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ABSTRACT 

ADAPTIVE RADAR IN HETEROGENEOUS ENVIRONMENT 

by 
Albert Futernik 

Radar performance in heterogeneous clutter has been a much studied topic. In 

all the studies so far, various forms of the sample matrix inversion (SMI) technique 

where used to calculate the weight vector of the processor. In this thesis an 

eigenanalysis-based technique known as the eigencanceler, is used. Performance of 

this technique is compared to the performance of the generalized likelihood ration 

(GLR) processor. This comparison is done using the clutter edge model, in which 

there is an abrupt change in the clutter power in the reference window. It is shown 

that the false alarm rate fluctuations, of the cell averaging constant false alarm rate 

(CA-CFAR) eigencanceler, depend on the number of secondary data vectors used 

to estimate the covariance matrix. It is also shown that when the estimate of the 

covariance matrix is poor, the eigencanceler is able to perform where the GLR fails. 

These two methods are also compared using the range-dependent clutter power 

model, in which the range clutter power is a Weibull random variable. It is shown 

that the performance of the eigencanceler depends heavily on the variance of the 

clutter power random variable. It is again shown that the eigencanceler is able to 

perform with a low number of range cell samples, where the GLR fails. 
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CHAPTER 1 

INTRODUCTION 

1.1 Previous Work in Adaptive Radar 

In airborne radar it is necessary to detect a target in presence of both white Gaussian 

noise and clutter (colored noise) caused by returns from various obstacles in the 

terrain. In this situation, the clutter must first be cancelled before detection can 

take place. To do this, clutter cancellation techniques that adapt to the clutter 

based on its statistic were developed. Brennan and Reed [1] pioneered the theory 

of adaptive radar. They derived the optimal linear detector of a known signal in 

colored Gaussian noise with the covariance matrix known a priori. In most practical 

situations, however, the covariance matrix must be estimated from training data 

and then updated periodically. This issue was dealt with by Reed, Mallett, and 

Brennan [19], who suggested the Sample Matrix Inversion (SMI) method in which 

the covariance matrix is estimated from the secondary data set that does not include 

the signal of interest. This matrix is then substituted for the actual covariance 

matrix in the linear detector described in [1]. They showed that in order to achieve 

performance within 3 dB of the optimal for a signal having dimension M, there has 

to be about K = 2M samples used in the estimation of the covariance matrix. 

1.2 Previous Work with the Eigenanalysis-Based Detector 

An alternative way of dealing with clutter is through an eigenanalysis-based 

approach. A particular version of this method was defined by Haimovich [5]. 

This technique, known as the eigencanceler, is based on making the weight vector 

orthogonal to the interference subspace spanned by the eigenvectors corresponding 

to the first r largest eigenvalues. The behavior of this technique was further studied 

in [6, 7, 8]. The expressions for probability of detection and false alarm were derived 

as a of function secondary data length. 

1 
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Another method using the eigenanalysis was developed by Kirsteins and 

Tufts [14, 15]. This method is called the principal component inverse (PCI) and, 

like the eigencanceler, uses the eigenvectors of the covariance matrix to compute the 

weight vector. 

1.3 Previous Work in Non-Stationary Clutter 

In [19] it was assumed that the data used to estimate the covariance matrix is 

stationary with respect to range. If this is not so, performance of a radar system 

can be effected. In some situations, there may be an abrupt change in the statistics 

of the clutter, or clutter edge, which makes it difficult for the processor to maintain 

constant false alarm rate (CFAR). Hansen [10) proposed a method of accomplishing 

CFAR in a clutter edge region known as the greatest of (GO) CFAR. In this method, 

the reference window is divided into two parts, before and after the cell-under-test. 

The threshold is calculated using the side having the largest noise power. In [11] it 

was shown that this method causes a 0.1 — 0.3 d13 loss in performance relative to the 

cell averaging (CA) CFAR when operating in a homogeneous environment. 

Trunk [23] proposed a method of accomplishing CFAR that prevents the 

suppression of closely spaced targets. This method, known as the smallest of (SO) 

CFAR divides the reference window into two parts, before and after cell-under-test. 

The processor uses the side with the smaller noise power to compute the threshold. 

Weiss [24] showed that this method causes a performance loss of 0.7 — 11 dB for 

P1  = 10-6, and when the number of range cells is between K = 32 and K = 4. 

Moore and Lawrence [17] and Weiss [24] further studied these models and 

showed that if a clutter edge exists in a reference window, and the cell-under-test is 

in the clutter region of the window, then the threshold is not high enough for the 

desired false alarm rate. Rohling [20, 21] proposed ordered statistics (OS) CFAR to 

alleviate the problems associated with GO and SO CFAR. The OS CFAR uses the 
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nth  largest cell in a reference window to estimate the noise power. Finn [3] proposed 

a heterogeneous clutter estimating (HCE) CFAR. It was shown that this scheme 

has capabilities that overcome the target masking effects in signal contamination 

non-homogeneity and false alarm degradation in clutter edge regions. 

The non-homogeneity models mentioned above were further studied by 

Gandhi and Kassam [4]. They performed analyses of different CFAR methods 

using the clutter edge and signal contamination models. They looked at the 

OS-CFAR processor, and showed that it works well in the signal contamination 

non-homogeneity, but not where clutter edge is present. They also looked at the 

trimmed mean (TM) CFAR processor which at times performed better than the 

OS-CFAR processor. Wilson [25] described the greatest of order statistics (GOOSE) 

CFAR and the censored greatest of (CGO) CFAR. He showed that they both work 

in the signal contamination non-homogeneity and in the presence of clutter edge. 

Cai & Wang [2] analyzed the asymptotic, CFAR performance of the gener-

alized likelihood ratio (GLR) test based processor in two types of heterogeneous 

environments. They described a situation in which there is an abrupt change in the 

statistics of the clutter and used the clutter edge model to analyze it. They also 

looked at a scenario where another target is present in the reference window used to 

estimate the covariance matrix, and used the signal contamination model to analyze 

it. They showed that given a large support of training data, GLR has the ability 

to adjust the threshold so that the false alarm rate is fairly constant. They also 

showed that the performance depends on the width of the clutter spectrum and the 

target-clutter Doppler separation. 

Another heterogeneous clutter model was described by Nitzberg [18] in which 

the clutter power is a random variable over range. He showed that for this model 

the estimated covariance matrix does not asymptotically approach the covariance 
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matrix of the cell-under-test. Szajnowski [22] and Levanon [16] gave properties of 

the Weibull random variables, which can be used to model the land clutter power. 

1.4 Goals 

The goal of this thesis is to evaluate performance of the eigencanceler in a hetero-

geneous environment using the models described above. Comparisons are made 

between probability of detection and false alarm rate of the eigencanceler and the 

GLR. The effects of the model parameters, such as the length of the secondary data 

set, are studied and compared. This is done in order to see if the properties of the 

eigencanceler alone are capable of dealing with different non-homogeneity scenarios. 



CHAPTER 2 

ADAPTIVE RADAR 

2.1 Formulation of the Problem 

Consider the complex envelope of echoes received by a pulsed Doppler radar with 

AI pulse repetition intervals (PRI's) in a coherent processing interval (CPI). Echoes 

are received from K range cells. Let x be the primary data vector (echoes from the 

cell-under-test) that consists of M components: 
 

and let yk  for k = 1,2, ... K be a set of secondary data vectors corresponding to the 

K different range cells, as shown in Figure 2.1: 

From the above formulation there can be two hypothesis: H0, target not present; 

and H1, target present. For hypothesis H0, x contains clutter and noise only, i.e., 

where n has complex Gaussian probability density function (PDF). For H1 , in 

addition to noise, x contains the target and is given by 

where a is a zero-mean, Gaussian random variable with circular symmetry and 

variance 	s is the signal vector corresponding to a known velocity of the target 

having the form 

where f, is the normalized Doppler frequency of the target. The processor has no 

a priori knowledge of the covariance matrix R = E[nnH] corresponding to n. The 

5 



Figure 2.1 Data Model 
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secondary data vector set yk  is assumed to consist of clutter and noise contributions 

only, with the same statistics as. x, so the covariance matrix can also be -Written as 

If the number of range cells K is finite, the covariance matrix can be estimated as 

[19] 

The processor decides on one of the two hypothesis, H0  or H1  by taking the instan-

taneous output power of wHx, where w is the appropriate weight vector as a function 

of R: 

where 71T  is the given threshold. The decision statistic η, given a particular w, has 

an exponential density for both H0  and Hi . 

where η is the average output power of the cell-under-test. 

By integrating the PDF from ηT to ∞ gives the probability of false alarm conditioned on w and H0: 

 

The probability of detection conditioned on w and H1  is given by 
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Figure 2.2 Illustration of clutter edge in reference widow. 

2.2 Clutter Edge Non-Homogeneity Model 

This model, used by Cai and Wang in [2], results from a transition in the clutter 

across the reference cells as is shown in Figure 2.2. 	The secondary data set is 

partitioned into two sets: yk, k = 1, 2, ... , K1  is outside the clutter region and its 

covariance matrix is denoted by R1, and yk, k = K ]  + 1, 	,K is within the clutter 

region and its covariance matrix is R2. 

where Rc denotes the covariance matrix of the clutter and has from 

where σ2c is the clutter power, σ f  is the clutter Doppler spread parameter, and fc  is 

the center of the clutter spectrum. The power spectral density of the desired signal 

and the clutter used in our model, are shown in Figure 2.3. A parameter that controls 



Figure 2.3 PSI) of Clutter and Signal 
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the Doppler separation of the desired signal and the clutter is ∆ f = f, - L. The 

cell-under-test is located at the center of the range. 

Denote the parameter u = K1 / K as the "non-homogeneity indicator." Two cases  

may occur as u varies: 

Case 1: The test cell is inside the clutter region if 0 ≤ u ≤ 0.5, making 
R R2. 

Case 2: The test cell is outside the clutter region if 0.5 ≤ u ≤ 1, making 
R R1. 

As K co, the asymptotic value of the estimated covariance matrix R becomes 

This clutter edge model provides a good representation of the real radar data. 

In particular, it may be applied to some of the Mountain Top data provided by Rome 

Laboratories. To illustrate the applicability of the model to Mountain Top, the range 

power is plotted in Figure 2.4. A clutter edge is clearly visible and is indicated. 

2.3 Range-Dependent Clutter Power Model 

A different model for the heterogeneous can be developed to reflect a case when the 

clutter power varies as a function of range-time delay [18]. In this model, the complex 

envelope of each range cell is a zero mean Gaussian random variable with a variance 

that depends on the reflectivity of the clutter. The reflectivity is a random variable 

that varies as a function of range. Hence, for this model, the covariance matrix is 

range dependent: 

where Rυ and Rc are the noise and normalized clutter covariance matrices, respec-

tively. Pc(k) is the range dependent clutter power. Numerous clutter models assume 
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Figure 2.4 Range Power 
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a Weibull density for the clutter power: 

where q is a scale parameter and p is the sample parameter [22) [16). When the 

covariance matrix is estimated from the training data sequence using Equation (2.7), 

the asymptotic estimate tends to 

where Pc  is the average clutter power. Since this equation does not equal Equation (2.18), 

the solution does not asymptotically approach the optimum for each range cell; 

therefore performance suffers. 



CHAPTER 3 

INTERFERENCE CANCELLATION METHODS 

3.1 Sample Matrix Inversion (SMI) 

The optimum weight vector, for cancelling interference when the covariance matrix 

of the clutter+noise R, and the desired signal s are known a priori, is given by the 

Weiner equation [1]: 

This equation can be viewed as a whitening filter followed by a matched filter to the 

channel and the desired signal [12]. To see that, consider the input x = s n, where 

n has a known covariance matrix R, n can be written in terms of the covariance 

matrix as 

where v is a zero mean Gaussian random variable, Q and A are the components 

of the eigen decomposition of R such that R = QΛQH. It can easily be seen that 

E[nnH] = R. When wH  is multiplied by x the output is 

The whitening filter (WF) decorrelates the colored noise (CN) and the matched filter 

(MIS) is matched to the desired signal s transformed by the whitening filter. 

When the covariance matrix is unknown a priori, it has to be estimated from a 

training data using Equation (2.7). The weight vector is then calculated by substi-

tuting Equation (2.7) into Equation (3.1). This method is known as the sample 

13 
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matrix inversion (SMI). Its performance is dependent on the length of the training 

data used to estimate the covariance matrix, as shown by Reed, Mallet, and Brennan 

in [19]. This method converges to the optimum solution when the number of training 

data samples increases to infinity and the data is IID. 

3.2 Eigencanceler 

The covariance matrix R can be decomposed in to its associated eigenvectors and 

eigenvalues: 

where columns of Q are the eigenvectors of R and the diagonal of A are the eigen-

values of R. Let Qr be the matrix containing eigenvectors that span the interference 

subspace and Qυ be the matrix containing the eigenvectors that span the noise. Since 

these two subspaces are orthogonal, QHrQυ = 0, any weight vector in the noise space 

has the property of cancelling interferences. From this formulation can be defined 

the weight vector of the minimum norm eigencanceler as given in [8]: 

where g is the gain. Another form can be obtained for this expression by using the 

identity: Qr QHr +  QυQHυ  = I: 

3.2.1 Probability of False Alarm and Detection for the Eigencanceler 

The Pd and Pf can be expressed in terms of the conditioned signal-to-noise ratio 

(SNR) as was shown in [9]: 
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where Yopt  is the SNR for the optimal case (R known). It can be shown that 

Nig  is the SNR for a case when the eigencanceler weight vector is used: 

The conditioned SNR p has a PDF: 

where r is the rank of the interference subspace. The derivation of this PDF is given 

in the appendix and is based on [7]. The average output power under H0  can be 

rewritten in terms of p for the weight vector having gain g = (sH  QυQHυ 	, so that 

1. 

The average output power under H1  can also be rewritten in terms of p as  

Now the probability of detection and the probability of false alarm can also be 

expressed as conditioned on p 
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where 71T  is a preset threshold. The average Pd and Pf  are then obtained from 

3.2.2 Constant False Alarm Rate 

In a Radar system, it is desirable to have a constant false alarm rate (CFAR). One 

way to accomplished this is by adding a gain to the weight vector such that the 

average output power η/H0 is made constant in range. In this way the false alarm 

rate depends only on the threshold ηT, as it can be seen from the equation: 

This is called the cell averaging (CA) CFAR and needs a range-homogeneous 

environment in order to work. The eigencanceler can be made CA-CFAR by setting 

g so that the average output power under H0  is a constant (independent of the 

output noise power). 
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Setting the constant to one and solving for g, yields the CA-CFAR eigencanceler 

weight vector. 

In the clutter edge model, cell averaging is not effective because the average 

clutter power taken over the range is not always equal to the clutter power at the 

cell-under-test. This will cause the output power under H0 to fluctuate as a function 

of the non-homogeneity indicator u, hence the false alarm rate will also fluctuate. It 

is important to note that CA-CFAR cannot compensate for non-homogeneity effects, 

since it is derived from the homogeneous assumption. Consequently, the non CA-

CFAR version of the eigencanceler is used to evaluate performance. 

3.3 Generalized Likelihood Ratio (GLR) 

The GLR algorithm is derived by Kelly in [13) from the likelihood ratio test. Given 

an input vector x, a set of secondary data vectors yk, and two alternate hypothesis, 

H0 and H1, the likelihood ratio test is as follows: 

A hypothesis is true if its joint PDF divided by the PDF of the alternate 
hypothesis is larger then a preset threshold when the numerator and the 
denominator are separately maximized over the unknown variables. 

where L0  is the pre-set threshold. Performing the maximization in Equation (3.20) 

on the given data model gives 
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Now, defining η0 ≡ L0-1/L0 , results in the GLR test statistics [13]: 

where 	is the threshold designed to satisfy the desired false alarm rate as given 

in 1131. 

3.3.1 Asymptotic False Alarm Rate Performance of the GLR 

The decision rule for the GLR can be rewritten by multiplying both sides of 

Equation (3.23) by K, and substituting Equation (3.22) for S, so the decision rule 

becomes 

As K approaches infinity 	converges to a constant matrix: 

so the asymptotic decision rule becomes 

This is the same as the decision rule for SMI with CA-CFAR. The weight vector for 

CA-CFAR SMI is defined as 



19 

which, as K approaches infinity, converges to 

When the primary data vector x is complex Gaussian, the instantaneous power λ∞  

has an exponential density given by, 

The probability of false alarm is then calculated by averaging over the values of A. 

This result is shown by Cai and Wang in. [2]. 



CHAPTER 4 

PERFORMANCE ANALYSIS 

4.1 Analysis of the Clutter Edge Model 

In this section, two sets of analysis are performed. First, the asymptotic expression 

for the false alarm rate is developed for the eigencanceler. This expression is then 

matched by a corresponding GLR expression, which is plotted and verified by a 

simulation. Second, the Pf and Pd are derived for the eigencanceler when the 

covariance matrix is estimated using finite samples. This is done for case 1, cell-

under-test in the clutter, of the clutter-edge model. These analytical results are then 

compared to the simulations, as explained in a later section. 

4.1.1 Asymptotic Case 

It was shown that as K → oo, the estimated covariance matrix becomes 

Rewriting this expression and performing eigen-decomposition gives 

From the equation above, it can be seen that in the asymptotic case, the eigen-

vectors become invariant with respect to u, so the eigencanceler weight vector also 

becomes likewise invariant. Therefore, in the asymptotic case, Pf for the eigen-

canceler becomes invariant to υ: 

20 
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where R = R2  for case 1 and R = R1  for case 2. 

An equivalent expression for the GLR, can be derived by substituting Equation (4.2) 

into Equation (3.34), giving 

again, where R = R2  for case 1 and R = R1  for case 2. Since u affects the eigen.values, 

the false alarm rate of the GLR is also affected. The equations for the asymptotic 

Pf  of the eigencanceler and the GLR are plotted versus u in Figure 4.1. They are 

also compared to a simulation, in which K = 400 and M = 10. It can be seen 

that the simulation points and the analytical expressions agree. As predicted, the 

eigencanceler's false alarm rate stays constant and the false alarm rate of the GLR 

fluctuates. 

4.1.2 Case One: Cell-Under-Test Inside the Clutter 

Consider the case when the non-homogeneity indicator is 0 ≤ u ≤ 0.5. When 

u = 0, all the range cells are in the clutter and hence the clutter is homogeneous. 

Therefore, from Equations (3.15) and (3.16), the probabilities of detection and false 

alarm depend on the threshold ηT, the optimal SNR Yopt, and the number of range 

cells K. When u 0, the secondary data vector becomes heterogeneous in range. 

The first K1  = υK range cells consist of noise only, and the rest K — K1  range cells 

contain clutter+noise contributions. When the clutter-to-noise ratio (CNR) is high 

the estimated covariance matrix R computed from K range cells, ƩKk 1  yyH, becomes 
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Figure 4.1 Asymptotic False Alarm 
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almost the same as that computed from the last K —K1  range cells, ƩKk=K1+1. yyH, so 

the effect is the same as reducing K in the homogeneous case. With this observation, 

Equations (3.15) and (3.16) can still be used to compute probabilities of detection 

and false alarm by substituting K 	= K — uK = K(1 — u) for K. 

Keeping the threshold ηT constant, the above equations show that the probability of 

false alarm increases from the original desired false alarm rate, as u increases from 

0 to 0.5. If the threshold ηT is raised so that the false alarm rate is maintained, 

then the probability of detection will decrease as accordingly. It is evident that the 

worst case is at u = 0.5, where only half of the samples of the clutter are available 

to estimate the covariance matrix. 

4.1.3 Case Two: Cell-Under-Test Outside the Clutter 

For this case the non-homogeneity indicator is 0.5 ≤ u ≤ 1. Since the cell-under-test 

is outside the clutter, there is no need for clutter cancellation. But, since some of 

the range cells of the secondary data still contain clutter, th.e eigencanceler still puts 

a null in Doppler. This null takes out some of the noise power which has the effect 

of slightly reducing the false alarm rate. As n increases from 0.5 to 1, this effect 

decreases and at u = 1 the system becomes homogeneous. 

4.1.4 Simulation 

A set of simulations was carried out to compare the eigencanceler to the GLR under 

the clutter edge model. Simulated values of the probabilities of detection and false 
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alarm, as well as the theoretical curves for the eigen.canceler, are plotted as a function 

of u. The simulation involves several steps: 

• First N sets of secondary data vectors yk  for k = 1,2, 	, K are generated for 

a given u: 

• Then N covariance matrices are estimated, and their weight vectors are 

computed: 

• For each weight vector computed, L data vectors x are simulated under H0  for 

the false alarm simulation and under H1  for the detection simulation: 

• The output power η is computed for each run: 

• The output power is put through the decision criterion establishes by Equation (2.8). 

False alarms and detections are then counted, summed, and divided by NL to 

obtain the simulated probabilities of false alarm and detection: 
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e Threshold ηT  is set so that at u = 0 the probability of false alarm is at a 

desired level. P 

f

 —count = Pfo This threshold is then kept constant for every u. 

Threshold ηTd  is set so that at every u the probability of false alarm is at a 

desired level Pf-count = Pfo,. Therefore it is different for every u. 

® The output power η  is averaged over L runs for each w and the condi-

tional probabilities are computed using Equations (2.11) and (2.12). These 

conditional probabilities are then averaged over all the w's to obtain the 

simulation/theory probabilities of false alarm and detection: 

A block diagram of the above description is given in Figure 4.2. The set of 

thresholds calculated in the simulation for each u, are also used for the theoretical 

curves, in order to make a fair comparisons. For the GLR method, only the counting 

simulation is shown, since theoretical expressions for the detection and false alarm 

probabilities as functions of the secondary data support were not available. 

To compare theory and simulation, the secondary data set of the simulation 

has to have the same covariance matrix as that used in the theoretical calculations. 
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Figure 4.2 Analysis Method 

In order to satisfy the above equation, each secondary data vector was generated 

from 

where R = QΛQH  and v is a zero mean Gaussian random variable with unity 

variance. Q is a matrix that has eigenvectors of R as its columns and A has the 

eigenvalues of R as its diagonal. indeed, substituting this definition into the expec-

tation gives 
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4.1.5 Simulation Results 

The simulation described in the previous section is performed for several different 

parameters. For most of the cases, a covariance matrix of dimension M = 10 is used. 

The CNR is set at 10 log10  σ2c/σ2v  = 20dB and the SNR is set at 10 log10  σ2s/σv2  = 14dB. 

The Doppler spread parameter is set at σf  = 0.04, and the Doppler separation of 

the desired signal and the clutter is set at ∆f = 0.3. The reason for setting ∆ f at 

this value can be seen from Figure 4.3 (a), which shows the projection of the steering 

vector on the first r = 4 eigenvectors as a function of ∆f. At ∆ f = 0.3, there is a 

small projection of the first two eigenvectors on s; however, the third and the fourth 

cigenvectors have a larger one. This means that s is partially in the clutter subspace, 

so it is necessary to cancel the clutter for the desired signal to be detected. The worst 

case scenario would be if ∆ f is equal to 0, in which case the canceler would try to 

steer a. null onto the Doppler frequency of the steering vector s. 

Figure 4.3 (b) shows the eigenvalues of the covariance matrix. Based on the 

figure, the interference subspace was set to r = 4 for the simulations concerning the 

cigencanceler. 

Figure 4.4 (a) shows a comparison of false alarm rate as function of u for the 

eigencanceler counting Equation (4.16), eigencanceler computation Equation (4.19) 

and the GLR counting for the case where the number of secondary data vectors is 

low relative to the matrix dimension, K = M = 10. It is evident from the plot 

the close match between the counting and the equation, (P f-count  and Pf —equation). 

The theoretical curve is derived based on various approximations and while close, it 

does not provide an accurate estimate of the tail pf PDF, resulting in a low Pf. It 

can also be seen from the plot that the false alarm rate for the GLR exhibits less 

variations then the eigencanceler. This is because the eigencanceler is performing 

a. type processing which cannot compensate for clutter heterogeneous effects. The 

GLR, however, uses the power from the cell-under-test in its decision statistic, and 



Figure 4.3 (a) Projections of first r = 4 eigenvectors on s. (b) Eigenvalues of R. 
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this enables compensation for the change in the output power, as described in [2J. 

Figure 4.4 (b) shows the detection performance comparison. Here, it is evident that 

the eigencanceler is able to perform where the GLR fails. This is due to the low 

number of samples in the secondary set. 

In Figure 4.5 the number of training samples is increased to K = 20. This 

causes the false alarm rate variations of the eigencanceler to decrease and the 

detection performance to improve significantly for the GLR and marginally for the 

eigencanceler. The detection performance of the eigencanceler, however, is still 

superior to the GLR. The detection performance of the GLR improves dramat-

ically because K = 2M. The reason the eigencanceler's false alarm rate fluctuates 

less evident from the preceding asymptotic analysis. This is further illustrated in 

Figure 4.6 where K = 200. Here, the false alarm rate stays almost constant, as 

expected. 

The performance of the CA-CFAR eigencanceler is shown in Figure 4.7. It 

can be seen that the false alarm rate is not constant. This is because CA-CFAR 

eigencanceler was derived assuming homogeneity, which is not the case here. Hence, 

it fails to keep constant Pf, performing close to the non-CFAR version shown in 

Figure 4.4 

The effect of the clutter Doppler spread parameter ∆f is demonstrated in 

Figure 4.8. Part (a) shows points from the counting simulation for three different 

values of f .  It can be seen that as ∆f increases, the false alarm rate has greater 

variation as a function of u. Part (b) shows detection for the same scenario, with 

the threshold adjusted so that the false alarm rate is constant. From the plot it can 

be seen that the effect on detection is proportional to that on the false alarm rate. 

Figure 4.9 shows performance for a case when the matrix dimension is increased 

to M = 40, and training data length is K = 40. Here again the covariance matrix 

is ill conditioned, so the GLR fails. When length of the training data is increased 



Figure 4.4 (a) False alarm (b) Detection - clutter edge, K = 10. 
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Figure 4.5 (a) False alarm (b) Detection - clutter edge, K = 20. 
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Figure 4.6 (a) False alarm (b) Detection - clutter edge, K = 200. 



Figure 4.7 (a) False alarm (b) Detection - clutter edge with CFAR eigencanceler. 
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Figure 4.8 (a) False alarm (b) Detection - clutter edge multiple σf  using count 
simulation. 
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to K = 80, the agreement between the theore and simulation is further improved, 

as can be seen in Figure 4.10. The eigencanceler still outperforms the GLR even 

though the minimum training data length requirement is met K = 2M. 

The results described above indicate that the eigencanceler, will in some cases, 

outperform the SMI-based techniques. For the asymptotic case, the non-homogeneity 

indicator u, only affects the eigenvalues of the covariance matrix used in inverting the 

matrix, but not in the eigencanceler. The GLR's capability of keeping its false alarm 

rate constant is do to its increased complexity of using,  a compensation from the 

cell-under-test. SMI, which does not use this compensation, would have been more 

severely affected by the clutter edge because of the effect of u on the eigenvalues. 

4.2 Analysis of the Range-Dependent Clutter Power Model 

Analysis of the clutter edge model are performed using a set of simulations with 

a similar sequence of step as the clutter-edge model. Instead of using u as a non-

homogeneity indicator, a variable p is used, which is inversely proportional to the 

variance of the range-dependent clutter power Pc(k). A Weibull random variable can 

be generated using two Gaussian random variables as follows [22]: 

where X and Y are zero mean Gaussian random variables with variance a2. The 

mean and variance of Pc  can be written in terms of p and a. 

The scale parameter q from the expression of the Weibull PDF can be written as 
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Figure 4.9 (a) False alarm (b) Detection - clutter edge K = 40, M = 40. 



Figure 4.10 (a) False alarm (b) Detection - clutter edge K = 80, M = 4 
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In the simulations, q is adjusted such that the mean of Pc  equals to 	maintaining 

a constant CNR. This is done by solving Equation (4.25) for .2  and plugging in 

Pc is calculated for each range cell using the method mentioned above. Cell-under-

test has constant clutter power equal to σ2c.  In. Figure 4.11 the probability of detection 

is plotted as a function of p. As p goes from 0.1 to 2.3, o2pc goes from 90 dB to 30 dB. 

As a'  decreases, variations in Pc  decrease, which results' in Pc  becoming constant-

like. This can be seen in Figure 4.11: as p increases, the probability of detection 

approaches that of the homogeneous case. 

This simulation is performed for two training data lengths, K = 10 and K 

20, shown in Figure 4.11 (a) and (b), respectively. For K = 10 the eigencanceler 

outperforms the GLR for all p. This is not surprising because the GLR, like SMI, 

needs more secondary data vectors for acceptable performance. Since the dimension 

of the covariance matrix is M = 10, this criteria is not met, and therefore detection 

performance is very poor. The eigencanceler also fails to detect the target when p 

is small. This is so because when p is small, the variance of the range dependent 

clutter power is large, making it look closer to white noise. Therefore, when the 

clutter is spread in the frequency domain, cancellation by null steering has a lesser 

effect. As p increases, the null placed by the eigencanceler becomes more effective, 

and the detection performance approaches the homogeneous case. 

For K = 20, the GLR has 2M secondary data vectors and provides better 

detection performance. At p = 0.3, the eigencanceler's and the GLR's detection 

performance even out, and for every point after that, the performance becomes the 

same as for the homogeneous case, with the eigencanceler being slightly better. 



Figure 4.11 Weibull range dependent clutter power 
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4.3 Summary and Conclusion 

In this thesis, performance of the eigencanceler was analyzed and compared to 

performance of the GLR. It was shown that the eigencanceler outperforms the 

GLR in the clutter edge model. It was also shown that in the asymptotic case, 

the non-homogeneity indicator u affects the eigenvalues and not the eigenvectors of 

the covariance matrix. This makes the eigencanceler a better choice in this situation 

because it ignores the eigenvalues and only uses the eigenvectors in the computation 

of the weight vector. Because of this, the deviation of the false alarm rate is reduced 

by increasing the number of secondary data vectors. This property enables the eigen-

canceler to be used in an environment where a clutter edge is present without having 

a serious increase in the false alarm rate when the cell-under-test is in the clutter. 

An analytical expression for the clutter edge model was also developed. For the 

case of cell-under-test in the clutter, it was shown that performance is mainly affected 

by the number of secondary data vectors with clutter present. This is the same as 

having a homogeneous case with varying secondary data length, and so the expression 

for probability of detection and false alarm was derived using this assumption.. It is 

worth noting that the case of target in the clutter is the one of primary interest in 

the clutter edge model. This is because the false alarm rate increases with u when 

the cell-under-test is in the clutter. For the case of the cell-under-test outside the 

clutter, cancellation is not necessary. In this case, the false alarm rate falls below the 

desired rate, without negative impact on the detection performance, so this effect is 

not harmful and can be ignored. 

The performance of various methods was also evaluated in the range-dependent 

clutter power model. It was shown that the detection performance of the eigen-

canceler approaches the level of the homogeneous case as the variance of the clutter 

power decreases. The performance was improved by increasing the number of 

secondary data vectors used in the estimation of the covariance matrix. This effect 
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was considerably more dramatic for the case of GLR then for the eigencanceler. 

The GLR outperformed the eigencanceler when the variance of the clutter power 

was extremely high and when the number of the secondary data vectors was suffi-

ciently large. The eigencanceler, however, quickly caught up, and overcame the GLR 

performance as the variance of the clutter power decreased. 

Overall, it can be concluded that the eigencanceler's performance is less affected 

by a secondary data set that is heterogeneous. This is true for the two models 

described, as was shown using both simulations and analytical expressions. 



APPENDIX A 

DERIVATION OF THE PDF FOR THE EIGENCANCELER 

It was shown in [7] that the conditioned SNR p can be expressed as 

where ζ is a chi-square random variable with r degrees of freedom. 

The PDF of p can be found using the fundamental theorem of probability: 

g'(ζ) is the first derivative of g(ζ), and ζ1 is obtained by solving Equation (A.1) for 
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