

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

9

The classification component [21, 22, 23, 24, 78] is used to classify documents into

different document types based on their layout structures and conceptual structures. (Each

type is defined in terms of a frame template.) This component creates a mapping block

graph for each of the documents using its block structure, which is the OCR's reading

result. Based on the knowledge (or a block of knowledge) from each frame template, the

classification component classifies a document by matching its block structure graph

against each frame template. By classifying a document, we mean to find its document

type, and therefore, the frame template of its type is identified.

The extraction component [21, 25] is employed to extract key information from

documents. Given a document, the frame template of its document type is identified.

Based on the definition of the frame template, TEXPROS will extract information from

the document to create a frame instance. A frame instance of a document consists of key

information pertinent to the users. It can be considered as an index of the document.

When receiving the frame instance of a document, TEXPROS will invoke the

automatic filing [14, 15, 16, 17, 34, 83, 84, 85] component to file the document into the

corresponding folders. The user constructs a folder organization to represent his/her view

of his/her own document organization. A folder organization consists of folders, each of

which is associated with a criterion specified in terms of a predicate. This predicate is

defined to govern the kind of documents that will be deposited into its associated folder.

Therefore, this automatic filing procedure is a predicate driven process. In fact, the

storage is a three-leveled architecture [15, 16, 17]. At the bottom level, it consists of an

original document base. At the top level, a logical representation of the storage is created,

which is called the folder organization. The intermediate level is a frame instance base,

10

which is a depository of all the frame instances. Each frame instance has a pointer pointing

to its corresponding original document, which is stored in the document base. The folders

in the folder organization contains only pointers pointing to the frame instances, which

qualify their associated predicates.

Given a three-level architecture of the storage, documents and information from the

documents can be retrieved using the retrieval component [35, 38, 39] and browsing

component [34, 35, 36, 38, 71, 72, 73]. The retrieval component provides users with a

formal query language. This system is capable of processing incomplete and imprecise

queries. Without a familiarity with the meta-data, database itself, or the formal query

language, a user can use the browsing component to submit topics of a vague query.

When the system generates a null answer, the generalizer sub-component will be employed

to give users cooperative answers.

The synthesizer component [35, 74, 75] is used to synthesize information obtained

from the related documents. For example, after finding all the related documents about the

meeting schedule of a user, the synthesizer component is able to pack together all the

information about these meetings.

To support these functional capabilities of TEXPROS, a powerful knowledge base is

presented to be an organization of the system catalog, the frame template/instance base,

the thesaurus, the semantic range, the DataDomain, the registration center, etc. Therefore,

the knowledge base plays a major role in processing and retrieving documents by

supporting the functionality of the inference engine components. Representing and

managing this knowledge become essential and critical issues in the success of the

1 1

development of TEXPROS. This motivates us to investigate the knowledge management

for TEXPROS.

In dealing with the knowledge management for TEXPROS, we focus on the

following concerns:

• The use of various kinds of knowledge to support the intelligent behaviors of the

inference engine components.

• The use of these knowledge to support all the inference engine components. From

the integration standpoint, we investigate the representation and organization of the

knowledge for improving the system performance and maintaining the system

consistency.

• TEXPROS is an intelligent document processing system for the general working

domain. We investigate and develop a method of knowledge management in such a

way that the system can be applied to different working domains. The extension of

the domain knowledge, and the knowledge porting are to be investigated.

1.3 Organization of this Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we briefly introduce the

TEXPROS document model and then describe the system catalog structure, frame

template base and frame instance base. In Chapter 3, we investigate various problems of

the thesaurus model of TEXPROS, and then propose their solutions. The semantic range

and the usage of semantic range evaluation for solving sense ambiguity are presented in

Chapter 4. In Chapter 5, the structure of DataDomain and DataDomain Agent are

12

presented. In Chapter 6, A KeyTerm Transformation Component is presented to

cooperate with thesaurus, semantic range and DataDomain, and to solve the general

KeyTerm transformation problem. In Chapter 7, we investigate the use of existing

techniques to implement the approximate term matching in TEXPROS. The registration

center is proposed in Chapter 8 for solving the knowledge porting problem of TEXPROS.

Finally, the conclusion and future research work are described in Chapter 9.

CHAPTER 2

SYSTEM CATALOG

In this chapter, we shall introduce an intelligent TEXt PROcessing System. We then

present an extension of the System Catalog and the implementation of a frame template

and a frame instance bases.

2.1 TEXPROS Document Model

The document model for TEXPROS employs a dual modeling approach for storing,

classifying, categorizing, filing, browsing and retrieving, and reproducing documents, as

well as extracting, browsing, retrieving and synthesizing information from a variety of

documents of a pre-defined application document [34, 37, 44, 45] . This model consists of

two hierarchies: a document type hierarchy and a folder organization. The document type

hierarchy (DTH) depicts the structural organization of the documents and the folder

organization represents the user's document filing system in the real world.

In a user's working environment, by identifying common properties for each kind of

document type, documents are partitioned into different classes. Each document class is

represented by a frame template, which describes the common properties in terms of

attributes of the documents of the class and is referred to as the document type of that

class. As a powerful abstraction for sharing similarities among document classes while

preserving their differences, the frame templates are related by specialization and

generalization and are organized as a document type hierarchy (DTH). The frame

templates, which are the members of the document type hierarchy, are related by an is-a

13

14

relationship. This is-a relationship and the mechanism of inheritance help to reduce the

complexity of models and redundancy in specifications [63]. Figure 1 shows a sample

document type hierarchy for an office environment.

Figure 1 A Sample Document Type Hierarchy

Upon the arrival of a document, the classification component of TEXPROS

recognizes its document type (frame template). Based on its frame template, the significant

and static information is extracted from this document to yield a synopsis of the document,

which we called a frame instance. The frame instance of a document is an instantiation of

that particular frame template. Figure 2 shows the frame template and the frame instance

of a meeting memo document.

After extraction, the frame instances of documents of different document types will

be saved into the instance bases. However, through the automatic filing process, the frame

instances are filed into the folder organization [15, 16, 17], by depositing the frame

instances into folders if they qualify the criteria of the folders. In fact, the folder

15

organization contains only pointers, which point to the locations where the frame instances

are deposited in the frame instances base.

New Jersey Institute of Technology
Department of Computer and Information Science

Ext 3322

MEMORANDUM

TO: 	 John Smith, Graduate Office
FROM: Mark Sam
SUBJ: 	 TA Ship Assignment
DATE: 	 April 21, 1992

There will be a meeting of the Committee an Student
Appeals on June 10, 1992 at 10:00 a.m. in Room 304
Cullimore.

Please make every effort to attend. If you cannot attend,
please contact Mary Armour, ext. 3275.

Cc:	 Thomas Armstrong

(a)

Sender

Receiver

Cc

Subject

MemoDate

MtgDescription

MtgDay
MtgDate
MtgTime

MtgPlace

Synopsis

Remark

(b)

Sender John Smith

Receiver Mark Sam

Cc Thomas Armstrong

Subject TA Ship Assignment

MemoDate April 21, 1992

MtgDescription

MtgDay
MtgDate June 10,1992

MtgTime 10:00 a.m.

MtgPlace Room 504 Cullimore

Synopsis

Remark If can not attend, contact Mary Armour, ext 3275

(c)

Figure 2 (a) An Original Meeting Memo Document (b) Its Corresponding Frame

Template (c) Its Corresponding Frame Instance

16

The system provides users with the flexibility for creating their folders, which can be

naturally organized as a folder organization. A folder can be considered as a particular set

of frame instances. The frame instances can be homogeneous or heterogeneous. That is,

the frame instances in a folder may be over different frame templates. Frame instances are

grouped into a folder on the basis of its user-defined criteria, specified as predicates,

which determines when a frame instance belongs to a folder.

To cope with file organization and to automate document filing (i.e., placing an

incoming frame instance into an appropriate folders), we implement the logical folder

organization using an agent-base architecture. Each folder is monitored by a filing agent.

Each agent has its criteria and private data structures for holding the frame instances, and

operations for manipulating the data structures. The criteria are used to govern the

placement of a frame instance in appropriate folders. The repository contains frame

instances that satisfy the agent's criteria, but do not satisfy its children's criteria. The

agents communicate with each other through message passing. Figure 3 shows a sample

folder organization.

The original documents and their related frame instances are stored in the original

document base and frame instance base, respectively. In TEXPROS, the storage

architecture is organized into three levels: at the first (lowest) level is an original document

base; the second level is a frame instance base, and the folder organization is at the third

(highest) level. Based on the user's viewpoint, the documents are categorized to enhance

greatly the retrieval and browsing performance.

17

Figure 3 A Sample Folder Organization

2.2 System Catalog Structure

System Catalog is an important part of the knowledge base of TEXPROS. It is employed

to describe the meta-data of the actual folder organization and document type hierarchy,

which are combined to be the dual models of TEXPROS. In TEXPROS, we employ the

concept of frame templates and frame instances at the operational level (both are

considered as inference engine components) and the system level (both are used to

describe the information in system catalog). At the operational level, the concept of frame

templates is used to form the document type hierarchy for classifying the given documents;

and the concept of frame instances is used to describe the key information of a particular

document based on its document type which is specified in terms of a frame template for

its class of documents. Similarly, at the system level, the concept of frame templates is

18

used to classify the information stored in the system catalog. And the concept of frame

instances is used to contain the information about the folder organization and the

document type hierarchy. This uniform approach to describe both the operational

knowledge of the structures and content of documents, and the system knowledge about

the classification and the repositories of documents. This consistent approach of

representing the documents and the system organization allows the system catalog to be

directly stored into the storage base in the same way as the frame instances are stored into

the frame instance base. It also gives users a great flexibility to classify, file and retrieve

the meta-data information in the same way as the documents are classified, filed and

retrieved.

Figure 4 depicts the structure of System Catalog. System Catalog can be considered

as a collection of sets of system frame instances, whose types are of the system frame

templates. These system frame instances are employed to store the information of the

folder organization and the document type hierarchy. The frame instances of the type

SYSFOLDERS contain the information of each folder in terms of the folder name, and its

filing predicate and threshold. It also describes the types of frame instances in the folder in

terms of frame templates. They are specified in terms of the attributes "FTNames" and

"FrameInstanceIDs", which are repeatable attributes.

A set of frame instances of the type SYSFOLDERHIERARCHY is used to describe

the structure of a folder organization. The repeatable and composite attribute

"Depends_On" is used to specify the parent folders of a folder in terms of the parent

folder name, and their linkage information in terms of the link type with a label. The

repeatable and composite attribute "Parents_Of' is used to specify the children folders of a

19

folder and their linkage information. Specifically, the ROOT of the folder organization is a

root folder, which has no parent folder. A leaf folder is a folder which has no child folder.

Figure 4 System Catalog Structure

A frame instance of the type SYSFRAMETEMPLATES describes a frame template,

which is defined by a set of attributes. So, in this type, a repeatable and composite

attribute "Attribute" is used to describe the detailed information of each attribute

20

contained in the frame template, "FTName". The detailed information includes the name of

the attribute, "AttributeName", the ancestor attribute names, "Ancestors" of this attribute,

whether this attribute is repeatable, "Whether_Rept", whether this attribute is a composite

attribute, WhetherS/C", the DataDomain for specifying the domains of the values of these

attributes, and the user-defined composition template. This frame template also has an

attribute "FolderNames" to describe the information about the folders over this frame

template and an attribute "FrameInstanceIDs" to specify all the frame instances whose

type is of this frame template. These two attributes are repeatable.

A set of frame instances of the type SYSFTHIERARCHY describes the structure of

a document type hierarchy. For each frame template, "FTName", it stores its only parent

frame template, "Parent_FTName", and a number of its children frame templates,

"Child_FTNames". Here we should note that there is only one frame template that has no

parent frame template. It is the ROOT of the document type hierarchy. A set of frame

instances of the type SYSATTRIBUTES gives all the frame templates, "FTNames",

which have the attribute, "AttributeName". A set of frame instances of the type

SYSFRAMEINSTANCES describes the folders "FolderNames" which have the frame

instance, specified in terms of "FramelnstanceID" of the type "FTName. It also specifies

the original document from which this frame instance is extracted. This is not for the frame

instance base. It only stores the information of the relationship between this frame

instance, its type, the folders where it is deposited, and the original document it

represented.

StudentlD

StudentName
LastName

FirstName

PhoneNumber*

Semester*

SemesterlD

Course*

CourseID

CourseName

CourseGrade

* The attribute marked by asterisk means it is a repeatable group

DataDomain(StudentlD) = SSN
DataDomain(PhoneNumber) = PhoneNum
DataDomain(SemesterID) SemesterlD
DataDomain(CouserGrade) = Grade

CompositionTemplate(StudentName) = <null, "FirstName", " ", "LastName", nun>

21

2.3 Frame Template Base

TEXPROS uses the uniform approach to handling the operational knowledge about the

documents and the system information about the folder organization and the document

type hierarchy. In other words, the concepts of frame templates and frame instances are

used at the operational and system levels. For implementing the TEXPROS prototype, at

the lowest level, the relational database is used as storage base. In the remaining chapter,

we will discuss the construction of a frame template base and a frame instance base, based

upon this storage base, so that we can store and manage all the meta-data knowledge

information and document information to support all the inference components.

Figure 5 Frame Template "Transcript"

Conceptually, a frame template consists of a set of attributes describing the

characteristic properties of a kind of documents. Based on this conceptual definition, it

22

seems that a frame template can possibly be mapped directly into a relational database

table. In implementing the frame templates, we found that, in additional to the attribute

names, they must include detailed information that is also very critical to users.

Consider an example in Figure 5. It is a frame template for "Transcript" documents.

As shown in the figure, the definition of a frame template is far more complex than a

relational database table. The first issue is that the composite attribute is widely used in the

frame template definition in TEXPROS. For example, in frame template "Transcript",

there is a composite attribute "StudentName", which consists of two child attributes,

"LastName" and "FirstName". By means of the concept of composite attribute, users are

allowed to specify an aggregate information, which is a block of information closely

related to each other. Users are also allowed to define multi-level composite attributes to

structure the composite attributes and attributes in a hierarchical structure. For example,

The composite attribute "Course" is a child of the composite attribute "Semester", which

consists of attributes (called atomic or simple attributes) "CourselD", "CourseName" and

"CourseGrade". But the relational database doesn't support the concept of composite

attributes. The second issue is that the concept of repeatable attributes is used to specify

more than one value for an attribute. For example, in the definition of the "Transcript"

frame template, the attribute "PhoneNumber" is a repeatable attribute. This anticipates

that some transcript documents may contain more than one student phone number. For

this case, we may call it a multi-valued attribute. It violates the first normal form of the

relational database. Moreover, a composite attribute can be a repeatable attribute. For

example, the repeatable composite attribute "Semester" means the student transcript

contains one or more semesters of grade information. The students may take many courses

23

per semester. Therefore the "Course" must be a repeatable composite. Thirdly, various

important features, such as the DataDomain and the CompositionTemplate, are not

supported by relational database. We will present this knowledge in the later chapters. The

fourth issue is that the sequences of attributes must be kept in order to fully reproduce the

frame templates. It is used to indicate the position of the attributes in the frame template

or in the corresponding composite attribute block.

Based on these considerations, it is impractical to map each frame template directly

to a relational database table. Instead, we define a relational database schema for the frame

template base to include the complete definition of each frame template (that is, the full

knowledge about the frame template). This knowledge is managed at the knowledge

management level, which stores and reproduces the frame templates when the inference

engine components need them. So, the complete details of frame template definitions and

the storage details of the frame templates are hidden in the knowledge base, and are

transparent to the inference engine components. That is, the components simply see the

well-designed frame templates.

The relational schema for the frame template base is as follows:

(FT_Name, Att_Name, Ancestors, WhetherRep, WhetherS/C, Seq, DataDomain,

CompTemplate).

This relational schema is based on the conceptual definition of frame template. It

allows the system to store the details of frame template knowledge. According to this

schema, each record is for an attribute of a frame template. "Ancestors" is used to reflect

the composite attribute structure. "WhetherRep" and "WhetherS/C" are used to indicate

whether this attribute is repeatable and whether this attribute is a simple attribute or a

24

composite attribute, respectively. "Seq" is used to indicate the position of an attribute in

the frame template or the composite attribute block to which an attribute belongs.

"DataDomain" and "CompTemplate" are used to store the knowledge of DataDomain and

composition template. Based on this schema, we can store the complete knowledge of a

frame template in the frame template base. Figure 6 shows the representation of the frame

template "Transcript" in the frame template base.

Figure 6 Frame Template "Transcript" in Frame Template Base

From this example, we can see that the complete information about the frame

template "Transcript" is kept in the frame template base. When the inference engine

components need this frame template, we can access the complete information of the

template "Transcript" from the frame template base. Using the information of the

"Ancestors" and "Seq", we can fully reproduce the frame template structure. Other

information, such as the DataDomain and composition template, etc. can also be restored.

25

2.4 Frame Instance Base

Every frame instance is kept in the frame instance base. Conceptually, a frame instance

consists of a set of two-tuples <attribute name, value>. It will be used to store both the

system catalog knowledge and the information extracted from documents.

Consider an example of a sample "Transcript" frame instance as shown in Figure 7.

The complete information of this frame instance is much more complex than the

conceptual two-tuples definition. Firstly, the system has to deal with the representation of

composite and repeatable attributes. Analogous to the way of handling the attributes of a

frame template, in the case of a frame instance, all the attribute information, including the

set of two-tuples <attribute name, value>, will be stored into the frame instance base.

Secondly, sequence information is necessary to be stored to fully reproduce the frame

instance. Thirdly, the system stores a frame instance as an internal frame instance, which

consists of a set of three-tuples <attribute name, original value, key value>, instead of the

two-tuple definition of a frame instance. The detailed discussion will be given in the

following chapters. Fourthly, the aggregate of values, as a block of values is very common

and critical to a frame instance. In TEXPROS, users are allowed to define a composite

attribute for specifying an aggregate of the related information as a block. Also, the

composite attribute is allowed to be repeatable. So, the same block of attributes may

appear in the frame instance a finite number of times. At that time, the attribute name

"AttributeName" and ancestors "Ancestors" are insufficient to be the unique key for the

values. Additional information is needed to indicate which values belong to the same block

(we call it a value block).

26

ATTRIBUTE VALUE

StudentID 777987777

StudentName
LastName Hu
FirstName Jason

PhoneNumber 973-5961111
PhoneNumber 9735961112
PhoneNumber 9735961113

Semester

SemesterID 1996 Fall

Course

CourselD CIS610

CourseName Data Structure

CourseGrade A

Course

CourselD CIS630

CourseName Operating System

CourseGrade B+

Course

CourselD CIS650

CourseName Computer Architecture

CourseGrade A

Semester

SemesterID 1997 Spring

Course

CourselD CIS601

CourseName C++ Programming

CourseGrade A

Figure 7 A Sample Frame Instance of Type "Transcript"

For example, in the example of the "Transcript" frame instance, the

"Semester##Course##Grade" of the CourselDs "CIS610", "CIS630", "CIS650" and

"CIS601" are "A","B+","A" and "A". The annotation of these courses is

"Semester##Course##CourselD". These grades and courses have the same attribute

names and ancestors, "Semester##Course##Grade" and "Semester##Course##CourselD"

27

respectively. Without the value block information, we have no way to retrieve in which

course the student received a grade of "B+". So, the value block information is kept to

indicate which values are in the same block. For example, the values "CIS630",

"Operating System" and "B+" are in the same value block.

Based on these considerations, we define a relational database schema for the frame

instance base to represent all the frame instances. The precise information which is

represented by the frame instance bases are managed at the knowledge management level,

and the frame instances could be reproduced when they are needed by the inference engine

components. Analogous to the frame templates, all the detailed information is hidden from

the inference engine components. The components access only the actual frame instances,

each of which corresponds to a document in the original document base.

The relational schema for the frame instance base is:

(FI_ID, Att_Name, Ancestors, Orig_Value, Key_Value, Seq, End_Seq).

This schema contains the conceptual definition of frame instance. Each record

corresponds to an attribute-value pair of a frame instance. FI_ID is the unique identity for

each frame instance. Att_Name and Ancestors are for the attribute name and their

corresponding ancestors. Key_Value is the internal representation of the Orig_Value,

which will be discussed in the following chapter. Seq and End_Seq are used to specify the

sequence information and value block information. There are some default rules for the

"Seq" and "End_Seq". If an attribute is not a composite attribute, then the "End_Seq" is

marked as -1. If an attribute is a composite attribute, then the "Seq" and "End_Seq" are

marked as the sequence of the first value and the last value that are in the range of this

composite attribute value block. Using this approach, the information about blocks of

