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CHAPTER 1

INTRODUCTION

In the study of control system design theory, particularly classical control theory, it is

typically assumed that the designer has perfect knowledge of the system to be controlled.

Not only does the designer know the system structure, i.e. the exact dynamic equations

governing the evolution of the controlled state, but he or she also knows the system

parameters precisely. This, however, is generally not true. In most physical systems,

the characteristics of the system change for various reasons: parameters (e.g. friction)

may change with temperature or over the life of the unit, rapid shifts in system dynamics

can occur due to a catastrophic change of some sort, resonant frequencies can shift, and

so on. As a result, a design that is stable and effective at one condition can become

unstable and ineffective at another. This is also true of much of the modem control

methods developed since the 1960's 1 . Thus, many of the powerful classical and modem

design techniques that assume knowledge of the dynamic model can become ineffective

in the face of parameter uncertainty. Parameter estimation techniques provide a way to

address this problem.

On-line parameter estimation techniques attempt to extract, in real time, parameter

information from a dynamic system providing full-state availability, i.e. all of the state

variables are measured with sufficient accuracy so that state estimation is not required.

The best estimate of system parameters can then be used in a parameter dependent

A great deal of effort since the early 80's, however, has been directed at the design of stable controllers

for systems with quantifiable uncertainty.
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controller to adapt to parameter changes. In many applications, however, the entire state

of the underlying dynamic system is not measured directly, and as a result it is necessary

to estimate the unmeasured state variables as well as the unknown parameters. In

comparison to the problem of parameter estimation alone, this is a significantly more

difficult problem because it is inherently nonlinear. Even the simplest expression

involving an unknown parameter 0 and an unknown state variable x, their product Ox , is

nonlinear. Suitable techniques have therefore been slow in coming.

Nevertheless, a wide range of technologies exist that could benefit by the availability

of stable state and parameters estimation methods. Applications can be noted in the

literature in the areas of electronic systems, communication systems, guidance and

navigation systems, chemical systems, mechanical and robotic systems, biomedical

systems, financial systems, etc. Consider the following example which appeared in a

Special Issue on Medicine in the IEEE Transactions on Automatic Control [44]. The

application is a ventricular assist device that works with an impaired heart to meet the

cardiovascular demands of the patient. A dynamic model of blood flow through the

heart is used to enable the implementation of an effective control strategy. The dynamic

model presented,

involves three states and 5 uncertain hemodynamic parameters. (The variable pA is an
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measurements include noise. Thus, this problem involves uncertain parameters

multiplying unmeasured state variables that require estimation. In [44] the authors

employ an Extended Kalman Filter (EKF) to estimate quite effectively both the state and

parameter vectors, online. There is, however, no known guarantee of stability with the

EKF, which can be a cause of concern in some cases, especially in this one where a

patient's health could be affected. A filter similar in complexity that possesses a

property of asymptotic stability would therefore be greatly advantageous. The stability

of the EKE and of the new filter with bilinear systems of this type is examined herein,

and a proof of stability for the EKF is given. A simulation example of a similar system,

a 4th order stepper motor with 5 unknown parameters, is examined in Chapter 5.

1.1 Motivation

Perhaps the most important general application of the type of method developed in this

thesis is that of the adaptive controller. In a controller designed using the Indirect

approach, the control law explicitly contains an "Estimation" section and a "Control"

section (see Figure 1.1). The "Estimation" section performs the simultaneous estimation

of the unknown parameters Band the state x. The "Control" section (to the right of the

line) then use these estimates as if they were true. Thus, both the "Controller Design"

and "Controller" blocks contain algorithms designed under the assumption that the state

and parameter vectors are known. (This idea is referred to as the "Certainty Equivalence

Principle" [2] .) As a result, the Estimation and Control sections of an Indirect Adaptive

Controller can be defined independently, and then these separate parts can be brought



4

together to create the complete adaptive control law. The estimation methods developed

in the present work can be applied in this type of adaptive control system design.

Figure 1.1 Indirect Adaptive Control Showing Simultaneous State And Parameter
Estimation On Left

1.2 Problem Definition and System Class

This section introduces the notation necessary for the mathematical definition of the

problem to be addressed, and it gives a precise statement of the classes of systems to be

considered. In all cases it is assumed that the structure of the system is known, and that

a mathematical model of the actual system under study is available. What is unknown

are the initial state of the system and specific parameter values.

An uncertain nonlinear continuous-time dynamic system in most general form can be

represented:

where f( ) and h( ) are nonlinear functions,



where w(t) and v(t) are zero mean gaussian noise processes of proper dimension, and

where
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are the state, unknown parameters, known input, and measurement vectors, respectively;

t is time. This general nonlinear structure is considered by most investigators to be too

general for the development of systematic analysis and synthesis techniques. Therefore,

we define the following three restricted system classes, all involving uncertain

parameters, and use these definitions to clearly identify the contribution that has been

made by each of the new methods developed in the present work. They will be called

System Class A, B, and C, and will be ranked in order of increasing generality. In other

words, System Class B includes System Class A but not System Class C.

System Class B: System Class B is given by:

Measurement and process noise are assumed to be zero. The matrices A(t), B(t), E(t) and

C(t) may be time-varying, but are known. Also, it should be recognized that E(t), a

known matrix function of time, can contain nonlinear functions that depend on known



encompass nonlinear systems represented as:

When working with reduced-order observers, it is convenient to arrange the state

variables of (1.6) into two groups, the first m that are directly measured and the

remaining n-m that are unmeasured. This may require a linear state transformation to

eliminate C(t) in the measurement equation. System B can then be represented using the

following partitioned state equations:

System Class A: System Class A shall be identical to System Class B, equation (1.7),

with the exception that submatrices Al2 and A22 shall be constant rather than functions of

time.

System Class C: System Class C shall be similar to Class B with an important exception,

the nonlinear matrix E() shall be allowed to depend on the entire state, and the

unmeasured elements of x that apear in E() shall appear linearly, such that E09 is

bilinear in the unmeasured states and unknown parameters:

6
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1.3 Overview of Existing Methods

One might expect that any of the available techniques for estimating the state of a

nonlinear process could potentially be applied to the problem of state and parameter

estimation. Surveys of existing continuous-time nonlinear observation methods are

found in [30] and [42] . In general, however, the joint state and parameter estimation

problem falls outside the scope of most nonlinear observation techniques. The difficulty

most often involves the poles at the origin contributed by parameter states. To illustrate

this, we consider the following nonlinear system,

Raghavan [36] proposes the observer:

Equation (ARE)

for some small scalar e, to be determined such that the above is solvable. However, it

will not be possible to solve this ARE unless the matrix A is Hurwitz. With parameter

estimation, this requirement is violated because of the pole contributed at the origin by

each unknown parameter. As a result, Raghavan's method fails when applied to

parameter estimation. In fact, most nonlinear observations techniques when applied to

the joint state and parameter estimation problem, encounter the same difficulty. Those
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that can be applied successfully to this problem have most likely been identified as such

in the literature. (Note that the Raghavan observer described in Chapter 3 is another

method developed specifically for state and parameter estimation.)

Most of the contributions made to the body of theory that specifically address the

joint state and parameter estimation problem have involved System Class B, i.e.

nonlinear systems representable with time-varying linear models. These methods are

listed below in Table 1.1 and will be discussed in some detail in Section 3.2. They

include the full-order Kalman filter, the Bastion and Givers filter, the Narandra and

Annaswamy filter, and the Raghavan filter. As you will note, these methods apply only

to System Class B, with two applicable only to single-input single-output systems.

Table 1.1 — Existing Methods for Simultaneous State and Parameter Estimation

The problem of simultaneous state and parameter estimation in linear systems was

solved with the advent of the Kalman filter, although this fact was not initially

recognized. Friedland demonstrates the use of the Kalman filter for parameter and state
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estimation in describing its use for the calibration of an inertial system in [14]. He

further clarifies the suitability of the Kalman filter for parameter estimation by his

development of the Separate-bias Kalman filter in [11] , where the Kalman filter is used

for bias estimation, a problem that again falls into System Class B. Bias estimation is

described in several other references, including an alternative derivation given in [21],

and also later for time-varying bias in [22], [20] and [1].

Another investigator, Rusnak, who has worked with the Kalman filter for parameter

and state estimation, examines in [39] the conditions necessary for observability in

single-input single-output (SISO) linear systems. His primary conclusion is that

persistent excitation is necessary to guarantee observability and stability. He extends his

analysis to multi-input multi-output systems using non-minimal realizations of the plant

in [40] .

A few continuous-time methods have been developed in recent years for the on-line

estimation of parameters only, in nonlinear dynamic systems in which the entire state

vector is available. These are the method of Narendra and Kudva [33] and the method of

Friedland [17] . Both are described in detail in Section 3.1.

The problem of state and parameter estimation in nonlinear systems that include

System Class C has been addressed by Caglayan, et.al. in [6] , who develop the extended

form of the Separate-Bias Kalman filter for nonlinear systems, i.e. the Separate-Bias

Extended Kalman Filter (EKF). However, like the standard EKF, no conditions for the

stability of this filter are given, and so this method is not discussed in Chapter 3.

Another continuous-time method applicable to this problem has been developed by Cho

and Rajamani in [7] where an adaptive observer is provided which possesses guaranteed
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converge properties for a special class of systems involving Lipschitz bounded

nonlinearities. Because of the relative newness of this work, it has not been included in

the descriptions given in Chapter 3.

1.4 Research Objectives

This effort has focused on the problem of simultaneous state and parameter estimation in

deterministic dynamic systems of known structure. The objectives of the effort were:

• to develop methods providing improved computationally efficiency and

stability over existing methods

• to develop methods which can be applied to a wider class of systems than

those covered by existing methods

• to identify and prove conditions for the asymptotic stability of the new

methods

1.5 Contributions of Thesis

This thesis contributes five new methods for the online joint estimation of parameters and

the state variables in dynamic systems. These new methods are separated into two

groups: (1) those that involve Riccati equations, and (2) those that do not. All five

methods are described briefly below and are listed in Table 1.2 along with some pertinent

data useful for their comparison.

(1) and (2) — Nonlinear Observers One and Two: These methods are those that do

not involve Riccati equations. Both possess some similarity to Friedland's parameter

estimator [17] , and both extend Friedland's estimator, which assumes full state

availability, to the case of partial state availability. One is a reduced-order variant of
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Raghavan's full-order nonlinear state and parameter observer given in [36]. The global

stability of this new method is proven for System Class B. Although it does not involve

a Riccati equation, it does involve an auxiliary matrix differential equation.

Nevertheless, this new filter has been found to be easier to apply than the Riccati

equation based methods in that it does not require excessive tuning to yield acceptable

results. This is demonstrated in a simulation example. In addition, it offer the advantage

of reduced computational loading over some existing methods, the order of the filter

being reduced by the number of measured states.

The second non-Riccati based method is one that is developed by directly extending

Friedland's parameter estimator [17] to the case of partial state feedback. It does not

involve any type of matrix differential equation. Consequently, of the available

methods, new and existing, it is the least demanding computationally. Its stability is

guaranteed when applied to System Class A. The method requires that the user find

nonlinear functions that have application specific jacobian matrices, and it is often

difficult to find these function, particularly as system order increases.

(3) Separate-Bias Reduced-Order Kalman Filter: The first of the three Riccati

equation based techniques developed herein is this Separate-Bias Reduced-Order Kalman

filter. In 1969, Friedland developed the original separate-bias Kalman filter for

stochastic systems involving constant and unknown bias and non-zero measurement noise

[11]. In this present work, the limiting form of the separate-bias Kalman filter for

vanishing measurement noise is derived. Several key features of the reduced-order filter

are worth noting. First, it is the optimal filter for the conditions defined, and as such, the

global stability of this new filter is guaranteed. Secondly, it has a desirable two-stage
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structure; the parameters and states are estimated in separate uncoupled stages, which

permits the use of two separate parallel processors if desired or if processing power is

limited. In addition, it is convenient to use, in that many physical systems possess this

structure naturally. Thirdly, like the full-order Separate-bias Kalman filter, this reduced-

order Separate-bias filter replaces computations involving large matrices with

computations involving smaller matrices, thereby improving numerical stability and in

some cases computational efficiency.

(4)SDARE State and Parameter Estimator: The State Dependent Algebraic

Riccati Equation (SDARE) filtering technique is applied to the problem of state and

parameter estimation and shown to work well in a number of simple examples including

some from System Class C. However, it is found to be less than well suited for state and

parameter estimation as the number of unknown parameters increases beyond 2 or 3.

This is due to the lack of observability in the pair [A(x), C(x)] that is exacerbated as the

number of unknown parameters is increased.

(5)A General Nonlinear Filtering Method: A new nonlinear filtering technique

that applies to general nonlinear systems is proposed. It is shown to avoid the

observability shortcomings of the SDARE filtering method through the use of a State

Dependent Differential Riccati Equation (SDDRE). This filter is similar to and

compared to the Extended Kalman filter (EKF) herein. For bilinear systems of System

Class C, the stability of both the EKF and the new filtering method are examined. The

semi-global asymptotic stability of the EKF is proven under mild assumptions.



Table 1.2 — New Methods for Simultaneous State and Parameter Estimation*
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*(Note that all are applicable to MIMO Systems)



CHAPTER 2

BACKGROUND

This chapter contains the background material needed for the development of the new

filtering methods presented in Chapter 4. A number of somewhat disconnected topics

are covered. General stability and Lyapunov stability theory are covered in Sections 2.1

and 2.1.1. A stability proof for time-varying systems that possess a form of symmetry

common to many filtering techniques is covered in Section 2.1.2. Observability, which

is always a required condition for stability, is discussed in Section 2.1.3. Two existing

filtering techniques, the Separate-bias [11] and Reduced-order Kalman filters [15] , are

presented in Sections 2.2 and 2.3, respectively, as background for the new filter

developed in Section 4, the Separate-bias Reduced-order Kalman Filter [19]. Another

fairly new method, State Dependent Algebraic Riccati Equation (SDARE) filter [32] is

described in Section 2.4 and applied to the problem of state and parameter estimation in

Section 4.3.

2.1 Stability

Perhaps the most important property that any filtering algorithm can possess is that of

asymptotic stability. Simply put, a filter that is asymptotically stable works. If

conditions on, for example, the system structure or input signal content, can be identified

which guarantee the stable operation of the filter, then the filter can be used in those

applications with assurance that it will work. This section contains a review, therefore,

of stability theory. In particular it covers the Lyapunov stability theorems that are used to

prove the asymptotic stability of the new filtering methods presented herein.

14
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Stability theory enables the user to draw conclusions about the stability of a system

without deriving solution trajectories either analytically or numerically. This is often

quite important because in most practical applications it is often difficult, if not

impossible, to analytically derive solution trajectories, and it is typically not possible to

probe and test, via simulation, all possible conditions that could affect the solution. An

unstable case could be missed and a stability assessment of the system based on

simulation could be incorrect.

Stability theory in general falls into two areas:

• Input-Output Stability

• Equilibrium Stability

Input-output stability assesses whether a particular class of inputs (usually magnitude

bounded) will produce a bounded (i.e. stable) output. Equilibrium stability is concerned

with the behavior of a dynamic system near or around an equilibrium point. Although

our focus is on the latter, the control input u will be included in our evaluation of

stability. As in most filtering problems, the control is assumed to be a known input

which in many cases must be present to persistently excite the system, in order for all of

the states to be observable.

The type of equilibrium stability that a system possesses can fall into a number of

different categories. An equilibrium is said to be stable if all trajectories starting nearby

remain nearby; it is unstable otherwise. It is called asymptotically stable if it is not only

stable but also if all trajectories tend to the equilibrium as time approaches infinity. It is

uniformly stable, or uniformly asymptotically stable if the character of the stable behavior

(i.e. convergence speed) does not depend on the initial time. It is exponentially stable if
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an exponential upper bound can be applied to the norm of the convergent error state, as is

true in stable linear systems.

There are also different terms used to define the size of the region over which the

stability property applies. A region of attraction is defined to be a region of the state

space within which the state trajectories are guaranteed to be stable and converging

asymptotically to the equilibrium contained therein. A system is globally stable if the

region of attraction is shown to be the entire state space. It is semi-globally stable if the

region of attraction containing the equilibrium is large (i.e. not infinitesimal), but not the

entire state space. A system is locally stable if the stability characteristics are assessed

using a dynamic model obtained by linearization (of a nonlinear model). Local stability

conclusions hold only within an infinitesimal region containing the equilibrium, where it

can be assured that the linear terms dominate system behavior.

In the sections that immediately follow, existing theory on the stability of nonlinear

dynamic systems is presented. Only that part of existing stability theory which is

subsequently used herein is covered.

2.1.1 Lyaponov Stability

One of the most important contributions to the body of existing stability theory occurred

about a century ago, made by the Russian mathematician, A.M.Lyapunov [24].

Lyapunov's method has received considerable use because if its applicability to nonlinear

systems, and because it does not require the analytical derivation of solution trajectories.

A scalar continuously differentiable function V(x) is postulated, defined in a domain
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negative semi-definite (definite) if V(x) is positive semi-definite (definite). Stability

is assessed by examining the time rate of change of this positive definite function along

solution trajectories as governed by the differential equations governing the system under

study. If a proposed function can be found whose first derivative is always negative

except at the origin, then asymptotic stability is assured. This is stated formally in the

following theorem, where we consider the n th order, time-varying dynamic system,

Theorem 2-1 (Asymptotic Stability) — For the system (2.1), if there exists a scalar

A function V(x,t) satisfying (a) and (b) is a Lyapunov function. If the function and

conditions (a) and (b) are independent of the initial time, then the system is said to

possesses uniform asymptotic global stability. If the a function meets the conditions

region of attraction.



classification degenerates from one of asymptotic stability to one of stability only.

possible to upgrade the stability classification to one of asymptotic stability.

In the above, system (2.1) is assumed to be time varying. If it is not, i.e.

where f (0) = 0 , then the conditions for stability are much simpler, as follows:

Theorem 2-2 (Asymptotic Stability, Time Invariant Systems) — For the system (2.2),

18

state space, then system stability properties are global.

The following nth order ordinary differential equation
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involving a matrix L(t) that is symmetric, positive semi-definite and time-varying, is one

that often occurs in filtering applications. In [31], the authors exploit this specific

structure to establish conditions of global asymptotic stability of (2.3). In some of the

new methods presented in Chapter 4 the error dynamics are of the form as given by (2.3).

In these cases we use the following theorem to prove the stability of the method:

Theorem 2-3 — Suppose L(t) is a symmetric positive semi-definite matrix of bounded

piecewise continuous functions. Then the equation

is uniformly asymptotically stable if and only if there exist real number a > 0 and b such

that

If there exists a fixed vector w that causes the integrand of (2.5) to equal zero over

any point along that line is an equilibrium over that interval, clearly violating the

conditions for asymptotic stability. Also, if there exists a fixed vector w such that the

as an alternative to condition (2.5), one can apply the following:


