

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

9

In recent years, real-time applications have been growing substantially in size

and complexity which makes it impossible for programmers to write optimal code,

and consequently indicates a need for compiler optimization. Requiring optimization

to be performed together with scheduling, instruction selection, register allocation,

tends to make optimization a very hard problem. Marlowe and Masticola [59]

have shown th a t even optimization for a system consisting of a single process may

disturb timing constraints and may cause a deadline to be missed. In addition,

optimization for explicitly parallel programs tends to be quite hard even without

timing constraints [64].

As was shown earlier, proper optimization can sometimes transform programs

which cannot meet constraints/deadlines or which result in timeouts into deadline-

satisfying programs. Moreover, safe opportunities for parallelism can be detected

that can, if carefully applied, enhance resource utilization and speed up execution.

In addition, optimization of hard real-time programs has benefits even for real-time

programs which are already running, and which can be proven to meet their timing

constraints. For these programs, it is often preferable to reduce resource usage (time,

space, or processors), especially in multiuser or multiprogramming environments.

Not only do resources then become available to other users, but this may also make

the programs more robust in the face of unpredictable system overload, as suggested

by the scheduling-theoretic results of [11].

The following section shows how safe speculative execution can enhance average

performance and generate opportunities for parallelism in real-time systems.

1.4 Speculative Execution in Real-Time System s

In the previous section, the complexity of performing compiler optimization in real­

time systems is illustrated. While there is a need for safe compiler optimization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

for real-time code, it is very hard to apply optimization techniques without jeopar­

dizing timeliness, even for simple models. This section includes an elaboration of

the benefits of one interesting optimization technique, speculative execution, which

is considered in depth in this thesis and the difficulties associated with applying it

to real-time systems.

In systems without hard deadlines, expected execution times can be further

reduced and parallelism can be increased by speculative execution.

Typically, speculative (or optimistic) execution [48, 103] requires rollbacks

or restarts when the computation in progress is found to be based on assumptions

which are later invalidated; rollback reads a checkpoint, and then replays as much

of subsequent execution as is still valid, and begins execution (for a given process)

when some step depends on changed information.

Speculative execution may: (1) execute a statement with outdated values,

and need to retract the computation and re-execute it with the correct values, or

(2) execute one branch of a conditional, and then need to retract that computation

and execute a different branch, or none at all. Within this speculative execution, it

may be possible to (3) make unnecessary calls or calls with invalid parameters, which

will need to be retracted, if they have begun execution, or killed, if they have not.

Simple examples exist to show that, even when speculative execution provably

improves expected performance, it can result in missed deadlines. In Figure 1.4,

assume exp involves a call and takes time 8, code blockl needs 10 units, code block2

takes time 9, and the fork and copy each take time 2. If there is a 90% probability

for exp to be true, the expected execution time for the original code (on the left) is

17.9 units, and becomes 12.7 for the transformed version (on the right). However,

worst-case time has been extended by transformation from 18 in the original code to

19.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

ORIGINAL TRANSFORMED

if (exp) fork code blockl
code blockl

else
code block2

if (exp)
copy results for blockl

else
code block2

/* Before transformation, /* After transformation,
the deadline is met * / deadline is possibly

missed if exp is false * /

F ig u re 1.2 Speculative execution can result in missed deadlines.

While this dissertation addresses safe use of machine-independent compiler

optimization, parallelization and speculative execution techniques in real-time

programs, speculative execution will be considered in depth. The thesis demonstrates

how speculative execution can be used in limited but useful ways to safely improve

the average-case, and sometimes even the worst-case, performance of a distributed

hard-real-time system. The approach is not based on a specific architecture, but uses

a number of architecture/operating system cost parameters. Compile-time analysis

is used to detect both safety and profitability of speculative execution in real-time

systems relying on intensive static timing analysis to investigate the effect of rollback

on worst-case execution time. The code is transformed to fork new processes to

execute parts of the code speculatively on a shadow replica or on the same processor

during a remote call or interleaving with the current process. This approach, to the

author’s best knowledge, has not been used before in real-time systems.

Program transformations can be used to improve the timeliness, performance,

and analyzability of real-time programs. However, to employ such transformations,

they should be proven to be correct (both semantically and temporally), profitable,

and automatable. To facilitate the use of speculative execution to real-time appli-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

cations, which have grown in size and complexity, a set of compiler transfor­

mation rules is developed. The rules preserve not only program semantics but also

timeliness [116], and can be incorporated into a real-time language compiler to be

systematically applied. While applying these rules increase compilation overhead

for real-time programs, this thesis shows that speculative execution pays off.

While the approach to speculative execution presented in thesis, and the

related approach of [59], can be viewed as supporting primarily absolute performance

improvement for real-time systems, information on deadlines and laxity can be used,

both to enable additional transformations in the presence of slack, and to focus

the efforts of the transformation system. In fact, even systems that are provably

schedulable can benefit from such transformations. If the schedulability criterion

is violated, and there are spare processors, speculative execution can be viewed as

forking-off an additional process, presumably lowering the load per processor, and

enabling the system to be scheduled. In addition, speculative execution can improve

other properties of real-time systems, such as fault tolerance [117].

Speculative execution can be successful in computation-intensive complex

systems, such as real-time imaging and multimedia. Although such applications have

potential for parallelism, there are also opportunities for speculative execution [115].

Image filtration, for example, usually involves a lot of computation, while testing

the quality of an image is time-consuming as well [19]. An image can be filtered

speculatively on a shadow while quality tests are running. The same argument

holds for edge detection. Moreover, morphological image processing [32] has a lot

of potential for speculative execution. Construction of a structural element can

be done speculatively while another element is being tried. Another application is

image retrieval according to certain input or the occurrence of an event. The most

complicated image can be retrieved and filtered speculatively on a shadow to shorten

the worst-case execution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

1.5 Contribution

In this dissertation, we mainly study how to apply compiler optimization, in general,

and speculative execution, in particular, to real-time systems. We identify safe and

profitable opportunities for speculative execution at compile-time and transform the

code accordingly. We have developed a set of transformation rules th a t can be

plugged in compilers of most real-time languages. The speculative execution trans­

formations have been integrated within a platform for developing complex real-time

systems, being built at the Real-Time Computing Laboratory at NJIT and sponsored

by the Office of Naval Research and the National Science Foundation. The platform is

based on a new real-time language [99] and its tool support including an analysis and

transformation engine. The speculative execution transformations has been imple­

mented as a part of that engine. Detailed description of the platform is provided in

Chapter 7. The contribution of this dissertation can be summarized as follows:

• We have developed techniques to detect safe and profitable speculative

execution opportunities. We have defined a set of conditions tha t assure

timeliness of real-time programs before enabling the transformation. We

use compile-time analysis to justify safety and profitability of speculative

execution. Safety is verified by investigating the effect of rollback on the

worst-case execution time. The transformation is profitable when it speeds

up the execution of the longest path of the program (refer to Chapter 4 for

details).

• We have specified transformation rules that can be plugged in compilers of

most real-time languages. The rules provide a set of preconditions, action and

postconditions. Preconditions need to be verified to assure the preservation

of program semantics and timeliness. The action part summarize changes in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

the code, while postconditions reflect side effects resulting from the transfor­

mation. This format is proven to be very convenient for formal verification and

implementation (refer to Chapter A for details).

• We have formally verified the safety of the transformation rules. We have used

temporal logic to prove that the semantic of programs are preserved and the

timing behavior is not worsen when applying the transformation rules (refer to

Chapter 5 for details).

To validate our work empirically we have done the following:

• We have conducted an experiment to capture the effect of various properties

of real-time programs that affect applicability and profitability of speculative

execution. The experiment uses randomly generated real-time programs. We

have examined the impact of the frequency of programming constructs, the

size of blocks, and locality of variable references on the number of potential

opportunities and performance gains due to speculative execution (refer to

Chapter 6 for details).

• We have examined the usefulness of speculative execution in realistic appli­

cations. We have plugged in our transformation rules in a platform for

developing complex real-time systems at the real-time computing laboratory

at NJIT. The speculative execution transformations have been applied to a

small number of simulated real-time applications, and shown to be beneficial

for performance (refer to Chapter 7 for details).

1.6 Organization

This dissertation is organized as follows. In the next chapter, a real-time model

which serves as a basis for this work is defined. Chapter 3 summarizes related

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

work. In Chapter 4, opportunities for speculative execution are identified, various

safety issues affecting the applicability of speculative execution to real-time programs

are elaborated, and a specification of compiler transformation rules for speculative

execution is provided. These rules are formally verified for semantic correctness

and preserving timeliness in Chapter 5. An experiment based on simulation have

been conducted to capture various code properties that affect the number of feasible

opportunities and performance gains of speculative execution. In Chapter 6, the

design and results of this experiment are illustrated. A prototype implementation

for the speculative execution compiler rules is described in Chapter 7, highlighting the

applicability and usefulness of speculative execution in realistic application. Finally,

Chapter 8 concludes this thesis and summarizes future research directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

THE REAL TIME MODEL

In the previous chapter, we motivated our study and defined the problem that this

thesis is trying to address. In this chapter, a real-time model is defined for this

work. In addition, definitions are provided for some of the terms used throughout

the thesis. In the next section, assumptions about the hardware platform are stated,

followed by a discussion of the assumed software environment. Schedulability

analysis is illustrated in Section 2.3, followed by a discussion of high-level real-time

programming language support. The discussion of the language model elaborates

features that a language should provide to enable static analysis in the presence of

timing constraints, as illustrated in the next chapter.

2.1 Hardware Environment

In this section, the thesis assumptions about the real-time hardware environment are

stated.

Real-time hardware (for example [38, 63]) need not necessarily be very fast,

but must provide predictable functionality enabling analysis of the system and

fault-tolerance [25]. Issues like caching, direct memory access, virtual addressing,

pipelining, or asynchronous communication protocols can cause nondeterminism,

and consequently should be handled with care. In this thesis, it is assumed that the

execution time of each machine instruction is known at compile-time. Moreover, it

is assumed that the hardware does not introduce any unpredictably long delays into

program execution. In the following section, the software component is defined.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

2.2 Software Environment

Processes in real-time systems can be either periodic or aperiodic. Each process

has a frame - the minimum period which corresponds to the maximum frequency of

activation of that process. The frame is usually dictated by the external environment.

The process can be activated periodically, by a signal from another process or an

external activity, or at a specific time known at compile-time. Once activated, a

process must complete its task before the end of the current frame (its deadline)

and cannot be reactivated before the end of the frame (otherwise, the frame is not

the minimum period). Processes can synchronize their execution. The kernel is

responsible for serializing access to shared resources. A kernel call blocks a process

until a desired shared resource is free, then it claims that resource and returns. All

subsequent attempts to claim the same resource will block until the process with

the resource executes another kernel call to release the resource. Synchronization

primitives (for example, semaphores) can be used to implement this mutual exclusion.

In this thesis, it is assumed that the kernel uses a suitable discipline to schedule

processes, for example the disciplines described in [55, 66].

Traditional real-time systems have often taken the form either of a cyclic

executive or of a relatively small number of independent, coarse-grained processes

executed on a small number of processors and making use of a small number of mostly

homogeneous resources. Current and future systems are expected to run on modern

computer architectures, often parallel and distributed, and to utilize many hetero­

geneous resources. Consequently, techniques must be developed to identify parallel

objects of appropriate granularity within real-time systems and to map these objects

and their resource requests to parallel processes and resources, to facilitate such high

performance objectives as short response times and balance of workload. In this

thesis, it assumed that there is a suitable assignment tool, such as the tool in [100],

within the real-time software environment to allocate such processes to processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Schedulability analysis, as illustrated in the following section, can provide at

least some kind of prediction of execution behavior of a set of processes. This kind of

analysis can help the programmer, as will be shown, to solve some of the allocation

and scheduling problems a t compile-time. In addition, compiler assistance may be

used to collect additional information about the nature of the processes as an aid to

the allocation and scheduling of processes, as illustrated in the next chapter.

2.3 Schedulability Analysis

The software components of modern real-time systems, as discussed in the previous

section, are typically programmed in a high-level language with some functions

possibly written in assembly code. As the software is written, the programmer

attempts to follow the timing specifications of the system to the best of his or

her ability. The resulting code is subjected to analysis for adherence to its critical

timing constraints under all possible execution orders compatible with the scheduling

discipline in use. This form of analysis, introduced by Stoyenko [89, 90, 91, 95] is

commonly referred to as schedulability analysis. Schedulability analysis is also used

for non-complex, scheduling-theoretic systems amenable to provably optimal rate-

monotonic scheduling [58] to refer to its verification process, which typically involves

checking of a simple set of constraints [30].

The schedulability analyzer consists of two parts, a partially language-

dependent front end and a language-independent back end. The front end is

incorporated into the code parser, and extracts timing information and calling

information, and builds program trees. It computes the amount of tim e individual

statements, subprograms, and process bodies take to execute in the absence of

calls and contention. The front end has as an input table mapping statements to

execution times. The back end is a separate program which analyzes the information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

summarized in the generated program trees by the front end and predicts guaranteed

response times for the entire real-time application.

The statistics generated by the schedulability analyzer tell the programmer

whether or not the timing constraints are guaranteed to be met. In addition, it may

provide the programmer with hints on problems or bottlenecks if the system fails

one or more deadlines.

The accuracy of schedulability analysis depends on an accurate summary of

timing information. However, finding precise solutions considering contention and

branching in general is a NP-complete problem, and the cost can add significantly

to the cost of program compilation. The NP-completeness arises in particular

from the combinatorial explosion of possible execution orders in cases of processes

sharing resources. As a result, schedulability analysis can either be (1) exact

and efficient of analysis single process or multiple processes of simple form, or

with highly constrained interactions [65, 72, 78, 108], (2) highly imprecise though

efficient analysis of multiple process programs [57], or (3) nearly exact though highly

inefficient analysis of some multiple processes [89, 95]. To combat some sources of

combinatorial explosion, there has been work to reduce the cost of precise schedu­

lability analysis, as for example [71, 96, 97, 98]. These are illustrated in the next

chapter.

The next section provides a discussion of how schedulability analysis, among

other requirements, motivated a new programming language paradigm for real-time

high-level programming languages.

2.4 Real-Tim e Programming Languages

In the past, programmers for real-time applications have used assembly language

to develop their programs. While assembly language provides enough control for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

them to hand-optimize small processes, as the applications get larger, it becomes

harder and more time-consuming both to develop and to optimize assembly code.

Moreover, unstructured control flow and the use of address operators make automatic

analyses difficult or impossible. Partly for this reason, the demand for high-level

language programming for real-time applications has grown. Early designers of real­

time languages took the natural approach of augmenting existing languages with real­

time features. Later, a set of real-time languages was proposed structured around

real-time requirements, such as Real-Time Euclid [51] and (to a lesser extent) Ada 9X

[94], Next, the requirements that real-time languages should support are discussed.

2.4.1 Requirements of Real-Time Languages

The requirements for real-time languages can be classified as: support for multipro­

gramming and distributed processing, expressibility of timing constraints, support

for standard high-level language constructs while enabling schedulability analysis

by avoiding or resolving constructs with unbounded execution time, and ability to

describe non-functional constraints such as security and fault-tolerance.

Real-time software almost always involves multiprogramming. A real-time

language must therefore support the process concept by providing process definition.

It should allow concurrency and provide primitives for interprocess precedence,

communication, and synchronization.

The most obvious requirement th a t a real-time language should satisfy is

expressibility of a sufficiently powerful set of timing constraints to capture those

imposed by the nature of time-critical applications. At a minimum, there should be

constructs to express timing constraints on a process.

A real-time language should make sufficient provisions for schedulability

analysis. Every program should be analyzable at compile-time to determine deadline

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

satisfaction during execution. The language should have no constructs that could

take arbitrarily long to execute. For example, a general while-loop can lead to

unpredictable execution times. While-loops axe either removed from the language

or require compile-time analysis or user assertions to provide an upper bound on

iterations to bound execution time of the construct. Recursion can also be an

obstacle for analyzing programs, and likewise may be disallowed or require compile­

time knowledge of an upper bound on the depth of the recursion. Dynamic structures

can have a similar effect, and are again disallowed or restricted, by a storage bound

on their maximum size.

In addition to restrictions arising from timing constraints, there are generally

other non-functional constraints. Real-time programs must in general be very

reliable. Thus, a real-time language should be secure. Specifically, the language

should have strong typing and structured constructs, and be modular as well as

simple. There should be a high-level mechanism for exception handling to minimize

the hardware-dependent part of the code that has to be implemented in assembly.

This allows the portability of the programs to different platforms. Exceptions can

also allow relaxation of constraints in abnormal situations, effectively supporting

mode-change within the language.1

1A significant part of this discussion is derived from [92].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

RELATED WORK

A global requirement for all compiler transformations is to preserve the semantics

of the programs. This property is termed the safety or correctness requirement. On

the other hand, there should be some gain from applying them. It makes no sense

to transform a program without enhancing some property of the analysis or the

execution behavior. This requirement is termed profitability. For real-time programs,

safety has a more restrictive definition: in addition, code transformations should

not worsen the timing properties of the program. A program that meets all timing

constraints should not be transformed to a one that fails its deadline. Thus evaluating

the applicability of code transformations in real time systems requires an accurate

estimation of execution time. Before performing the transformations, the effects on

execution behavior must be studied. According to that investigation, the transfor­

mation may or may not be applied. The estimation of execution time can be based

on a compile time prediction or monitored while testing the code. The better the

accuracy of th a t estimate, the more confident we will be in transforming the code.

Usually compile-time analysis, including code transformations, is referred to as

static or pre-run time analysis. Static analyses in real-time systems generally fall

into four categories.

1. Code transformations guaranteed to preserve or enhance timing properties and

to improve overall performance. These are generally safe forms of sequential

and parallelizing compiler transformations, including in the latter category

speculative execution. These transformations uniformly affect the executable

code.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

2. Partial evaluation and other forms of code specialization that largely support

writing of high-level reusable code. Although transformations in this group

result in changes in the executable code, their principal effect in working code

is for the benefit of timing analysis. Transformations in this group provide

support for predicting or monitoring execution behavior of systems.

3. Transformations to reduce the complexity of schedulability analysis. Recall

from the discussion in the previous chapter that precise schedulability analysis

is NP-complete. Transformations in this category attem pt to decrease the

complexity, as discussed in Section 3.5. These transformations may or may not

change the code functionality.

4. Techniques to enhance the schedulability of the system, in the sense of trying to

find a feasible schedule for a set of processes or extracting some useful properties

about processes for the scheduler to use. These techniques seldom affect the

code.

The work presented in this thesis falls primarily in the first category. It

provides a study of how to apply various machine-independent compiler optimization

techniques to real-time programs without jeopardizing timeliness. The thesis concen­

trates on safe and profitable use of speculative execution in real-time system. This

chapter provides a summary of some of the previous work on static analysis of real­

time systems and a comparison with the work presented in this thesis.

The chapter is organized by the goal of the analysis. However, some work

can fit in more than one category. For example, in [36], the goal can be seen

as enhancing schedulability and also as enhancing the average case performance by

detecting more opportunities for interleaving execution. For another, the work in [35]

can enhance utilization of resources, and also provides support for monitoring. The

next two sections focus on the group 1 above, discussing previous work in compiler

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

optimization and speculative execution. The discussion of timing prediction and

monitoring follows. Then, a discussion is provided of the previous work on enhancing

schedulability. Finally, some work on efforts to enable efficient schedulability analysis

is described.

3.1 Compiler Optimization

While much work has been done on compiler optimization, few papers consider

real-time issues. Optimization can be categorized as either sequential program

optimization or parallelization, and moreover, as machine-dependent or machine-

independent. Here only machine-independent optimization is considered, assuming

homogeneous memory. Using techniques related to the VPO approach [5, 27], on

retargetable machine-dependent optimization, we may be able to extend our work

detailed in the next chapter, especially in addressing issues of memory hierarchy.

In this section, previous work on machine-independent optimization is considered,

followed by efforts made to address real-time compiler optimization. Then, a

discussion is provided about research on performing retargetable machine-dependent

optimization.

Compiler optimization for sequential programs is discussed in [2], where most

common machine-independent and machine-dependent optimization techniques are

illustrated. An overview of parallelization techniques is presented in [110]. Both [2]

and [110] address optimization in general without considering real-time systems.

Using a simple model for a class of hard real-time systems, Marlowe and

Masticola [59] examine the applicability of classical source code transformations for

both sequential optimization and parallel programming. They develop a notion of

safe real-time code transformations and base their study on this safety property.

A code transformation is a safe real-time transformation if it not only preserves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

