applying the GAM and GIL.M

functions which combine the IPDIFF lead data and determine the best weights for each.
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Table 4-2 Correlation coefficients (r) for the non-modeled IPDIFF data for each lead

independently and IPMEAN.

Correlation coefficients for the non-modeled IPDIFF data

Trial No. IP1DIFF IP2DIFF IP3DIFF IP4DIFF IPMEAN
rl r2 r3 rd m

11 0.922 0.798 0.799 0.904 0.907
12 0.577 -0.529 -0.2249 0.390 0.243
13 0.628 0.335 -.0092 0.708 0.790
14 0.833 0.497 0473 -0.036 -0.748
15 N/A N/A N/A N/A N/A

16 0.678 0.638 0.526 0.608 0.628
17 -0.255 -0.694 -0.718 -0.697 -0.710
18 0.410 -0.090 0.031 0.053 0.042
19 0.219 0.292 0.131 0.375 0.295
20 0.745 -0.141 -0.489 0.263 -0.032
21 0.890 0.764 0.993 0.405 0.850
22 0.945 -.735 0.752 0.621 0.838
23 0.338 0.351 0.415 0.219 0.366
24 0.320 0.385 0.131 0.394 0.264
25 0.919 0.964 0.970 0.937 0.963
26 -0.377 -0.050 -0.052 0.569 -0.075
27 -0.239 -0.038 -0.014 0.218 -0.027
28 -0.090 0.026 -0.457 0.128 -0.118
29 -0.313 0.416 0.343 0.077 0.194
30 -0.047 0.708 0.789 0.774 0.584
31 0.976 0.955 0913 0.036 -.941

32 0.932 0.855 0.817 0.217 0.935
33 0.453 0.695 0.444 -0.040 0.589
34 0.535 0.596 0.191 0.154 0.507
35 0.527 0.503 0.493 0.519 0.560
36 0.723 0.646 0.585 0.256 0.634
37 0.248 0.733 0.741 0.000 0.632
38 0.081 0.518 0.524 0.532 0.484
39 0.392 0.632 0.592 0.513 0.615
40 0.800 0.854 0.852 0.211 0.846
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The SPVOL and IPDIFF data for each trial was loaded into S-Plus with the “scan”
function and several versions of the models were run in order to determine which model
provides the best fit. The criterion for the best fit was the model which consistently
provides the lowest residual deviances. The GAM was tested first with no transform
function for each IP lead individually and for lead combinations IP1+IP2, IP1+IP2+IP3,
IP1+IP2+IP3+IP4 and IP1+IP4. This was then repeated for the transform functions spline
(s), poly and lo. Because the there are 30 trials and there are 32 possible combinations to
test for each trial, only the random trial for each subject was used to test the various
iterations on the GAM function. The results of the GAM function applied to the
“random” trials are provided in tables 4-3 to 4-8, from which observations can be
immediately observed. The first observation is that the GAM models which included all
four IP leads consistently provided the lowest residual deviatipns. ‘The second observation
is that the lo transform for the models which included all four IP leads (high-lighted data)
provided the lowest residual deviation as compared to the other transforms in all but one
case. The third observation is that the poly transform provided the same results as that of

no transform function.

Table 4-3 Residual deviances for different transform functions used with GAM for several
IP data combinations - Subject 1, Random.

GAM IP1 2 | IP3 P4 | IPL,IP2 | IP1,IP2, | IPL,IP2, | IPLIP4
transform - IP3 1P3,1P4

No funct. | 1.487 | 3.599 | 3.595 i.sos 1;462 1.461 461 | 1.314

Spline (s) | 0.936 | 2.774 | 1.774 | 0.683 | 0.188 | 0.095 0.215

Poly 1.487 | 3599 | 3.595 | 1.805 | 1.462 | 1.461 | 1.314 | 1392

lo 1.253 | 3.210 | 2.396 | 1.206 | 0.715 | 0.443 | 0.363 | 1.030 |
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Table 4-4 Residual deviances for different transform functions used with GAM for several

IP data combinations - Subject 2, Random.

GAM Ir1 j1p) | 14] P4 IPL,IP2 | IPLIP2, | IP1,IP2, | IPL,IP4
transform 1P3 1P3,1P4
No funct. 4.37 4.79 5.85 5.10 4.31 3.89 3.85 4.36
Spline (s) 4.05 3.90 522 4,30 3.21 2.53 1.93 3.41
Poly 4.37 4.79 5.85 5.10 431 3.89 3.85 4,36
lo 4.05 4.28 5.03 4.48 3.52 2.07 3.55

Table 4-5 Residual deviances for different transform functions used with GAM for several

IP data combinations - Subject 3, Random.

GAM IP1 | 1] IP3 P4 IP1,IP2 | IPLIP2, | IP1,IP2, | IP1,IP4
transform IP3 1P3,1P4
No funct. | 0.236 0.473 0.249 0.952 0.229 0.199 0.191 0.236
Spline (s) | 0.169 0.423 0.182 0.836 | 0.133 0.071 0.025 0.111
Poly 0.236 0.473 0.249 0.952 0.229 0.199 0.191 0.236
lo 0.082 0.437 | 0.136 0.869 | 0.048 0.008 0.064

Table 4-6 Residual deviances for different transform functions used with GAM for several

IP data combinations - Subject 4, Random.

GAM P1 w2 r3 P4 IP1,IP2 | IP1,IP2, | IPLIP2, | IP1,IP4
transform IP3 1P3.IP4
No funct. | 0.115 0.133 | 0.133 0.090 0.112 0.108 0.074 | 0.082
Spline (s) | 0.077 0.095 | 0.083 0.082 | 0.068 0.057 0.044 0.058
Poly 0.115 0.133 | 0.133 0.090 | 0.112 | 0.108 0.074 0.082
lo 0.056 | 0.078 | 0.064 0.080 | 0.038 | 0.029 0.039

Table 4-7 Residual deviances for different transform functions used with GAM for several

IP data combinations - Subject 5, Random.

GAM IP1 j1.9) IP3 | IP4 |IPLIP2 |IPLIP2,|YPLIP2, | IP1IP4
transform IP3 1P3,1P4
No funct. | 0.136 | 0253 | 0.480 | 2.880 | 0.124 | 0.058 | 0.024 | 0.051
Spline (s) | 0.066 | 0.183 | 0201 | 0.661 | 0.021 | 0.014 | 0.005 | 0.013
Poly 0.136 | 0.253 | 0.480 | 2.880 | 0.124 | 0.058 | 0.024 | 0.051
lo 0.065 | 0.187 | 0.164 0.015 | 0.011 0.0005

1.670
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Table 4-8 Residual deviances for different transform functions used with GAM for several
IP data combinations - Subject 6, Random.

GAM Pr1 P2 IP3 P4 IP1,IP2 | IPLIP2, | IP1,IP2, | IP1,IP4
transform IP3 1P3,1P4

No funct. | 0.554 | 0.677 | 0.766 1.080 | 0.554 | 0.514 | 0.514 | 0.552

Spline (s) | 0.481 | 0.538 | 0.605 | 0.972 | 0.358 | 0.311 | 0.291 | 0.412

Poly 0.554 | 0.677 | 0.766 | 1.080 | 0.554 | 0.514 | 0.514 | 0.552

lo 0.429 | 0.583 | 0.549 | 0.946 | 0.372 | 0.276 0.316

Models using the GLM function were tested in a similar fashion as that of the
GAM. The GLM was tested first with no transform function for each IP lead individualty
and for lead combinations IP1+IP2, IP1+IP2+1P3, IP1+IP2+IP3+IP4 and IP1+1P4. This
was then repeated for transform functions spline (s), poly and lo. From the results shown
in tables 4-9 and 4-10, it can observed that the residual deviances for the GLM function

were the same as the no transform GAM data in all cases, regardless of transform.

Table 4-9 Residual deviances for different transform functions used with GLM for several
IP data combinations - Subject 1, Random.

GLM 141 P2 Pr3 P4 | IPLIP2 | IPLIP2, |IPL,IP2, | TPLIP4
transform ‘ P3 1P3,1P4

No funct. | 1.487 | 3.599 | 3.595 | 1.805 | 1.462 | 1461 1.461 | 1.314

Spline (s) | 1.487 | 3.599 | 3.595 | 1.805 | 1.462 | 1461 | 1461 | 1.314

Poly 1.487 | 3.599 | 3.595 | 1.805 | 1.462 | 1461 | 1.461 | 1314

lo 1.487 | 3.599 | 3.595 | 1.805 | 1.462 | 1.461 1.461 | 1.314

Table 4-10 Residual deviances for different transform functions used with GLM for
several IP data combinations - Subject 3, Random.

GLM 141 P2 P3 P4 11’1,1]’2 IP1,0P2, | IP1,IP2, | IP1,IP4
transform IP3 | 1P3,JP4

No funct. | 0.236 | 0473 | 0249 | 0952 | 0.229 | 0.199 | 0.191 | 0.236

Spline (s) | 0.236 | 0.473 [ 0249 | 0.952 [ 0.229 [ 0.199 [ 0.191 [ 0.236

Poly 0.236 | 0473 | 0249 | 0952 | 0.229 | 0.199 [ 0.191 | 0.236

lo 0.236 | 0473 | 0.249 | 0.952 | 0.229 | 0.199 | 0.191 | 0.236
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Based on these findings, it was determined that the GAM function used with the lo
transform (GAM-1o), for the combination of all leads (IP1-IP4), is the model of choice to
consistently provide the lowest residual deviations and therefore the best fit of the IP data
to the SPVOL data. This model was applied to the remainder of the trial data along with
the no transform model for the individual IP leads and the lead combinations for
comparison purposes. Results provided in table 4-11 show that the GAM-lo results
yielded residual deviances in the range of three to over 100 times smaller than the non-
modeled results.

In order to simplify comparison of the GAM-lo (all leads) model results in S-Plus
to the results from the simple IPMEAN calculations in MATLAB, the “fitted” coefficients
from S-Plus were extracted, saved in ASCII format using the “write” function and loaded
into MATLAB. Once in MATLAB the correlation coefficients for the S-Plus (GAM-lo)
modeled data Vs SPVOL were calculated. As can be seen from table 4-12, the correlation
coefficients for the modeled data (rs) were excellent. Almost all the data was greater that
0.90 and many were greater than 0.98. The results of the correlation coefficients for
IPMEAN (rm) Vs. SPVOL were retabulated in table 4-13 for comparison between the
two methods. From the results it is apparent that modeling of the IP data (all leads
combined) using the GAM-lo function provides very good correlations to the spirometer
volume data (SPVOL).

The results thus far only demonstrates the fact that data from the four IP leads can
be combined using non-linear modeling such that the fitted result correlates very well with

the spirometer data. Additional research is necessary determined if the weighting
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coeflicients for each lead are consistent for different trials on a particular subject, or if
additional modeling is required. This information is crucial to determining if tidal vohimes
can be measured consistently and accurately in the absence of the spirometer.

Table 4-11 Residual deviances for modeling of each trial using GAM, first with no
transform function and secondly for GAM-lo (combination of all four leads only).

GAM - (no function) | GAM- (10)
Trial No. IP1 IP2 IP3 P4 IPLIP2, || IPLIF2,
1P3,IP4 || 1p31P4
11 1.487 3.599 1.805 1.462 1.314 0.363
12 0.195 0.210 0.274 0.247 0.136 0.0008
13 0.122 0.180 0.201 0.101 0.019 0.0005
14 0.088 0.217 0.223 0.288 0.054 || 0013
15 N/A N/A N/A N/A N/A N/A
16 4.37 4.79 5.85 5.10 3.85 1.49
17 0.487 0.269 0.252 0.267 0.187 0.0008
18 0.669 0.798 0.804 0.802 0.578 0.113
19 0.453 0.436 0.468 0.409 039% || 0.172
20 0.509 1.12 0870 | 106 0.442 0.102
21 0.236 0.473 0.249 0.952 0.191 0.003
22 0.169 0.737 0.696 098 | 0.160 ﬂ 0.009
23 3.54 3.50 3.30 3.80 3.128 1.463
24 1.919 1.821 2.10 1.806 0.80 0.198
25 0.870 0.390 0.327 0.682 0.307 0.160
26 0.115 0.133 0.133 0.090 0.074 || 0.018
27 0.024 0.025 0.025 0.024 0.022 || 0.000
28 0.080 0.081 0.064 0.079 0.057 0.011
29 0.047 0.043 0.046 0.052 0.039 0.007
30 0.241 0.120 0.091 0.097 0.073 0.044
31 0.136 0.253 0.480 2.88 0.024 0.000
32 0.079 0.162 0.201 0.578 0.059 0.0005
33 1.22 0.796 1.23 1.54 0.614 0.102
34 1.26 1.14 1.71 1.73 1.03 0.339
35 0.679 0.702 0.722 0.687 0.624 j& 0.166
36 0.554 0.677 0.766 1.08 0.514 0.199
37 0.122 0.060 0.058 0.130 0.050 0.001
38 0.075 0.055 0.055 0.054 0.051 * 0.005
39 0.095 0.068 0.073 0.083 0.066 [ 0.024
40 0.120 0.090 0.091 0.320 0.087 |{ 0.020
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Table 4-12 Correlation coefficients (rs) of GAM-lo for IP1 + IP2 + IP3 + IP4 Vs

SPVOL.
SUBJECT | RANDOM | PACEDS8 | PACED 12 | PACED 18 PACED
8,12,18
1 0.992 0.998 0.998 0.976 N/A
2 0.908 0.999 0.931 0.810 0.955
3 0.998 0.997 0.810 0.952 0.986
4 0.931 0.999 0.936 0.938 0.904
5 1.000 0.999 0.968 0.902 0.915
6 0.913 0.994 0.963 0.886 0.969
Table 4-13 Correlation coefficients (rm) of IPMEAN Vs SPVOL.
SUBJECT | RANDOM | PACEDS8 | PACED 12 | PACED 18 PACED
8,12,18
1 0.907 0.243 0.790 0.748 N/A
2 0.629 -0.711 0.042 0.293 -0.033
3 0.851 0.839 0.366 0.265 0.963
4 -0.076 -0.027 -0.118 0.194 0.584
5 0.941 0.935 0.589 0.507 0.559
6 0.634 0.632 0.484 0.615 0.846
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CHAPTER 5
CONCLUSIONS AND SUGGESTIONS

5.1 Conclusions

The multi-lead TTI pneumograph device that was developed in this study worked very
well from a hardware and software standpoint, providing data from four simultaneously
acquired respiration leads, a lead I ECG and spirometer readings. Results of the analyzed
data shows that information from the respiration lead data can be combined in a manner
such that the result corresponds well with the spirometer data when processed in
conjunction with it. Further, it was determined that the best correlation results were
obtained when the combination of all four of the respiration leads together were modeled
using the GAM-lo function. |

The study met its main objective, to design, build and test a device that can be used
to measure both electrocardiogram (ECG) and respiratory tidal volume, although
additional work is needed to make the device useful for actual HRV study applications.
For use in HRV studies the device must determine tidal volume in the absence of a
spirometer. The results of this study suggest that there is sufficient information within the
respiration lead data for this to be possible. Additional &ata processing is needed in order
to use the modeling results obtained in this study, to obtain for each subject, a best fit
model that is not spirometer dependent. In this way, for each subject, a model can be

created during a calibration phase using a spirometer and then be applied to impedance
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data on successive trials with the spirometer removed. The quality of the fit will

determine the accuracy of the tidal volume determinations.

5.2 Suggestions

As this study focused on the development of the multi-lead TTI pneumographic device,

many questions have been answered, but additional data analysis is necessary make the

overall method useful for HRV studies. Suggestions for future research includes the

following:

Continue the development of the data analysis modeling so that the tidal volume may
be determined in the absence of a spirometer. Ideally, the spirometer should only be
used for calibration purposes at the beginning of trials for each subject.

It was suspected that errors introduced for low tidal vblumes that may have affected
some of the results. This may be due to signal to noise considerations since low
volumes produce much lower impedance signals. This spirometer is a known source
of error since it only has a resolution of only 50 mL.. This can lead to large percentage
errors for low tidal volumes. It is strongly recommended that another type of
spirometer be used, one which has a much finer resolution for measuring small volume
changes and possibly both inspiration and expiration‘volume readings.

Testing with additional subjects is recommended to better validate the results obtained

in this study.
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As part of their clinical protocol, researchers may wish to include the subjects in
different postures such as standing or lying down, as well as tests involviﬁg motion
such as cycling or walking.

If it is determined that noise from motion artifacts overly corrupts the data, it may be
desirable to modify the hardware to convert the multi-lead TTI pneumograph circuitry
from a bipolar to a tetra polar configuration.

Further investigations should attempt to minimize the number of leads required in
order to simplify the clinical protocol and increase patient comfort yet maintain good
data.

Investigate the many variables associated with different electrode types as well as

electrode placement sites and preparation for possible improvements.



APPENDIX 1

Engineering Drawings
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APPENDIX 2

Front End Theory of Operation

A2.1 Overview

The front end circuitry is divided into five main sections, the respiration channel, the ECG
channel, the spirometer channel, control logic and power supply. Each section is
organized by functional blocks. For better understanding, refer to figure 2.3.1 in section

2.3 and the schematics located in appendix 1.

A2.2 Theory of Operation - Respiration Channel

A2.2.1 TTI 50 Khz Oscillator

The TTI oscillator composed of U1-A and its associated components is a form of a Wein-
bridge oscillator. The frequency of oscillation is set by the RC pairs R1-C1 and R2-C2.
The output of Ul-A is a quasi-sinewave at 50 Khz with an amplitude of 22VP-P. This
signal is applied to the x1 inverter U1-B and is also AC coupled to one side of the primary
of transformer XFMR1. The output of Ul-B is AC coupled to the other side of the
primary of XFMRI1 to form a bridge type differential drive. The transformer XFMR1
provides a relatively constant load for the osci]iator wlﬁch is required to prevent it from
stopping from running due to load changes. Thé'syecoﬁdaryk of XFMR1 is center tapped
with the tap being driven with a guard signal common for noise reduction. The two
outputs of the secondary provide the 50 Khz TTI oscillator signal at 44VP-P to the TTI

output lead select circuitry. The outputs of Ul-A&B are also applied to the TTI Test
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Reference circuit which is formed by the differential divider of R7 through R11. This test

reference signal is trimmed by pot. R8 and can be used for calibration and test purposes.

A2.2.2 TTI Output Lead Selection and Defibrillation Protection

The secondary of transformer XFMR1 is applied to the commons of analog switches U2
and U3. These DG508A switches are 1:8 multiplexers with make before break operation
that can operate on supplies up to +/-18V. The four low order outputs of both U2 and U3
are wired common so that the differential signal can be selectively applied to any
combination of the four respiration electrodes. Independent selection of the (+) and (-)
outputs is provided for by the separate control lines I+LDSEL* and I-LDSEL*. The four
outputs are protected from defibrillation potentials by the diode clamping network of D3
through D18. The series output resistors R12 through R23 provide current limiting for
patient safety and clamping as well as a high source impedance for the TTI oscillator. In
this way, the TTI oscillator appears as a constant current source since the voltage is high
and the source impedance is high as compared to the low load impedance the body
presents. The outputs are AC coupled to the patient cable electrodes by capacitors

C5,C6,C7 and C8.

A2.2.3 TTI Input Lead Selection and Defibrillation Protection
Inputs from the respiration electrodes are first protected against defibrillation potentials by

spark-gaps SG1-SG5 and current limiting resistors R36,R38,R40 and R42 which limit the
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signal to 90V. The diode clamping circuits at the inputs of input buffers U5-A, US-B, US-

C and U5-D perform further protection by clamping to the +/- supply rails.

A2.2.4 Guard Lead Drive

The outputs of buffers US-AB,C and D are summed together at the X2 summing
amplifier U4-B. The output of U4-B is AC coupled to the X1 inverter of U4-C whose
output is applied to the center tap of transformer XFMR1. The output of U4-B is also
applied to the X3.5 non-inverting amplifier of U4-A. The output of U4-A is current
limited by R33 and protected from defibrillation potentials by diode clamps D19 and D20

along with spark gap SG1 and R35.

A2.2.5 TTI Input Lead Select and Instrumentation Amplifier

The TTI input selection operates in the same way as the oufput selection. U6 and U7 are
DGS508A 1:8 multiplexers with their four low order inputs wired common so that ﬁe
differential signal can be selected from any combination of the four respiration input
buffers. Independent selection of the (+) and (-) inputs is provided for by the same control
lines as the output selection ( IFLDSEL* and I-LDSEL*) so that the input selection
automatically matches the output selection. The TTI test reference signal is applied to
input 8 of U6 and U7 for test purposes. The selected oﬁtputs of U6 and U7 are applied to
the input of the TTI instrumentation amplifier Ul1l. Amplifier U1l was chosen as an
INA110 because it can handle the high frequency TTI signal and provides a relatively

clean output. The gain of Ul1 is configured for X10 by connecting U11-3 to U11-13.
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A2.2.6 X-10 and Programmable TTI Gain

The output of Ul1 is AC coupled to the fixed gain X-10 amplifier of U12-B whose output
is applied to the programmable gain amplifier of U12-D. The TTI gain is set by analog
switches U10-A and U10-B which switch in resistors in parallel to the feedback resistor of
U12-D. The gain at U12-D is delectable as X-1, X-2 or X-4 and is controlled by control
lines ITTIGAINO and ITTIGAINI for an overall gain of X100, X200 or X400 (non-
inverted). This programmable gain allows the TTI signal amplitude to be optimally
amplified to compensate for differences in electrode to skin impedance as needed for each

patient or trial.

A2.2.7 ECG Reject HPF, Envelope Detector and 500 Hz LPF

The amplified signal from U12-D is applied to the 2-pole 1KHz high pass filter formed at
U12-C which provides rejection of any ECG signal that may be riding on the recove;ed
TTI signal. The output of U12-C is the Amplitude Modulated (AM) TTI signal. The
respiration signal is actually the AM signal envelope is that which is desired from the TTI
signal. To recover this information the output of U12-C is applied to the simple AM
envelope detector composed of D50, R63 and the 2-pole 500Hz Low Pass Filter of U27-
D. The cutoff frequency of this LPF was kept high because the respiration channel is
multiplexed at a 25Hz rate with four sub channels (leads) and mixing of the channels

would otherwise occur.
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A2.2.8 Respiration Base-Line Recovery

The output signal of U27-D is the composite respiration signal. The respiration signal by
it’s nature is a very low frequency signal that may have base-line wander due to such
factors as motion artifact. Because of the relatively high gain in the circuitry, it is
necessary to have Base-Line Recovery (BLR) to limit this wander and prevent the signal
from going into saturation. Simple AC coupling is not acceptable, active circuitry is
required. In addition, because there are four respiration leads that are multiplexed onto
the single respiration channel by switching the lead selection during acquisition, the
individual respiration sub-channels each require their own BLR circuits.

The composite respiration signal from U27-D is applied to the common of U30-A
which is a dual 1:4 analog switch. The input common is switched to the appropriate one
of four BLR channels by the IBLRSEL* controls. Each BLR channel consists of a sample
and hold, a 2-pole 25Hz low pass filter and BLR circuit. The first respiration sub-channel
is inputted to the sample and hold circuit consisting of C210 and buffer U31-A. This
circuit holds the signal when the input is switched to the other BLR channels in order to
minimize decay of the BLR signal. The output of U31-A is filtered with the 2-pole 25Hz
LPF circuit of U31-B to remove unwanted noise outside the respiration bandwidth. The
output of U31-B is inputted to U31-C as a normal inverting amplifier however, the non-
inverting terminal is fed by the output of the integrator U31-D which forms a feedback
loop since the input to the integrator is the output of U31-C. The effect of the integrator
is to pull the output of U31-C towards OV or baseline. There are two input paths to the

BLR integrator. The normal path is through R204, where the high pass time constant is
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set by the RC combination of R214 and the C216, C217 combination times the non-
inverting gain of U31-C and is typical near DC at approximately 0.05Hz. The second path
is a fast recovery path which speeds up the time constant for large offsets, such as when
the signal goes into saturation. Fast recovery is active only when the output of U31-C is
large enough such that the signal divided by R205, R207 is large enough to forward bias
either D100 or D101 through R206. The recovery is speeded up because the R
component of the RC combination is now R216 which is considerably lower in value than
R214. The operation of BLR chanmels 1,2 and 3 are identical utilizing U32, U33 and U34
respectively. The outputs of the four BLR channels are applied to U30-B for multiplexed
selection to the common output at U30-3. The BLR output selection controls and
operation are the same as for BLR input selection so that the input and output selections
automatically match. The enable input of U30 is controlled by the IBLREN line. The
enable is set high for a short period to disconnect the analog switches between BLR

channel selections to prevent switching transients from degrading the signals.

A2.2.9 Programmable Respiration Gain .

The selected output of U30-B (BLROUT) is inputted to the programmable gain amplifier
of U27-A. The respiration gain is set by analog switches U28-A and U28-B which switch
in resistors R145 and R146 in parallel to the feedback resistor of U27-A (R140). The gain
at U27-A is selectable as X-5, X-10 or X-20 and is. controlled by control lines

IRESGAINO and IRESGAIN1. This programmable respiration gain allows the signal
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amplitude to be optimally amplified for good signal to noise without causing saturation as

needed for each patient or trial.

A2.2.10 Respiration Opto-Isolator Input

The selected output of U27-A (ISORESP) is inputted through divider R109-R110 to the
amplifier of U13-B where a DC offset bias is injected. The output of U13-B is 0.2X
ISORESP and potentiometer R111 is adjusted for a +0.51V offset at U13-7 so that the
signal is scaled and biased within the opto-isolator’s linear region. This signal is applied to
the opto drive circuit of U13-C which drives optocoupler U18’s LED with feedback from
it’s internal feedback photodiode. The linear optocoupler provides the required electrical

isolation as it is only optically coupled to its output photodiode

A2.2.11 Respiration Opto-Isolator Qutput

The signal received at the output photodiode of Ul8 is inputted to the variable gain
amplifier of U17-B. Potentiometer R120 is adjusted for a X1 gain at U17-7 with respect
to U13-7. The output of U17-B is inputted to noninverting amplifier U17-C where the
offset is null’ed by adjusting potentiometer R122. The output signal of U17-C is further
amplified by the X2 noninvertring amplifier of U14-A which gives an overall gain of X2

for the transfer of signal ISORESP from the isolated to the non-isolated circuitry.
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A2.2.12 Respiration 60Hz Notch Filter

The circuitry of Ul4-C&D forms a driven Twin-T notch filter. The frequency setting
components were precisely measured and selected to achieve a very high Q response with
the notch centered at 60Hz. This circuit provides additional 60Hz noise rejection if
needed or can be bypassed by jumping J2 pin 1 to pin 2. For this study the notch filter

was bypassed because the high frequency of the multiplexed signal caused ringing.

A2.2.13 Respiration Output

The respiration output signal RESPOUT is wired to the front panel RESP OUT BNC jack
and to the DB37 connector for connection to the CIO-DASO08 card at A/D CHO. This
signal is time-division multiplexed with the respiration signals from the four respiration
leads (electrode pairs). It is bipolar with a full scale of +/-5V and a typical signal

amplitude of 0.5 to 2VP-P.

A2.3 Theory of Operation - ECG Channel

A2.3.1 ECG Input Defibrillation Protection and Buffers

Inputs from the ECG electrodes (ECG-RA & ECG-LL) are first protected against
defibrillation potentials by spark-gaps SG6 and SG7 and current limiting resistors R66 and
R67 which limit the signal to 90V. The diode clampihg circuits at the inputs of input

buffers U27-B and U27-C perform further protection by clamping to the +/- supply rails.
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A2.3.2 ECG Instrumentation Amplifier and 100Hz LPF

The outputs of buffers U27-B and U27-C (ECGDIFF(+/-) are applied to the input of the
ECG instrumentation amplifier U8. Amplifier U8 is a low-power high-accuracy
instrumentation amplifier that provides a minimum of 90dB of common mode rejection.
The gain of U8 1s configured for X10 by connecting U8-2 to U8-6 and U8-7. The output
of U8 is filtered by the 2-pole unity gain 100Hz Low Pass Filter (LPF) which filters out
the high frequency TTI oscillator signal that is picked up at the electrodes and leaves the

ECG signal.

A2.3.3 Calibration Generator and Select Switch

Voltage reference D39 provides a -1.25V reference to pin 4 of analbg switch U10-C. The
output of U10-C is divided by the divider network of R48, R49 and R50 and inputted to
the inverting imput of X50 amplifier U9-C. The noninverting pin of U9-C is sourced by
the common of analog switch U28-C and is selected by control line ICALSEL such that
either the filtered ECG signal from U9-A or iso-ground is applied. Potentiometer R48 is
adjusted for 0.50V at the output of U9-C (ISOECG) with both ICALSEL and ICALCLK
set to low. When the control line for U10-C (ICALCLK) is clocked and ICALSEL is set
low (Cal), the output of U9-C is a 0 to 0.5 V calibration signal corresponding to 1mV

Relative To the Input (RTI).
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A2.3.4 ECG Base Line Recovery

The output of U9-C (ISOECG) is inputted to the BLR circuit of U9-B which forms a
feedback loop since the output of the BLR circuit is fed back to the COM terminal of the
instrumentation amplifier. U9-B is configured as an integrator. The effect of the
integrator is to pull the output of U9-C towards OV or baseline. There are two input paths
to the BLR integrator. The normal path is through R55, where the high pass time
constant is set by the RC combination of R55 and the C26, C26 combination is
approximately 0.5Hz. The second path is a fast recovery path which speeds up the time
constant for large offsets, such as when the signal goes into saturation. Fast recovery is
active only when the output of U9-C is large enough such that the signal divided by R53,
R54 is large enough to forward bias either D40 or D41 through R56. The recovery is
speeded up because the R component of the RC combination is now RS56 which is

considerably lower in value than R55.

A2.3.5 ECG Opto-Isolator Input

The output of U9-C (ISOECG) is mputted through divider R92-R93 to the amplifier of
U13-A where a DC offset bias is injected. The output of Ul3-A is 0.2X ISOECG and
potentiometer R94 is adjusted for a +0.51V offset at U13-1 so that the signal is scaled and
biased within the opto-isolator’s linear region. This signal is applied to the opto drive
circuit of U13-D which drives optocoupler U16’s LED with feedback from it’s internal
feedback photodiode. The linear optocoupler provides the required electrical isolation as

it is only optically coupled to its output photodiode
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A2.3.6 ECG Opto-Isolator Output

The signal received at the output photodiode of Ul6 is inputted to the variable gain
amplifier of U17-A. Potentiometer R103 is adjusted for a X1 gain at U17-1 with respect
to U13-1. The output of Ul7- A is inputted to X5 noninverting amplifier U17-D where
the offset is nulled by adjusting potentiometer R105. The output signal of U17-D is
further amplified by the X2 noninvertring amplifier of U15-B which gives an overall gain

of X2 for the transfer of signal ISOECG from the isolated to the non-isolated circuitry.

A2.3.7 ECG 60Hz Notch Filter

The circuitry of U15-C&D forms a driven Twin-T notch filter. The frequency setting
components were precisely measured and selected to achieve a very high Q response with
the notch centered at 60Hz. This circuit provides additional 60Hz noise rejection if
needed or can be bypassed by jumping J2 pin 1 to pin 2. For this study the notch filter

was used.

A2.3.8 ECG Output

The ECG output signal ECGOUT is wired to the front panel ECG OUT BNC jack and to
the DB37 connector for connection to the CIO-DAS08 card at A/D CH1. The ECG
signal has an overall gain of 1000 RTI (1mV=1V) and is bipolar with a full scale of +/-

5V.
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A2.4 Theory of Operation - Spirometer Channel

Because there is no electrical or conductive connections between the spirometer and
patient, there are no isolation requirements and the spirometer’s output is able to connect
directly to the non-isolated portion of the front-end circuitry. There are two input jacks
provided to accommodate two types of spirometer outputs. The 3.5mm stereo jack
labeled SPIROMETER POT is for spirometers with isolated potentiometer outputs. The
voltage at the input to buffer U15-A is set to +5.0V by pot R155 which forms a voltage
divider on the +10.0VREF line. The output of buffer U15-A supplies the high side of the
spirometer’s potentiometer (SPIROPOTHI) and the low side is tied to analog ground
(SPIROPOTLO). In this configuration the wiper of the spirometer’s potentiometer
provides a voltage between 0 and +SV corresponding to it’s mechanical position which
relates to respiration. This signal (SPIROPOTW) is inputted directly to A/D channel 2.
Capacitor C204 provides noise suppression.

The 3.5mm mono jack labeled SPIROMETER TTL is for spirometers with TTL
transition outputs. Because this type of input does not require any drive circuitry, the
TTL signal (0 to +5V) is wired directly to the SPIROPOTW line and is mputted to A/D
channel 2 the same as for the potentiometer type spirometer. This is allowed since only

one type spirometer is used at a time.

A2.5 Theory of Operation - Control Logic
All of the front-end digital control logic, both Input and Output (I/O) is wired to the CIO-

DASO8 card through the PIO DB37 cables. The I/O on the CIO-DASO08 card is provided
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by an 8255 which is a programmable peripheral that has 24 bits of I/O on three ports and
by four dedicated outputs and three dedicated mputs. All of the logic levels are standard
TTL (0 to 5V). Fourteen bits of the programmable I/O is used as outputs for control of
the front-end circuitry. One dedicated digital input (DIN1) is used and is wired directly to
the event marker jack. No control logic is utilized on the non-isolated portion of the
front-end circuitry and therefore must be transferred to the isolated portion. To
accomplish this, the controls are mputted ULN2003 open collector drivers U22 and U23.
The outputs of U22 and U23 are wired the cathodes of optocouplers U19, U20, U21 and
U29 and resistor arrays R145 and R152 are wired to the anodes. When one of the
outputs used from the CIO-DASO08 is TTL high, the output of the associated ULN2003
gate goes low which turns on the led of the associated optocoupler. This turns on its
paired phototransistor which pulls the isolated control line low. By this gating sequence
there is a net inversion of logic levels from the output of the CIO-DASO8 to the isolated
control. Logic high on the isolated side is pulled up by the +6.6VI supply through resistor
arrays R144 and R151. Isolated controls are labeled the same as their associated non-

isolated controls with the addition of an “T” prefix to designate them as isolated.

A2.6 Theory of Operation - Power Supply

There are two power supply sections for the front-eﬁd circuitry, one for the isolated
section and one for the non-isolated section. The power source for the isolated section is
a single LP5 12.0V 1.0AHr NICd battery pack. The battery is external to the front-end

enclosure and is connected at the 1.3mm DC jack BATTERY connector. The battery
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connections are switched by the DPDT power switch where OFF disconnects the battery,
ON connects the battery to the front-end circuitry and CHARGE connects the battery to
the CHARGER jack through a 200 ohm current limiting resistor. To charge the battery, a
24VDC Wall Adapter Module (WAM) is connected to the 2.1mm CHARGER jack and
the power switch is set to CHARGE. The current limiting resistor sets the charge rate to
approximately Capacity/16 or 60mA which is a trickle charge rate and can be applied for
extended periods of time. When the battery is charging, the CHARGE LED is lit.

When the power switch is in the ON position, the battery power is applied to the
+12VI circuit and is ndicated by the BATTERY LED. In addition to supplying some
circuits directly, the +12VI supply powers linear regulator U24 and inverter U26.
Regulator U24 is a positive 6V regulator with its ground reference connected through
diode D44 which raises the output of U24 to 6.6V. The output of U24 is the source for
the +6.6VI supply. U26 is charge-pump type voltage mverter which generates the -12VI
supply by inverting the +12VI supply. The -6.6VI supply is generated similarly from the
+6.6VI supply by U25 which is a high output (100mA) charge-pump inverter. These four
voltage supplies power the entire isolated section of the front-end.

The power supply for the non-isolated section of the front-end circuitry is the
computers switching power supply. The +12VPC, -12VPC, +5VPC, -5VPC and
+10.0VREF voltages are passed through the CIO-DASO08 card and DB37 cables to the
front-end. No additional regulation is required, the only circuitry is filter capacitors
C201,C202 and C203. Computer power is indicated by the COMPUTER LED. The
power distribution and pin-outs for the integrated circuits are shown in the two tables on

page four of the front end schematic.
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ACQUIRE.CPP PROGRAM
/* ACQ2_0.CPP 10/26/94 - SPIRO @50Hz, RESP1-4 @ 25Hz, ECG AT 100Hz */

#include <graphics.h>
#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <cb.h>

#define MAXSAMPLE 2250

FILE *out;

inti=0;

it j;

mt k=0;

mt Datapoint = 0;

int BoardNum = 0;

int PortNum, Direction, DataValue;
char ch;

unsigned

Resp I[MAXSAMPLE], Resp2[MAXSAMPLE], Resp3[MAXSAMPLE], Resp4[MAXSA
MPLE];

unsigned ECG[8*MAXSAMPLE], Spiro[2*MAXSAMPLE];

unsigned *Resp 1ptr, *Resp2ptr, *Resp3ptr,*Resp4ptr;

unsigned *ECGptr,*Spiroptr;

#define ADCBASE 0x300

void Sdelay(int interval) /* short delay, depends upon CPU speed */
{ for(k=0; k<interval; k++);
}

void ADCIn(int BoardNum,int Channel,int Gain,unsigned *OUTptr) /* ADC format */
{ nt k;

outportb(ADCBASE+2,(char) Channel); /* set mux ch */

Sdelay(1); /* delay to allow signal to stablize from mux to ADC */

outportb(ADCBASE+1,0); /* initiate 12bit conversion */

k=0; while(((inportb(ADCBASE+2)&0x80)==0x80)&&(k<10000)) k++; /* test for
EOC=0%* ‘

if(k<10000)

{ *OUTptr = (unsigned)(inportb(ADCBASE+1) * 256 + inportb(ADCBASE)) >> 4;

}
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else
{ prnt"\n ** ERROR ** ADC Conversion fail.....");
*OUTptr = 0xfif;

BoardNum = Gain; /* dummy code */
Gain = BoardNum; /* dummy code */
getch();
j
}

void plot(void)
{ int gdriver = DETECT, gmode, errorcode;
int Xxmax, ymax,xpos,ypos;
int j;
/* initialize graphics and local variables */
initgraph(&gdriver, &gmode, "");
/* read result of initialization */
errorcode = graphresult();
/* an error occurred */
if (errorcode != grOk)
{ printf{"”Graphics error: %s\n", grapherrormsg(errorcode));
printf{"'Press any key to halt:");
getch();
exit(1);
}
setcolor(getmaxcolor());
xmax = getmaxx();
/*  ymax = getmaxy(); */
/* draw ECG waveform */
outtext("ECG"),
moveto(0, 120-(long)(ECG{0])*120/4096);
xpos=1; j=0; ypos=0;
for(i=1; ikMAXSAMPLE*8; i++)
{ ineto(>xpos,120-(long( ECGIi])*120/4096+ypos);
if{++xpos>=xmax)

{ j++; xpos=0; ypos=120%j; il ypos==360) ypos--;
moveto(0, 120-(long}(ECG[i+1])*120/4096+ypos); i++;
if{j>3)

{70,

getch();
clearviewport();
moveto(0, 120-(long)}(ECG{i+1])*120/4096); ypos=0;
) v

}
}
getch();



/* draw Spiro waveform */
clearviewport();
outtext(" Spiro"),
moveto(0, 120-(long)(Spiro[0])*120/4096);
xpos=1; j=0; ypos=0;
for(i=1; i<KMAXSAMPLE*2; i++)
{ lineto(xpos,120-(long)(Spiro[i]}*120/4096+ypos);

if{ ++xpos>=xmax)

{ j++; xpos=0; ypos=120*j; if{lypos==360) ypos--;
moveto(0, 120-(long)(Spiro[i+1])*120/4096+ypos); i++;
if{j>3)

{=0;
getch();
clearviewport();
moveto(0, 120-(long) Spiro[i+1])*120/4096); ypos=0;
}
}
}

getch();
/* draw Resp1 waveform */

clearviewport();

outtext("Resp1");

moveto(0, 120-(long)(Resp 1[0])*120/4096);

xpos=1; j=0; ypos=0;

for(i=1; i<kMAXSAMPLE; i++)

{ lineto(xpos,120-(long)(Resp 1[i])*120/4096+ypos);

if{++xpos™>=xmax)
{ j*+; xpos=0; ypos=120%*j; if{lypos==360) ypos--;

moveto(0, 120-(long)(Resp 1[i+1])*120/4096+ypos); it++;

if(j>3)

{i=0;
getch();
clearviewport();
moveto(0, 120-(long)(Resp1[i+1])*120/4096); ypos=0;

}

}
}

getch();
/* draw Resp2 waveform */

clearviewport();
outtext("Resp2");
moveto(0, 120-(long)(Resp2[0])*120/4096),
xpos=1; j=0; ypos=0;

for(i=1; i<MAXSAMPLE; i++)

{ lineto(xpos, 120-(long)(Resp2[i])*120/4096+ypos),
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if{++xpos>=xmax)

{ J7+; xp0os=0; ypos=120%j; i ypos==360) ypos--;
moveto(0, 120-(long)Resp2[i+1])*120/4096+ypos); i++;
if7>3)

{i=0;
getch();
clearviewport();
moveto(0, 120- (long)(Resp2{1+1])* 120/4096); ypos=0;
}
}
} .
getch();
/* draw Resp3 waveform */
clearviewport(};
outtext("Resp3");
moveto(0, 120-(long)(Resp3[0])*120/4096);
xpos=1; j=0; ypos=0;
for(i=1; i<MAXSAMPLE; i++)
{ lineto(xpos,120-(long ¥ Resp3[i])*120/4096+ypos);
if{ ++xpos>=xmax)
{ j*+; xpos=0; ypos=120%*j; i ypos==360) ypos--;

moveto(0, 120-(long)(Resp3(i+1])*120/4096+ypos); it++;

if(j>3)
{ =0,
getch();
clearviewport();
moveto(0, 120-(long)(Resp3[i+1])*120/4096); ypos=0;
}
}

}
getch();

/* draw Resp4 waveform */

clearviewport();

outtext("Resp4");

moveto(0, 120-(long)}(Resp4[0])*120/4096);

xpos=1; j=0; ypos=0;

for(i=1; i<MAXSAMPLE; i++)

{ lineto(xpos, 120-(long)(Resp4[i])*120/4096+ypos);

if{ ++xpos>=xmax)
{ j++; xpos=0; ypos=120%j; il ypos==360) ypos--;

moveto(0, 120-(long)(Resp4[i+1])*120/4096+ypos); it+;

if(j>3)

{7=0;

getch();
clearviewport();
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moveto(0, 120-(long)(Resp4[i+1])*120/4096); ypos=0;
}
}

}
getch();

/* clean up */
closegraph();
}

void main(void)
{ Resplptr = Respl;
Resp2ptr = Resp2;
Resp3ptr = Resp3;
Resp4ptr = Resp4;
ECGptr =ECG;
Spiroptr = Spiro;
for(i=0; i<MAXSAMPLE; i++)
{ Resp1[i]=Resp2[i]=Resp3[i]=Resp4[i]=Spiro[i*2]=Spiro[i*2+1]=0;
for(j7=0j<8;j++)
ECGJi*8+j]=0;
}
PortNum = FIRSTPORTB;
Direction = DIGITALOUT;
DataValue = 0;
cbDConfigPort (BoardNum, PortNum, Direction);
cbDConfigPort (BoardNum, FIRSTPORTA, Direction);
cbDOut (BoardNum, FIRSTPORTA, 10); /* RESP gain=m, TTI gain=m */
clrser();

printf{"\n\n\n\n\n Allow at least 15 seconds for baseline to stabilize!");
printf{"\n\n\n When ready .... ");
printf{"\n\n\n Press any key to START data acquisition ... ");
while(!kbhit())
{ switch(i)
{ case 0:

DataValue = 222; /* 222 LD I, SW X*/
cbDOut (BoardNum, PortNum, DataValue),
delay (3);

DataValue = 223; /* 223 LD I, SW 0%/
cbDOut (BoardNum, PortNum, DataValue),
delay (7);

DataValue = 222;/* 222 LD I, SW X*/
¢bDOut (BoardNum, PortNum, DataValue);

break;

case 1: ‘
DataValue = 156; /* 156 LD II, SW X*/



}
}

break;
case 2:

break;
case 3:

break;

cbDOut (BoardNum, PortNum, DataValue);
delay (3);

DataValue = 157; /% 157 LD, T SW 1%/
cbDOut (BoardNum, PortNum, DataValue);
delay (7);

DataValie = 156; /* 156 LD II, SW X*/
cbDOut (BoardNum, PortNum, DataValue);

DataValue = 146; /* 146 LD III, SW X*/
cbDOut (BoardNum, PortNum, DataValue);
delay (3);

DataValue = 147; /* 147 LD 11, SW 2%/
cbDOut (BoardNum, PortNum, DataValue);
delay (7);

DataValue = 146, /* 146 LD III, SW X*/
cbDOut (BoardNum, PortNum, DataValue);

DataValue = 136; /* 136 LD IV, SW X*/
cbDOut (BoardNum, PortNum, DataValue),
delay (3);

DataValue = 137; /* 137 LD IV, SW 3%/
cbDOut (BoardNum, PortNum, DataValue);
delay (7);

DataValue = 136; /* 136 LD IV, SW X*/
cbDOut (BoardNum, PortNum, DataValue);

i+ = 4) i=0;

if(kbhit()) getch();

clrser();

/*acquisition start*/

printf{"\n\n\n\n\n\n\n\n Acquiring data !");
printf{"\n\n\n\n
while((!kbhit())&&(Datapoint<MAX SAMPLE))

{ switch(i)

{ case O:

ADCIn(BoardNum, 2, 0, Spiroptr); /* read Spirometer channel */

Spiroptr++;

DataValie = 222; /* 222 LD I, SW X */ /* select lead & disable BLR sw */

Press any key to CANCEL data acquisition

cbDOut (BoardNum, PortNum, DataValue);
delay (3);

DataValue = 223; /* 223 LD I, SW 0 */ /* enable BLR sw */

cbDOut (BoardNum, PortNum, DataValue);
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delay (2);
ADCIn(BoardNum, 1, 0, ECGptr); /* read ECG CH */
ECGptr++;
delay (2); /* delay to center of good data */
ADCIn(BoardNum, 0, O, Resplptr); /* read RESP1 CH */
Resplptr++;
delay (3);
ADCIn(BoardNum, 1, 0, ECGptr); /* read ECG CH */
ECGptr++;
DataValue =222;/* 222 LD I, SW X */ /* disable BLR sel sw */
cbDOut (BoardNum, PortNum, DataValue);
break; /* repeat for next RESP leads */
case 1:
DataValue = 156; /* 156 LD II, SW X */
¢bDOut (BoardNum, PortNum, DataValue);
delay (3),
DataValue = 157, /* 157 LD, L SW 1 */
cbDOut (BoardNum, PortNum, DataValue),
delay (2),
ADCIn(BoardNum, 1, 0, ECGptr);
ECGptr++;
delay (2);
ADCIn(BoardNum, 0, 0, Resp2ptr);
Resp2ptr++;
delay (3);
ADCIn(BoardNum, 1, 0, ECGptr);
ECGptrt++;
DataValue = 156; /* 156 LD I, SW X */
c¢bDOut (BoardNum, PortNum, DataValue);
break;
case 2:
ADCIn(BoardNum, 2, 0, Spiroptr); /* read Spirometer channel */
Spiroptr++;
DataValue = 146; /* 146 LD III, SW X */
cbDOut (BoardNum, PortNum, DataValue);
delay (3);
DataValue = 147; /* 147 LD I, SW 2 */
cbDOut (BoardNum, PortNum, DataValue);
delay (2);
ADCIn(BoardNum, 1, 0, ECGptr);
ECGptr++;
delay (2); ,
ADCIn(BoardNum, 0, 0, Resp3ptr);
Resp3ptr++;
delay (3);

10
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ADCIn(BoardNum, 1, 0, ECGptr);
ECGptr++;
DataValue = 146; /* 146 LD III, SW X */

cbDOut (BoardNum, PortNum, DataValue),
break;

case 3:
DataValue = 136; /* 136 LD IV, SW X */
cbDOut (BoardNum, PortNum, DataValue);
delay (3);
DataValue = 137, /* 137 LD IV, SW 3 ¥/
cbDOut (BoardNum, PortNum, DataValue);
delay (2);
ADCIn(BoardNum, 1, 0, ECGptr);
ECGptr++;
delay (2);
ADCIn(BoardNum, 0, 0, Resp4ptr);
Resp4ptr++,
delay (3);
ADCIn(BoardNum, 1, 0, ECGptr);
ECGptr++;
DataValue = 136; /* 136 LD IV, SW X ¥/
c¢bDOut (BoardNum, PortNum, DataValue);

Datapoint++;  /* last case, increment # of samples taken */
break;
}
if{++1 == 4) i=0;
}
if{(kbhit()) getch(); /* end of acquisition*/
/* plot waveform */
plot();
printf{"\n\n\n\n\n\n\n\n Save data to file: TRIALX.DAT ? [Y/N] "),
scanf{"%c",&ch);
iff(ch==y)|| (ch=="Y"))
{ /* open file and save data in file */
if ((out = fopen("TRIALX.DAT", "wt"))== NULL)
{ printf{"Cannot open TRIALX.DAT file.\n");
}
else
{ /*fprintf{out,"Spiro Respl Resp2 Resp3 Resp4 ECGwn");*/ /*OPTIONAL TITLE
FOR EACH COLUMN*/
fprintfout," %-7 d%-7d%-7d%-7d%-7d%-7d%-7d%-7d%-7d%-7d%-~7d%-~7d%-7d%-
7d",
MAXSAMPLE,0,0,0,0,0,0,0,0,0,0,0,0,0);
fprintf{out,"\n");
for(i=0; ikMAXSAMPLE; i++)
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{ fprintf{out," %-~7d%-7d%-7d%-7d%-7d%-7d",
Spiro[i*2],Spiro[i*2+1],Resp 1{i],Resp2[i], Resp3[i],Resp4[i]);
for(j=0j<8;++)
fprintf{ out,"%-7d", ECG{i*8+j]);
fprintf{out,"\n");
)

fclose(out);



MATLAB PROGRAMS
%  RUNTRIALM
% This is the main batch program for the MATLAB programs

clear all;

load c:\path\trial**.dat;
trial=trial**;

clear trial**;

pack;

sprun;

iprun;

ecgrun;

clear trial

pack

save trial**;
ipmean**=ipmean;
spvol**=gspvol,
rm**=rm;

save cordat40 ipmean40 spvol40 rm40;
%corrplot;

clear all;

pack;

%end

%  SPRUN.M
%  This is the batch program for the spirometer
%  signal processing programs.

spload;
sprange;
spindex;
spvol;

%clear spiro,
clear sprange;
pack;

%end
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% SPLOAD.M
% THIS PROGRAM LOADS THE SPIROMETER DATA FROM TWO
% COLUMNS ANS SCALES IT.
maxsample=trial(1,1); % loads number of samples per column from data
spiro=zeros((maxsample)*2,1); % initalizes spiro to one column
for i=1:(maxsample), % trial row 1 is invalid
spiro((i*2)-1)=trial(i+1,1)/409.6-5.0; % loads and scales data by
spiro(i*2)=trial(i+1,2)/409.6-5.0; % alternating colummns
end
spsample=maxsample*2; % defines total number of spiro samples
for i=1:spsample,
if spiro(i,1)>2 % scales data to 1 or 0 based on a threshold
spiro(i, 1)=1;
else
spiro(i,1)=0;
end
end
%end of program

% SPRANGE.M
% THIS PROGRAM FINDS THE RANGES OF INSPIRATION (0)
% AND EXPIRATION (1) OF THE SPIROMETER DATA.
sprange=zeros(spsample,1);
sprange(1,1)=spiro(1,1); % initalize first data point
k=0;
for i=1:(spsample-51),
if (spiro(i) + spiro(i+1))==1 % true = transition
for j=1:50, % tests over the next 1 sec. of data
if (spiro(i+1) + spiro(i+1+)))==
k=(k+1);
else
end
end
if k==0
sprange(i+1)=0; % Transition to inspiration.
else
sprange(i+1)=1; % Transitions detected.
k=0;
end
else | ,
sprange(i+1)=sprange(i); % No transition.
end
end
%end of program
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% SPINDEX.M

% THIS PROGRAM INDEXES EACH SPIROMETER BREATH AND ITS
ASSOCIATED

% INSPIRATION AND EXPIRATION.

bn=0; % initialize breath number
for i=3:spsample-52,
if sprange(i) + sprange(i+1)==1 % tests for transition in range
if sprange(i+1)==0

bn=bn+1;
spinstart(bn)=it1; % finds start of inspiration
elseif bn>0
spexstart(bn)=i+1; % finds start of expiration
else % skips if first insp not found yet
end
else
end
end
totalnb=bn-1, % total valid breaths indexed
for j=1:bn-1,

spinend(j)=spexstart(j); % finds end of inspiration
spexend(j)=spinstart(j+1); % finds end of expiration
end
% end of program.

% SPVOL.M
% THIS PROGRAM COUNTS THE SPIROMETER EXPIRATION TRANSITIONS
% AND CACULTAES THE VOLUME FOR EACH BREATH IN SPIRO USING
% INDEXES FROM INDEX.
%bn = breath number
%totalnb = total number of breaths
spvol=zeros(totalnb-1,1);
for bn=1:totalnb-1,
count(bn)=0;
for i=(spexstart(bn)-2).(spexend(bn)+2),
if spiro(i) + spiro(i+1)==1 % tests for transition
count(bn) = count(bn)+1;
else
end
end
spvol(bn)=count(bn)*0.05; % vol=# of transitions x .05L
end

% end of program.
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% IPRUN.M

ipload;

ipinterp;

ipfilt; % filtered data (comment out for unfiltered)
ipindex;

clear ipx;

ipdiff;

%ipcomp;

ipmean;

pack;

% IPLOAD.M
% THIS PROGRAM EXTRACTS THE RESPIRATION LEADS
% FROM THE RAW ACQUIRED DATA AND AND SCALES THE DATA TO +/-5V.

maxsample=trial(1,1); % loads number of samples per column from data

ip 1=zeros((maxsample),1);

ip2=zeros((maxsample),1);

ip3=zeros((maxsample),1);

ip4=zeros((maxsample),1);

for i=1:(maxsample), % trial row 1 is invalid
ip 1(i)=trial(i+1,3)/409.6-5.0; % input ip data and scale
ip2(i)=trial(i+1,4)/409.6-5.0; |
ip3(i)=trial(i+1,5)/409.6-5.0;
ip4(i)=trial(i+1,6)/409.6-5.0;

end

pack;

% end of program

% IPINTERP.M

% THIS PROGRAM INTERPOLATES THE IP DATA TO 2X THE
% NUMBER OF SAMPLES TO MATCH THE SPIRO DATA.

ip 1=interp(ip1,2);

ip2=interp(ip2,2);

ip3=interp(ip3,2);

ip4=interp(ip4,2);

% end of program
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% IPFILT.M

% THIS PROGRAM FILTERS THE SCALED IP DATA.
[b,a]=butter(1,0.25), % 2-pole LPF (1 each direction), 6.25Hz.
ip 1=filtfilt(b,a,ip 1);

ip2=filtfilt(b,a,ip2);
ip3=filtfilt(b,a,ip3);
ip4=filtfilt(b,a,ip4);

% end of program

% IPINDEX.M
% THIS PROGRAM FINDS THE IP EXPIRATION START AND END DATA, AND
%THEIR INDEXES FOR EACH BREATH FOR EACH SET OF IP LEAD DATA.

for x=1:4,
if x=—=1 % ip lead 1
ipx=ip1;
elseif x==2 % ip lead 2
ipx=ip2;
elseif x==3 % ip lead 3
ipx=ip3;
elseif x==4 % ip lead 4
ipx=ip4;
end
for bn=1:totalnb-1, % last breath is not valid
yl=ipx(spexstart(bn));
y2=ipx((spexstart(bn))+10);
if y1>y2 % tests for polarity inversion

[y,il=max(ipx(spinstart(bn):spinstart(bn+1)));
[z,j]=min(ipx(spexstart(bn):spexstart(bn+1)));
else % finds max & min
[y,i]=min(ipx(spinstart(bn):spinstart(bn+1)));
[zj]=max(ipx(spexstart(bn):spexstart(bn+1)));
end
if x==1
ip 1exstdata(bn)=y; % stores indexes for each breath
ip lexstart(bn)=i+spinstart(bn),
ip lexendata(bn)=z;
ip lexend(bn)=j+spexstart(bn);
elseif x==2
ip2exstdata(bn)=y;



ip2exstart(bn)=i+spinstart(bn);
ip2exendata(bn)=z;

ip2exend(bn)=j+spexstart(bn),

elseif x==

ip3exstdata(bn)=y;

ip3exstart(bn)=i+spinstart(bn);
ip3exendata(bn)=z;

ip3exend(bn)=j+spexstart(bn);

elseif x=—=4

ip4exstdata(bn)=y;

ip4exstart(bn)=i+spinstart(bn);
ip4exendata(bn)=z;

ip4exend(bn)=j+spexstart(bn);

end
end

end

% end of program.

% IPDIFF.M
% THIS PROGRAM CALCULATES THE DIFFERENCE IPEXSTDATA -
% IPEXENDATA
% AND DECLARS THIS TO BE IP#DIFF. THIS IS DONE FOR EACH BREATH
% IN EACH OF THE IP LEADS.
bn=0; % breath number

for bn=1:totalnb-1,
ip 1difR bn)=abs(ip 1 exstdata(bn)-ip lexendata(bn));
end
for bn=1:totalnb-1,
ip2diffibn)=abs(ip2exstdata(bn)-ip2exendata(bn));
end
for bn=1:totalnb-1,
ip3difi{bn )=abs(ip3exstdata(bn)-ip3exendata(bn));
end
for bn=1:totalnb-1,
ip4diff bn)=abs(ip4exstdata(bn)-ip4exendata(bn));
end

ip 1diff=ip 1difK: );
ip2diff=ip2difK:);
ip3diff=ip3difK:);
ip4diff=ip4difR:);

% end of program.
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% ECGRUN.M
ecgload;
ecgfilt; % comment out for unfiltered

%end of program

% ECGLOAD.M
% THIS PROGRAM LOADS THE ECG DATA FROM EIGHT COLUMNS AND
SCALES IT.

maxsample=trial(1,1); % loads number of samples per column from data

ecg=zeros((maxsample)*8,1); % initalizes ecg to one column
for i=1:(maxsample), :
for j=1:8, % trial row1 data is invalid
ecg((i*8)+j-8)=trial(i+1,6+)/409.6-5.0; % loads and scales data
end
end
%end of program
% ECG FILT.M
% THIS PROGRAM FILTERS THE ECG DATA
[b,a]=butter(1,0.5); % 2-pole LPF (1 each direction), S0Hz.
ecg=filtfilt(b,a,ecg);
% IPMEAN.M

ipmean=zeros(totalnb-1,1);
for 1=1:totalnb-1,
ipmean(i)=((ip 1diff{i))+(ip2diff{i))+(ip3diff{i)) Hip4difi(i)))/4;

end

% end of program
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S-Plus Functions

To scan in a 1column by x row ASCII matrix,:

output matrix(scan(“parh/_data\\input filename” ncol=1,byrow=T

To call the GAM or GLM function:
result _gam(standard data—s(datal)+s(data2)+s(data3)+s(datad)

The transfer functionm “s” (spline) can be substituted with p (poly), lo (loess) or no
function.

To obtain residual deviances, type result.

To “extract” model data use:
fitted(result)
residuals(resul)

coeflicients(result)

To write data in S-Plus to an ASCII file:
write(round(data,#), output name” ncol=1)

# = the number of digits to round to
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