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(12)

(13)

= wN.Mw + p.(wilC f)

Now, O= dl = mw + 	 = o
awN

w _m-ic

substitute w into C Rw = f,

= f

- 	 f
C HM -lC

substituting p into equation (12), we get

•• 	 w = M -1C(C HM -10 -1f

For the purpose of this paper, the constraint of the unity gain in the direction of look has

been adapted. Thus,

C = ds ;

f= 1;

which in turn implies,

(14)rids

In theory, as I in equality (9) approaches infinity, the estimated covariance matrix M

approaches R. No doubt that the SMI is simplest algorithm of all but its simplicity is
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achieved by trading the convergence speed. Here, in the entire paper, the convergence

speed is defined as the number of samples needed during weight adaptation to achieve

maximum signal-to-noise ratio at the output. As eq.(14) shows, calculation of weight

vector requires a matrix inversion which requires an order of (NK) 3 multiplications.

Obviously (NK) 3 could be quite large even for moderate number of filters and filter taps.

The eigencanceler is an algorithm that does not require direct matrix inversion. The

algorithm utilizes eigenstructure of the space-time covariance matrix to determine the

weight vectors as described below.

3.2 Eigencanceler

Before proceeding with the calculation of the weight vectors, it is important to explore

some important properties of the space-time covariance matrix since they hold the essence

of this particular method.

3.2.1 Eigenstructure of the Space -time Covariance Matrix

In radar applications, the desired signal (pulse reflected from target) is present only part

of the time. Considerable simplification can be achieved if the interferences are estimated

when the desired signal is not present. This corresponds to collecting clutter and jammer

data from neighboring range cells. For this case, the stacked array vector x(t) is a

superposition of clutter signals e(t), jammer signals j(t), and the thermal noise n(t). The

space-time covariance matrix can be written also as a superposition of the clutter, the

jammer, and the noise covariance matrices.
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(15)

M = E[XXH }

= MC + + MN

It would be reasonable if we assume that there exists no correlation between the clutter

echoes, jammer signals, and thermal noise. To investigate the eigenstructure, we will

have to examine each contributor in more detail [1].

Clutter :	 The clutter extends over a sector of angles 8 and due to the

flight geometry of the airborne radar, it covers a band of doppler

frequencies. The clutter covariance matrix is given by

Mc = f pc(0,04(0,u)d (0,u) dude 	 (16)
e By

where pc(0,1)) is the power spectral density of the clutter at angle 0 and

doppler frequency v.

Jammers : Jammer signals can be viewed as sources at discrete angles.

In general, we can model jammers to extend over the full range of

baseband frequency, since this range B,, is much smaller than RF

frequency at which the jammer signals are originated. The jammer

covariance matrix can be written as

MJ = E f prii(u) d(e i ,u)d(epu) dv	 (17)
ei By

where pj,i(D) is the power spectral density of the i th jammer and at the

frequency v.
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Noise : Thermal noise is assumed white across the array and over

the frequency band of interest. In other words, sensor outputs are

uncorrelated to each other and uncorrelated to themselves at non-zero time

lag. The resulting covariance matrix is the unity matrix scaled by the noise

variance :

MN = aN1 	 (18)

From above discussion it is evident that, in the airborne radar problem, clutter and

jammer signals may be broadband spatially as well as temporally. The eigenstructure of

the space-time covariance matrix for such signals has been considered by number of

authors, [26], [27]. They concluded that the space-time matrix is characterized by a

limited number of dominant eigenvalues and a large number of small eigenvalues.

Buckley [27] states an argument that relates the number of dominant eigenvalues to the

array time-bandwidth product. This product is calculated from the duration of the signal

across the array/filter taps structure and bandwidth of the signal and is equal to (N + K -

1). Examples of typical eigenspectra resulting from a clutter field and background noise

are shown in Figure 2 for different data record sizes : NK, 1.5NK, 2NK, 3NK, 5NK, and

lONK. The curves were obtained using the simulation model described in chapter 5.

The total power of all the signals in the array is given by :

p =[] =
NK

 E	 (19)
1=1

where xi are the eigenvalues of space-time covariance matrix M indexed in ascending

order (2 is the largest eigenvalue). By inspection of Figure 2, we can conclude that most
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of the power is compacted in the largest (N + K - 1) eigenvalues. For arrays in which

(N + K - 1) NK, a small number of eigenvalues contain all the information about

interferences. It follows that the span of the eigenvectors associated with the dominant

eigenvalues include all the position vectors that comprise data. For that reason, we refer

to the dominant eigenvectors as interference eigenvectors. The space spanned by

interference eigenvectors is called the interference subspace. The non-dominant

eigenvectors, called noise eigenvectors which span the noise subspace, are orthogonal to

dominant eigenvectors, and hence, are orthogonal to interference subspace.

3.2.2 Weight Vector Calculation

Let Q. denote the matrix representation of the interference subspace, generated by the

jammers and clutter contributions. The columns of Q. consist of the interference

eigenvectors. Let Q. denote the matrix representation of the noise subspace. The

columns of Q, consist of the noise eigenvectors. Since QrHQV = 0, any weight vector in

the noise subspace, w € span (Qv }, has the property of nulling-canceling interferences.

The interference cancellation process consumes only a limited number of degrees of

freedom, namely (N + K - 1). Additional requirements may be imposed on w to optimize

some array performance criterion. Two beamformer formulation are suggested [11] : The

minimum power eigencanceler (MPE) and the minimum norm eigencanceler (MNE). In

this paper only the MNE is investigated.

The minimum norm eigencanceler (MNE) is designed to minimize the norm of the

weight vector while maintaining the linear and eigenvector constraints :
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mn(20)wHw subject to Q,Hw = 0 and C Hw = f

The solution to the optimization problem in equation (20) is provided in Appendix A.

In appendix A, we show that :

	we = 	 [CHQvQ IICJli 
f	 (21)

Since, QQH QvQH = I, we get

we = (/ - CIA,H)C [C H (.1 - (4(2„.H)C]' l f	 (22)

which represents weight vector in terms of dominant eigenvectors.

Now substituting C = ds and f = 1, we get

we = (I - Qr Q,H)ds [dsH (I - Qi.Q7, H)d sr	 (23)

	3.3	 Transformed SMI

As the name of the method suggests, it is another form of Sample Matrix Inversion

method but with added strength of the principle component inversion (PCI) method. The

author of this method, Marshall [14], called it the two step nulling. The description of this

method and derivation of weight vector are as follows :

First, the estimated space-time covariance matrix is generated from the set of

observation vectors using relation (9). Then, eigenfactorization is achieved in a similar

fashion as in the eigencanceler. The interference subspace Qr consisting of dominant

eigenvectors is achieved.

Let's define a transformation matrix T as
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T = [q 1 , q2,	 , q,,	 where p =	 (24)

where d8 is the steering vector and qi 's are dominant eigenvectors of estimated covariance

matrix M. The transformation matrix T has the dimension of NK X (p+1). This

transformation matrix is then used to transform the space-time covariance matrix M as

follows :

	D = THMT	 (25)

Where D is the transformed space-time covariance matrix. D has some interesting

characteristics that should be mentioned.

1. D is a reduce-ranked matrix with rank equal to (p+l) . On the other hand M

had a rank of NK > (p+1).

2. D belongs to interference subspace only.

The first characteristic contributes to the speed of the algorithm as it is less

computational burden to invert (p+l) X (p+1) matrix than to invert NK X NK matrix.

The second characteristic guarantees the interference cancellation capability.

Similarly, the desired position vector is also transformed with T. The new

position vector, call it dt is,

	dr = T Hels 	(26)

Now, using these transformed parameters, the weight vector for this algorithm is

formed.



Mill w HDw subject to d H w =

The solution to the problem in (26) is,

wt
dtHD'dt
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(27)

(28)
D -ldt

The above weight vector has a dimension of (p+1) X 1.



CHAPTER 4

NUMERICAL RESULTS

For the ease of programming we considered a linear uniform array with N = 8 elements.

The separation between two array element was kept at half wavelength. Each channel

consisted of an FIR filter with K = 4 taps. The sampling frequency was normalized to

unity. The radar waveform was modeled such that it could be considered constant over

the propagation time across the array. An airborne radar, with a platform velocity of 0.4

was modeled. Hence, the ground clutter at boresight appears approaching at relative

velocity of 0.4. The clutter was assumed to extend over the full angular sector considered

(-90° to +90°). The clutter returns were simulated by spreading 30 scatterers at random

in the considered angular sector. The clutter echoes were modeled as independent

complex Gaussian random variables, with zero mean and variance determined by the

clutter-to-noise Ratio (CNR). The CNR was calculated from the contributions of all

clutter echoes. The clutter generated using above guidelines might have distribution

shown in the Figure 3. The simulation also included two jammers located at -30° and

10°, with jammer-to-noise Ratios (JNR) of 20 dB and 10 dB, respectively. Both jammers

were modeled approaching at relative redial velocity of 0.8. The noise was modeled as

white with variance of unity.

Using the definition of stacked position vector, the observation vector X was

calculated which consisted of clutter echoes, jammer signals, and thermal noise under

22
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interference only hypothesis and it included signal term also under signal plus interference

hypothesis. Number of observation vectors were collected for different data record sizes.

Here data record sizes of NK, 1.5NK, 2NK, 3NK, 5NK, and lONK are being considered.

Following calculation was done for every set.

First, space-time covariance matrix was derived from eq. (7). Using the

observation vectors under interference only hypothesis the estimated covariance matrix

was calculated from eq. (9). Then, various weight vectors were calculated for herein

considered methods. For Eigencanceler and Transformed SMI method, the assumed rank

p of interference subspace matrix Q., was varied from 1 to 2(N + K). For all of these

different sizes of p, weight vectors were calculated for both methods.

These weight vectors were used to calculate output of filter y = w HX, where X

belongs to signal plus interference hypothesis set. The calculation for mean and variance

of y conditioned on w followed which in turn were used to formulate the normalized

signal-to-interference ratio, p at the output of the filter. The normalized signal-to-

interference ratio is defined as,

SIR for given method
optimal SIR

where SIR is the signal-to-total interference ratio.

The probability density function of p and probability of detection were also

calculated and graphed. The probability density functions curves are obtained from the

histograms and probability detection curves are obtained when the probability of false

alarm is kept constant at 10-5. The adopted antenna patterns for all methods were

(29)
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achieved. The results of the simulation is discussed in the following section. All the

results were obtained from averaging 200 independent runs of simulation.

Numerical results are disseminated in Figures 2 through 23 in Appendix B. The

grouping of these results is done as follows: Figures 2 and 3 show the eigenvalue plots

and clutter spectrum, respectively. Figures 4 through 9 display graphs of normalized

signal-to-noise ratio, p at the filter output with respect to the assumed rank of interference

subspace. In this set of plots, each figure represents outcome of simulation for various

data record sizes. Different data record sizes used are NK, 1.5NK, 2NK, 3NK, 5NK and

10NK. Figures 10 through 15 show probability density function of p, and Figures 16

through 21 are probability of detection curves. For these two sets also variable between

two curves is data record size. Figures 22 and 23 are frequency and angle pattern curves,

respectively.

Brief description of these numerical results is given in following paragraphs.

Normalized signal-to-noise ratio curves: (Figures 4 through 9)

Examination of these figures reveal that the transformed SMI and the eigencanceler

provide higher normalized signal-to-noise ratio than SMI, especially for small data record

sizes (Figures 4, 5). Reed [8] proved in his paper that the SMI requires approximately

2NK snapshots to achieve half the performance of optimum processor. Indeed, from

Figure 6, it can be seen that the SMI achieves normalized signal-to-noise ratio of

approximately 0.53 at the data record size of 2NK. Examination of these plots, (Figure

7, for example) reveal that the transformed SMI and the eigencanceler obtain maximum

achievable value of p when the value of the assumed rank of the interference subspace
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is in close proximity of 7. This criteria is explained from Figure 2. It can be observed

from Figure 2 that the number of dominant eigenvalues is approximately seven. This

value is the true rank of the interference subspace. Indeed, the performance of the

eigenanalysis-based methods peaks when the assumed rank p equals the true rank. The

remaining curves (Figures 8, 9) imply that as the data record size increases, the

performance of the SMI method improves. These figures also show that the SMI has slow

rate of convergence than the transformed SMI and the eigencanceler. Here, convergence

rate is measured in terms of number of snapshots need for weight calculation. From

Figure 9, we can see that the SMI requires 1ONK snapshots to achieve p comparable to

the transformed SMI and the eigencanceler.

Probability density curves: (Figures 10 through 15)

The examination of this set of plots also prove that the transformed SMI and the

eigencanceler provide better performance in terms of p than the SMI method. It can be

seen from the Figure 10 that the mean values of p for the transformed SMI and the

eigencanceler are approximately 0.65 and 0.60, respectively, whereas the mean value of

p for the SMI is approximately 0.05. As the number of snapshots increases, the mean

value of p for the SMI improves. Figures 11 and 12 show that the mean value of p for

the SMI is approximately 0.35 and 0.5, respectively. And, as the value of data record size

gets very large, the mean value of p for all three method discussed here gets in close

proximity (Figure 15).
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Probability of detection curves: (Figures 16 through 21)

This set of curves again prove the superiority of the transformed SMI and the

eigencanceler over the SMI method. The SMI method follows the same pattern as it did

in previous results. That is, as the number of snapshots increases, the SMI provides better

performance which is higher probability of detection for this set of plots.

Figure 22 represents frequency pattern curves for these methods. It can be

observed from the figure that the transformed SMI nulls the clutter better than the

eigencanceler and the SMI. The clutter, as we programmed is located at normalized

frequency of 0.4 .

Finally, Figure 23 shows angle pattern curves for methods considered in this paper.

We can clearly see the nulls placed at -30° and 10° where the jammer signals are suppose

to be located.

To better understand the behavior of each method as revealed by the simulation

results, we use the SMI method as a baseline for our discussion.

The weight vector for the SMI is given by equation (7) and rewritten below for

convenience.

= kAr lds

Now, M could be written as

P'gc.PQrArQrli 	 (30)

where Q, and IQ, represent interference and noise subspace matrix, respectively and Ap

and A,. are interference and noise eigenvalue matrices, respectively. Then,
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n A
P

 -i n I/ QA-1QrH

where p is a constant related to the type of constraint placed on the algorithm.

It follows that,

wan = [QP AP -1 QP N
 + QA -1 12r1ds

It is evident from the above representation of the weight vector equation that the

weight vector for SMI consists of components from noise subspace as well as interference

subspace. Graphical representation of the weight vector could be given as in Figure (24).

Now, we noticed earlier that the SMI provides poor performance for small data record

sizes (Figures 1, 2). For small data records sizes, the noise eigenvalues of the estimated

covariance matrix are not constant. That is, they fluctuate substantially from one data set

to the other (see curves for data record sizes NK and 1.5NK between the eigenvalue

number 7 and 32 in Figure 2). This variation introduces the noise in the approximation

process of the covariance matrix which, in turn leads to lower signal-to-noise ratio. As

the number of snapshots grows the fluctuation in the noise eigenvalues decreases leading

to the better approximation and the better performance (compare Figures 4 and 9).

In case of the eigencanceler, the equation for the weight vector is rewritten below.

It is evident from the following equation that the weight vector only utilizes interference

subspace for adaptation.

= (/ - (2,42,nds [cIsH (I - (2,.Q.H)ds 1- 1

Because of that the effect of the estimation noise is not realized in the eigencanceler and

hence, it provides better signal-to-noise ratio than the SMI method for small data records.



28

The transformed SMI also utilizes the interference subspace, in this transformed

interference subspace. And, thus provides better performance.

We observed from the normalized signal-to-noise ration curves, Figure 6, for

example, that the performance of the transformed SMI matches the performance of the

eigencanceler as long as the assumed rank of the interference subspace in less than or

equal to the actual rank which is approximately seven. But when the assumed rank of

the interference subspace is overestimated, the performance of the transformed SMI does

not deteriorate as quickly as of the eigencanceler. This is due to the transformation that

takes place in the Transformed SMI method before weight adaptation. The embodied

steering vector ds in the transformation matrix T ensures at the output that signal

component in the observation vector does not get cancelled. More simply stated, the

weight vector solution of the eigencanceler is not optimum in the subspace whereas the

weight vector solution of the transformed SMI is optimum in the reduced rank subspace.

Hence, the performance of the transformed SMI does not deteriorate as quickly as of the

eigencanceler.



CHAPTER 5

CONCLUSION

In this paper, we examined three adaptive array techniques, namely the SMI, the

eigencanceler, and the transformed SMI. We showed by simulation that the algorithms

not requiring direct matrix inversion provide faster convergence rate. Here, convergence

rate is defined in terms of normalized signal-to-noise ratio at the filter output. The paper

proved that the transformed SMI and the eigencanceler provide superior performance than

the SMI method for small data record sizes. The paper also showed that the transformed

SMI provides better performance than the eigencanceler when the assumed rank of the

interference subspace is overestimated. That is, the transformed SMI is robust to rank

overestimation. The simulation also showed that the transformed SMI and the

eigencanceler have relatively higher probability of detection for small data records.

Again, we conclude that transformed SMI and the eigencanceler could be good

alternatives to the SMI method, specially for short data record sizes.
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APPENDIX A

EIGENCANCELER WEIGHT VECTOR CALCULATION

In this appendix we develop the expressions for weight vectors for the minimum

norm eigencanceler (MNE).

The MNE weight vector is the solution to the optimization,

min w"w subject to (2, 11w = 0 and Ow = f 	 (31)

Using the method for Lagrange multipliers, we define

J = 	 - [W HC - w1112,11	 (32)

Taking gradient with respect to wH ,

V =	 = w - CA, - 	 = 0
raw

which implies that,

w = C A. +	 (33)

Substituting above w into both of the above constrains, we get

QraCX +QTHQr = 0

=	 (34)

where we have used a fact that Q.HQ. = IT , an identity matrix.

30
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C HCX + C HQ,* = 	 (35)

substituting p, we get

C HC - C HQA.IIC = f

A (C RC C RIZA,11C) = f

= [C HQVCrif 	 (36)

where we have used the equality (),Q H + QVQVH = I

substituting X and p back we get,

we = 12,,CVIC [C H (2,,Q,,HC]-1 f 	 (37)



APPENDIX B

SIMULATION RESULTS

This appendix consists of graphs generated by using the simulation model described in

Chapter 5.
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Figure 2: Eigenvalue Spectra
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