








toughness GF and the tensile strength ft of HSC, the reduction in the difference between

flexural strength and tensile strength is considerable and the size of process zone is also

significantly smaller in HSC as compared to NSC. It is shown that to apply Linear Elastic

Fracture Mechanics (LEFM) principles, a minimum size (depth) of beam of HSC is about

9.0" whereas for NSC the minimum depth of the beam is almost twice as much i,e,

about 18,0". An important recommendation for determining the fracture energy GF from

load-CMOD curves instead from the conventional Load-Deflection response is shown to

produce lesser variation in GF values since CMOD measurements are less likely to be

affected by experimental setups and errors, Errors that are known to generally affect the

load-line deflection (LPD) measurements can cause significant inflated values of fracture

energy GF to be reported, Finally based on the test results of beam bending tests, a

recommendation is made regarding a suitable size of beam specimen that can be used as

a standardized fracture test specimen, The beam specimen of span depth (S/D) ratio of 4

is found to be more suitable than the RILEM recommended beam size S/D = 8,
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CHAPTER 1

INTRODUCTION

1.1 General

The tensile capacity of concrete is only a small portion of the compressive strength

capacity (about 1/10 for normal concrete), In order to raise the tensile capacity,

reinforcement of various kinds are often used. When the reinforcement is anchored or

spliced the tensile and shear strength of the concrete will be very critical for the strength

of the structure, In all structures we have to rely on the tensile and shear capacity of the

concrete whether it is reinforced or not,

When the tensile strength of a material is reached in a structure, cracking will

occur, The study of the conditions around the crack tip is called "Fracture Mechanics".

In this dissertation, the application of fracture mechanics to various structural

(unreinforced) members is studied, Emphasis is given to the experimental determination

of various important fracture parameters and also to study the behavior of High Strength

Concrete (HSC) members,

Fracture mechanics is a theory of failure which was originated in 1920 by Griffith

(1920, 1924) and was for a long period applied only to metallic structures and ceramics,

Concrete structures, on the other hand, have been so far successfully designed and built

without any use of fracture mechanics, even though the failure process involves crack

propagation, This is not surprising since fracture mechanics takes into account the

growth of distributed cracking and its localization which was unknown until about 1980,

During the 1980's however the study of fracture mechanics in concrete has emerged and
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as a result there is an explosion in research activities. The application of fracture

mechanics to concrete is important for various reasons (ACI 446,1 R-91 1991),

Important and compelling reasons for using fracture mechanics are:

• Energy is used as a failure criterion, in conjunction with stresses and strains

• It takes into account crack propagation

• It accounts for effect of size of structures on their nominal strength

The science of fracture mechanics can be divided into two general categories:

Linear Elastic Fracture Mechanics (LEFM) and Elastic Plastic Fracture Mechanics

(EPFM), The theory of LEFM has been well developed for the past thirty years and has

been successfully applied to metallic structures, Its application to concrete was first

attempted long ago, The idea of using stress intensity factors had already appeared in

early 1950's and serious investigation started in the 1960's by Kaplan et, al. (Kaplan

1961). Initially the application of LEFM to concrete did not yield good results (Kesler,

Naus and Lott 1971). The reason, it is now understood, is that in concrete there is a

large microcracking zone (also known as the process zone) in front of the crack tip.

Failure of concrete involves stable crack growth in the large cracking zone and formation

of a large process zone even before the maximum load is reached, To take into account

the size of the process zone one must consider the softening behavior of concrete, This

modification to the LEFM theory has only been developed during the last fifteen years,
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1.2 General Background about High Strength Concrete

1.2.1 Introduction

High Strength Concrete (HSC) is a relatively new material and its development has been

gradual over the past few decades. The uses of microsilica, fly ash and high range water

reducers (superplasticizers) along with carefully selected materials have made the

production of HSC easier and more economical, Currently, more and more structures

are being constructed using High Strength Concrete, Besides higher strength, HSC

material also offers favorable properties with regards to frost, abrasion, durability and

permeability, Due to lower porosities and higher densities, HSC usage in the

construction of storage tanks and pipes carrying hazardous substances is becoming more

appropriate, Life-cycle cost effectiveness of HSC will result in more widespread usage

in transportation structures and high-rise buildings all over the world,

As the development of HSC has continued, the definition of HSC has changed

from time to time. In the 1950's, concrete with compressive strength over 5000 psi (34

MPa) was considered as high strength concrete. In the 1960's, high strength concrete

with 6000 and 7500 psi (41 and 52 MPa) were commercially used, In 1970's, 8000 psi

concrete was frequently being produced and used, Presently, concrete with compressive

strength exceeding 20,000 psi (138 MPa) has been reported to have been used in high

rise buildings, Currently, according to ACI, High Strength Concrete is defined as

concrete having a compressive strength r e of 6000 psi (41 MPa) and greater (ACI 363),

Two examples of usage of high strength concrete in construction are Chicago's Water

Tower Place and 311 South Wacker Drive buildings. The long span cable swayed


