

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

2

The HC environment, is comprised of several hardware and software components

that manage the suite of heterogeneous machines in the system, thus enabling appli­

cations to run efficiently. The hardware and software requirements for HC can be

classified into three layers: network layer, communication layer, and intelligent layer.

In this thesis, we concentrate on issues related to the intelligent layer. We next

describe each of these layers.

1.2 N etw ork Layer

The network layer in HC includes the physical aspects of interconnecting the

autonomous high performance machines in the system. This includes low level

network protocols and machine interfaces. Current Local Area Networks (LANs)

can be used to connect existing machines but this approach is not suitable for IIC.

In order to realize a HC environment, higher bandwidth and lower latency networks

are essential. The bandwidth of commercially-available LANs is limited to about

10 Mbits/sec. However, in HC, assuming machines operating at 25 MHz clock with

40 MIPS instruction rate and 16 bits word length, a bandwidth in the order of 1

Gbits/sec is required to match computation and communication.

Recent advances in network technology have made it feasible to build gigabit

LANs. Links in these networks are capable of operating on the order of 1 Gbits/sec

or higher rates. Thus having at least 100 more bandwidth than today’s 10 Mbits/sec

Ethernets. Gigabit LAN standards are emerging. The High Performance Parallel

Interface (IIIPPI), whose physical layer has been approved as an ANSI standard, will

likely become the backbone for interconnecting machines in HC. HIPPI-based LANS

support data rates of 800 Mbits/sec and 1.6 Gbit/sec. Such networks have been used

to interconnect CRAY-2 and CM-2 at the Minnesota Supercomputer Center [70]. A

similar project using A CRAY Y-MP and CM-2 was undertaken at the Pittsburgh

Supercomputing Center [47].

3

A llia n l I^X-80

□□□□ □□□□ □ □□□ □□□□
Connection Machine CM-2

S1MD/M2MD
M nchinc

High*spe

User Workstation

Network

Massively Parailcl Processor MPP
Image Understanding Architecture

Figure 1.1 A heterogeneous network-based parallel computing system.

Even with high bandwidth networks, there are three main sources of ineffi­

ciency in current network implementations. First, existing application interfaces

incur excessive overhead due to context switching and data copying between the

user process and the machine’s operating system. Secondly, each machine must

incur overhead of executing high-level protocols tha t ensure reliable communication

between tasks. Also, the network interface burdens the machine with interrupt

handling and header processing for each packet.

Nectar [5] is an example of a network backplane for heterogeneous multicom­

puters. It consists of a high-speed fiber-optic network, large crossbar switches and

powerful network interface processors. Protocol processing is off-loaded to these

interface processors.

In IIC, modules from various vendors share physical interconnections. Since

different manufacturers usually use different communication protocols, the network

management problem becomes more complex [52]. The following three general

approaches in dealing with network heterogeneity are given in [72]:

4

1. To treat the heterogeneous network as a partitioned network, each partition

employs a uniform set of protocols,

2. to have only a single “visible” network management console, and

3. to integrate the heterogeneous management, functions at a single management

console.

1.3 Com m unication Layer

The HC environment achieves efficient execution of parallel tasks by decomposing

the task into several modules which are assigned to machines in the system with a

similar mode of embedded parallelism. The task modules run on assigned machines

as local processes. These processes need to exchange intermediate results and process

synchronization information, either from processes residing in the same machine or

from processes residing on other machines using the network. Since each machine

on the system may utilize different, process communication and synchronization

primitives, a uniform system-wide communication mechanism operating above native

operating systems is needed to facilitate this exchange of information. Due to the

networked nature of HC and the lack of shared memory, such a communication

mechanism must support message passing.

An example of a communication tool suitable for HC is the parallel virtual

machine (PVM) [66]. The PVM system emulates a virtual concurrent, computing

machine on a suite of networked machines by executing system-level processes on each

machine. A process that runs on a local machine can access the virtual machine via

library routines embedded in imperative procedural languages, such as C. Commu­

nication support is provided for process management, via stream-oriented message-

passing, synchronization based on barriers or variants of rendezvous and/or auxiliary

tasks. These library routines interact with the PVM system process on each machine,

5

which then provides the requested actions in cooperation with PVM system processes

running on other machines in the system. Other examples of networking communi­

cation tools are Portable Programs for Parallel Processors (P4) and Message Passing

Interface (MPI). MPI includes a number of utilities for supporting message passing

while P4 can handle both message passing and shared memory. MPI is a message

passing interface for MIMD distributed memory concurrent computers. MPI includes

point-to-point and collective communication routines, as well as support for process

groups, communication contexts, and application topologies.

1.4 Intelligent Layer

The intelligent layer of the HC environment provides system-wide tools and

techniques necessary to manage the suite of heterogeneous machines and to

insure proper and efficient execution of tasks. Such tools operate over the native

operating systems of the individual machines and use the process communication

primitives provided by the communication layer. The services provided by this

layer are the most challenging ones in HC and include programming environments,

language support, application task decomposition, mapping and scheduling, and load

balancing, as illustrated in Figure 1.4. We next briefly describe two functions which

are essential for designing and supporting these various services. These functions are

used in the Heterogeneous Optimal Selection Theory (HOST) presented in Section

1.4.2.

1.4.1 C ode Profiling and A nalytical Benchm arking

Traditional program profiling involves testing a program assumed to be comprised

of several modules, by running it on some test data. The profiler monitors the

execution of the program and gathers statistics including the running time of each

program module. This information is then utilized to modify different, modules

6

Task m odules

Parallel task
■ ^► C ode analysis ■ ■ ^► P artitio n in g ^^^ -

written using

program m ing

environm ent

M apping/
scheduling

Figure 1.2 Intelligent layer services.

improving the overall execution time. In IIC, profiling is not done only to estimate

the execution time of code, but the type of the code according to the execution mode

is also considered. This is achieved by code-type profiling. The code-type profiling

introduced in [35] is a code-specific function to determine the code-type (e.g. SIMD,

MIMD, vector, scalar, etc.).

Analytical benchmarking provides a mean to measure how well the available

machines perform on a given code-type [35]. While code-type profiling identifies

the type of code, analytical benchmarking ranks machines in terms of efficiency in

executing a given code. Thus, analytical benchmarking techniques determine the

relative effectiveness of a given parallel machine on various computation types.

1.4.2 H eterogeneous O ptim al Selection Theory

In Freund’s Optimal Selection Theory (OST), it can be assumed th a t the number of

machines available is unlimited and that an application task is comprised of several

uniform and non-overlapping code segments. Code segments are considered to be

7

Subtaske

Taak 1 • T

D P (Coda Segments {SIMD, MIMD, vector etc.)

□

□
Figure 1.3 Input format of HOST.

1 *iik 1 va*CZZI]
Code blocks (homogeneous)

executed in a series. Each code segment has homogeneous parallelism embedded

in its computations. A code segment is decomposed into code blocks. All code

blocks within a code segment have the same type of parallelism and can be executed

concurrently. This type is determined by the process of task profiling. The goal

of OST is to assign the code blocks, within each code segment, to the available

matching machine types so tha t it may be optimally executed. Information about

how fast a given machine type can execute a code type is assumed to be known as

a result of analytical benchmarking. Augmented Optimal Selection Theory (AOST)

[71] extended OST to incorporate the performance of code segments on non-optimal

machine choices, assuming that the number of available machines for each type is

limited. Based on this assumption, a code segment most suitable for one type of

machine may have to be assigned to another type.

The Heterogeneous Optimal Selection Theory (HOST) [16] is an extension

of AOST in two ways: it incorporates the effects of various, fine-grain, mapping

techniques available on individual machines and it assumes heterogeneous embedded

parallelism. The input format of HOST, as shown in Figure 1.3, allows concurrent

execution of mutually indejjendent, code segments. An application task is decomposed

into several subtasks which are then executed in series. Each subtask may contain

a collection of code segments which can be executed in parallel. A code segment

consists of a set of code blocks and a code block consists of a number of instructions.

8

All the code blocks within a code segment arc of the same type and are to be

executed concurrently or sequentially on the machines of the same type, depending

on their interdependencies. A machine type is identified according to the underlying

architecture, such as SIMD, MIMD, vector or scalar. Each machine type may have

more than one model, for example, the Ncube and Mesh are two models of an SIMD

machine type. In HOST, heterogeneous code blocks of different code segments can

be executed concurrently on different machine types, thus exploiting the hetero­

geneous parallel computations embedded in a given application. Narahari et, al.[51]

extended HOST to the Generalized Optimal Selection Theory (GOST). GOST allows

non-optimal selections of machines, as in AOST, and heterogeneous code blocks, as

in HOST. Tt further incorporates data communication time, system reconfiguration

time and data conversion time [51].

To express the formulation of HOST, some parameters must be defined.

Table 1.1 contains a complete listing of this notation. For a more detailed description

of these terms, see [16]. HOST is formulated as follows:

s
For any subtask , there exists a t with min y[r] subject to 5Z(7[T[j], j] x c[lr[?']]) < C

.7 = 1

Based on HOST, an optimal machine selection leading to a minimum execution time

exists. To find such an optimal solution, however, is not computationally feasible.

Therefore, we present an overview of a set of sub-optimal solutions in the next section.

1.5 O rganization o f the D issertation

This thesis focuses on the design issues of the intelligent layer in IIC. In this section,

we briefly present an overview of these issues. They are presented in detail later in

this thesis.

9

s the number of code segments of the given task
M the number of different, machine types to be considered
v[y] the number of machine models of type y
a[y] the number of mappings available on machine type y
P[y, !■] the number of available machines of model I of type y
v[y , j] the maximum number of code blocks code segment j can be

decomposed
i [y , j \ the number of machines of type y actually used to execute code

segment j
m[y, k\ mapping technique used for a code block k on machine type y
6[y, m] the optimal speedup for a particular mapping m on machine type y
n[y , j] how well a code segment j can be matched with machine type y
A [y, k] utilization factor when running code block k on a machine of type y
P[j\ the percentage of execution time of code segment j within a given

subtask
p[j , k] the percentage of execution time of block k within code segment j

p[v, j] mapping vector for code segment j on machine type y
% , / , p] execution time of segment j with mapping /i on machine type y
A[y, j] minimum execution time of segment j among all possible mappings

on type y
T machine type selection vector
X[r] execution time of the given subtask with machine type selection r
Y[j] the type of machine selected to execute code segment j

the cost of machine selected to execute code segment j
c the total cost constraint

Table 1.1 Notations used in HOST formulation

1.5.1 Portab le Program m ing M odel

A programming paradigm suitable for the intelligent layer must allow portable

software to be shared and/or distributed among various computers in the hetero­

geneous suite. Furthermore, it must support architecturally independent programming

which does not include any architecturally specific details. Since homogeneous

programming tools are not suitable to heterogeneous computing, we need to develop

a new tool based on a heterogeneous programming model. We present a hetero­

geneous parallel programming model, called Cluster-M, in Chapter 2. This model

is proposed to bridge between software and hardware for heterogeneous computing.

10

It acts as an intermediate medium based on which portable parallel programs are

specified and can be mapped onto dynamically reconfigured heterogeneous organi­

zations. The implementation of this model as a portable programming tool is

also presented. Using Cluster-M, a single program can be ported among various

heterogeneous architectures or suite of computers.

1.5.2 Partitioning, M apping and Scheduling

In HC, similar to homogeneous systems, the problems of partitioning a parallel

task into several modules, mapping resulting modules into various machines and

scheduling the execution of each module are pertinent. In the past, the partitioning

and mapping problems for homogeneous parallel environments have been investigated

extensively [9, 10, 18, 30, 43, 44, 61, 63, 64]. However, HC poses new constraints. In

the following, we define partitioning and mapping as two different, problems and also

differentiate between the contexts of these terms in homogeneous and heterogeneous

environments.

In a homogeneous environment, the partitioning problem addressed in [12, 36,

39] can be divided into two sub-problems. Parallelism detection determines the

parallelism in a program. Clustering combines several operations into tasks and

thus partitions the application into several tasks. Each cluster is then assigned to a

processor. Both of these sub-problems can be performed by the user, the compiler

or by the machine at run time.

The mapping/allocation of program modules to processors has been addressed

by many researchers in the past [9, 18, 30, 43, 44, 61]. Informally, in homogeneous

environments the mapping problem can be defined by assigning program modules

to processors. Thus, the number of pairs of communicating modules that fall on

pairs of directly connected processors is maximized [9]. In HC, machines are globally

connected through a high-bandwidth network, and therefore the assignment of

11

communicating modules to directly-connected machines is not an issue. However,

other objective functions for mapping, such as matching the code-type to the

machine-type, add additional constraints. If such mapping has to be performed at

run time, for load balancing purposes or due to failure of a machine, the mapping

becomes more complicated.

In homogeneous environments, the scheduling process assigns each task to

a processor in order to achieve better processor utilization and high throughput.

Three levels of scheduling are generally employed. High-level scheduling selects a

subset of all submitted jobs competing for the available resources. Intermediate-level

scheduling responds to short-term fluctuations in the system load by temporarily

suspending and activating processes to achieve smooth system operation. Low-level

scheduling determines the next ready process to be assigned to a processor for a

certain duration.

In IIC, while all of the above three levels of scheduling may reside in each

machine, a fourth level of scheduling is needed. This level deals with scheduling

at the system level. The scheduler maintains a balanced system-wide workload by

monitoring the progress of all the tasks in the system. The scheduler needs to know

the different task-types and available machine-types (i.e., SIMD, MIMD, Mixed-

mode, etc.) in the system, since tasks may be reassigned due to changes in the system

configuration or due to overload problems. Communication bottlenecks and queueing

delays incurred due to the heterogeneity of hardware add additional constraints on

the scheduler. The scheduler also needs to use information from code-type profiling

and analytical benchmarking.

In Chapter 3, we extend the algorithms of Chapter 2 to incorporate the “type

heterogeneity” (i.e. SIMD and MIMD) of tasks and systems in IIC. The augmented

mapping algorithm presented maps tasks to processors of similar computation type

and proceeds with an enhanced fine-grain mapping technique. Since the expected

12

number of clusters at every level of the firie-grain mapping is constant, we propose to

use an optimal matching strategy to enhance the algorithm. Therefore, we formulate

and solve each step of the fine-grain cluster mapping by using an Integer Linear

Programming (ILP) model.

1.5.3 Hardware E stim ation

Once the information provided by code-type profiling is available, it is desirable to

know how many processors are needed for each of the code types. In Chapter 4,

we propose two methods for estimating the minimum number of processors required

for each of these code types in HC. The first method involves making use of task

compatibility graphs. We show that a task compatibility graph can be generated

by analyzing certain compatible relations between task module pairs of a given task

flow graph. We define the resource (processor) minimization problem therefore to be

equivalent to finding the minimal number of cliques that cover the task compatibility

graph, or to finding the minimal number of colors tha t color the vertices of its

complement graph, called task conflict graph. We solve this problem using a greedy

approach in 0{\V \ log|V| -I- \E \) time, where |F | and I#! are the number of vertices

and edges of the task compatibility graph. We further show that for special types

of task compatibility graphs, the optimal solution can be obtained in polynomial

time. The second method studied in Chapter 4 uses the Cluster-M methodology for

estimating the minimum number of processors. Examples are shown to compare the

estimated results obtained using different, techniques.

1.5.4 Software Environm ents

In HC, machine-independent and portable parallel programming languages arid tools

arc required. Also, a IIC software package should be portable among and executable

on various architectures. Certain tools are needed to act as intermediate media

based on which machine-independent, algorithms can be designed using a single

13

programming language. These are then mapped onto the desired architecture. One

such programming model, Linda [13, 11] defines a logically shared data structuring

memory mechanism called tuple space. However, Linda is difficult to implement

on architectures not supporting a shared memory structure. In contrast to Linda,

the programming tool Express supports a distributed-memory system organization.

However, algorithms coded using Express are machine dependent, and therefore are

not fully portable. Other candidate parallel programming environments for IIC are:

the Actors Programming model [1, 2, 3] and Tool for Large-Grained Concurrency

(TLC). TLC, developed by BBN, employs implicitly parallel constructs to specify

the dependencies among a set of coarse-grained remote computations. The Actors

model, on the other hand, allows massively parallel execution of algorithms. At

extra cost of implementing such a system, Actors is machine independent: it can be

executed on shared memory computers and over distributed networks.

Cluster-M, presented in Chapter 2, is a model which provides an environment

for porting various tasks onto the machines in a heterogeneous suifci, so tha t resource

utilization is maximized and the overall execution time is minimized. In Chapter 5,

we formally define the scalability of heterogeneous programming paradigms. Also, we

present another portable and scalable programming paradigm, called Heterogeneous

Associative Computing (HAsC)[54]. HAsC models a heterogeneous network as a

coarse-grained associative computer and is designed to optimize the execution of

problems where the size of the program is small compared to the amount of data

processed. It uses broadcasting to avoid the mapping problem. Ease of programming

and execution speed, not the utilization of idle resources are the primary goals of

HAsC. We show that both Cluster-M and HAsC are scalable. We then illustrate

how these two paradigms can be used together to provide an efficient medium for

heterogeneous programming.

C H A PT E R 2

A PO RTABLE PARALLEL PR O G R A M M IN G M ODEL FO R
H ETER O G EN EO U S C O M PU T IN G

We present a heterogeneous parallel programming model called Cluster-M. This

model is proposed to bridge between software and hardware for heterogeneous

computing. It acts as an intermediate medium based on which portable parallel

programs are specified and then can be mapped onto dynamically reconfigured

heterogeneous organizations. The implementation of this model as a portable

programming tool is presented in this chapter. Using Cluster-M, a single software

can be ported among various heterogeneous architectures or suite of computers.

2.1 Introduction

A programming paradigm suitable for the intelligent layer should allow portable

software to be shared and/or distributed among various computers in the hetero­

geneous suite. Furthermore, it should support architecturally independent programming

that does not include any architecturally specific details. A number of homogeneous

programming tools have been developed that take a high-level program as the input

and map it onto the underlying systems. The question is whether or not these

homogeneous programming tools can be directly used for heterogeneous computing.

Examples of these tools include Linda, Prep-P, Oregami, Hypertool, PARSA, and

PYRR.OS [13, 8, 45, 74, 75]. Linda [13] defines a logically shared memory mechanism

called tuple space. Tuple space holds two kinds of tuples: process tuples, which are

under active evaluation, and data tuples, which are passive. Ordinarily, building a

Linda program involves dropping a process tuple into tuple space and then spawning

other process tuples. This pool of process tuples, all executing simultaneously,

exchange data by generating, reading, and consuming data tuples. Once a process

tuple has finished executing, it turns into a data tuple that is indistinguishable from

14

15

other data tuples. Linda requires large volumes of data to be exchanged to and from

the shared memory. For this reason, Linda has been mostly used for coarse-grain

computations.

Prep-P, Oregami, Hypertool, and PYRROS, however, all include an architec­

turally independent mapping component that can map a fine-grain given parallel

program onto either a special or an arbitrary system. However, the mapping

components of Prep-P [8] and Oregami [45] are basically libraries of specialized

mapping algorithms th a t only map regularly structured programs onto regularly

structured systems. Their mappings for irregularly structured programs or systems

tha t are not found in the libraries may be slow and ineffective. Hypertool [74] and

PYRROS [75] generate fast and near-optimal mappings for arbitrary programs by

using a clustering method. However, they can only be mapped onto fully connected

systems. Therefore, they are not suitable for a heterogeneous network that may

have arbitrary interconnections. This chapter will only focus on the tools th a t can

efficiently map arbitrary program tasks onto arbitrary computer systems. Since

homogeneous programming tools are not suitable to heterogeneous computing, we

need to develop a new tool based on a heterogeneous programming model. An

essential component of such a tool will be an efficient mapping algorithm, which

maps an arbitrary task onto an arbitrary system.

A program task can be represented by a task graph, with each node representing

a task module and each edge representing data communication between two modules.

Each node is associated with a weight representing the time needed to execute the

instructions contained in the node on a baseline computer, while the weight of an

edge represents the communication amount. Similarly, a parallel computer system

can be modeled as a weighted undirected system graph, whose weights represent

processor speeds and transmission rates of communication links. If the task graphs

and the system graphs are known before program execution, then mapping of the task

16

graphs onto the system graphs is called static mapping. Here, we consider only static

mapping. In static mapping, the assignments of the nodes of the task graphs onto the

system graphs are determined prior to the execution and are not changed until the

end of the execution. Static mapping can be classified in two general ways. The first

classification is based on the topology of task and/or system graphs [15]. Based on

this, the mappings can be classified into four groups: (1) mapping specialized tasks

onto specialized systems, (2) mapping specialized tasks onto arbitrary systems, (3)

mapping arbitrary tasks onto specialized systems and (4) mapping arbitrary tasks

onto arbitrary systems. The second classification can be based on the uniformity

of the weights of the nodes and the edges of the task and/or the system graphs.

Based on this, the mappings can be categorized into the following four groups: (1)

mapping uniform tasks onto uniform systems [7, 9, 15, 24, 43], (2) mapping uniform

tasks onto nonuniform systems, (3) mapping nonuniform tasks onto uniform systems

[22, 48, 59, 74, 76] and (4) mapping nonuniform tasks onto nonuniform systems

[44, 60],

Two of the earlier static mapping algorithms that can map arbitrary nonuniform

task graphs onto arbitrary nonuniform system graphs are Lo’s Max Flow/Min Cut

algorithm [44], and El-Rewini and Lewis’ mapping heuristic (MH) algorithm [22].

The time complexity of these two algorithms are 0 (M * N log M) and 0 (M 2N 3)

respectively, where M is the number of task modules and N is the number of

processors. In this chapter we present a mapping technique that is used in the

mapping module of an implemented tool, which is based on a portable programming

model for heterogeneous computing called Cluster-M. Using this paradigm, we can

produce near-optimal mapping of arbitrary nonuniform architecture-independent,

task graphs onto arbitrary nonuniform system graphs in O(MP) time, where

P = ma x (M, N) . Similar to BSP and LogP, the Cluster-M model serves as an

intermediate layer between software and hardware. Therefore, it supports portable

17

machine-independent programming. BSP and LogP support portable programming

for a set of uniform (homogeneous) processing units, while the Cluster-M model

allows the processing units to be nonuniform (heterogeneous).

The rest of this chapter is organized as follows. In Section 2 we present the

Cluster-M heterogeneous model of computation. In Section 3, the components of the

Cluster-M tool are presented. The efficiency of the Cluster-M mapping module is

discussed in Section 4. Concluding remarks are in Section 5.

2.2 Cluster-M Portable Parallel Program m ing Tool

A tool implementing the Cluster-M model, presented in the last section, must support

portable parallel algorithm design and programming. It must provide a mechanism

so that both set of parameters can be extracted from any given problem and any

underlying heterogeneous organization. Furthermore, this tool must provide an

efficient mechanism for mapping these portable programs onto heterogeneous systems

using these two sets of parameters. The Cluster-M tool, presented below, is an imple­

mentation of the model satisfying these conditions.

2.2.1 C luster-M

Cluster-M is a programming tool that facilitates the design and mapping of portable

parallel programs [15]. Cluster-M has three main components: the specification

module, the representation module and the mapping module. In the specification

module, machine-independent algorithms are specified and coded using the program

composition notation (PCN) [34] programming language [25]. Cluster-M specifi­

cations are represented in the form of a multilayer clustered task graph called a Spec

graph. Each clustering layer in the Spec graph represents a set of concurrent compu­

tations, called Spec clusters. A Cluster-M representation represents a multilayer

partitioning of a system graph called a Rep graph. At every partitioning layer

18

of the Rep graph, there are a number of clusters called Rep clusters. Each Rep

cluster represents a set of processors with a certain degree of connectivity. Given

a task (system) graph, a Spec (Rep) graph can be generated using one of the

Cluster-M clustering algorithms. The clustering is done only once for a given

task (system) graph, independent of any system (task) graphs. It is a machine-

independent (application-independent) clustering, therefore it is not necessary to

repeat it for different mappings. For this reason, the time complexities of the

clustering algorithms are not included in the time complexity of the Cluster-M

mapping algorithm. In the mapping module, a given Spec graph is mapped onto a

given Rep graph. This process is shown in Figure 2.1. In an earlier publication [15],

two Cluster-M clustering algorithms and a mapping algorithm were presented for

uniform graphs. Next, the basic concepts used in Cluster-M clustering and mapping

will be explained. In Section 3, we will show how uniform Cluster-M algorithms can

be extended and applied to nonuniform task and system graphs.

Task Graph System Graph

Specification
Module

Representation
Module

Spec Graph Rep Graph

Mapping Module

Mapping o f a Spec graph onto a Rep graph

Clustering

Mapping

Clustering

F ig u re 2.1 Cluster-M mapping process.

2.2.2 Basic C oncepts

There are a number of reasons and benefits in clustering task and system graphs in

the Cluster-M fashion. Basically, Cluster-M clustering causes both task and system

graphs be partitioned so that the complexity of the mapping problem is simplified

