
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Fall 1-31-1999

Parallelization for image processing algorithms based chain and Parallelization for image processing algorithms based chain and

mid-crack codes mid-crack codes

Wai-Tak Wong
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wong, Wai-Tak, "Parallelization for image processing algorithms based chain and mid-crack codes"
(1999). Dissertations. 993.
https://digitalcommons.njit.edu/dissertations/993

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/993?utm_source=digitalcommons.njit.edu%2Fdissertations%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

PARALLELIZATION FOR IMAGE PROCESSING ALGORITHMS
BASED ON CHAIN AND MID-CRACK CODES

by
Wai-Tak Wong

Freeman chain code is a widely-used description for a contour image. Another

mid-crack code algorithm was proposed as a more precise method for image representa-

tion. We have developed a coding algorithm which is suitable to generate either chain

code description or mid-crack code description by switching between two different

tables. Since there is a strong urge to use parallel processing in image related problems, a

parallel coding algorithm is implemented. This algorithm is developed on a pyramid

architecture and a N cube architecture. Using link-list data structure and neighbor identi-

fication, the algorithm gains efficiency because no sorting or neighborhood pairing is

needed.

In this dissertation, the local symmetry deficiency (LSD) computation to calculate

the local k-symmetry is embedded in the coding algorithm. Therefore, we can finish the

code extraction and the LSD computation in one pass. The embedding process is not lim-

ited to the k-symmetry algorithm and has the capability of parallelism.

An adaptive quadtree to chain code conversion algorithm is also presented. This

algorithm is designed for constructing the chain codes of the resulting quadtree from the

boolean operation of two quadtrees by using the chain codes of the original one. The

algorithm has the parallelism and is ready to be implemented on a pyramid architecture.

Our parallel processing approach can be viewed as a parallelization paradigm - a

template to embed image processing algorithms in the chain coding process and to imple-

ment them in a parallel approach.

PARALLELIZATION FOR IMAGE PROCESSING ALGORITHMS
BASED ON CHAIN AND MID-CRACK CODES

by
Wai-Tak Wong

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer and Information Science

January 1999

Copyright © 1999 by Wai-Tak Wong
ALL RIGHTS RESERVED

APPROVAL PAGE

PARALLELIZATION FOR IMAGE PROCESSING ALGORITHMS
BASED ON CHAIN AND MID-CRACK CODES

Wai-Tak Wong

/(d
Date

1.4
Dr. Frank Y. Shill, Dissertation Advisor
Professor of Computer and Information Science, NJIT

Id

Dr. James A. M. McHugh, Committee Member
	

Date
Chairperson and Professor of Computer and Information Science, NJIT

of t

1/-i/
DateDr. Daochaun D. Hung, Committee Member

Associate Professor of Computer and Information Science, NJIT

Dr. Pengcheng Shi, Committee Member
Assistant Professor of Computer and Information Science, NJIT

[219/1 8-

Date

191 '1/")S1
DateDr. Edwin Hou, Committee Member

Associate Professor of Electrical and Computer Engineering, NJI I

BIOGRAPHICAL SKETCH

Author:	 Wai-Tak Wong

Degree:	 Doctor of Philosophy

Date:	 January 1999

Undergraduate and Graduate Education:

Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1999

Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1992

•	 Bachelor of Science in Chemical Engineering,
Nation Taiwan University, Taipei, Taiwan, Republic of China, 1986

Major:	 Computer and Information Science

Presentations and Publications:

Shih, F. Y., and W.-T. Wong. "A new single-pass algorithm for extracting the mid-
crack codes of multiple regions." Journal of Visual Commun. and Image Rep., vol. 3,
no. 1, pp.217-224, March 1992.

Shih, F. Y., and W.-T. Wong. "Reconstruction of binary and gray-scale images from
mid-crack code descriptions." Journal of Visual Commun. and Image Rep., vol. 4,
no. 2, pp. 121-129, June 1993.

Shih, F. Y., and W.-T. Wong. "An improved fast algorithm for the restoration of
images based on chain codes description." CVGIP: Graphical Models and Image
Process., vol. 56, no. 4, pp. 348-351, July 1994.

Shih, F. Y., and W.-T. Wong. "Fully parallel thinning with tolerance to boundary
noise." Pattern Recognition, vol. 27, no. 12, pp. 1677-1695, 1994.

Wong, W.-T., Y.-L. Chen, and F. Y. Shih. "A fully parallel algorithm for the extrac-
tion of chain and mid-crack codes of multiple contours." Conf. Proc. of Inter. Corn-
put. Symp., HsinChu, Taiwan, R.O.C., pp. 565-570, 1994.

iv

BIOGRAPHICAL SKETCH
(Continued)

Shih, F, Y, and W.-T. Wong. "A new safe-point thinning algorithm based on the mid-
crack code tracing." IEEE Trans. Syst. Man Cybern. (T-SMC), vol. 25, no. 5, pp.
370-378, February 1995.

Shih, F. Y. and W.-T. Wong. "A one-pass algorithm for local symmetry of contours
from chain code." l' Inter Workshop on Comput. Vision, Pattern Recogn. and Image
Process., 1998.

Shih, F. Y. and W.-T. Wong. "A one-pass algorithm for local symmetry of contours
from chain code." accepted by Pattern Recognition, 1998.

This thesis is dedicated to
our almighty GOD and Jesus Christ

vi

ACKNOWLEDGMENT

First, I would like to thank our heavenly Father and our Lord Jesus Christ. I know it

is all His grace.

Next, I would like to thank my wife for her unconditional love for being a mother of

three young children, a housewife and giving all of her support to our family.

I would like to express my appreciation to my advisor Prof. Frank Y. Shih, without

his research guidance, I think I could not accomplish my Ph. D. goals.

Special thanks are given to Prof. James A. M. McHugh, Prof. Daochuan Hung, Prof.

Pengcheng Shi and Prof. Hou for serving as my committee members.

vii

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Contour Representation by Chain/Crack/Mid-Crack Coding 	 1

1.2 A Single Pass Mid-Crack Coding Algorithm 	 4

1.2.1 Codes Generation Look-up Table and Move Table 	 4

1.2.2 Mid-Crack Coding Algorithm in Raster Scan Fashion 	 9

1.3 Applications for Chain Coding and Mid-Crack Coding 	 12

1.4 Organization of this Dissertation 	 13

2 A PARALLEL CHAIN/MID-CRACK CODING ALGORITHM
ON PYRAMID ARCHITECTURE 	 15

2.1 Introduction 	 15

2.2 The Parallel Codes Extraction Algorithm 	 16

2.3 The Coding Stage 	 19

2.3.1 The similarities between Chain Coding and Mid-Crack Coding	 19

2.3.2 Codes Generation Look-up Table and Move Table 	 19

2.3.3 Coding Mechanism 	

2.3.4 The Procedure of Coding Stage 	

2.4 The Merging Stage 	 73

2.5 Determination of Contour Types	 75

2.6 Experimental Results	 76

2.7 Complexity Evaluation 	 26

2.8 Summary	 77

3 A PARALLEL CHAIN/MID-CRACK CODING ALGORITHM ON
N CUBE ARCHITECTURE 	 31

3.1 Introduction 	 31

3.2 The New Parallel Algorithm for Chain and Mid-Crack Coding 	 32

3.2.1 The Coding Stage 	 32

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3.2.2 The Merging Stage 	 40

3.3 Experimental Results 	 41

3.4 Time Complexity Evaluation 	 46

3.5 Summary 	 46

4 AN ONE-PASS ALGORITHM FOR LOCAL SYMMETRY OF CONTOURS
FROM CHAIN CODES 	 47

4.1 Introduction 	 47

4.2 Proposed One-pass Algorithm for Chain Coding 	 50

4.3 The One-pass Algorithm for Local Symmetry 	 51

4.4 Parallelism of the One-pass K-Symmetry Algorithm 	 55

4.5 Experimental Results 	 56

4.6 Summary 	 58

5 AN ADAPTIVE CONVERSION ALGORITHM FROM QUADTREE TO
CHAIN CODES 	 59

5.1 Introduction 	 59

5.2 Traversal Algorithm for Pointer-Based Quadtree 	 62

5.3 Chain Coding for Quadtree Traversal Algorithm 	 ..67

5.4 Adaptive Level Base Chain Coding Retrieval 	 73

5.5 Experimental Results 	 74

5.6 Analysis 	 75

5.7 Summary 	 76

6 SUMMARY AND FUTURE RESEARCH 	 77

6.1 Contribution and Summary of this Dissertation 	 77

6.2 Future Research 	 78

REFERENCES 	 79

ix

LIST OF TABLES

Table 	 Page

1.1 The Look-Up Table of Mid-Crack Coding 	 7

1.2 The Move Table of Mid-Crack Coding 	 8

2.1 The Look-Up Table of Chain Coding 	 ?1

2.2 The Move Table of Chain Coding 	

4.1 The result of external boundary in Figure 4.3 	 54

5.1 The tracking of the traversal algorithm for the 8-neigbors of the SE child
of the most northwest quadrant in a 64 x 64 image 	 69

5.2 The generation rules of the pseudo parent type of a node 	 69

5.3 Classification of shared boundary ocurrance for the Head and Tail of
a codelink 	 70

5.4 The particular cases of the two Heads generated on a pixel will not be
in order 	 70

5.5 The result of the merging process for each node in Figure 5.1 	 75

LIST OF FIGURES

Figure Page

1.1 Silhouette with the inside and outside chain coded contours and
the mid-crack coded contour 	 3

I .? Freeman chain code and the mid-crack code on the vertical and the
horizontal cracks 	 3

1.3 Examples of five types of code-links initialized from the mid-cracks
around the central pixel 	 6

1.4 Headcode (dashed line) determination 6

1.5 Index value calculation in the window operation 	 S

1.6 The linked list in a connectedness structure array 	 9

1.7 The system flow-chart 	 11

7.1 An example of a pyramid architecture 	 17

2.2 An example of similarities between mid-crack code and chain code.
Solid arrow denotes codelinks and dotted arrow denotes headcodes 	 70

2.3 Two cases of chain and mid-crack codes while the internal contours
is closed 	 75

2.4 The input image with four objects and five contours 	

7 .5 The result of Figure 2.4 by applying our algorithm with chain codes 	

2.6 The result of Figure 2.4 by applying our algorithm with mid-crack codes 30

3.1 (a) A 3 cube architecture 	 33

3.1 (b) A 3 cube recirculating network 33

3.2 The parallel chain coding algorithm in N cube architecture 	 34

3.3 The link-list structures for a chain set 	 35

3.4 The order of the codelink generation 	 36

3.5 The patterns that needs extra swapping procedure 	 37

3,6 An input image with three chains 	 37

3.7 (a) The coding result for the first two rows of the Figure 3.6 	 38

3.7 (b) The coding result for the second two rows of the Figure 3.6 	 39

xi

LIST OF FIGURES
(Continued)

Figure 	 Page

3.7 	 (c) The coding result for t le fifth rows of the Figure 3.6 	 40

3.8	 (a) The merging result for the first two rows of the Figure 3.6 	 42

3.8	 (b) The merging result for the second two rows of the Figure 3.6 	 .47

3.8	 (c) The merging result for the row 0 to row 3 of the Figure 3.6 	 43

3.8	 (d) The merging result of the Figure 3.6 	 43

3.9	 (a) The input image which lists 3 digits 0, 9 and 6 horizontally 	 44

3.9	 (b) The resulting chains 	 44

3.10 (a) The input image which lists 3 digits 0, 9 and 6 vertically 	 45

3.10 (b) The resulting chains 	 45

4.1	 (a) Digital curve C 	 49

4.1	 (b) Curve C obtained from reflecting the local region C + of length k
after p i in curve C 	 49

4.1	 (c) Curve C' obtained from rotating curve C' to align it with the local
region C- of length k before P i in curve C 	 49.

4.2	 The link-list structures for a chain set 	 50

4.3 An input image with two chains 	 52

4.4	 The coding result for Figure 4.3 	 53

4.5 An input image contains two digits, 9 and 6 	 56

4.6	 Results of LSD computation for the external boundaries in Figure 4.5 	 57

5.1	 An image and its quadtree representation 	 61

5.2	 The link-list data structure for a chain set 	 71

5.3	 An exmaple to illustrate the classification of the location for the Head
and Tail 	 72

xii

CHAPTER 1

IN 1 RODUCTION

1.1 Contour Representation by Chain/Crack/Mid-Crack Coding

When a 2-dimensional digital image of a real scene is processed by a computer, it is often

transformed into one or more binary regions by means of various image segmentation

techniques. For further analysis, features are extracted and classified. In consideration of

the computational time and memory size, it is desirable to convert the binary

regions/images into a specific form which is more efficient and convenient to be pro-

cessed. For this purpose, contour representation is utilized. The contour representation

of a binary image is determined by specifying a starting point and a sequence of moves

around the borders of each region. Current methods of contour tracing are based on Free-

man chain code or crack code [1,2,3]. Some techniques can extract the contour image

directly from a grayscale image instead of a binary image. They are based on the similar

concept on edge operator.

Chain code and crack code are the popular coding techniques for binary images.

They are developed not to produce efficient codings in the sense of minimizing the num-

ber of code bits required to describe a boundary, but rather to make certain manipulation

operations convenient. The chain code moves along a sequence of the center of border

points, while the crack code moves along a sequence of "cracks" between two adjacent

border points. Typically, they are based on the 4- or 8-connectivity of the segments,

where the direction of each segment is encoded by using a numbering scheme, such as

3-bit numbers {i I i = 0, 1, • , 7} denoting an angle of 45i° counter-clockwise from the

positive x-axis for a chain code, or 2-bit numbers [i I i = 0, 1, 2, 3} denoting an angle of

90i° for a crack code. The elementary idea of the chain or crack coding algorithm is to

trace the border-pixels or cracks and sequentially generate codes by considering the

1

2

neighborhood adjacency relationship. The chain and the crack codes can be viewed as a

connected sequence of straight line segments with specified lengths and directions. An

obvious disadvantage of the chain code is observed when we use it to compute the area

and perimeter of an object. Referring to Figure 1.1, the inside chain code appears to

underestimate the area and perimeter while the outside chain code overestimates them.

The disadvantages in the crack code are that much more codes are generated and the

perimeter is much overestimated. The mid-crack code [4], located in between, should

make a more accurate computation of the geometric features.

The mid-crack code is a variation and an improvement of the traditional tracing

methods between the chain code and the crack code. In contrast to Freeman chain code,

which moves along the center of pixels, the mid-crack code moves along the edge mid-

point of a pixel producing codes of links. For the horizontal and vertical moves, the

length of a move is 1, and for diagonal moves, it is 4 -27/2. If the crack is located in

between two adjacent object pixels in the vertical direction, it is said to be on a vertical

crack. Similarly, if the crack is located in between two adjacent object pixels in the hori-

zontal direction, it is said to be on a horizontal crack.

Figure 1.2 shows the Freeman chain code and the mid-crack code on the vertical

and the horizontal cracks. There are two restrictions on the moves in the mid-crack code.

If a move is from the vertical crack, the codes 0 and 4 are not allowed. Similarly, the

codes 2 and 6 are not allowed in moves from the horizontal crack. The experimental veri-

fication of the mid-crack code in area and perimeter computation is shown in [4] where

the mean perimeter error value is -0.074% and the mean area error is -0.006%. Therefore

the mid-crack code is a desirable alternative method in contour tracing with its benefit in

accuracy. A disadvantage of the mid-crack code is that it is always longer than the Free-

man chain code. A conversion algorithm between these two code sequence is described

in [4] to complement the defects as a compression process.

tarting pixel (6,5)
Last mid-crack code
irst mid-crack code
nding pixel (5,6)

13 2

4 0

5 6 7

3

Figure 1.1 Silhouette with the inside and outside chain coded contours (dashed lines)
and the mid-crack coded contour (solid line)

Freeman chain code 	 Mid-crack code 	 Mid-crack code
on the vertical crack 	 on the horizontal crack

Figure 1.2 Freeman chain code and the mid-crack code on the vertical and the horizon-
tal cracks

4

1.2 A Single Pass Mid-Crack Coding Algorithm

This dissertation is based on our previous work, a single pass mid-crack coding algorithm

[7]. That algorithm uses a 3x3 window for the codes extraction in a raster-scan fashion.

It only requires a single row-by-row scan to generate all the code sequences for a com-

plex binary image which is composed of many objects. Also, the algorithm has an advan-

tage in detecting the spatial relationship between objects. Besides, the perimeter compu-

tation and area adjustment can he performed in parallel. Before we start to describe the

algorithm, the terminology is introduced first for the better understanding the content of

this chapter and later.

Terminology

Codelink	 a link of the central pixel's connected codes in the 3 x 3 window

Boundary link a link of connected codelinks for all border pixels being scanned. i t is

also called chain in later chapter

Thead	 the first code of a link connected to the tail of the current boundary link

or codelink

Headcode	 the first code of the current boundary link or codelink

1.2.1 Codes Generation Look-up Table and Move Table

A set of 3x3 window masks containing every variety of mid-crack codelinks initialized

from the mid-cracks around a central pixel is illustrated in Figure 1.3. We could summa-

rize them into following five types of encoding based on the number of codelinks: no-

code, one-code, two-code, three-code and four-code links. Each codelink is associated

5

with a thead which is illustrated in Figure 1.4. According to the permutations, a look-up

table is set up for code generation, as shown in Table 1.1. The mid-crack codes are based

on 8-connectedness and counter-clockwise tracing for the external boundary and clock-

wise tracing for the internal boundary. The index value will be discussed next. The index

value 0 reflecting a isolated pixel which is treated as a noise. The related information

such as the total number of codelinks, all thead, and all codelinks can be obtained from

drawing the mid-crack codes surrounding the central pixel, as illustrated in Figure 1.3.

A 3x3 window, which is incorporated with different weights at each element

exploring the presence of eight neighboring locations, is shown in Figure 1.5 (a). If an

object pixel occurs, the weighted window is convolved with the 3x3 neighborhood cen-

tered at that pixel. Assume that the binary image has the object pixel "1" and the back-

ground pixel "0." This convolution is performed to calculate the index value of the look-

up table. An example of the window operation is illustrated in Figure 1.5 (b). The

related information with respect to the mid-crack codes surrounding a pixel in Table 1.1

can be retrieved by the use of the index value. Then, a series of operations are applied to

concatenate these individual codelinks to their suitable boundary links.

From a codelink, we can determine the relative move in column and row with

respect to the current location. A move table listing the relative coordinates for all the

moves, is shown in Table 1.2. For example, the code 0 indicates one-pixel move in x-axis

(or column), and no move in y-axis (or row). The destination of moves acts as an impor-

tant role as we search for a right link in the check-head or check-tail step which will be

discussed in next section.

6

no-codeno-code one-code

two-code two-codeone-code

three-code three-code four-code

Figure 1.3 Examples of five types of code-links initialized from the mid-cracks around
the central pixel

two-code :	 two-code :	 one-code
thead= 5, 2
	

thead= 0, 3
	

thead= 0

Figure 1.4 Thead (dashed line) determination

Table 1.1 The Look-Up Table of Mid-Crack Coding

Index
Number of
Codelinks

Thead Codelink

0 0 Nil Nil

1 1 7 3317

2 1 6 217

3 1 7 217

4 1 5 1175

5 2 5,0 117, 3

— ... ••- —

130 2 6,3 77, 2

131 2 7,3 77, 2

132 2 5,3 775, 1

133 3 7,5.3 77, 3, 1

134 2 6,3 77,	 1

—• ...

251 0 Nil Nil

252 I 5 4

253 1 5 3

254 0 Nil Nil

255 0 Nil Nil

7

Weights in the Window

(a)

index = 1+8 = 9
(b)

Figure 1.5 Index value calculation in the window operation

Table 1.2 The Move Table of Mid-Crack Coding

9

1.2.2 Mid-Crack Coding Algorithm in Raster Scan Fashion

When the first object pixel is fetched, we quickly obtain its codelinks simply by a look-

up table. After that, we create a new linked list in the connectedness structure array

shown in Figure 1.6. A list in the connectedness structure includes: head and tail coordi-

nates, codelinks, thead, perimeter computation, and area adjustment. A list-typed data

structure to store the temporary boundary links is employed in the representation. If the

boundary link is connected with the codelink, we will not only increase the code

sequence, but also change the coordinates of head and tail positions. Then in the process

of scanning the next pixel, its codelinks are joined into the existing links by checking the

conditions in the check-tail and check-head steps of the algorithm.

Figure 1.6 The linked list in a connectedness structure array

In the check-head step, we check the head coordinates and the headcode of the

searched boundary link in the connectedness structure array and match with the tail

coordinates and the thead of the codelink respectively. In the check-tail step, we check the

tail coordinates and thead of the boundary link and match with the head coordinates and

the headcode of the codelink. If the current codes have connectivity with the neighboring

codes, there are two kinds of concatenation ways: head concatenation and tail concatena-

tion. In the head concatenation case, we connect the codelink with the matched boundary

link, the tail concatenation case, we connect the matched boundary link with the

codelink.

If none of the links satisfies the condition. we create a new link in the connected-

ness structure array to store this code information. After the object pixels are scanned

completely, each linked-list sequence in a block of the array represents the codes of an

internal or external contour of an object. After the whole image is scanned, the boundary

links of different objects exist in different blocks of the array. A system flow-chart is

described in Figure 1.7 to assist the reader to understand the algorithm.

NO

it

Figure 1.7 The system flow-chart

12

13 Applications for Chain Coding and Mid-Crack Coding

The applications for chain coding and mid-crack coding are in large varieties, from the

computation of the geometric properties of an object to the skeletonization. Besides, they

can be used for region filling, corner detection, local symmetry computation, line segment

identification, etc.. The followings are the abstracts of our interested portions.

Chang and Leu [8] presented an algorithm to convert the chain codes description

(boundary representation) to y-axis representation (region representation) [9]. Based on

that, they derived the computation formulas of the point membership property, area,

moments and centers, and eccentricity of an object. They also solved the problem for the

intersection and union operations between two objects. A revision of that algorithm [8]

was presented by Shih and Wong [10] as an improvement and correction. Shih and Wong

[11] also presented a mid-crack codes version of that algorithm which was used as a

method of region filling. This improved algorithm does not have the limitation such as (a)

the boundary must be closed, (b) cannot handle the cases where the test line intersects the

boundary tangentially, and (c) the closed boundary can not loop back on itself.

Koplowitz and Plante [12] defined a feature of the chain code links, the Straight

Line Distance of a point, which is the maximum number of links that can produce a digi-

tal straight line centered about that point. The straight line distance is then used as an

indicator of the curvature at a point on the chain coded curve. If the curvature is high

enough, the point is considered as a corner point. Inesta, Buendi˜a, and Sarti [13] defined

another measurement, named local symmetric deficiency, which evaluates the position of

a local vicinity of any contour point. The lower this quantity is, the higher the symmetry

is in the local region considered. This technique can also be used as a corner detector.

Yuan and Suen [14] presented an optimal algorithm for identifying straight lines in chain

codes description. The algorithm turns the complicated problem of computing the

straightness of digital arcs into a simple task by constructing an passing area around the

1:3

evaluating pixel and determining whether the straight line lies on it. The straight line is

extended each time a new pixel is accepted until an unacceptable one is encountered.

Another application of chain codes and mid-crack codes is skeletonization or thin-

ning. Thinning algorithms based on the contour generation method in chain codes were

presented by Kwok [15], Vossepoel, Buys and Koelewijn [16], and Xu and Wang [17].

The essential idea is first to convert the input image into chain codes for each closed con-

tour, and then to trace around the contour. If a boundary point is removed, the algorithm

will generate a few new chain codes to replace the old one. The contour tracing will pro-

cess each contour layer-by-layer iteratively until no further deletion occurs. Shih and

Wong [18] presented a thinning algorithm which adopted the advantages of the simple

safe-point testing [19] and the mid-crack code tracing [4]. This algorithm allows to thin

multiple objects simultaneously. An improvement of this algorithm in parallel verison

was also presented by Shih and Wong [20].

1.4 Organization of this Dissertation

The organization of this dissertation will be given in this section. The outline of this dis-

sertation is as follows and the brief statement of each chapter is given later.

Chapter 1	 Introduction.

Chapter 2	 A fully parallel algorithm for the extraction of chain and mid-crack codes
of multiple contours.

Chapter 3	 A parallel chain and mid-crack coding algorithm on N cube architecture.

Chapter 4	 A one-pass algorithm for local symmetry of contours from chain codes.

Chapter 5	 An adaptive conversion algorithm from quadtree to chain codes.

Chapter 6	 Summary and future research.

In Chapter 2, a fully parallel algorithm for chain and mid-crack codes extraction

based on the table look-up approach is presented. By using a divide-and-conquer

14

strategy, it is developed on a pyramid parallel architecture. The coding algorithm is com-

posed of two stages, coding and merging. It is implemented on the parallel machine

/\P1000 with the parallel simulator casim. Experimental results demonstrate the correct

ness and the flexibility.

In Chapter 3, a chain and mid-crack coding algorithm using link-list data structure

on N cube architecture is presented. This algorithm does not have any restrictions of

existing algorithms. It is fast, flexible and extendable.

In Chapter 4, by adopting the coding technique in Chapter 3, we present a one-pass

k-symmetry algorithm. We can finish the code extraction and the LSD computation in

one pass. The algorithm is suitable for parallel implementation.

In Chapter 5, an adaptive algorithm is presented for converting a quadtree represen-

tation of 'an image to its chain code representation. This algorithm is adaptive because it

is able to adjust the total number of the internal nodes to be stored and retrieved it later in

the chain' code construction for the new quadtree derived from the original one. This

algorithm' has the parallelism and ready to implement in a pyramid architecture for it is in

a recursive form of calling four children of the current node.

Then, the summary of this dissertation is given and future research is stated in

Chapter 6.

CHAPTER 2

A FULLY PARALLEL ALGORITHM FOR THE EXTRACTION OF
CHAIN AND MID-CRACK CODES OF MULTIPLE CONTOURS

2.1 Introduction

From the literature review, we know that most chain coding algorithms are using the con-

tour-tracing sequential approach or the raster-scan single-pass approach. The former

traces the border pixels one-by-one and generates codes by considering neighborhood

allocation, e.g. a mid-crack coding algorithm [4]. The latter runs in a raster-scan fashion

to generate codes and then combines chains together, e.g. run-length coding to generate

chain codes [21] and mid-crack codes [7].

Dinstein and Landau proposed a parallel contour extraction and coding algorithm

[221 that runs on the Exclusive Read Exclusive Write Parallel Random Machine (EREW

PRAM) architecture in O(log N) time with 0(N 2 / log N) processors. Their approach

consists of three steps: (1) detection of contour pixels and assignment of pointers indicat-

ing the contour direction, (2) contour labeling, and (3) generating of lists of contour coor-

dinates or codes. This algorithm make an assumption to simplify the process. It is

assumed that the image does not contain any one pixel wide regions or protrusion. There-

fore, a smoothing preprocessing such as morphological operations prior to the coding

algorithm is needed. However, a picture may contain multiple regions and an object may

contain multiple internal boundaries in our real world. If additional preprocessing step

must be used, it should be suitable for the desired parallel architecture and should not

affect the overall time complexity. Once restrictions exist, the algorithm has limitation

for any specific usage. For example, since the input image cannot contain any one pixel

wide protrusion or junction point, the developed coding algorithm can not be used for

skeletonized or edge pixels image.

15

16

In contrast to the the above approach, a parallel coding algorithm [231 which is

well-suited for the generation of chain or crack codes by adopting only two correspond-

ing look-up tables is presented in this chapter. There is no assumption so that it can apply

to all types of binary image. It is a significant extension of our previous work in Section

1.2 and it inherits the advantages of simplicity, efficiency and flexibility.

This chapter is organized as follows. In Section 2.2, the parallel algorithm is intro-

duced. In Section 2.3, the coding stage is described. In Section 2.4, the merging stage is

presented. In Section 2.5, the determination of contour types is discussed. In Section

2.6, experimental results are shown. In Section 2.7, the computational complexity is

evaluated. Finally in Section 2.8, summary is made.

2.2 The Parallel Codes Extraction Algorithm

The contour representation is accomplished by a starting point and a sequence of moves

around the border pixels of an object, namely a chain or boundary link which is definitely

closed. A chain consists of the following four elements:

1. Tail coordinates: the coordinates of the starting point.

2. Head coordinates: the coordinates after the tracing of the chain is done.

3. Code sequence string: the sequence of codes indicating the directions of

movement.

4. Contour type: the type of contours being external or internal.

The proposed algorithm using a divide-and-conquer strategy [24] consists of the

following two stages:

1. Coding. The input image is partitioned into sub-images, and a chain set is

extracted from each sub-image.

17

2. Merging. The chain sets of the adjacent nodes are merged into a new chain

set. This step is recursively applied as working in a pyramid structure from

bottom to top.

A pyramid architecture [25] is used in the implementation of our algorithm. Sup-

pose that there are N nodes in the first (lowest) layer of the pyramid architecture shown

in Figure 2.1. The higher the layer, the less number of nodes is. On the first layer of the

pyramid, the entire image is divided into N sub-images corresponding to N nodes. Then,

objects' contours are encoded into chain sets in each sub-image. On each subsequent

layer, chain sets of its immediately lower layer are concatenated. In other words, the cod-

ing stage is performed on the first layer and the merging stage is carried out on the subse-

quent layers.

Figure 2.1 An example of a pyramid architecture

Two types of chains are defined as follows:

1. Open chain: if a chain crosses over two sub-images or more.

2. Closed chain: if a chain is located within one sub-image.

18

Assume that there is no object partially located in the whole image. The following

properties are observed:

Property 1:	 On the subsequent layers, the closed chains remain closed. However,
the open chains may become closed or remain open.

Property 2:	 The open chains are merged only when they touch on the shared bound-
aries.

Property 3:	 Eventually all chains after merging are closed.

Let parent(i) denote the parent of node i in the pyramid architecture. Consider a

chain set in the (k + l)-th layer in node i, denoted as Ak+¹i, being merged from a number of

chain sets in the k-th layer, Al , i = parent(j). Chain set A consists of two subsets, 0

and C. Subset 0 contains the open chains of set A and subset C contains the closed

chains of set A. The parallel algorithm is stated as follows:

ALGORITHM

(The Parallel Chain-Coding Algorithm in the Pyramid Architecture)
input:	 The NxN input image.
output: The chain set A l(on the top layer, K.
begin

1. Coding stage:
partition the input image into N sub-images, ' 1 ;1 j N J. Each sub-
image is in size \F-Nx,IN.

	for each processor	 pardo
= coding (sj)

end pardo
2. Merging stage:

for layer k = 1 to K - 1 do
for each node j in layer k pardo

Ak+l i=merging (I Ak j; i = parent(j) J)
end pardo

end do

end

1 9

2.3 The Coding Stage

Basically, the coding stage involves the codes generation and a series of operations which

are applied to concatenate the new generated code links to the related chains by searching

for a right link in the check-head or check-tail step as described in Section 1.2. We start

with the discussion of similarities between chain coding and mid-crack coding.

2.3.1 The Similarities between Chain Coding and Mid-Crack Coding

Three similarities are observed between the chain coding and the mid-crack coding:

1. Their headcodes are identical.

2. Their codelinks point to the same pixel.

3. Their Theads arc identical.

An example of the similarities is shown in Figure 2.2.

2.3.2 Codes Generation Look-up Table and Move Table

The codes generation table and move table of mid-crack codes have been described in

Section 1.2.1. We will not repeat them here. In the same way, tables of chain codes are

created. A chain code codes generation look-up table is shown in Table 2.1 and the move

table is shown in Table 2.2.

Chain code :

codelink 1 3

Thead 1 1

codelink 2 5

Thead 2 = 7

Mid-crack code :

codelink 1 = 331

Thead 1 = 1

codelink 2 = 5

Thead 2 = 7

Figure 2.2 	 An example of similarities between mid-crack code and chain code. Solid
arrows denote codelinks and dotted arrows denote Theads

23.3 Coding Mechanism

In this section, the usage of the look-up table and the move table is presented. For each

sub-image 3. 1 , A li is initialized as 0, and is processed in a raster-scan fashion. If any

object pixel is fetched, codelinks can be obtained quickly and simply using the look-up

table. Then, the codelinks are joined to Al. Three cases can occur during the process:

I. Merged to an existing chain.

2. Merged to two existing chains.

3. Creating a new chain.

Each case can be determined by checking the results from the check-tail and check-head

steps which have been described in Section 1.2. The process is repeated until the raster-

scan is completed. Because a chain may be open or closed in the intermediate step, three

types of concatenation exist:

I. Head concatenation — concatenate the codelink with the matched chain and

put the open chain into subset 0.

21

2 	 Tail concatenation — concatenate the matched chain with the codelink and put

the open chain into subset 0.

3 	 Head - and - tail concatenation — concatenate the Tail's matched chain with the

codelink, and with the Head's matched chain, then put the closed chain into

subset C.

If none of the chains satisfies the above conditions, a new open chain is created in the

chain set 0.

Table 2.1 	 The Look-Up Table of Chain Coding

Table 2.2 The Move Table of Chain Coding

22

23.4 The Procedure of Coding Stage

In each sub-image, s„ the chain set, A:, can be generated by the following procedure.

Since the 3x3 window operation is applied everywhere including the image boundary, the

sub-image is extended to have two more rows and columns of background elements.

PROCEDURE Coding

input: 	 The \'Nx"JN sub-image s 1 .
output: The chain set A l consists of all chains in S i .

begin
while raster-scan each pixel on s 1 do

if an object pixel then
1. Calculate the index value according to Figure 1.5(a).
2. Obtain codelinks and headcodes according to Table 2.1.
for each codelink do

• Obtain the destination coordinates according to Table 2.2.
• Apply the check-head step.
• Apply the check-tail step.
• Join to chain set A.

end do
end if

end do

end

2.4 The Merging Stage

After performing coding stage process at each sub-image, the extracted chain sets of each

processor are merged together. The rules for merging two chains, c i and c can be

defined as follows:

1. The Head coordinates of c i is matched to the Tail coordinates of cj .

2. The headcode of c i is matched to the ahead of c 1 .

Proposition 2.1: For two adjacent nodes i and j, the open chains of node i and j which lie

on the shared boundary should have one-to-one correspondence, Head-To-Tail or Tail-To-

Head.

Proof: Let A i and A i be two chain sets with a shared boundary, S, The open chains of

A i with Heads or Tails which lie on S are denoted as set L i , and the open chains of A i

with Heads or Tails which lie on S are denoted as set L 1 . Then, the number of open

chains in 1. 1 is equal to the number of open chains in L i , and all chains of L i will be

merged to those of L. Otherwise, some open chains are kept open until the processing is

finished, since one open end (Tail or Head) has no chance to merge to other chains in the

continuous processing. However, no partial objects in the input image is assumed. All

chains should be closed after the merging process. By contradiction, the open chains on

the shared boundary should have one-to-one correspondence. Moreover, only Head can

be connected to Tail. Each pair of correspondence is either Head-To-Tail connection or

Tail-To-Head connection.

Definition (union, U): For two chain sets A i and A i , let A ; U A i be defined as the

result of merging A ; and A i if these two chain sets satisfy the proposition above.

24

Let chain set A 1 at layer k + 1 which is the union of the chain sets A i from the

immediately lower layer k for all i, where / = parent(i). Assume that the subset O i of A ;

in node i have been consistently sorted by positions of Heads and Tails into L, for those

Heads and Tails located at the shared boundary. If the shared boundary is in the vertical

direction of x = x 1 , only those chains whose Heads and Tails are at x = x 1 according to y

coordinates are sorted. A sorted L, contains only the chains corresponding to the neigh-

bor's sorted L. A chain set L 1 = L 1 U L1 is defined by merging chains associated with

L, and L 1 . Then, a union chain set of A ; and A l is defined by

A, U A i = A, — L, + A i — L i +

The chain set A I of node I is defined by

A i = U A,l
= parent(,)

The procedure for merging chain sets into a new chain set is expressed as follows:

PROCEDURE Merging
input:	 The chain sets A i for any i which parent is A I .
output: A new chain set A I

begin
for each shared boundary Sij between L, and L1 do

1. Sort Heads and Tails coordinates only for those chains which lie on
the boundary S .

2. Join the chains between L i and L 3 .
3. Move the new chain into chain set C1 if the chain is closed. Other-

wise, move the new chain into chain set 0 1 .
4. Move the chain set C i to the chain set C 1 for all i which has the

same parent
end do

end

25

2.5 Determination of Contour Types

Methods for quickly determining the contour type are given. At both coding and merging

stages, contour types are determined once the open chains become closed. In this section,

the methods for determining the contour type are stated as follows.

After the check-head step and the check-tail step, the open status of a chain has

already been known. Actually, only two cases exist and they are shown in Figure 2.3. If

the first two codes of a chain are "45" or "35", it must be an internal contour. The other

cases indicate that the chain is external. This determination is independent of coding-

type, chain or mid-crack coding.

Figure 2.3 Two cases of chain and mid-crack codes while the internal contour is closed

In the merging stage, since Heads and Tails have been sorted by their coordinates,

the contour type is checked only when two open chains become closed. The checking

process is to compare the coordinates of the pair of Head and Tail. Suppose that merging

process starts from small coordinates to large coordinates. From observation, if Head

coordinates are larger than Tail coordinates, then the contour type is internal. Otherwise,

the contour type is external.

26

2.6 Experimental Results

By simulating the pyramid architecture with four nodes in the first layer, the chain set of

the final result in each node is shown. Multiple objects and the internal contour are con-

cerned in the input image which is shown in Figure 2.4. The result of chain coding is

illustrated in Figure 2.5 and that of mid-crack coding is shown in Figure 2.6. A C lan-

guage function times() is embedded in the program to compute the used CPU time. For a

64 x 64 input image with 8 contours, it costs 0.1 user time and 0.1 system time in a

SUN4M machine.

2.7 Complexity Evaluation

Since there is no other well known chain coding algorithm which can accept input image

with multiple regions, the single pass coding algorithm [7] is used as a reference. It has

worst case time complexity of 0(N 3). The following is the analysis. For an NxN input

image, there may have 0(N 2) pixels to be processed. Each pixel may need 0(N) match-

ing time to search the correct boundary link before concatenation if 0(N) open

boundary links exist while the pixel is processed. So, the overall time complexity is

0(N 3).

The worst case of the time complexity for our proposed parallel algorithm is in

0(N3³/²) time using 0(N) processors. The following is the analysis. The size of the input

image is 0(N 2). If 0(N) processors is used, the size of each sub-image is \iNx4N. The

height of the pyramid is 0(log N). In coding stage, each object pixel only needs 0(1) to

generate the chain codes. For each generated codelinks, it needs to search all the open

chain in the chain set. The maximum number of the open chains existed will be of

0(7.1). The worst case is that 0(N) open chains exist in an sub-image in the merging

step, By using 0(N log N) sorting algorithm, each sub-image can be done in 0(N 312)

time. In merging stage, we have four sub-images to merge in each layer but the size of

	 N N
the sub-image increases from -5--/xVN to —

4
x / —

4
. We can write down the following

27

equation for the time complexity of the merging stage.

0(Merging) = -TAT log -\,,W + 2 \IN log(2\ /TV) + • • • + 	 log(2k-¹√N)

+ 2 -4T\T log(2 -\/57) + 22 \ITV- log(22 \IN) + • - • + 2k NiTV log(2 k -N4V0

log NrA7 	log ■TV 	
= E 2k-¹√N log(2k-√N)+ 	 , 2k \IN log(2k√N)

k=1 	 k=1

<0(N 312)

The overall time complexity of this algorithm is 0(N 312).

2.8 Summary

We have presented a new Freeman chain-coding algorithm using parallel machine

machines. Mid-crack coding can be similarly achieved by adopting a different look-up

table. The algorithm is implemented using CASIM, a simulator of AP 1000 parallel

machine.

Figure 2.4 The input image with four objects and five contours

28

First I Node I I 	Node 2

Layer	 Head TA Head Tail
No.Coord. Coord. Thead Type Code Sequence String NoCoord.Coord.Thead Type Code Sequence String

(1 . 5) (6.1)	 4 Open 666644444 1 (6.1) (13,4) 2	 Open 4444444222

2 (7.1) (1.4)	 2 Open 00000122	 2 (13.5) (7.1) 	 0	 Open 666700000

3 (4.3) (4,3)	 0 Closed 1064	 3 (6.5) (7.4)	 3	 Open 5

Node 3 I	 Node 4

HHead Tail	 Head Tail
No.Coord. Coord. Thead Type Code Sequence String No.Coord. Coord.Thead Type Code Sequence String 1

1 (7.9) (1.5)	 6 Open 0000006666	 1 (7.4) (6.1)	 7	 Open 31 1 6
2 (1.4) (6.9) 	 4 Open 222234444	 2 (13,4) (1.4)	 0	 Open " 111000000

3 (7.6) (6.51	 s	 Open	 7	 3 (11.6) (11.6) 0	 Closed 2064

4 (6.9) (13.5) 6	 Open 4444445666

Second Node 5 (from Node I and 2) 	 Node 6 (front Node 3 and 4)1
Layer	 Head Tail	 Head	 Tail

No.Coord. Coord. Thead Type Code Sequence String	 No.Coord. Coord. Thead Type Code Sequence String

1	 (1.5) (3.4)	 2 ()pen 6666444444444444 111 	1 (13.4) (1.5)	 6 Open 222220000000000006666
2 (13.5) (1.4)	 2 Open 66670000000000122	 2 (1.4) 	 (13.5) 	 6 Open 2222344-144444445666

3 (4.3) 	 (4.3) 	 0 Closed 2064 	 3 (7.4) 	 (6.5) 	 5 Open 31267

4 	 (6.5) 	 (7.4)	 3	 Open 5	 4 (11.6) (11,6)	 0 Closed 2064

T9 13	Node 7 (from Node 5 and 6)1
Layer

Head	 Tail
No. Coord. Coord. Thead Type Code Sequence String

(13,4) (13.4) 	 6 Closed / 111-'00000000000066666666444444444444222

2 (1.4)) (1,4) 	 6 Closed 222234444444444566666670000000000122

3 (4.3)	 (4.3)	 0	 Closed	 2064

4 (7.4) 	 (7.4)	 5	 Closed	 312675

5 (11.6) (11.6) 	 0	 Closed	 1064

Figure 2.5 The result of Figure 2.4 by applying our algorithm with chain codes

Node 1 	 Node 2

Head Tail 	 Head Tail
No.Coord.Coord. Thead Type Code Sequence String No.Coord.Coord.Thcad Type Code Sequence String

1 (1.5) (6. 1) 	 4 Open 6666544444 	 1 (6.1) (13.4) 2 	 Open 44444443222

2 (7.1) (1.4) 	 2 Open 	 00000122 	 2 (13.5) (7,1) 	 0 	 Open 666700000

First 	 3 (4.3) (4.3) 	 0 Closed '1076543 	 3 (6 - 5) (7 . 4) 	 0 	 Open 553
Layer 	

Node 3 	 Node 4

Head Tail 	 Head Tail
No.Coord. Coord. Thead Type Code Sequence Suing No.Coord. Coord.Thead Type Code Sequence String]

I (7.9) (1.5) 	 6 Open 	 00000076666 	 1 (7,4) (7,6) 	 7	 Open 33112176

2 (1 .4) (6.9) 	 4 Open 22223444-1 	 2 (13,4) (7,9) 	 0 	 Open "711 1000000

3 (7,6) (6 . 5) 	 5	 Open 	 775 	 3 (11,6)€11.6) 	 0	 Closed 21076543
4 (6.9) (13.5) 6 	 Open 4444445666

Node 5 (from Node I and 2)

	

Head 	 Tail
No.Coord. Coord. Thead Type Code Sequence String

	

I (1,5) (13.4) 	 2 Open 666654444444444443222

	

2 (13,5) (1.4) 	 2 Open 66670000000000122

	

3 (4.3) 	 (4.3) 	 0 Closed 21076543
Second
Layer 	 4 (6.5) 	 (7,4) 	 3 Open 553

Node 6 (from Node 3 and 4)

	

Head 	 Tail
No.Coord. Coord. Thead Type Code Sequence String

	

I (13,4) (1.5) 	 6 Open 1-221 100000000000076666

	

2 (1,4) 	 (13.5)	 6 Open 2222344444444445666

	

3 (7.4) 	 (6,5) 	 5 Open 33112176775

4 (11.6) (11.6) 	 0 Closed 21076543

Node 7 (from Node 5 and 6)

	

Head 	 Tail
1 013 	No.Coord. Coord. Theacl Type Code Sequence String

Layer 	 1 (13,4) (13.4) 	 6 Closed 1 ""100000000000076666666654444444444443222

	

2 (1,4) (1.4) 	 6 Closed 222234444444444566666670000000000122

	

3 (4,3) 	 (4,3) 	 0 	 Closed 21076543

	

4 (7,4) 	 (7,4) 	 5 	 Closed 33112176775553

5 (11,6) (11,6) 	 0	 Closed 21076543

Figure 2.6 The result of Figure 2.4 by applying our algorithm in mid-crack code

30

CHAPTER 3

A PARALLEL CHAIN AND MID-CRACK CODING ALGORITHM
ON N CUBE ARCHITECTURE

3.1 Introduction

Most kernels for image processing operate on the object contour in order to obtain infor-

mation for further analysis or computation. The motivation for the use of parallel pro-

cessing in image related problems has been the strong urge to improve the performance of

existing solutions in order to reach the maximal computing power. In the previous chap-

ter, I have presented a pyramid parallel coding algorithm which run on 0(N) processors

in time 0(N 3/2) . In this chapter, I am going to present a new parallel coding algorithm

which can be implemented on N cube architecture. It inherits the flexibility from our

previous algorithm which can generate the chain codes or mid-crack codes. It can also

run on 0(N) processors in time 0(N log N). This new algorithm is more efficient.

A three-dimensional cube is shown in Figure 3.1(a). Referring to [261, vertical lines

connect vertices (processors) whose addresses differ in the most significant bit position.

Vertices at both ends of the diagonal lines differ in the middle bit position. Horizontal

lines differ in the least significant bit position. This unit-cube concept can be extended to

an N —dimensional unit space, call an N cube, with n bits per vertex. A cube network for

a SIMD machine with N processors corresponds to an N cube where n= log, N. The

binary sequence A = (a„-1 • • a1a0)2, is used to represent the vertex address for

0 A N-1. ai is denoted as the complement of bit a i for any 0 The rout-

ing function is specified as follows:

- a l a0) = an-1 • •	 • • - 0 	for i = 0, 1, 2, , n-1

The routing function of a 3 cube is shown in Figure 3.1(b).

3 1

This chapter is organized as follows: In Section 3.2, the new parallel algorithm for

chain or mid-crack coding is proposed. In Section 3.3, experimental results are given. In

Section 3.4, time complexity of the algorithm is evaluated. Finally in Section 3.5, sum-

mary is made.

3.2 The New Parallel Algorithm for Chain or Mid-Crack Coding

A single instruction stream-multiple data stream (SIMD) design is used. Each row of the

image feeds to the corresponding processor in the processor array. The new parallel cod-

ing algorithm also consists of two stages, Coding stage and Merging stage.

In this chapter, only chain code is used in the examples. Let the size of the input

image be NxN. Let s 1 be the sub-image which contains the row j of the input image and

its size is lxN. Let the number of processors used be N. Let A he the chain set of the

processor j. Chain set A i consists of two subsets, Oj and C 1 . Subset Oj contains the

open chains of set A l and subset C 1 contains the closed chains of set A 1 . The parallel

algorithm is stated and shown in Figure 3.2.

3.2.1 The Coding Stage

We recall from Section 1.2.1, the coding stage includes 1) the codes generation from the

look up table and 2) the process of codelink. The set up of the look up table and the

move table is very similar. The only difference is the sequence of the codelinks. Since

the chains' Head or Tail coordinates of two merging chain sets must be in sequence in the

merging stage, the order of the codelinks generation is significant. After the preliminary

description, we will discuss the codelinks sequence.

Figure 3.1(b) A 3 cube recirculating netowrk

34

ALGORITHM

input: The NxN input image.
output: The chain set AN-1 on processor N — 1.
begin

1.Coding stage:
partition the input image into N sub-images, sj ; 0 ≤ j ≤ N-1}.
for each processor j, 	 j N — 1, pardo

A = coding (s)
end pardo

2. Merging stage:
for k = to log N — 1 do

for each processor y, v = 0 to N — 1 pardo
if (y modulo 2 k+1 = 9 k — 1) then

A, = merging (A r , A .,)
where x = y + 2 k and x N — 1.

endif
end pardo

end do
end

Figure 3.2 The Parallel Chain-Coding Algorithm in N - Cube Architecture

Link-list type data structures are adopted in our implementation. Seven link-lists as

shown in Figure 3.3 are used to describe the open chain set which is in process. Because

the partition of an input image is set row by row, except the first and the last processors, a

sub-image in a processor will have two shared boundaries: one shares with the upper

neighbor and the other one shares with the lower neighbor. Link-List Hi, and H1 store the

Head coordinates and the Headcode of a chain. Link-List Tu and T1 store the Tail coordi-

nates and Thead of a chain. Subscript u and are denoted as the upper shared boundary

and the lower shared boundary. Link-list Lc is for code strings and information. Link-list

TempH is the temporary storages for the Head coordinates and the Headcode of a chain.

The last one, Link-list TempT is the temporary storage for the Tail coordinates and the

Thead. When the Headcode of a chain is code 0 or Thead is code 4, it will connect to a

codelink from the next processed pixel in the same row. When the Headcode of a chain is

code 4 or Thead is code 0, it will connect to an existing chain from the same chain set.

TempT

Hu

Tu

Le

Hi

Ti

Headcode not on any shared boundary (Head coordinates)

35

Thead not on any shared boundary (Tail coordinates)

Headcode on upper shared boundary (Head coordinates)

Thead on upper shared boundary (Tail coordinates)

Code string and information

Headcode on lower shared boundary (Head coordinates)	 F.4

Thead on lower shared boundary (Tail coordinates)

Figure 3.3 The link-list structures for a chain set

If the direction of the Headcode of a chain points upward, such as codes 1, 2, 3, the

Head coordinates will belong to the upper shared boundary L. On the other hand, if the

direction of the Headcode of a chain points downward, such as codes 5, 6,7, the Head

coordinates will belong to the lower shared boundary.

In the same way, if the direction of the Thead points upward, such as codes I, 2, 3,

the Tail coordinates will belong to the lower shared boundary L,. If the direction of the

Thead points downward, such as codes 5, 6, 7, the Head coordinates will belong to the

upper shared boundary. Codes 0 and 4 do not belong to any shared boundaries because

no vertical shared boundary exists.

36

In Fi gure 3.4, the order of the codelink generated is shown and the sequence will be

preserved in the look-up table. From the observation, three cases would not produce the

resulting Tail coordinates in order. These three special cases are shown in Figure 3.5.

Extra swapping procedure is needed for the adjustment. The _swapping procedure is to

swap the two related Theads in link-list T„ or T1 to restore the sequence after these two

codelinks are generated.

After a codelink is generated, we try to connect the codelink to the existed chain. If

there is no connection, a new chain is created. If a connection exists, the Head or Tail

coordinates will be replaced by those of the codelinks. Also, the code string is concate-

nated with the codelink. During coding stage, if a chain is closed, the closed chain is put

into chain set C 1 . Otherwise, the open chain is put into chain set

A 5x5 input image with all chain coded contours is shown in Figure 3.6 and the

intermediate result of the coding stage for each row is shown in Figure 3.7. By using this

approach, the generated chains and their Head or Tail coordinates will be in sequence.

The overall time complexity O(N log N) can be achieved because we gain the advantage

when two lists of ordinal chain set are merged in the merging stage by using link-list rep-

resentation. The merging stage will be described briefly in the next section.

Figure 3.4 The order of the codelink generation

d: denotes don't care, object pixel or background pixel

Figure 3.5 The patterns that need extra swapping procedure

37

Figure 3.6 An input image with three chains

(ROW 1)

38

Figure 3.7(a) The coding result for the first two row of Figure 3.6

(R
O

W
 2

)

(R
O

W
 3

)

Fi
gu

re
 3

.7
(b

)
T

he
 c

od
in

g
re

su
lt

 f
or

 th
e

se
co

nd
 tw

o
ro

w
 o

f
Fi

gu
re

 3
.6

.

40

(ROW 4)

Figure 3.7(c) The coding result for the fifth row of Figure 3.6

3.2.2 The Merging Stage

A chain set A y at upper processor y will route to a lower processor x, where x = y

based on the routing variable k. Two chain sets A, and A, will merge in processor x. We

reuse the same notation A, for this merged chain set because it is easier to describe the

mathematic formula. From proposition 2A, we know that the open chains of processor y

and x which lie on the shared boundary should have one-to-one correspondence. Since

the Head or Tail coordinates link-lists on L ly has one-to-one correspondence to those link-

lists on L, it takes only time 0(N) to traverse the link-lists and merge them together.

The resulting chain set will have the upper boundary L and the lower boundary L11 . The

shared boundary will disappear after two processors are merged. The Head or Tail coor-

dinates on the shared boundary will be deleted. If connection occurs, the code string of a

chain in A y is concatenated to the code string of a chain in A. During the merging stage,

if a chain is closed, the closed chain will be put into chain set C. Open chains will be

put into chain set Ox and are linked in the link-list Lc of processor x.

The rules for merging two chains are quite similar to those in Section 2.4. Let c, be

a chain on processors x and c j be a chain on processors y. The head of c, may connect to

the tail of c and vice versa. The rules are defined as follows:

I. The Head coordinates 11 1, is equal to the Tail coordinates T.

41

2 . The Headcode of c, is equal to the Thead of c 1 .

or,

1, The Head coordinates Huj is equal to the Tail coordinates T, 1 .

2. The Headcode of c 1 is equal to the Thead of

An example is shown in Figure 3.8 to illustrate the intermediate and final results of the

merging stage in Figure 3.6. After the first routing, the merged results of row 0 — 1 and

row 2 — 3 of the input image are shown in Figure 3.8(a) and 3.8(b) respectively. Row 5

has no change. After the second routing, the merging result of row 0 — 3 are shown in

Figure 3.8(c). The row 5 still has no change. After the last routing, the final merged

result is shown in Figure 3.8(d).

3.3 Experimental Results

Two input images and their results are shown in Fi gure 3.9 and Figure 3.10. The first

image as shown in Figure 3.9(a) lists the three digits 0, 9 and 6 in horizontal direction.

The second image as shown in Figure 3.10(a) lists them in vertical direction. The size and

the shape of each digit are the same but the chain code sequences of the resulting chains

are not all the same. It is due to the different partitions between two input images. Their

results are shown in Figure 3.9(b) and 3.10(b) respectively.

Fi
gu

re
 3

.8
 (a

)	
T

he
 m

er
gi

ng
 r

es
ul

t f
or

 th
e

fi
rs

t t
w

o
ro

w
 o

f
Fi

gu
re

 3
.6

.

Fi
gu

re
 3

.8
 (b

) 	
T

he
 m

er
gi

ng
 r

es
ul

t f
or

 th
e

se
co

nd
 tw

o
ro

w
 o

f
Fi

gu
re

 3
.6

.

C
ha

in

-
C

(4
,2

)6
70

01
23

53
5

C
ha

in
 2
	

C
ha

in
 3

(4
,4

)7
17

15
76

55
43

21
3 -1

C5

Fi
gu

re
 3

.8
 (

c)
	

T
he

 m
er

gi
ng

 r
es

ul
t f

or
 th

e
ro

w
 0

 to
 r

ow
 3

 o
f

Fi
gu

re
 1

6.

(R
O

W
 0

-4
)

F
ig

ur
e

3.
8

(d
)	

T
he

 m
er

gi
ng

 r
es

ul
t o

f
Fi

gu
re

 3
.6

.

44

(a)

number of closed chains: 6

Coordinate: (X,Y) (1, 4)
code string: 6655433222110776

Coordinate: (X,Y) = (5, 4)
code string: 6771223356

Coordinate: (X,Y) = (12, 4)
code string: 5577012234

Coordinate: (X,Y) = (14, 4)
code string: 710766544322221 10044556

Coordinate: (X,Y) = (18, 4)
code string: 6656443701 1344322100766

Coordinate: (X,Y) = (21, 4)
code string: 7012234557

(b)

Figure 3.9 (a) The input image which lists 3 digits 0, 9 and 6 horizontally (b) The
resulting chains

45

Figure 3.10 (a) The input image which
lists 3 digits 0, 9 and 6 vertically

number of closed chains: 6

Coordinate: (X,Y) = (2, 24)
code string: 66665644370113443221007

Coordinate: (X,Y) = (5, 24)
code string: 5770122345

Coordinate: (X,Y) = (5, 12)
code string: 5770122345

Coordinate: (X,Y) = (1, 4)
code string: 6655433222110776

Coordinate: (X,Y) = (5, 4)
code string: 6771223356

Coordinate: (X,Y) = (4, 16)
code string: 55671076654432222110044

Figure 3.10 (b) The resulting chains

46

3.4 Time Complexity Evaluation

The proposed algorithm includes two major portions. One is the coding stage for each

row of input image in each processor. The other is the merging stage between the chain

sets of processors. In the coding stage, there are at most 0(N) object pixels for coding.

Each pixel spends 0(1) time, therefore the computation time of coding stage is 0(N) in

total. In the merging stage, we first traverse the Head Coordinates H„ of the pro-

cessor x and merge with the Tail Coordinates link-list T, of the processor v. Then we tra-

verse the Tail Coordinates link-list T„ of the processor x and merge with the Head Coor-

dinates link-list H I of the processor v. All link-list has at most 0(N) elements so that it

takes 0(N) time to traverse a link-list. To merge two elements from two different link-

lists takes 0(1) time. Therefore, the time it takes to merge the two chain sets will be

0(N). There are 0(log N) routing in total. The overall time complexity for the merging

stage is 0(N log N). The overall time complexity for the whole algorithm is also

0(N log N).

3.5 Summary

This chapter presents an efficient parallel coding algorithm for the binary image. Each

processor reads the data for one corresponding row of image and generates an in-

sequence coding result by using two lookup tables. Results are represented in a link-list

type data structure. Then based on the routing variable, the chain set of the two cone-

sponding processors are merged together. Since the intermediate results of the coding

stage and the merging stage are all in sequence, it will only Lake 0(N) time to merge the

two link lists. The overall time complexity will be 0(N log N) for NxN input image

with 0(N) processors. This algorithm can be applied to multi-resolution images easily.

CHAPTER 4

A ONE-PASS ALGORITHM FOR LOCAL SYMMETRY OF
CONTOURS FROM CHAIN CODES

4.1 Introduction

Inesta, Buendi˜a, and Sarti [13] developed an algorithm to calculate the local symmetry

deficiency (LSD) of scope k which reflects the degree of symmetry of a local zone for a

curve. Their approach is based on the following concept originally derived by Owaga

[27]: a curve segment arriving at a point p i , forms a reflective symmetry at p i with

another curve segment coming out of it. This idea yields a measurement of the local

symmetry up to where the two arms of a curve move away from a point. A size k neigh-

borhood of p, is determined to evaluate the amount of local symmetry at that point of the

curve. The same procedure is carried out for all the points of the curve. We view it as a

similarity rate relative to p, in the "radius" of k points. Thus, the LSD of scope k,

denoted as , is defined to reflect the similarity of the curve. The LSD is calculated as

the distances between those points traversed by the chain code in the k neighborhood on

one side of p i and the ones of a specular reflection, suitably rotated, of the curve on the

other side. Due to the nature of this measurement, local symmetry will be maximum

when lek is minimum. A curve will be perfectly symmetric at p i in the vicinity of radius

k when E k (p i)= 0.

The complexity of this algorithm is 0(1(N), where N is the length of chain codes

description. The radius of the support region is a parameter strongly dependent on the

application desired for measuring LSD. Very small values of k will lack usefulness since

they will not be able to detect useful symmetries in real objects. It is reasonable for k to

assume values that will be small fractions of N.

47

48

Figure 4.1 outlines the local symmetry algorithm. There are three stages in this

algorithm:

1. Reflection stage:

• Take the exiting curve C k±. with respect to p, in the k segments following p,.

• Reflect curve C+k according to an axis formed by the first segment of C 4+. pro-

ducing C.

2. Rotation and direction adjustment stage:

• Compute the 1-curvature at p i .

• Rotate C: with respect to the curvature and obtain Ck. Ck matches the segment

C A- which is the arriving curve at p,.

3. Computing stage:

• Compute point-to-point distances between curve C: and the corresponding part

of the segment C.

If the code length of the contour is 0(N), the complexity of the algorithm is

0(kN). However, if k N, it could be considered to have a linear complexity. As the

value of k decreases, the value of LSD becomes more local. It is reasonable for k to

assume values to be small fractions of N. Thus, the algorithm is closer to linear complex-

ity rather than quadratic one.

In this chapter, we embed the LSD computation in a new single pass chain coding

algorithm. When an object pixel is coded and joined to a chain, the calculation of the k

neighborhood for each stage (reflecting stage, rotation and direction adjustment stage,

and computing stage) is proceeded. When a closed chain is traced back to the starting

point, the LSD computation is completed. Therefore, the coding process and the symme-

try calculation are simultaneously completed in one pass.

(c)

Figure 4.1 (a) Digital curve C. (b) Curve C* obtained from reflecting the local
region C+ of length k after Pi in curve C. (c) Curve C' obtained from rotating
curve C* to align it with the local region C- of length k before Pi in curve C.

49

50

This chapter is organized as follows: In Section 4.2, the new one-pass chain coding

algorithm is introduced. In Section 4.3, the one-pass algorithm for local symmetry is pre-

sented. In Section 4.4, parallelism of the one-pass k-symmetry algorithm is discussed. In

Section 4.5, experimental results are given. Finally in Section 4.6, summary is made.

4.2 Proposed One-pass Algorithm for Chain Coding

The new one-pass algorithm [28, 29] for chain coding is an extension to our previous

work in Section 1.2 with the using of the link-list structures presented in Section 3.2.

Five link-lists shown in Figure 4.2 are used to describe the open chain set. Since the

input image is processed in the raster-scan fashion, i.e. left-to-right and top-to-bottom, all

the end points of open chains are located at the lower boundary. The coding operation

and merging operation are the same as those in Section 3.2. We will not repeat them

here.

Headcode not on any shared boundary (Head coordinates)

Thead not on any shared boundary (Tail coordinates)

Code string and information

Headcode on lower shared boundary (Head coordinates)

Thead on lower shared boundary (Tail coordinates) 	 1.4

Figure 4.2 The link-list structures for a chain set

51

43 The One-pass Algorithm for Local Symmetry

When a codelink is added to a chain, there are four cases of concatenation: it is (1) the

first element of an open chain, (2) the last element of an open chain, (3) the joint of two

open chains, or (4) the joint of an open chain to make it closed. According to the position

of the new added codelink and the length of the chain, we can decompose and re-arrange

the LSD computation.

The chain code description for the external boundary of the object in Figure 4.3 is

(3, 3) 000666411222, where the coordinates (column, row) denotes the location of the

starting pixel and the posterior numbers express the chain codes of the contour. The

chain codes are recorded from the end of the contour to the beginning when the contour is

traversed clockwise for internal one and counterclockwise for external one. Therefore, if

a codelink is added to an open chain as the first element, its chain code is the head of the

chain. In the same way, if a codelink is added to an open chain as the last element, its

chain code is the tail of the chain. Regarding to the k-symmetry computation, the exiting

curve of a point is the leading (head) portion of a chain referring to that point. The arriv-

ing curve of a point is the following (tail) portion of a chain referring to that point. If a

codelink is added as the first element of a chain, it is added to the head of an exiting

curve. On the other hand, if a codelink is added as the last element of a chain, it is added

to the tail of the arriving curve.

When a codelink is added to the head of the chain, we calculate the adjustment of

first element's rotation and direction, the first reflected chain code (same as the chain

code of the codelink), the first rotated chain code (same as the chain code of the second

element) and its coordinates after rotation. Then, the first element is used to calculate the

second element's reflection rate (1-curvature at the second element) and the second

reflected chain code. If the rotation and direction adjustment are known (if the third ele-

ment exists, this value is computed when the third element is added to the chain), its sec-

ond rotated chain code and coordinates after rotation can be computed. If the fourth

element exists, the point-to-point distance can be proceeded (based on the second ele-

ment, the second reflected chain code is rotated and the rotated coordinates are used to

compute the distance between it and the fourth element). The computation is continued

until all the elements are processed or the scope k is reached.

When a codelink is added to the tail of the chain, we calculate the last element's

reflection rate (1-curvature). Then, we compute all the reflected chain codes in the scope

k of the last element. Then for all precedent (ancestor) elements in the scope k, we com-

pute the n-th rotated chain code with respect to the last element. For example, we com-

pute the second rotated chain code for the element next to the last one. The point-to-

point distance can be proceeded at the same time.

When a codelink serves as a joint between two chains, the codelink is added to the

tail of the first chain which serves as the head of the resulting chain. Then, the second

chain is joined to the first chain. When two chains are joined together, the LSD computed

for both the leading portion before the joint and the following portion after the joint. The

final case can be derived in the same concept. The result of the external boundary in Fig-

ure 4.3 is shown in Table 4.1.

Figure 4.3 An input image with two chains

53

Figure 4.4 The coding result for Figure 4.3

Table 4.1 The result of external boundary in Figure 4.3

54

row: row number processed

reflect: reflection adjustment (1st curvature) with respect to p i for k segment

rotate: rotation adjustment with respect to P i for k segments

refl 0,1,2: reflected chain code for k = 0, 1,2 with respect to p i

rotate 0,1„2: rotated chain code for k = 0, 1, 2 with respect to p i

DD

4.4 Parallelism of the One -pass K -Symmetry Algorithm

Following the concept in Chapter 3, we can implement the k-symmetry algorithm in par-

allel. Here, we present the parallelism for our one-pass k-symmetry algorithm in N-cube

archltecture. For example, an nxn input image is partitioned into 77 rows of 1 Xn sub-

images. Except the sub-images in the first and the last row, others will have two shared

boundaries: one shares with the upper neighbor and the other shares with the lower neigh-

bor. To describe the open chain sets in processing, two more link-lists are enough. Link-

List 1-1„ stores the Head coordinates and the first code of a chain boundary, and link-list

T„ stores the Tail coordinates and the last code of a chain. The subscript it denotes the

link-list to be used for the upper shared boundary. As in Section 3.2, the algorithm con-

tains two stages, coding stage and merging stage. Each processor takes care of one row of

the image in the first stage. In the coding stage, each row is read in parallel and the chain

code extraction is performed simultaneously. When codes are chained together, the LSD

computation is performed. After each sub-image finishes the coding stage, we merge

chains of each processor following the routing function described before.

The algorithm described above is just an example. Other parallel computation

models such as mesh of trees networks and pyramid architectures are under investigation.

Since the embedding process is only related to elements on the k-scope (k is far less than

the size of the object contour), it will not affect the overall computation complexity of the

chain coding process. If an optimal parallel chain coding algorithm is developed, we will

obtain in the same way an optimal parallel k-symmetry algorithm.

56

4.5 Experimental Results

An image containing digits 9 and 6 is shown in Figure 4.5. The chain code description

for the internal boundary (chain 1) and the external boundary (chain 2) for digit 9 are

(2, 4) 55670012234 and (2,7) 00445567107665443222211, respectively. For digit 6, that

of the internal boundary (chain 3) is (11,7) 566700122344 and that of the external

boundary (chain 4) is (11,7) 00766665644370113443221. The results of LSD computa-

tion with k = 3 are shown in Figure 4.6, where the horizontal axis is the code sequence

from left to right and the vertical axis is the LSD value.

2
3
4
5
6
7

Figure 4.5 An input image contains two digits, 9 and 6

LSD

57

10

0044 5567 1076 6544 3222 211 (chain 2)

0076 6665 6443 7011 3443 211 (chain 4)

Figure 4.6 Result of LSD Computation for the external boundaries
in Figure 4.5

58

4.6 Summary

A new one-pass chain coding algorithm is presented. A link-list data structure and LSD

computation to calculate the local k-symmetry are adopted. We can finish the code

extraction and the LSD computation in one pass. The new algorithm is suitable for paral-

lel implementation. Since the LSD computation is only for k-scope, if the time complex-

ity for the chain code extraction is dominated, the LSD computation will not affect the

efficiency. Therefore, if we have an optimal parallel chain coding algorithm, we will

have an optimal parallel k-symmetry algorithm. The embedding process is not limited to

the k-symmetry algorithm. Currently. we are investigating the impeding of the corner

detection algorithm [12] and the line segment identifying algorithm [14]. The proposed

parallel processing approach can be viewed as a parallelization paradigm - a template to

embed image processing algorithms in the chain coding process and to implement them

in parallel approach.

CHAPTER 5

AN ADAPTIVE CONVERSION ALGORITHM FROM QUADTREE
TO CHAIN CODES

5.1 Introduction

Representation and manipulation of digital images are two important issues in image pro-

cessing, pattern recognition, pictorial database, computer graphics, geographic informa-

tion systems, and other related applications. Quadtree is one of the compact hierarchical

data structures for representing a binary image [30] . It is constructed by successively

subdividing the image into four equal-size sub-images in the NW (northwest), NE (north-

east), SW (southwest), and SE(southeast) quadrants. A homogeneously colored quadrant

of the image is represented by a leaf node in the tree. Otherwise, the quadrant is repre-

sented by an internal node, and further divided into four sub-quadrants until each sub-

quadrant has the homogeneous color. The leaf node with a black (white) color is called

the black (white) node and the internal node is called the gray node. An example is

shown in Figure 5.1. There are two widely used representations of quadtrees. A pointer-

based quadtree uses the standard tree representation. A linear quadtree can be either a

preorder traversal of the nodes of a quadtree or the sorted sequence (with respect to the

preorder of the tree) of the quadtree's leaves.

The quadtree's data structure can be used as the representation of maps in the

experimental Geographic Information Systems (GIS) successfully [31]. A fundamental

operation for GIS is to overlay two maps. The results of the operation may be the union,

intersection, or difference of the overlaid maps. Recently, researchers are interested in

the parallel computational models of the quadtree algorithms [32, 33].

Another widely used method to represent digital images is contour representation.

Freeman chain code [1] is one of the common coding techniques which we have dis-

cussed in previous chapters. Most recent article for the chain coding algorithm, by

59

60

us [7, 23] which is to extract the chain codes first and link them together. Since the

quadtree region representation and contour representation have different computational

advantages, it is of interest to develop methods of converting from one representation to

the other. For example, quadtree is convenience to represent object with region but not

for linear object. However, chain coding is suitable for that. Previous algorithms for

chain code to quadtree conversion are found in [35, 36]. The conversion from quadtree to

chain code has also been reported by Dyer, et al. [37] and Kumar, et al. [38]. The latter

one is the improvement of the earlier one. Both algorithms use the same approach which

is shown as follows:

1. Find the initial starting node.

2. Extract the chain code of the current node.

3. Search the neighbor of the node in Step 2.

4. Mark the edge between two nodes in Step 2 and Step 3. if the edge has been

visited, the process is terminated. Otherwise, go back to Step 2.

Our adaptive conversion algorithm from quadtree to chain codes is based on the

8-neighbor traversal algorithm presented by Fuhrman [39]. (A 4-neighbor traverse ver-

sion can be found in the same article.) When the traversal algorithm reaches a node at the

lowest level, we perform the chain coding process if the pixel is black. Chains are gener-

ated for each object pixel. When the traversal algorithm returns from the lowest level

back to the root, we perform a merging process for chains that come from different nodes

in each level. For example, an internal node will have four children and we merge all

chains that come from them. The result of the merging process is a chain set. Then we

return the resulting chain set to the parent of this internal node. Finally, we will have a

chain set which represents the whole image when we reach the root node.

 White node

E Black node

0 Gray node

Figure 5.1 An image and its quadtree representation

Unlike the quadtree to chain code conversion algorithms proposed before, this new

algorithm has the capability to process multiple regions of the input image without any

extra effort. If we want to get the chain codes information of a result from the union,

intersection, or difference of two similar quadtrees, this algorithm has the capability to

reconstruct the new chain code information from the original one. This algorithm can be

easily parallelized in pyramid architecture since it is based on recursive function call from

one node to its 4 sub-quadrants.

In Section 5.2, we will present the traversal algorithm for the pointer-based

quadtree. Chain coding for the traversal algorithm is briefly described in Section 5.3. In

61

62

described in Section 5.3. In Section 5.4, we discuss the adaptive conversion algorithm

based on the chain code contour reconstruction. An example is illustrated in Section 5.5.

Analysis of the algorithm is given in Section 5.6. Finally, conclusions are made in Sec-

tion 5.7.

5.2 Traversal Algorithm for Pointer-Based Quadtree

Samet [40] presented a generic top-down quadtree traversal algorithm in which each node

and all 8 neighbors (orthogonally and diagonally adjacent) are visited in preorder.

Fuhrmann presented a simple variation of Samet's algorithm which is written in C lan-

guage style and shown as follows.

struct NODE {
char color;
char NODE *nw, *ne, *se, *sw;

};

traverse(root,w,n,e,s,nwc,nec,sec,swc)
struct NODE *root, *w, *n, *e, *nwc, *nec, *sec, *swc;

if (root->color == GRAY) {
/* traverse the northwest son of root */
traverse(root->nw, w->ne, n->sw, root->ne, root->sw,

nwc->se, n->se, root->se, w->se);

/* traverse the northeast son of root */
traverse(root->ne, root->nw, n->se, e->nw, root->se,

n->sw, nec->sw, e->sw, root->sw);

/* traverse the southwest son of root */
traverse(root->sw, w->se, root->nw, root->se, s->nw,

w->ne, root->ne, s->ne, swc->ne);

/* traverse the southeast son of root */
traverse(root->se, root->sw, root->ne, e->sw, s->ne,

root->nw, e->nw, sec->nw, s->nw);

else
functioncall();

This algorithm descends the quadtree by recursively calling the function traverse

with 9 parameters which are the current node pointer (root) and the pointers of its 8

63

neighbors (w, n, e, s, nwc, nec, sec, swc ; where w is west, n is north, e is east, s is south

and c is a mnemonic for corner). Once the traversal step reaches the leaf node, the proce-

dure filnctioncall0 is performed. The tracking for the 8 neighbors of the SE child of the

most north-west quadrant in a 32 x 32 image is shown in Table 5.1. Here, we revise the

quadtree traversal algorithm described above and the result is suitable for the chain cod-

ing process.

/* return a chain set */
CHAIN *traverse(

/* the left upper corner and the right lower corner coordinates */
int x i ,

/* parent, pseudo parent and child type *1
ptype, pptype, ctype,
/* grand parent node's color, current level and tree level */
grandparentcolor, current_level, tree_level,
/* current root node and its 8-neighbors *7

NODE root,w,n,e,s,nwc,nec,sec,swc)

new node pointers for the next traverse */
NODE *rootp, *wp, *np, *ep, *nwcp, *necp, *seep, *swop;
/* chain sets for the four children of the current root node

and the resulting chain set from the merging or chain coding. */
CHAIN *link_nw, *link_ne, *link_sw, *link_se, flink;

/* If it is a white node, no need to go further */
if (root->color == WHITE)
retum(DUMMY_EMPTY_CHAIN);

/* If the current level is not equal to the tree level, continue
the traverse */

if (current_level != tree_level) (
/* pseudo parent type assignment as described in Table 5.2 */
if ((ptype NW_TYPE It pptype == NW_TYPE) && ctype == SW_TYPE)
pptype=NW_TYPE;

else if ((ptype == SW_TYPE II pptype == SW_TYPE) && ctype == NW_TYPE)
pptype=SW_TYPE;

else if ((ptype == NE_TYPE II pptype 	 NE_TYPE) && ctype == SE_TYPE)
pptype=NE_TYPE;

else if ((ptype == SE_TYPE II pptype 	 SE_TYPE) && ctype == NE_TYPE)
pptype=SE_TYPE;

else
pptype=ctype;

/* traverse the NW child */
if (gpcolor == BLACK && ctype == SE_TYPE) (
/* If its grandparent is a black node, its parent is SETYPE,

and it is a NW child, then no contour will be generated.
No need to go further */

link_nw=DUMMY_EMPTY_CHAIN;
1
else {
/* assign new node pointers for the NW child *0
nw_child_assign(root, w, n, e, s, nwc, nec, sec, swc,
&rootp, &wp, &np, &ep, &sp, &nwcp, &necp, &seep, &swcp);

link_nw=traverse(x l , y l ,	 + x,)/2, (y 1 + y,)/2,
ctype, pptype, NW TYPE,
current_level+1, tree_level,
rootp,.wp, np, ep, sp, nwcp, necp, seep, swcp);

1

/* traverse the NE child */
if (gpcolor == BLACK && ctype == SW_TYPE) f
link_ne=DUMMY_EMPTY_CHAIN;

1
else {

ne_child_assign(root, w, n, e, s, nwc, nec, sec, swc,
&rootp, &wp, &np, &ep, &sp, &nwcp, &necp, &secp, &swcp);

link_ne=traverse((x 1 + x,)/2, y l , x,, (y 1 + y,)02,
ctype, pptype, NE_TYPE,
current_level+1, tree_level,
rootp, wp, np, ep, sp, nwcp, necp, secp, swcp);

/* traverse the SW child */
if (gpcolor == BLACK && ctype == NE_TYPE)
link_sw=DUMMY_EMPTY_CHAIN;

else {
sw_child_assign(root, w, n, e, s, nwc, nec, sec, swc,
&rootp, &wp, &np, &ep, &sp, &nwcp, &necp, &secp, &swcp);

link_sw=traverse(x l , (y 1 + y,)02, (x 1 + x2)/2, y,,
ctype, pptype, SW_TYPE,
current_level+1, tree_level,
rootp, wp, np, ep, sp, nwcp, necp, seep, swcp);

1

0* traverse the SW child *0
if (gpcolor == BLACK && ctype == NE_TYPE) {
link_sw=DUMMY_EMPTY_CHAIN;

else I
se_child_assign(root, w, n, e, s, nwc, nec, sec, swc,

&rootp, &wp, &np, &ep, &sp, &nwcp, &necp, &secp, &swcp);

link_se=traverse((x l + x,)/2, (y i +)),)/2, x2, y,,
ctype, pptype, SE_TYPE,

64

current_level+1, tree_level,
rootp, wp, np, ep, sp, nwcp, necp, seep, swcp);

/* merge the chain sets from the four children */
flink=merging(link_nw, link_ne, link_sw, link_se);

else (
/1 * perform the chain coding, */
flink=chain_coding(root, w, n, e, s, nwc, nec, sec, swc, x,,

return(flink);

/* follow Fuhrmann's traverse algorithm to assign 8-neighbor
to the NW child */

void nw_child_assign(
/* input nodes */

NODE *root, *w, *n, *e, *s, *nwc, *nec, *sec, *swc,
/ output nodes */
''rootp, *wp, *np, 'ep, *sp, *nwcp, *necp, *seep, *swcp;

if (root->color != GRAY)
*rootp=*ep=*sp=*secp=root;

else
*rootp=root->nw;
*ep=root->ne;
*sp=root->sw;
*secp=root->se;

if (w == NULL)
wp=*swcp=DUMMY_WHITE_NODE;

else (
if (w->color != GRAY)

*wp=*swcp=w;
else {

wp—w->ne;
swcp=w->se;

if (n == NULL)
*np=*necp=DUMMY_WHITE_NODE;

else
if (n->color != GRAY)

*np=*necp=n;
else (

*np=n->sw;
*necp=n->se;

65

66

if (nwc == NULL)
*nwcp=DUMMY_W HITE_N ODE;

else {
if (nwc->color != GRAY)

*nwcp=nwc;
else

*nwcp=nec->se;

The revised version of the quadtree traversal algorithm use the "virtual" leaves of

the tree by "pretending" that the child of a leaf is a leaf of the same color. Even though a

node does not have a neighbor, this algorithm provides a virtual neighbor which preserves

the correct color. For example, a leaf node which represents a pixel in the southern

boundary of an image has no south neighborhood. This traversal algorithm will pretend

that it has "white" color neighbors in s, swc and sec. The assignment for a node's 8

neighbors is done in the xx_child_assign procedure, where xx is nw , ne , sw and se. If

the color of a neighbor node is not gray, we use the same node instead for there is no

descendants of that node. During the traverse, if it is a white node, the further traverse

will be skipped for there is no contour generation. If it is a black node and its grandpar-

ent's color is black, then this black node may not generate contour. The criteria is quite

simple and describe as follows:

1. The black node is NW_TYPE and its parent is SE_TYPE.

2. The black node is NE_TYPE and its parent is SW_TYPE.

3. The black node is SW_TYPE and its parent is NE_TYPE.

4. The black node is SE_TYPE and its parent is NW_TYPE.

Therefore, this algorithm will only traverse the black nodes which lie on the bound-

ary of objects. When the traverse reaches the deepest tree level, the chain_coding proce-

dure is performed. The location (coordinates) of the pixel is computed and passed down

from each traversal step. The X-coordinate is equal to x, and the Y-coordinate is equal to

y,. The coordinates start from left to right and top to bottom. The coding procedure will

67

be performed only on the leaf nodes including all virtual leaf nodes of the quadtree at the

tree level (deepest one). For any other node, the merging procedure is performed. The

input of the merging procedure is the coding result or the merging result of the subtree of

that node.

5.3 Chain Coding for Quadtree Traversal Algorithm

To convert from the quadtree representation to chain codes, the link-list typed data struc-

tures which are convenient in the merging process are used. The 9 link-list data struc-

tures shown in Figure 5.2 are used to describe a chain set. There are four shared bound-

aries for a sub-image in a quadrant: north, south, east and west boundaries. Link-List

H„ H e and H,,, store the Head coordinates and the Headcode of a chain. Link-List T,,,

Ts,Te, and T„, store the Tail coordinates and the Thead of a chain. The subscripts ii , s, e

and w denotes the north (upper), south (lower), east (right), and west (left) boundaries.

The last link-list L c is for the code strings and information. The subscript e denotes the

chain.

When a codelink is created, we must find out which shared boundary its Head and

Tail are located on. Later, the merging procedure can be performed correctly. When the

codelink is 0, it points to the east direction. It will connect to a chain whose Thead is

located on its east shared boundary. Therefore, the Head coordinates of the codelink are

added to He . When the codelink is 4, it points to the west direction. It will connect to a

chain whose Thead is located on its west shared boundary. Therefore, its Head coordi-

nates are added to H. From the similar concept, if the codelink is 2, we add them to H,,.

If the codelink is 6, we add them to 115 . When the codelink is 1, 3, 5, or 7, it points to the

northeast, northwest, southwest and southeast direction, respectively. The shared bound-

ary type where the connection occurs will depend on its pixel location. Before an exam-

ple illustration, we need to describe the order in the merging procedure to make it easier

to understand the assignment of the Head coordinates. As aforementioned, a non-leaf

68

node has four children. When a non-leaf node is merged, we first merge the sub-trees of

its nw and ne children. The merging direction is the x-direction. Then, it follows by the

merging the sub-trees of its sty and se children. The merging direction is the y-direetion.

If the codelink is 1, it points to the northeast direction. If the pixel which generates

the codelink is a SE child in a quadrant, the codelink will connect on the eastern shared

boundary. Therefore, its Head coordinates are added to H e . If the pixel which generates

the codelink is a NW or SW child in a quadrant, the codelink will connect on the northern

shared boundary. Therefore, its Head coordinates are added to H„. If the pixel which

generates the codelink is a NE child in a quadrant, the codelink will connect whether on

the eastern shared boundary or the northern boundary. The exact shared boundary type

where the connection will occur depends on the pairs which are the parent type or the

pseudo parent type and the type of the node. The pseudo parent type is an inheritance

which is based on some special combinations of the node and its parent. For example, if

the type of a node is SW and that of its parent is NE but its pseudo parent type is NW,

then it will pass down the parent type SW and pseudo parent type NW to its child. If the

situation is not in these rules, the pseudo parent type is equal to the parent type. These

rules are shown in Table 5.2. From the similar deduction, the shared boundaries where

the Tail of codelinks are located on are classified. Both of them are shown in Table 5.3.

Codelink "1" is used as an example to illustrate the classification in Figure 5.3. In the fig-

ure, we only show the NW portion (16 x 16) of a 32 x 32 input image. All other cases can

be derived by the same concept.

The order of the codelink creation on a pixel has been shown in Figure 3.4. The

order granted to each codelink generated on a pixel will make the Head and the Tail in

order in the link list as many as it could be. From the observation, some particular cases

would not produce the resulting H„ 11,,T„ or Ts. in order. An extra swapping procedure

is needed for the adjustment. The swapping procedure is to swap the two related Heads or

Tails after the codelinks creation. It restores the sequence to make it in order. He or H,

69

will not be in order when a pixel generates two codelinks and both Heads are on the same

link list H e or H a,. The reason is that we grant the creation of codelinks 5 and 7 the

higher priority than 1 and 3. When 5 and 3 are assigned to H,,„ or 7 and I are assigned to

H e for a pixel, the sequence of the Head coordinates will not be in order in the vertical

direction. Therefore, the swapping procedure is necessary. We show all the exception

cases in this category in Table 5.4. The other category is for T„ and T. The patterns

which needs the extra swapping on T„ or T5 have been shown in Figure 3.5.

Table 5.1 The tracking of the traversal algorithm for the 8-neigbors of the SE child of
the most northwest quadrant in a 32 x 32 image

Table 5.2 The generation rules of the pseudo parent type of a node

70

Table 5.3 Classification of shared boundary ocurrance for the Head and Tail of a
codelink

Table 5.4 The particular cases of the two Heads generated on a pixel will not be in
order

H„

T,,

Headcode on upper shared boundary (Head coordinates)

Thead on upper shared boundary (Tail coordinates

Headcode on lower shared boundary (Head coordinates)

Thead on lower shared boundary (Tail coordinates)

Code string and information

Headcode on right shared boundary (Head coordinates)

Thead on right shared boundary (Tail coordinates)

Headcode on left shared boundary (Head coordinates)

Thead on left shared boundary (Tail coordinates)

7!

Figure 5.2 The link-list data structure for a chain set

72

1: derived from the node type which is equal to SE.
2: derived from the node type which is NE and its parent type which is SE
3: derived from the node type which is NE and its pseudo parent type which is SE

if a node is marked 1, 2 or 3 and the codelink is 1, the head of codelink will be He
Otherwise, it will be Hn.

Figure 5.3 An example to illustrate the classification of the location for the Head
and Tail of codelink 1

73

By using this approach, the Head and Tail coordinates of the open chains are in

sequence in the link-list structure. When the quadtree traversal algorithm in Section 5.2

reaches the leaf nodes, all 8 neighbors are known. From their color we can calculate the

index value of the look-up table for that pixel (leaf node). Then the chain codes are

extracted and placed into a chain set. When the chain coding procedures for all the chil-

dren of the same parent are finished, we merge the chain sets together. Basically, when

two subtrees, named A and B, are merged together, we will merge the Head of subtree A

to that of B. Then it follows by the Tail of subtree A to that of B. If a chain is closed after

merging, it is added into the chain set C of the link-list L. Otherwise, the open chain is

added into the chain set 0 of the link-list L. The same process is performed recursively

from the leaf nodes back to the root node.

5.4 Adaptive Level Based Chain Coding Retrieval

As aforementioned, the boolean operation of two quadtrees is a fundamental operation

for GIS. If we need the chain coding information of the resulting quadtree, we must per-

form the chain coding procedure for the new constructed quadtree. If we compare the

new quadtree and the old quadtree, it may not have a great difference. This task can be

simplified by constructing the chain coding information of the new quadtree from that of

the old quadtree.

The link-list typed data structure which we use to describe a subtree of a node is

simple and easy to maintain. During the merging procedure, we can save the intermedi-

ate result of all the nodes which are smaller than a given level. This information will be

retrieved when we want to find the chain code contour of the new constructed quadtree.

This step will avoid lots of unnecessary re-coding processes. During the boolean opera-

tion of two quadtrees, if the color of a node in the original quadtree is changed, we will

mark it and all its ancestors to be changed. After the boolean operation is finished, we

perform the chain coding algorithm. If a node is not marked, we need not go further.

74

Instead, we retrieve the link-list information from what we have saved before. If a node is

marked, we track its four children to see that if any of them is marked. This process is

performed recursively until the leaf node is reached or all the four sons of the node are

not masked.

Since it is impossible to save all the nodes' information, we can save a portion of

nodes instead. By given a level number, we can save all the information of nodes which

are less than or equal to that level number. During the chain coding of the new quadtree,

if a node is not marked and its level number is less than or equal to the given level, we

can retrieve their chain codes directly. If its level number is larger than the given level, we

must track all its descendant. This approach is adaptive. If the hardware has plenty of

memory, we should use a small level number. Otherwise we can use a bigger number.

5.5 Experimental Results

We use Figure 5.1 as an input image to apply our conversion algorithm. Recall that the

chain coding process is performed on leaf nodes or virtue leaf nodes in a quadtree. The

result of the merging process for each internal node and leaf with black color is shown in

Table 5.5. C, E, F, J and K are leaves with black color but only J and K are individual

pixels in the input image. B, D,G, H and I are internal nodes. Root node is marked as A

which have two closed chains. They are represented as (0, 1) 0246 and

(3, 4) 444666000001044432102465, where (x, y) are the coordinates of the starting pixel

in the chain code description and the code sequence of the contour follows them. The

code sequence is read from the left to right.

Table 5.5 The result of the merging process for each node in Figure 5.1

75

5.6 Analysis

Let the size of the image be NxN and let the number of boundary pixels be 0(B). The

height of the quadtree (include virtual leaves) is H, where N = 2". Each chain coding

and merging operation costs time 0(1). The time required to merge the chains of two

quadrants is dependent on the number of joints in those two quadrants. There is no need

to sort or search the two pairs of the joint (the boundary pixel) since the Heads and Tails

are in order. In sequential mode, the total number of joints in the image is in the same

order of boundary pixels and that is the time needed in the traverse of nodes. The com-

plexity of our algorithm is dependent on the height of the traverse plus the operation of

the boundary pixels. Therefore, it is 0(H + B).

For a pyramid architecture with 0(N) processors and each processor handles a sub

quadrant from its parent, the traverse of the tree needs time 0(H) in parallel. The chain

coding operation is 0(1). The merging operation in a processor of level requires time

which is the same order of the number of open chains. The worst case occurs when the

76

order of open chains' number is equal to the order of the side length of the quadrant in

level 1. If the number of the pixels of a quadrant in level / is nXn, the time for the merging

operation will require 0(n). If we sum up the merging time for all levels in parallel

which is 2H + 2H-1 + • • • 2 2 , we get 0(2 H) in total and that is 0(N).

5.7 Summary

In this chapter, an algorithm for converting quadtree representation to chain code repre-

sentation is given. Different from other algorithms which search the neighbor of the cur-

rent node, this algorithm is based on traversing the quadtree. Because of this reason, it is

recursive and has the parallelism. It is ready to implement in a pyramid architecture.

Besides, we introduce an adaptive method to construct the chain codes for the resulting

quadtree of the boolean operation of two quadtrees by re-using the original chain codes.

This adaptive method speeds up the conversion in this kind of applications.

CHAPTER 6

SUMMARY AND FUTURE RESEARCH

This dissertation is aimed to investigate the parallel coding algorithm and its applications

for binary image and multi-resolution image. In this chapter we summarize the contribu-

tions of this research and briefly describe our direction of future research.

6.1 Contribution and Summary of this Dissertation

In this dissertation, we improve the applicability, flexibility and efficiency of the parallel

chain/mid-crack coding process. The importance of this dissertation is that we develop a

simple approach which is suitable for the parallelization of image processing algorithms.

This approach can be treated as a template for such parallelization tasks.

Three different algorithms for two parallel architectures are investigated. The time

computation complexity of the pyramid architecture in Chapter 2 is 0(N 3³/²), that of

N cube architecture in Chapter 3 is 0(N log N) and that of the algorithm for pyramid

architecture using the link-list structure in Chapter 5 is 0(N), where 0(N) processors are

used for NxN) input images. The communication time is not considered in this disserta-

tion because it is varied with different parallel computer.

A one-pass algorithm for local symmetry of contours from the chain code represen-

tation is developed. It is an example of the parallelization paradigm for the presented par-

allel coding algorithm.

Finally, an algorithm for converting quadtree representation to chain code represen-

tation is given. It is ready to implement in a pyramid architecture.

77

78

6.2 Future Research

First, the parallel coding algorithm should demonstrate real time performance not only

theoretically but practically.

Next, optimality should be concerned in the parallelism and the adaptive conver-

sion algorithm.

Finally, the integration of the embedding processes for the parallel coding algo-

rithm and the conversion algorithm is an interesting part to investigate.

REFERENCES

1. Freeman, H. "Computer processing of line drawing images." Comput. Surveys,
vol. 6, no. 1, pp. 57-97, March 1974.

2. Freeman, H., and J. M. Glass. "On the quantization of line-drawing data." IEEE
Trans. Syst. Man Cybernet. (T-SMC), vol. 5, pp. 70-79, 1969.

3. Rosenfeld, A., and A. C. Kak. Digital Picture Processing, Vol. 2, Academic Press,
San Diego, California, 1982.

4. Dunkelberger, K. A., and 0. R. Mitchell. "Contour tracing for precision measure-
ment." Proc. IEEE Inter Conf. Robotics and Automation, St. Louis, pp. 22-27,
1985.

5. Koplowitz, J. "On the performance of chain codes for quantization of line draw-
ings." IEEE Trans. Pattern Anal. Mach. Intel/. (T-PAMI), vol. 3, no. 2, pp. 180-185,
March 1981.

6. Saghri, J. A., and H. Freeman. "Analysis of the precision of generalized chain
codes for the representation of planar curves." IEEE Trans. Pattern Anal. Mach.

(T-PAMI), vol. 3, no. 5, pp. 533-539, September 1981.

7. Shih, F. Y., and W.-T. Wong. "A new single-pass algorithm for extracting the mid-
crack codes of multiple regions." Journal of Visual Common, and Image Rep., vol.
3, no. 1, pp.217-224, March 1992.

8. Chang, L.-W., and K.-L. Leu. "A fast algorithm for the restoration of images based
on chain codes description and its applications." Comput. Vision, Graphics, and
Image Process. (CVGIP), vol. 50, pp. 296-307, 1990.

9. Merrill, R. D. "Representation of Contours and Regions for efficient Computer
Search." Commun. of ACM, vol. 16, no. 2, pp. 69-82, 1973.

10. Shih, F. Y., and W.-T. Wong. "An improved fast algorithm for the restoration of
images based on chain codes description." CVGIP: Graphical Models and Image
Process., vol. 56, no. 4, pp. 348-351, July 1994.

11. Shih, F. Y., and W.-T. Wong. "Reconstruction of binary and gray-scale images
from mid-crack code descriptions." Journal of Visual Common. and Image Rep.,
vol. 4, no. 2, pp. 121-129, June 1993.

12. Koplowitz, J. and S. Plante. "Corner detection for chain coded curves." Pattern
Recognition, vol. 28, no. 6, pp. 843-852, 1995.

13.	 Inesta, J. M., M. Buendi˜a, and M. A. Sarti. "Local symmetries of digital contours
from their chain codes." Pattern Recognition, vol. 29, no. 10, pp. 1737-1749„
1996.

79

80

14. Yuan, J., and C. Y Suen. "An optimal 0(u) algorithm for identifying Line seg-
ments from a sequence of Chain Codes." Pattern Recognition, vol. 28, no. 5, pp.
635-645, 1995.

15. Kwok, P. C. K. "A thinning algorithm by contour generation." Comm. ACM, vol.
31, no. 11, pp. 1314-1324, November 1988.

16. Vossepoel, A. M., Buys, J. P., and G. Koelewijn. "Skeletons from chain-coded con-
tours" Proc. IEEE Inter Conf. Pattern Recognition, pp. 70-73, Altantic City, New
Jersey, 1990.

17. Xu, W., and C. Wang. "CGT : A fast thinning algorithm implemented on a sequen-
tial computer." IEEE Trans. Syst. Man Cybern. (T-SMC), vol. 17, no. 5, pp.
847-851, September/October 1987.

18. Shih, F. Y., and W.-T. Won°. "A new safe-point thinning algorithm based on the
mid-crack code tracing." IEEE Trans. Syst. Man Cybern. (T-SMC), vol. 25, no. 5,
pp. 370-378, February 1995.

19. Naccache, N. J., and R. Shinghal. "SPTA : A proposed algorithm for thinning
binary patterns." IEEE Trans. Syst. Man Cybern. (T-SMC), vol. 14, no. 3, pp.
409-418, May/June 1984.

20. Shih, F. Y., and W.-T. Wong. "Fully parallel thinning with tolerance to boundary
noise." Pattern Recognition, vol. 27, no. 12, pp. 1677-1695, 1994.

21. Kim, S.-D., Lee, J.-H., and J.-K. Kim. "A new chain-coding algorithm for binary
images using run-length codes.'' Comput. Vision, Graphics, and Image Process.
(CVGIP), vol. 41, pp. 114-128, 1988.

22. Dinstein, I., and G. M. Landau. "Parallel alogrithms for contour extraction and
coding on EREW PRAM computer." Pattern Recognition Letters, vol. 11, no. 2,
pp. 87-93, February 1990.

23. Wong, W.-T., Y.-L. Chen, and F. Y. Shih. "A fully parallel algorithm for the extrac-
tion of chain and mid-crack codes of multiple contours." Conf. Proc. of Inter.
Comput. Symp., HsinChu, Taiwan, R.O.C., pp. 565-570, 1994.

24. JaJa, J. An Introduction to Parallel Algorithms, Addison Wesley, Reading, Mas-
sachusetts, 1992.

25. Leighton, F. T. Introduction to Parallel Algorithms and Architectures: Arrays •
Trees • Hypercubes, Morgan Kaufmann, San Mateo, California, 1992.

26. Hwang K. and F. A. Briggs. Computer Architecture and Parallel Processing, Mc
Graw Hill, New York City, New York, 1984.

27. Ogawa H. "Corner detection on digital curves based on local symmetry of the
shape." Pattern Recognition, vol. 22, no. 4, pp. 351-356, 1989.

81

28. Shih, F. Y. and W.-T. Wong. "A one-pass algorithm for local symmetry of contours
from chain code."	 Inter Workshop on Comput. Vision, Pattern Recogn. and
Image Process., 1998.

29. Shih, F. Y. and W.-T. Wong. "A one-pass algorithm for local symmetry of contours
from chain code." accepted by Pattern Recognition, 1998.

30. Samet H. Applications of Spatial Data Structures - Computer Graphics, Image
Processing, and GIS, Addison Wesley, Reading, Massachusetts, 1990.

31. T.-W. Lin. "Set operations on constant bit-length linear quadtrees." Pattern Recog-
nition, vol. 30, no. 7, pp. 1239-1249, 1997.

32. Dehne F., A. Rau-Chaplin and A. G. Ferreira. "Hypercube algorithms for parallel
processing of pointer-based quadtree." Comput. Vision and Image Understanding,
vol. 62, no. 1, pp. 1-10, July 1995.

33. Y. Hung and A. Rosenfeld. "Parallel processing of linear quadtree on a mesh-con-
nected computer," J. Parallel Distrib. Comput., vol. 7, pp. 1-27, 1989.

34. Zingaretti, P., M. Gasparroni, and L. Vecci. "Fast Chain Coding of Region Bound-
aries." IEEE Trans. Pattern Anal. Mach. Intel/. (T-PAMI), vol. 20, no. 4, pp.
407-415, April 1998.

35. Samet H., "Region Representation: quadtree from boundary codes," C01111111111.
ACM, vol. 23, no. 3, pp. 163-170, March 1980.

36. Lattanzi M. R. and C. A. Shaffer, "An optimal boundary to quadtree conversion
algorithm," CVGIP: image Understanding, vol. 53, no. 3, pp. 303-312, May 1991.

37. Dyer, C. R., A. Rosenfeld and H. Samet, "Region representation: boundary codes
from quadtrees," Commun. ACM, vol. 23, no. 3, pp. 171-179, March 1980.

38. Kumar, G. N. and N. Nandhakumar, "Efficient object contour tracing in a quadtree
encoded image," SPIE Application of Artificial Intel!. IX, vol. 1468, pp. 884-895,
1991.

39. D. R. Fuhrmann. "Quadtree traversal algorithms for pointer-based and depth-first
representation." IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI), vol. 10, no. 6,
pp. 955-960, November 1988.

40. H. Samet. "A top-down quadtree traversal algorithm." IEEE Trans. Pattern Anal.
Mach. Intell. (T-PAMI), vol. 7, no. 1, pp. 94-98, January 1985.

	Parallelization for image processing algorithms based chain and mid-crack codes
	Recommended Citation

	Copyright Warning & Restrictions

	Personal Info Statement

	Abstract

	Title Page

	Copyright Page

	Approval Page

	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication Page

	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)

	Chapter 1: Introduction

	Chapter 2: A Fully Parallel Algorithm for the Extraction of Chain and Mid-Crack Codes of Multiple Contours

	Chapter 3: A Parallel Chain and Mid-Crack Coding Algorithm on N Cube Architecture

	Chapter 4: A One-Pass Algorithm for Local Symmetry of Contours From Chain Codes

	Chapter 5: An Adaptive Conversion Algorithm From Quadtree to Chain Codes

	Chapter 6: Summary and Future Research

	References

	List of Tables

	List of Figures (1 of 2)
	List of Figures (2 of 2)

