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Therefore, there is no pair propagated (A7), i.e., 
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(Al) and (A4) cannot be together in this area. We eliminate this case from 

the candidacy for being a secondary target area. 

If a graph arc from (Al) to (A3-n) is inserted, 

this graph arc might cause a cycle because there is a tree arc from (A3-n) to 

(Al). So no pair will be propagated to (A3-n) from (A4) because of 

Therefore, there is no pair propagated from (Al) to (A3-n). 

If (Al) is connected to (A4), this causes a cycle 

with the graph arc from (A4) to (Al). Cycles are prohibited. 

Since (Al) is connected to (A7) through a tree 

arc, every graph pair from (Al) will be subsumed by tree pairs of nodes in 

from (Al) to (A7). 

In summary, we now can eliminate (Al), (A2), (A3-n), (A4), and (A7) from 

this consideration. Therefore, (A5), (A6), (A3-b), and (A3-m) can be candidates for 

secondary target areas. ■ 

Case 03: Obsolete Pairs at Target by a Right Move 

Lemma 5.7 The obsolete pairs after a right move are created due to a tree arc 

Proof: This proof follows exactly the arguments of the proof of Lemma 5.5. As 

can be seen from Table 5.4.1 and the obsolete pair conditions, the only possible 

occurrence for obsolete pairs is 



Lemma 5.8 are secondary target areas for the 

If (A1') is inserted to (AT), (A2') becomes the 

Figure 5.9 Depropagation Paths for Obsolete Pairs (Right Move) 

Case 04: Obsolete Pairs at Secondary Targets by a Right Move 
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obsolete pairs due to a right move. The obsolete pair (πs µs) is generated through 

the following paths: 

Proof: Let us consider all possible secondary target areas to which a tree pair from 

(Al') might be propagated. As a graph arc can theoretically connect (Al') to any 

one of the areas, we work again by elimination. 

common predecessor of (A1') and (A4'). No pair will be propagated to this 

area by the definition of propagation because there is a tree arc from (A4') to 
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(A2'). In other words, the obsolete pair from (A4') will be subsumed by pairs 

of nodes in (A2'), i.e., Therefore, the pairs from 

(A1') and (A4') cannot be together in this area. We eliminate this case from 

the candidacy for being a secondary target area. 

If a graph arc from (Al') to (A4') is inserted, this 

causes a cycle with the graph arc from (A4') to (Al'). Cycles are prohibited. 

If a graph arc from (Al') to (A5-n') is 

inserted, this causes a cycle with the graph arc from (A5-n') to (A1'). Cycles 

are prohibited by definition. 

Since (Al') is connected to (AT) through a tree 

arc, every graph pair from (Al') will be subsumed by tree pairs of nodes in 

(A1') to (A7'). 

Thus, no pair will be propagated from 

We now can eliminate (A1'), (AT), (A4'), (A5-n') and (A7') from this consid-

eration. Therefore, (A5-r'), (A6'), (A3-b'), and (A3-m') remain as secondary target 

areas. 

We will now develop a theorem to detect every obsolete pair that may occur 

due to a global spanning tree transformation. The detection of obsolete pairs is 

possible, because we know where and why they might occur. 



after the tree move subsumes (Cases 01 	03). 

after the tree move, This can 

be shown by proving after the tree move. 
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The following theorem is based on Lemmas 5.6 and 5.8 that the area to which 

T might belong is one of the secondary target areas (A3-b), (A3-m), (A5), or (A6) 

for a left move and (A3-b'), 	(A5-r'), or (A6') for a right move. 

Theorem 5.5 Let [πn µn ] be a tree pair of a node in (Al), (πn µn) be a propagated 

pair from a node in (A1) and (πc µc) be a propagated pair from a node in (A4). 

There are only two possible cases in which obsolete pairs will occur during a tree 

move of (A4) to (Al). 

I. If both number pairs (πn µn) and (πc µc) are propagated to a node T, this 

will node will have an obsolete pair after the tree move, namely 

be subsumed by  The area to which T might belong is one of 

the secondary target areas: (A3-b), (A3-m), (A5), or (A6) for a left move and 

(A3-m'), (A5-r'), or (A6') for a right move. (Cases 02 T 04). OR 

II. If (πc  µc) is propagated to (Al) for a left move (to (A1') for a right move), 

In both cases I and II, becomes an obsolete pair. 

Proof: We will prove I (II) together. Initially the number pair (πc  µc) from Cl/ is 

not subsumed, by the number pair (πn µn) (by the tree pair [arm  [4,]). However, 

is subsumed by 

Every notation used in the following proof was defined in the proof for due 

pairs (Section 5.4.1). 



(C6)  

(C7)  

(or following condition is true. i.e., is subsumed by 

(R5) 

(U10)  

(U11)  

In order to show we have to show its 

three "<" relations. 

(1) We want to show that is true. We have to show that the 
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(Cases 01 — 02) The number pairs in all nodes in the areas (Al) and (A4) initially 

satisfy both the conditions (C2) and (C3) for a left move and the following conditions 

for an obsolete pair. 

(C6) and (C7) follow directly from the fact that it is a left move [94]. What we 

are trying to prove, with our extended terminology, is that after the left move, the 

The preorder numbers and the maximum numbers of nodes in (Al) and (A4) 

are updated as follows, by Table 4.1 in Section 4.5. 

difference S5  between πc(j) and πn(i), after update, is positive. 



1. 71.  

we will show that In order to prove 

encoding. Therefore, 

bottom of (Al): 

or equal to the preorder number of N: 

Therefore, 

By (a) and (b), therefore 

(2) We want to show that This is true by the definition of Hydra 

(3) We want to show that 

should be positive. 

The difference δc between and 

(a) The preorder number of is the smallest number among 

the preorder numbers of nodes in C/ by the definition of the preorder 

(b) By the encoding of [132], the preorder number of N is the largest number 

among the preorder numbers of every node in (Al), because N is at the 

The maximum number of N is bigger 

Combining 

representation. 



we should show that (c) and (d) In order to show 

is a tree predecessor of N: Similarly, 

number of all nodes in C/ Therefore, 

(R6) 

(U12)  

(U13)  

we have to show its In order to show 

(1) We will prove that 
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The maximum number of every node in (Al) is always 

bigger than or equal to the maximum number of N because every node in (Al) 

the maximum number of C, the root of C/, is bigger or equal to the maximum 

(c) and (d) are always true. Thus, we have proven that 

In summary, by (1) - (3) we conclude that after updating these number pairs 

(Cases 03 — 04) For the right move, we use a similar proof technique. Before the 

right move, the number pairs in the areas (A1') and (A4') satisfy the conditions (C4) 

and (C5) for a right move and the conditions (C6) and (C7) for an obsolete pair. 

What we are trying to prove is this: 

The preorder numbers and the maximum numbers of all nodes in (Al') and 

(A4') are updated as follows by Table 4.2 in Section 4.5. 

three "<" relations. 



(2) We have proven that by the proof (2) of [Right Move]. 

(3) We will prove that by showing 
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We conclude that δ7 > 0 for the same reason as in the proof (1.) of (Cases D1 

- D2) in Section 5.4.1. 

The proof that 58  > 0 is now the same as the proof (3) of (Cases 01 - 02). 

By (1) - (3) of (Cases 03 - 04) we conclude that 

after the right move. By (Cases 01 04), the number pairs from the area 

(Al) subsume the number pairs from the area (A4) after a right move as defined 

initially.  

Let us see an example of obsolete pair generation (Figure 5.10). In this figure 

there is a tree move from (I, F) to (I, J). B and F have the propagated pairs 

(7 8) from I and (4 4) from J. Before the tree move, the propagated pairs were not 
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(A) Before Inserting an Arc (I, J) 	(B) After Update a Primary Jumping Arc 

Figure 5.10 Obsolete Pairs after Tree Move from (1, F) to (1, J) 

obsolete pairs. However, after the tree move, the pair (7 8) from 1 is transformed 

into the pair (5 6). As there is now a pair (4 6) at B and E, (5 6) becomes 

an obsolete pair due to the Case I of Theorem 5.3. Let us see another example of 

an obsolete pair in the same figure. G and 1) have a propagated pair (8 8) from 

the node K before the tree move. After the tree move, the number pair (8 8) is 

transformed into (6 6) and becomes an obsolete pair, because [3 6] occurs at G. 

This is an example of case (II) of Theorem 5.3. 

We can divide the source of any obsolete pair into two cases based on whether 

a jumping arc is a primary jumping arc or a secondary jumping arc. In the case 

of a primary jumping arc, the source of an obsolete pair can be any node in (A4). 

The main reason is that a new arc is inserted from a child node C to a new parent 

node AT and this becomes a primary jumping arc. So, there was no pair propagated 

through the arc from C to N before inserting the new arc. But obsolete pairs might 

be propagated to the target or the secondary target area through other paths. On 
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the other hand, for a secondary jumping arc, there was a graph arc from C to N 

before the jump. Through the graph arc, the tree pair of C was propagated to every 

node in (Al). Any other pairs propagated from (A4) must be subsumed by the tree 

pair of C because of tree subsumption between the tree pair of C and the other tree 

pairs from (A4), i.e., πc, < πi < µi < µc where [πi µi] is any tree pair of a node in 

(A4). In the case of a secondary jumping arc, the source of the obsolete pair will be 

the tree pair of C. 

Let So be a set of the obsolete pairs and Sr  he a set of all pairs that need to 

be depropagated after a tree move. 

Theorem 5.6 The set of all pairs that need to be depropagated after a tree move 

is a subset of the obsolete pairs (Sr  C  So). 

Proof: 

Fact 1: The child node C is a node in the area (A4). 

Fact 2: The area of the new parent N and its tree predecessors is (A1). 

Fact 3: If any tree pair of a node in (A4) is propagated to a. node in (Al), this 

pair becomes an obsolete pair by Case (II) of Theorem 5.5. 

Since the new parent node N is reachable from the child node C through a tree 

arc after a tree move, the tree pair of the child node C propagated to the new parent 

node and its tree predecessors become redundant pairs and need to be depropagated. 

Therefore, by Facts 1 — 3, the set of pairs to be depropagated (Sr ) is a subset of or 

equal to the obsolete pairs (So). 
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Practical Advantage: Dealing with redundant pairs due to a tree move,: we 'need 

only one algorithm, not two, because the obsolete pairs elimination algorithm can 

take care of the set of pairs to be depropagated (Sr ). 

Lemma 5.9 Due to inserting a new tree arc from a child node C to a parent node 

N, the graph pairs at C need to be propagated to N and its predecessors (but not the 

predecessors of the old parent M) which are all nodes in (Al) and their predecessors 

in (A3-b), (A3-m), (A5), and (A6). 

Proof: 

Fact 1: By the definition of propagation, if there is a tree arc from a node C to a 

node N, all graph pairs associated with the node C need to be propagated to N and 

its predecessors. 

Fact 2: By the definition of (Al) in Section 3.2, all nodes in the path from N to 

the root but not the path from C to the root are belonging to (Al). 

Fact 3: By the proof of Lemma 5.6, we have proven that (Al), (A2), (A3-n), (A4), 

and (A7) cannot be candidate areas to which a pair can be propagated from a node 

in (Al). This follows by Lemma 5.6 which detects the secondary target area of an 

obsolete pair. Since both refer to the secondary target areas to which number pairs 

of the target area (Al) might be propagated, the arguments of Fact 1 and Lemma 

5.6 are equivalent. 

Fact 4: It is not necessary to propagate a tree pair of C to (Al) and its predecessors 

in (A3-b), (A3-m), (A5), and (A6) because there is a subsumption relation between 

(A4) and (Al) or between tree pairs of nodes in (A4) and graph pairs propagated 
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from (Al) to (A3-b), (A3-m), (A5), and (A6). This follows from Lemmas 5.5 and 

5.6. 

We have proven by Fact 3 that all graph pairs at the child node C need to be 

propagated to the target (A1) and the secondary target areas which are limited to 

(A3-b), (AS-m), (A5), and (AG). By Fact 4 we know that the graph pairs do not 

need to be propagated to any other areas. ■ 

Theorem 5.7 There is no common pair between the set of due pairs and the set of 

pairs to be propagated, i.e., 

Proof: We can formalize the following facts based on Theorem 5.3 in Section 5.4.1 

and Lemmas 5.6 and 5.9. 

Fact 1: Let St  be a set of one tree pair of the child node C and Sg  be a set of graph 

pairs at the child node C. for every node, by definition. 

Fact 2: Let Td  be a set of all nodes in the target area (A2) or their predecessors in 

the secondary target areas (A3-b), (A5), or (A6). A due pair is a pair in St  to be 

propagated to all nodes in Td  by Theorem 5.3. 

Fact 3: Let Tp  be a set of all nodes in the target area (Al) or their predecessors in 

the secondary target areas (A3-b), (A3-m), (A5), (AG). A propagated pair is a pair 

in S9  which must be propagated to all nodes in T9  by Lemma 5.9. 

Fact 4: Let Tc be a set of all common nodes in Td  and 

By Facts 2 and 3, we can define that Sd  is a set of pairs generated by propagation 

of all pairs in St  to all nodes in Td  (using a notation St 	Td ) and Sp  is a set of pairs 



generated by propagation of all pairs in S9  to all nodes in Tp  (using a notation Sg →  

Tp). 

By contradiction, assume that and there is a pair Pc  which is in 

Sc. By the definition of Sc, Pc  must be a pair generated from the propagation (St→ 

Td ) by Fact 2 and also be a pair generated from the propagation (Sg → Tp) by Fact 

3. 

First, if Pc  is in Sc, Pc  must be a pair propagated from a pair both in St  and S9. 

Since there is no common pair between St  and Sg by Fact 1, Pc  cannot be a pair in Sc. 

Second, if Cc  is in Sc,  Pc  must be a pair propagated to a node X both in Tp  and Td. 

Then X must be in Tc  by Fact 4 and no pair is propagated to X by Theorem 5.i-(3) 

and Lemma 5.9. Thus there exists no Pc, resulting in a contradiction. Therefore, Sd  

5.5 Summary 

In Chapter 5 we have shown that the second major component of the Hydra repre-

sentation, the graph pairs, can also be updated with a parallel algorithm. We have 

referred in Chapter 5 to the sum of all operations performed by this algorithm as 

"local changes." In Chapter 6 we will show that efficient parallel algorithms exist 

for both local (Chapter 5) and global (Chapter 4) changes during updates for the 

Hydra representation. Considering the bewildering number of factors that had to 

be taken into account in deriving this parallel algorithm, the brevity of the resulting 

algorithm for local changes is quite pleasing. We will show in Chapter 8 that the 
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Hydra representation has very good runtime characteristics for parallel query and 

update operations. 



CHAPTER 6 

PARALLEL UPDATE ALGORITHMS FOR JUMPING ARCS 

6.1 Introduction 

In Chapters 4 - 5, we explained that the update of knowledge bases consisting of 

relational DAGs requires global changes and local changes. We will present parallel 

update algorithms which deal with those changes. Specifically, we will show parallel 

algorithms for the global changes in Section 6.2.1 and for the local changes in 

Sections 6.3.1 - 6.3.2. In addition, we will show the top level algorithms to deal 

with primary and secondary jumping arcs in Sections 6.4 - 6.5. 

6.2 Parallel Operation for the Global Changes 

6.2.1 Parallel Tree Move Operations 

We have theoretically proven that a tree move is a necessary step due to a jumping 

arc in Chapter 4. Previously, we have defined a tree move as the operation where a 

subtree of the spanning tree of a DAG is moved from one place to another. What is 

needed are parallel operations that update the number pairs in the graph in a way 

that reflects the new position of this subtree. Here, an additional complication arose 

because these parallel operations depend on the direction of the subtree move. 

We have designed the following algorithms according to Theorem 4.1 in 

Chapter 4. We need to distinguish between two different cases: (1) Left move: In 

the tree representation, the new tree parent is to the left of the child. In the node set 

representation, the preorder number of the new parent is greater than the preorder 

number of the child (Figure 5.7). (2) Right move: Not surprisingly, if the new tree 
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parent is to the right of the child, we need different transformation rules. In the node 

set representation, the preorder number of the new parent is less than the preorder 

number of the child (Figure 5.8). 

We will show the top level of the tree move operation that invokes a left move 

operation or a right move operation depending on the direction of the tree move.. 

Algorithm 6.1 Parallel Tree Move Operation 

Parallel-Tree-Move(C, N: Node) 
IF (PRENUM(tree-pair(N)) > PRENUM(tree-pair(C))) THEN 

Left-Tree-Move(C, N) 
ELSE 

Right-Tree-Move(C, N) 
ENDIF 

In Section 4.3.1, we have formulated the transformation rules for a left move. 

We have described in Chapter 4 that given two nodes in a link insertion, seven 

parts of a class hierarchy can be identified. According to our transformation rules in 

Tables 4.l and 4.2, the four areas (Al) — (A4) out of seven areas need to be updated. 

The tree move operations treat each of these four areas uniformly, with the same 

operation being applied to all the nodes in one area. This means that on the order of 

four parallel operations on a SIMD massively parallel computer suffice for performing 

those update steps. 

We have introduced parallel functions to identify the four changing parts of 

a class hierarchy in Section 2.3.2. In fact, IS-PATH-P(N) returns T on every 

processor in the path from N to the Root; IS-SUBTREE-P(N) returns T on every 

processor in the subtree of N; IS-LEFT-P(N) returns T on every processor in the 
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left part of N; IS-RIGHT-P(N) returns T on every processor in the right part of N. 

Assume that there are n nodes in the subtree rooted at the node C and the function 

NUMNODE(C) returns n. 

Algorithm 6.2 Parallel Left Tree Move 

Left-Tree-Move (C, N: Node) 
; (Al) PN 	CC: - (n 0) 

IF!! (IS-PATI-T-P(N) AND!! NOT IS-PATH-P(C)) THEN 
PRE!![self-address!!()]:= PRE!![self-address!!()) - NUMNODE(C) 

; (A2) CC & CAT & 	: -(O n) 
IF!! (IS-PATH-P(C) AND!! NOT IS-PATH-P(N)) THEN 

MAX!![self-address!!()]:= MAX!![self-address!!()] - NUMNODE(C) 

; (A3) (RN LC) or (NI 	N): (n n) 
IF!! (TS-RIGHT-P(N) AND!! IS-LEFT-P(C) OR!! 

IS-SUBTREE-P(N)) THEN 
PRE!![self-address!!()]:= PRE!![self-address!!()] - NUMNODE(C) 
MAX!![self-address!!()]:= MAX!![self-address!!()] - NTJMNODE(C) 

END IF!! 

(A4) C/ : (MAX(N) MAX(C) MAX(N) MAX(C)) 
IF!! (IS-SUBTREE-P(C)) THEN 

PRE!![self-address!!()]:= PRE!![self-address!!()] 	MAX(N) - MAX(C) 
MAX!![self-address!!()]:= MAX!![self-address!!()] 	MAX(N) - MAX(C) 

END IF!! 

; (A5, AG, A7) LN, RC, (PN 6V PC) : no change 

Similarly, the right move operation can be formulated as follows. Due to the 

different direction of tree move, the functions to define the areas (A3'), (A5'), (AG') 

are different from the left move operation. In addition, the transformation rules are 

completely distinct from the left move. 
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Algorithm 6.3 Parallel Right Tree Move 

6.3 Parallel Operations for the Local Changes 

6.3.1 Parallel Due Pairs Propagation Operations 

We have designed a parallel algorithm for propagating due pairs. The main purpose 

of this algorithm is to recover the disconnected relations between the areas (A2) and 

(A4) caused by a tree move. In order to show how the necessary steps for propagating 

due pairs can be reduced using parallel processing, we first show the serial algorithm 

of due pairs propagation, and then we will present the parallel algorithm. 
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In the serial algorithm we need to propagate due pairs depending on whether 

it is for the target area or the secondary target area and whether it is caused by a 

left tree move or a right tree move. Luckily, the propagation of due pairs to a target 

area is independent of the direction of tree move. Therefore, we can summarize due 

pairs propagation by the following two steps: (1) propagation to the target area 

(one algorithm is sufficient for a left move and a right move); (2) propagation to the 

secondary target area (two separate algorithms are needed, one for a left tree move 

and another for a right tree move). 

Each step in due pairs propagation requires the following phases. First, we 

need to define the target area and secondary target areas of due pairs. Note that 

the secondary target areas will depend on the direction of the jumping arc. Then, 

the due pairs propagation for the target area and the secondary target areas will be 

executed. 

For the target area, the tree pair of C will be propagated to all nodes in (A2) 

for a left move and to all nodes in (A2') for a right move by Lemmas 5.1 and 5.3 in 

Sections 5.4.1 and 5.4.2. 

In all serial algorithms in this section, we will use the following notations: [πi 

µi] represents any tree pair in a graph, π c µc] represents the tree pair of the child 

node, and [πN µN ] and [πM µM] represent the tree pairs of the new parent node N 

and of the old parent node M. 

Algorithm 6.4 (Serial): Set of Targets 

Set-of-Target(N, M: Node) 

Target-Set:= { 
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Return Target-Set 

For the case of a left move, the secondary target areas might be (A3-b), (A5), 

and (A6), by Lemma 5.3, if they have a pair propagated from (A2). The following 

algorithm identifies every predecessor in the secondary target areas for a left move. 

In the algorithm, Pop() is a function that take the first number pair from a given set 

and return it. 

Algorithm 6.5 (Serial): Set of Secondary Targets (Left Move) 

Secondary- Target-for-Left-Move(C, M: Node) 

Let [π N  µN] and [πC µC ] be tree pairs of N and C 

Sec-Target-Set:= 

; Select all nodes in the secondary target areas (A6), (A5), and (A3-b) 

; with a pair propagated from the area (Al) 

FOR each node i with a tree pair [πi µi] in the graph 
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Sec-Target-Set:-= Sec-Target-Set U {i} 

FOUND:= TRUE 

ENDIF 

ENDWHILE 

ENDIF 

ENDFOR, 

Return Sec-Target-Set 

The secondary target areas are defined as (A3-b'), (A5-r'), and (A6') for a right 

move by Lemma 5.4 in Chapter 5. In the following algorithm, among all nodes in 

the secondary target areas, the nodes which have a pair propagated from a node in 

the area (A2') are selected and collected into a set. Return the set. 

Algorithm 6..6 (Serial): Set of Secondary Target (Right Move) 

Secondary-Target-for-Right-Move (C, M: Node) 

Let [πN µN] and [πC µC]. 	be tree pairs of N and C 

Sec-Target-Set:= { 

; Select all nodes in the secondary target areas (A6'), (A5-r), and (A3-b') 

; with a pair propagated from the area (Al') 

FOR each node i with a tree pair [πi µi] in graph 
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FOUND:= TRUE 

ENDIF 

ENDWHILE 

ENDIF 

ENDFOR 

Return Sec-Target-Set 

We now show a top level algorithm for due pairs propagation. For identifying 

the target area, the procedure Set-of-Target will be invoked and for identifying 

the secondary target areas, the procedure Secondary-Target-for-Left-Move (or 

Secondary-Target-for-Right-Move) will be invoked depending on the direction of 

move. Then, the procedure Due-Pairs-Propagation propagates the tree pair of the 

child node to nodes in the target area and the secondary target areas. Note that the 

source of due pairs is the tree pair of the child node C, by Theorem 5.4. 

Algorithm 6.7 (Serial): Due Pairs Propagation 

Serial-Due-Pairs-Propagation (C, M: Node) 

Target:= Set-of-Target(C, M) 

; Depend on the direction of the spanning tree move 

IF (Left-Tree-Move) THEN 

Secondary target:,  Secondary-Target-for-Left-Move(C, 

ELSE 

Secondary-target:=  Secondary-Target-for-Right-Move(C, M) 

; Propagate due pairs to all nodes in the target area 

FOR all nodes T with [πT µT] in Target 

Propagate the tree pair of C to T 

; Propagate due pairs to all nodes in the secondary target areas 

FOR all nodes St  with (πi µi) in Secondary-target 

IF (πT< πi AND µi < µT) THEN 

Propagate the tree pair of C to St 



This is done by marking the nodes with number pairs such that 
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Unlike for the serial algorithm, in the parallel algorithm we do not need three 

separate operations for due pairs propagation. With parallel processing, every step 

for propagating due pairs, such as propagating to the target area or the secondary 

target areas for a right move or a left move, can be done in a single step. 

The reason is that the target and the secondary target can be detected in 

parallel by checking whether a node has a tree pair of a node in (A2). In other 

words, this step can detect in parallel the target which has the number pair as a tree 

pair or the secondary target which has the number pair as a graph pair. Two serial 

steps become NOT two parallel steps but collapse into one parallel step. 

Parallel Due Pairs Propagation 

The propagation steps for due pairs can be summarized as follows: 

• Step 1: Identify all nodes in target area and secondary target area in parallel. 

where I < q < r and r stands for 

the number of nodes in (A2). 

Step 2: We propagate upward the tree pair of C to the nodes marked by Step 1. 

Now, we will show the parallel algorithm to recover the due pairs. 

Algorithm 6..8 (Parallel) Due Pairs Propagation 

Paralle-Due-Pairs-Propagation(N, M, C: Node) 
; Activate every processor which has a tree pair of (A2) (Target area) 
; or a graph pair propagated from the area (A2) (Secondary target area). 
; Then, mark the target address of the pairs on the active processors. 
ACTIVATE-PROCESSORS-WITH 
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Theorem 6.1 Every due pair can be recovered by our propagation algorithm. 

Proof: In Section 5.4.1 we have proven that the combination of a tree pair of a node 

from the area (A4) and a tree pair of a node from the area (A2) causes a due pair 

after a tree transformation. Step 1 of Parallel-Due-Pairs-Propagation shows that all 

pairs at the target area (A2) or at the secondary target areas ((A3-b), (A5), and (A6) 

for a left move and (A3-b'), (A5-r'), and (A6') for a right move) can be identified 

by a simple parallel operation. Step 2 of Parallel-Due-Pairs-Propagation shows that 

the tree pair from area (A4) can be identified by another simple parallel operation. 

Together the two steps recover the due pairs of all predecessors. 
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6.3.2 Parallel Obsolete Pairs Elimination Operations 

We now present a parallel algorithm for detecting and eliminating obsolete pairs. The 

main purpose of this algorithm is to eliminate the redundant relations between the 

areas (Al) and (A4) due to a tree move. In this algorithm we eliminate all obsolete 

pairs by identifying where pairs propagated from (Al) and pairs propagated from 

anywhere in (A4), the subtree rooted at C, appear in a graph. 

In the following algorithm, "depropagate" means that a pair is set to (-1, -1). 

Set-of-Target(), Secondary-Target-for-Left-Move(), and Secondary-Target-for-Right-

Move() are defined in Algorithms 6.4 - 6.6. 

Algorithm 6.9 (Serial): Obsolete Pairs Elimination 

Serial-Obsolete-Pairs-Elimination (C, N, M: Node) 

Source:,  All nodes in (A4) 

Target:,  Set-of-Target(C, N) 

Set:= { } 
; Depend on the direction of the spanning tree move 

IF (Left-Tree-Move) THEN 

Secondary target:=  Secondary-Target-for-Left-Move(C, M) 

ELSE 

Secondary target:=  Secondary-Target-for-Right-Move(C, M) 

; Eliminate obsolete pairs in the target area 

FOR all nodes T with [πT µT] in Target 

FOR all graph pairs (πs  µs) of T 

IF (πc < πs  AND µs < µc) THEN 

depropagate (πs µs) 

; Determine all predecessors of T in the secondary target areas 

FOR all nodes St  in Secondary target 

Let Set-of-GPairs be a set of graph pairs (πs µs) of St  

FOUND:= FALSE 

WHILE (Set-of-GPairs ≠  NULL AND NOT FOUND) 
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Parallel Obsolete Pairs Elimination 

We can simplify the serial algorithm for eliminating the obsolete pairs into a two step 

parallel algorithm. This is possible because we can identify all sources of obsolete 

pairs in parallel and also can identify the target and secondary target areas either for 

a left move or for right move in one step. In addition, the depropagation of obsolete 

pairs can be completed in parallel. 

The basic steps are as follows: 

• Step 1: Identify all nodes in target or secondary target in parallel. This can be 

done by marking the nodes with tree or graph pairs of nodes in (Al). 

e Step 2: Now if any marked node has a graph pair (πc(j) µc(j)) that is strictly 

contained in the tree pair [πc(1) µc(1)) of C such that πc(1) < 7c0) and µc(j) < 

where 1 < j < p and p stands for the number of nodes in (A4), then depropagate 

that pair by setting it to (-1, -1). 
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Algorithm 6.10 (Parallel) Obsolete Pairs Elimination 

Parallel-Obsolete-Pairs-Elimination(C, N, M: Node) 

Due to our parallel operations for the division of the spanning tree into seven 

areas in Sections 4.3 - 4.5, these obsolete pairs elimination operations can be easily 

performed in parallel. 
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Theorem 6.2 Every obsolete pair can always be eliminated by our elimination 

algorithm. 

Proof: In Section 5.4.2 we have proven that the combination of a tree pair of a node 

from the area (A4) and a tree pair of a node from the area (Al) creates an obsolete 

pair after a tree transformation. Step I of our algorithm shows that all pairs at the 

target area (Al) or at the secondary target areas ((A3-b), (A3-m), (A5), and (A6) 

for a left move and (A3-b'), (A3-m'), (A5-r'), and (A6') for a right move) can be 

identified by a simple parallel operation. Step 2 of Our algorithm shows that all pairs 

from area (A4) can be identified by another simple parallel operation. Together the 

two steps identify all processors with obsolete pairs. ■ 

6.4 Dealing with Primary Jumping Arcs 

In Chapters 4 - 5, we have discussed the .jumping arc problem and its global and local 

effects. In Sections 6.2.1 - 6.3.2, the detailed algorithms for the global and the local 

changes caused by a jump have also been described. Now we will precisely discuss 

how to deal with a primary jumping arc by using the algorithms in Sections 6.2.1 

- 6.3,2. This basic technique can be applied to the more complicated case of a 

secondary jumping arc. 

Given is a graph G, and we add a new arc from a node C to a node N. As 

before, let M be the old tree parent of C. Now there are two possibilities. Either 

the new arc is a jumping arc, or it is not. When will the newly inserted arc become 


