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In recent years, real-time applications have been growing substantially in size 

and complexity which makes it impossible for programmers to write optimal code, 

and consequently indicates a  need for compiler optimization. Requiring optimization 

to be performed together with scheduling, instruction selection, register allocation, 

tends to make optimization a very hard problem. Marlowe and Masticola [59] 

have shown th a t even optimization for a system consisting of a single process may 

disturb timing constraints and may cause a deadline to be missed. In addition, 

optimization for explicitly parallel programs tends to be quite hard even without 

timing constraints [64].

As was shown earlier, proper optimization can sometimes transform programs 

which cannot meet constraints/deadlines or which result in timeouts into deadline- 

satisfying programs. Moreover, safe opportunities for parallelism can be detected 

that can, if carefully applied, enhance resource utilization and speed up execution. 

In addition, optimization of hard real-time programs has benefits even for real-time 

programs which are already running, and which can be proven to meet their timing 

constraints. For these programs, it is often preferable to reduce resource usage (time, 

space, or processors), especially in multiuser or multiprogramming environments. 

Not only do resources then become available to other users, but this may also make 

the programs more robust in the face of unpredictable system overload, as suggested 

by the scheduling-theoretic results of [11].

The following section shows how safe speculative execution can enhance average 

performance and generate opportunities for parallelism in real-time systems.

1.4 Speculative Execution in Real-Time System s

In the previous section, the complexity of performing compiler optimization in real­

time systems is illustrated. While there is a need for safe compiler optimization
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for real-time code, it is very hard to apply optimization techniques without jeopar­

dizing timeliness, even for simple models. This section includes an elaboration of 

the benefits of one interesting optimization technique, speculative execution, which 

is considered in depth in this thesis and the difficulties associated with applying it 

to real-time systems.

In systems without hard deadlines, expected execution times can be further 

reduced and parallelism can be increased by speculative execution.

Typically, speculative (or optimistic) execution [48, 103] requires rollbacks 

or restarts when the computation in progress is found to be based on assumptions 

which are later invalidated; rollback reads a checkpoint, and then replays as much 

of subsequent execution as is still valid, and begins execution (for a given process) 

when some step depends on changed information.

Speculative execution may: (1) execute a statement with outdated values, 

and need to retract the computation and re-execute it with the correct values, or 

(2) execute one branch of a conditional, and then need to retract that computation 

and execute a different branch, or none at all. Within this speculative execution, it 

may be possible to (3) make unnecessary calls or calls with invalid parameters, which 

will need to be retracted, if they have begun execution, or killed, if they have not.

Simple examples exist to show that, even when speculative execution provably 

improves expected performance, it can result in missed deadlines. In Figure 1.4, 

assume exp involves a call and takes time 8, code blockl needs 10 units, code block2 

takes time 9, and the fork and copy each take time 2. If there is a 90% probability 

for exp to be true, the expected execution time for the original code (on the left) is 

17.9 units, and becomes 12.7 for the transformed version (on the right). However, 

worst-case time has been extended by transformation from 18 in the original code to 

19.
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ORIGINAL TRANSFORMED

if (exp) fork code blockl
code blockl 

else
code block2

if (exp)
copy results for blockl 

else
code block2

/* Before transformation, /* After transformation, 
the deadline is met * / deadline is possibly

missed if exp is false * /

F ig u re  1.2 Speculative execution can result in missed deadlines.

While this dissertation addresses safe use of machine-independent compiler 

optimization, parallelization and speculative execution techniques in real-time 

programs, speculative execution will be considered in depth. The thesis demonstrates 

how speculative execution can be used in limited but useful ways to safely improve 

the average-case, and sometimes even the worst-case, performance of a distributed 

hard-real-time system. The approach is not based on a specific architecture, but uses 

a number of architecture/operating system cost parameters. Compile-time analysis 

is used to detect both safety and profitability of speculative execution in real-time 

systems relying on intensive static timing analysis to investigate the effect of rollback 

on worst-case execution time. The code is transformed to fork new processes to 

execute parts of the code speculatively on a shadow replica or on the same processor 

during a remote call or interleaving with the current process. This approach, to the 

author’s best knowledge, has not been used before in real-time systems.

Program transformations can be used to improve the timeliness, performance, 

and analyzability of real-time programs. However, to employ such transformations, 

they should be proven to be correct (both semantically and temporally), profitable, 

and automatable. To facilitate the use of speculative execution to real-time appli-
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cations, which have grown in size and complexity, a set of compiler transfor­

mation rules is developed. The rules preserve not only program semantics but also 

timeliness [116], and can be incorporated into a  real-time language compiler to be 

systematically applied. While applying these rules increase compilation overhead 

for real-time programs, this thesis shows that speculative execution pays off.

While the approach to speculative execution presented in thesis, and the 

related approach of [59], can be viewed as supporting primarily absolute performance 

improvement for real-time systems, information on deadlines and laxity can be used, 

both to enable additional transformations in the presence of slack, and to focus 

the efforts of the transformation system. In fact, even systems that are provably 

schedulable can benefit from such transformations. If the schedulability criterion 

is violated, and there are spare processors, speculative execution can be viewed as 

forking-off an additional process, presumably lowering the load per processor, and 

enabling the system to be scheduled. In addition, speculative execution can improve 

other properties of real-time systems, such as fault tolerance [117].

Speculative execution can be successful in computation-intensive complex 

systems, such as real-time imaging and multimedia. Although such applications have 

potential for parallelism, there are also opportunities for speculative execution [115]. 

Image filtration, for example, usually involves a lot of computation, while testing 

the quality of an image is time-consuming as well [19]. An image can be filtered 

speculatively on a shadow while quality tests are running. The same argument 

holds for edge detection. Moreover, morphological image processing [32] has a lot 

of potential for speculative execution. Construction of a structural element can 

be done speculatively while another element is being tried. Another application is 

image retrieval according to certain input or the occurrence of an event. The most 

complicated image can be retrieved and filtered speculatively on a shadow to shorten 

the worst-case execution.
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1.5 Contribution

In this dissertation, we mainly study how to apply compiler optimization, in general, 

and speculative execution, in particular, to real-time systems. We identify safe and 

profitable opportunities for speculative execution at compile-time and transform the 

code accordingly. We have developed a set of transformation rules th a t can be 

plugged in compilers of most real-time languages. The speculative execution trans­

formations have been integrated within a platform for developing complex real-time 

systems, being built at the Real-Time Computing Laboratory at NJIT and sponsored 

by the Office of Naval Research and the National Science Foundation. The platform is 

based on a new real-time language [99] and its tool support including an analysis and 

transformation engine. The speculative execution transformations has been imple­

mented as a part of that engine. Detailed description of the platform is provided in 

Chapter 7. The contribution of this dissertation can be summarized as follows:

• We have developed techniques to detect safe and profitable speculative 

execution opportunities. We have defined a set of conditions tha t assure 

timeliness of real-time programs before enabling the transformation. We 

use compile-time analysis to justify safety and profitability of speculative 

execution. Safety is verified by investigating the effect of rollback on the 

worst-case execution time. The transformation is profitable when it speeds 

up the execution of the longest path of the program (refer to Chapter 4 for 

details).

• We have specified transformation rules that can be plugged in compilers of 

most real-time languages. The rules provide a set of preconditions, action and 

postconditions. Preconditions need to be verified to assure the preservation 

of program semantics and timeliness. The action part summarize changes in
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the code, while postconditions reflect side effects resulting from the transfor­

mation. This format is proven to be very convenient for formal verification and 

implementation (refer to Chapter A for details).

•  We have formally verified the safety of the transformation rules. We have used 

temporal logic to prove that the semantic of programs are preserved and the 

timing behavior is not worsen when applying the transformation rules (refer to 

Chapter 5 for details).

To validate our work empirically we have done the following:

•  We have conducted an experiment to capture the effect of various properties 

of real-time programs that affect applicability and profitability of speculative 

execution. The experiment uses randomly generated real-time programs. We 

have examined the impact of the frequency of programming constructs, the 

size of blocks, and locality of variable references on the number of potential 

opportunities and performance gains due to speculative execution (refer to 

Chapter 6 for details).

•  We have examined the usefulness of speculative execution in realistic appli­

cations. We have plugged in our transformation rules in a platform for 

developing complex real-time systems at the real-time computing laboratory 

at NJIT. The speculative execution transformations have been applied to a 

small number of simulated real-time applications, and shown to be beneficial 

for performance (refer to Chapter 7 for details).

1.6 Organization

This dissertation is organized as follows. In the next chapter, a real-time model 

which serves as a basis for this work is defined. Chapter 3 summarizes related
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work. In Chapter 4, opportunities for speculative execution are identified, various 

safety issues affecting the applicability of speculative execution to real-time programs 

are elaborated, and a specification of compiler transformation rules for speculative 

execution is provided. These rules are formally verified for semantic correctness 

and preserving timeliness in Chapter 5. An experiment based on simulation have 

been conducted to capture various code properties that affect the number of feasible 

opportunities and performance gains of speculative execution. In Chapter 6, the 

design and results of this experiment are illustrated. A prototype implementation 

for the speculative execution compiler rules is described in Chapter 7, highlighting the 

applicability and usefulness of speculative execution in realistic application. Finally, 

Chapter 8 concludes this thesis and summarizes future research directions.
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CHAPTER 2

THE REAL TIME MODEL

In the previous chapter, we motivated our study and defined the problem that this 

thesis is trying to address. In this chapter, a real-time model is defined for this 

work. In addition, definitions are provided for some of the terms used throughout 

the thesis. In the next section, assumptions about the hardware platform are stated, 

followed by a discussion of the assumed software environment. Schedulability 

analysis is illustrated in Section 2.3, followed by a discussion of high-level real-time 

programming language support. The discussion of the language model elaborates 

features that a language should provide to enable static analysis in the presence of 

timing constraints, as illustrated in the next chapter.

2.1 Hardware Environment

In this section, the thesis assumptions about the real-time hardware environment are 

stated.

Real-time hardware (for example [38, 63]) need not necessarily be very fast, 

but must provide predictable functionality enabling analysis of the system and 

fault-tolerance [25]. Issues like caching, direct memory access, virtual addressing, 

pipelining, or asynchronous communication protocols can cause nondeterminism, 

and consequently should be handled with care. In this thesis, it is assumed that the 

execution time of each machine instruction is known at compile-time. Moreover, it 

is assumed that the hardware does not introduce any unpredictably long delays into 

program execution. In the following section, the software component is defined.

16
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2.2 Software Environment

Processes in real-time systems can be either periodic or aperiodic. Each process 

has a frame -  the minimum period which corresponds to the maximum frequency of 

activation of that process. The frame is usually dictated by the external environment. 

The process can be activated periodically, by a signal from another process or an 

external activity, or at a specific time known at compile-time. Once activated, a 

process must complete its task before the end of the current frame (its deadline) 

and cannot be reactivated before the end of the frame (otherwise, the frame is not 

the minimum period). Processes can synchronize their execution. The kernel is 

responsible for serializing access to shared resources. A kernel call blocks a process 

until a desired shared resource is free, then it claims that resource and returns. All 

subsequent attempts to claim the same resource will block until the process with 

the resource executes another kernel call to release the resource. Synchronization 

primitives (for example, semaphores) can be used to implement this mutual exclusion. 

In this thesis, it is assumed that the kernel uses a suitable discipline to schedule 

processes, for example the disciplines described in [55, 66].

Traditional real-time systems have often taken the form either of a cyclic 

executive or of a relatively small number of independent, coarse-grained processes 

executed on a small number of processors and making use of a small number of mostly 

homogeneous resources. Current and future systems are expected to run on modern 

computer architectures, often parallel and distributed, and to utilize many hetero­

geneous resources. Consequently, techniques must be developed to identify parallel 

objects of appropriate granularity within real-time systems and to map these objects 

and their resource requests to parallel processes and resources, to facilitate such high 

performance objectives as short response times and balance of workload. In this 

thesis, it assumed that there is a suitable assignment tool, such as the tool in [100], 

within the real-time software environment to allocate such processes to processors.
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Schedulability analysis, as illustrated in the following section, can provide at 

least some kind of prediction of execution behavior of a  set of processes. This kind of 

analysis can help the programmer, as will be shown, to solve some of the allocation 

and scheduling problems a t compile-time. In addition, compiler assistance may be 

used to collect additional information about the nature of the processes as an aid to 

the allocation and scheduling of processes, as illustrated in the next chapter.

2.3 Schedulability Analysis

The software components of modern real-time systems, as discussed in the previous 

section, are typically programmed in a high-level language with some functions 

possibly written in assembly code. As the software is written, the programmer 

attempts to follow the timing specifications of the system to the best of his or 

her ability. The resulting code is subjected to analysis for adherence to its critical 

timing constraints under all possible execution orders compatible with the scheduling 

discipline in use. This form of analysis, introduced by Stoyenko [89, 90, 91, 95] is 

commonly referred to as schedulability analysis. Schedulability analysis is also used 

for non-complex, scheduling-theoretic systems amenable to provably optimal rate- 

monotonic scheduling [58] to refer to its verification process, which typically involves 

checking of a simple set of constraints [30].

The schedulability analyzer consists of two parts, a partially language- 

dependent front end and a  language-independent back end. The front end is 

incorporated into the code parser, and extracts timing information and calling 

information, and builds program trees. It computes the amount of tim e individual 

statements, subprograms, and process bodies take to execute in the absence of 

calls and contention. The front end has as an input table mapping statements to 

execution times. The back end is a separate program which analyzes the information
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summarized in the generated program trees by the front end and predicts guaranteed 

response times for the entire real-time application.

The statistics generated by the schedulability analyzer tell the programmer 

whether or not the timing constraints are guaranteed to be met. In addition, it may 

provide the programmer with hints on problems or bottlenecks if the system fails 

one or more deadlines.

The accuracy of schedulability analysis depends on an accurate summary of 

timing information. However, finding precise solutions considering contention and 

branching in general is a NP-complete problem, and the cost can add significantly 

to the cost of program compilation. The NP-completeness arises in particular 

from the combinatorial explosion of possible execution orders in cases of processes 

sharing resources. As a result, schedulability analysis can either be (1) exact 

and efficient of analysis single process or multiple processes of simple form, or 

with highly constrained interactions [65, 72, 78, 108], (2) highly imprecise though 

efficient analysis of multiple process programs [57], or (3) nearly exact though highly 

inefficient analysis of some multiple processes [89, 95]. To combat some sources of 

combinatorial explosion, there has been work to reduce the cost of precise schedu­

lability analysis, as for example [71, 96, 97, 98]. These are illustrated in the next 

chapter.

The next section provides a discussion of how schedulability analysis, among 

other requirements, motivated a new programming language paradigm for real-time 

high-level programming languages.

2.4 Real-Tim e Programming Languages

In the past, programmers for real-time applications have used assembly language 

to develop their programs. While assembly language provides enough control for
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them to hand-optimize small processes, as the applications get larger, it becomes 

harder and more time-consuming both to develop and to optimize assembly code. 

Moreover, unstructured control flow and the use of address operators make automatic 

analyses difficult or impossible. Partly for this reason, the demand for high-level 

language programming for real-time applications has grown. Early designers of real­

time languages took the natural approach of augmenting existing languages with real­

time features. Later, a set of real-time languages was proposed structured around 

real-time requirements, such as Real-Time Euclid [51] and (to a lesser extent) Ada 9X 

[94], Next, the requirements that real-time languages should support are discussed.

2.4.1 Requirements of Real-Time Languages

The requirements for real-time languages can be classified as: support for multipro­

gramming and distributed processing, expressibility of timing constraints, support 

for standard high-level language constructs while enabling schedulability analysis 

by avoiding or resolving constructs with unbounded execution time, and ability to 

describe non-functional constraints such as security and fault-tolerance.

Real-time software almost always involves multiprogramming. A real-time 

language must therefore support the process concept by providing process definition. 

It should allow concurrency and provide primitives for interprocess precedence, 

communication, and synchronization.

The most obvious requirement th a t a real-time language should satisfy is 

expressibility of a sufficiently powerful set of timing constraints to capture those 

imposed by the nature of time-critical applications. At a minimum, there should be 

constructs to express timing constraints on a process.

A real-time language should make sufficient provisions for schedulability 

analysis. Every program should be analyzable at compile-time to determine deadline
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satisfaction during execution. The language should have no constructs that could 

take arbitrarily long to execute. For example, a general while-loop can lead to 

unpredictable execution times. While-loops axe either removed from the language 

or require compile-time analysis or user assertions to provide an upper bound on 

iterations to bound execution time of the construct. Recursion can also be an 

obstacle for analyzing programs, and likewise may be disallowed or require compile­

time knowledge of an upper bound on the depth of the recursion. Dynamic structures 

can have a similar effect, and are again disallowed or restricted, by a storage bound 

on their maximum size.

In addition to restrictions arising from timing constraints, there are generally 

other non-functional constraints. Real-time programs must in general be very 

reliable. Thus, a  real-time language should be secure. Specifically, the language 

should have strong typing and structured constructs, and be modular as well as 

simple. There should be a high-level mechanism for exception handling to minimize 

the hardware-dependent part of the code that has to be implemented in assembly. 

This allows the portability of the programs to different platforms. Exceptions can 

also allow relaxation of constraints in abnormal situations, effectively supporting 

mode-change within the language.1

1A significant part of this discussion is derived from [92].
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CHAPTER 3

RELATED WORK

A global requirement for all compiler transformations is to preserve the semantics 

of the programs. This property is termed the safety or correctness requirement. On 

the other hand, there should be some gain from applying them. It makes no sense 

to transform a program without enhancing some property of the analysis or the 

execution behavior. This requirement is termed profitability. For real-time programs, 

safety has a more restrictive definition: in addition, code transformations should 

not worsen the timing properties of the program. A program that meets all timing 

constraints should not be transformed to a one that fails its deadline. Thus evaluating 

the applicability of code transformations in real time systems requires an accurate 

estimation of execution time. Before performing the transformations, the effects on 

execution behavior must be studied. According to that investigation, the transfor­

mation may or may not be applied. The estimation of execution time can be based 

on a compile time prediction or monitored while testing the code. The better the 

accuracy of th a t estimate, the more confident we will be in transforming the code.

Usually compile-time analysis, including code transformations, is referred to as 

static or pre-run time analysis. Static analyses in real-time systems generally fall 

into four categories.

1. Code transformations guaranteed to preserve or enhance timing properties and 

to improve overall performance. These are generally safe forms of sequential 

and parallelizing compiler transformations, including in the latter category 

speculative execution. These transformations uniformly affect the executable 

code.

22
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2. Partial evaluation and other forms of code specialization that largely support 

writing of high-level reusable code. Although transformations in this group 

result in changes in the executable code, their principal effect in working code 

is for the benefit of timing analysis. Transformations in this group provide 

support for predicting or monitoring execution behavior of systems.

3. Transformations to reduce the complexity of schedulability analysis. Recall 

from the discussion in the previous chapter that precise schedulability analysis 

is NP-complete. Transformations in this category attem pt to decrease the 

complexity, as discussed in Section 3.5. These transformations may or may not 

change the code functionality.

4. Techniques to enhance the schedulability of the system, in the sense of trying to 

find a feasible schedule for a set of processes or extracting some useful properties 

about processes for the scheduler to use. These techniques seldom affect the 

code.

The work presented in this thesis falls primarily in the first category. It 

provides a study of how to apply various machine-independent compiler optimization 

techniques to real-time programs without jeopardizing timeliness. The thesis concen­

trates on safe and profitable use of speculative execution in real-time system. This 

chapter provides a  summary of some of the previous work on static analysis of real­

time systems and a  comparison with the work presented in this thesis.

The chapter is organized by the goal of the analysis. However, some work 

can fit in more than one category. For example, in [36], the goal can be seen 

as enhancing schedulability and also as enhancing the average case performance by 

detecting more opportunities for interleaving execution. For another, the work in [35] 

can enhance utilization of resources, and also provides support for monitoring. The 

next two sections focus on the group 1 above, discussing previous work in compiler
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optimization and speculative execution. The discussion of timing prediction and 

monitoring follows. Then, a discussion is provided of the previous work on enhancing 

schedulability. Finally, some work on efforts to enable efficient schedulability analysis 

is described.

3.1 Compiler Optimization

While much work has been done on compiler optimization, few papers consider 

real-time issues. Optimization can be categorized as either sequential program 

optimization or parallelization, and moreover, as machine-dependent or machine- 

independent. Here only machine-independent optimization is considered, assuming 

homogeneous memory. Using techniques related to the VPO approach [5, 27], on 

retargetable machine-dependent optimization, we may be able to extend our work 

detailed in the next chapter, especially in addressing issues of memory hierarchy. 

In this section, previous work on machine-independent optimization is considered, 

followed by efforts made to address real-time compiler optimization. Then, a 

discussion is provided about research on performing retargetable machine-dependent 

optimization.

Compiler optimization for sequential programs is discussed in [2], where most 

common machine-independent and machine-dependent optimization techniques are 

illustrated. An overview of parallelization techniques is presented in [110]. Both [2] 

and [110] address optimization in general without considering real-time systems.

Using a simple model for a class of hard real-time systems, Marlowe and 

Masticola [59] examine the applicability of classical source code transformations for 

both sequential optimization and parallel programming. They develop a notion of 

safe real-time code transformations and base their study on this safety property. 

A code transformation is a safe real-time transformation if it not only preserves
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