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between the strain and the burning velocity is close to 0 for Le < 1 and near 90°

for Le ≥  1. At high frequency oscillating strains, and over the entire range of Lewis

number and flame temperature, the phase shift is of order of 140°.

Most recently, Im, Bechtold and Law(1996) studied the response of counterflow

premixed flames to oscillating strain rates by using both twin and single flame

counterflow configrations. Their emphasis was to examine the response of the

reaction sheet and burning rate to time varying strain rates, and attention was

focused on near-extinction conditions so that the time scale of the imposed

unsteadiness was comparable to that of diffusive transport. The Lewis number

was shown to play an important role in the flame response, especially for flames near

extinction. Their results also demonstrate that extinction can be delayed when the

strain rate oscillates about the static extinction point. Thus the laminar flamelet

regime of turbulent combustion may be broader than predicted by steady analyses.

The results of all above mentioned studies agree qualitatively with the experimental

observations reported by Saitoh and Otsuka(1976).

All of the unsteady theoretical studies employed diffusional-thermal models

that are appropriate for high strain rates when the flame lies in the viscous boundary

layer near the stagnation plane. In this dissertation, those analyses are extended by

considering weakly strained flow so that the flame resides outside the viscous layer.

Thus hydrodynamic models are appropriate to describe the flame-flow interactions.

Solutions to the model problems are constructed using a combination of asymptotic

and numerical methods. Focus is on nonlinear flame response, including extinction.

An outline of the contents of this dissertation is as follows.

In chapter 2, I introduce the full system of governing equations for premixed

flame propagation in a gaseous combustible mixture. Appropriate scales are

identified and nondimensionalization is discussed.
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In chapter 3, I will use the NEF model derived by Bechtold and Matalon(1998)

to investigate the flame response to the stagnation point flow with time-dependent

strain rate. Both time-periodic and impulsively-changed strain rates are considered.

I use a combination of numerical and asymptotic techniques to construct complete

solutions to the governing equations which include the flame response to the imposed

unsteadiness as well as the displacement of the incident flow due to the thermal

expansion. I also use the same NEF flame model to investigate how the mass and

thermal diffusivities as well as the viscosity affect the flame response to incoming

flow.

In chapter 4, I use asymptotic techniques to derive a flame speed equation for

SVFs in general flow field in which all the transport coefficients are temperature

dependent. Similar to previous studies, the flame structure is quasi-one-dimensional

along the coordinate attached to the flame front but unsteady effects are retained in

the structure. This is in contrast to previous studies, which considered quasi-steady

structures. The new model is used to assess the influence of fast-time oscillation on

extinction.

Finally, in chapter 5, I summarize the results and suggest extensions of this

work for future research.



CHAPTER 2

BASIC EQUATIONS FOR HYDRODYNAMIC FLAME MODEL

2.1 The Model

The equations to describe premixed flame propagation in general flow field involve the

coupling of Navier-Stokes equations for fluid dynamics to the transport equations of

combustion. For a single reactant mixture, the mass, momentum, species and energy

conservative equations governing flow field and chemical reaction are given by

together with the boundary conditions
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this kind of nonlinearity greatly increases the difficulty of these problems.

This system serves as the starting point to describe a wide range of combustion

problems.

2.2 Nondimensionalization

To begin, we nondimensionalize all variables with respect to their values in the fresh

cold mixture, thus we can introduce nondimensional variables as follows:

1 0

speed, i.e. the velocity of an adiabatic plane flame through the given mixture. Since

the velocity of flame propagation is much slower than that of sound propagation,

can then be expanded in the small parameter Ma . Therefore the nondimensionalized

This means the process is nearly isobaric. Then in terms of the nondimensional

quantities, the leading order terms in Mach number Ma expansion are
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ratio of heat to mass diffusivities; the Prandtl number Pr is the ratio of viscous to

hydrodynamic length scale; q is the total heat of reaction per unit mass of reactant

such that the nondimensional flame speed of a plane adiabatic flame is unity.

We are concerned with the development of hydrodynamic models, for which the

flame thickness is relatively small compared with the typical hydrodynamic length

a schematic illustration of a thin flame is shown.



Figure 2.1 Flame as surface separating burned from unburned gas

Outside the flame zone, the shaded region in sketch, the flow field is that of an

incompressible and inviscid flow, although the density is lower on the burned side as

compared to unburned side.

In Landau's original model, he considered the flame to be a surface on either
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Integrating the above equations across flame "surface" at x =	 z, t), gives

Rankine-Hugoniot relations for mass and momentum conservation, i.e.

where the brackets [•] are used to denote jumps across the surface. For convenience,

we express the flame surface mathematically as

such that the unit normal pointing toward the burned gasses is

and the propagation speed of the front relative to a fixed frame of reference is

In order to complete his formulation, Landau further assumed that the flame

speed, i.e. the speed of the flame relative to the local flow velocity, remained constant

This model predicts that a plane flame is unconditionally unstable, contrary to

experimental observations. This can be attributed to the fact that Landau's analysis

ignores the flame structure effects. However, as recently demonstrated, cf. Matalon

and Matkowsky(1982), Pelce and Clavin(1982), Bechtold and Matalon(1998) these

effects can be incorporated by analyzing the flame structure with asymptotic



14

methods. In particular, these new models exhibit an explicit dependence of flame

speed on both strain rate and curvature, as well as the diffusional thermal parameters.

In the chapter to follow, I employ these models to study flame response to

unsteady nonuniform flow.



CHAPTER 3

THE RESPONSE OF NEAR EQUIDIFFUSIONAL FLAMES
TO UNSTEADY STAGNATION POINT FLOW

3.1 Problem Description

Premixed flame propagation can be highly influenced by the presence of unsteady

strained flow. In this chapter, I will use a NEF model derived by Bechtold and

Matalon(1998) to study how the premixed flame responds to an unsteady strained

flow. The geometry under consideration is sketched on figure 3.1 below.

Figure 3.1 Flame in unsteady stagnation point flow

I restrict attention to a flat flame in a two-dimensional or axisymmetric

stagnation point flow as illustrated in the figure. Experiments confirm that this

V correspond to the axial and transverse (or radial) components of the velocity.

The location of the stagnation plane and of the flame front are denoted by x = 0
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and x = D, respectively. It is anticipated the flame remains flat, but its location

changes continuously in time as a result of temporal variations in the flow field, i.e.

The flame surface, which separates the gas into burned and unburned regions,

can be described mathematically as

such that F > 0 corresponds to the burned region. Outside the flame zone, the

density p and temperature T remain constant, and in particular, we have

expansion coefficient.

flame zone, can be written as

The relations, relating the fluids variables across the flame surface, and the

normalized flame speed equation derived by Bechtold and Matalon(1998), can be

expressed in coordinate-free form as



flame. Also IC is the flame stretch, given by

and for the geometry under investigation, n and vn, take the form

The parameter a is commonly referred as to the Markstein number and is given

addition to the above conditions, I require that the normal component of velocity

vanish at the wall, i.e. U(0, t) = 0. It should also be noted that a viscous boundary

layer exists near the wall that causes transverse velocity, V, to vanish there as well.

3.2 Analysis

The imposed flow at x = ∞ resembles the flow against a wall in the absence of

vorticity, and is characterized by a time-dependent strain rate (t). Since the flow

ahead of the flame, for x > D(t), remains potential flow, it is given by
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for the two-dimensional case and v = 1 for the axisymmetric case. The velocity

field described by (3.10) can effectively express the flow against a virtual body
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at x = a(t), standing in front of the actual one; that is, the flame displaces the

incoming stream away from the body a distance a (see figure 3.1), which remains

to be determined during the course of the analysis. This displacement is a direct

consequence of thermal expansion which causes a deflection of the streamlines upon

crossing the flame front. It should be pointed out that this effect is in addition to

the viscous boundary layer displacement and, in fact, is more pronounced than the

latter persisting as it does when the viscosity goes to zero. However, it does not

persist when a 1 and indeed, a tends to zero in this limit. The pressure in the

unburned gas is obtained from Bernoulli's equation as

The equation for the flame speed equation (3.4), provides a relation between the

flame position D(t), and the flow displacement a(t), namely

Thus, the problem thus reduces to solving equations (3.2) and (3.3) for the flow

field in the burned region 0 < x < D, subject to the conditions (3.4)—(3.7).

In the burned region, vorticity is produced along flame surface, so it is

which is obtained by taking the curl of the momentum equation (3.3). The amount

of vorticity produced at the flame is determined by integrating the y-component of

the momentum equation (see Appendix A), which yields



where
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The vorticity condition suggests that we look for solutions of the form

and above nonlinear PDE is to be solved under those conditions, which come from

(3A)-(3.7) (see Appendix A)



We integrate (3.17) once, and also make following transformation

so that the problem becomes

20

The advantage of this formulation is that the boundary conditions at the flame

are now independent of D and are applied at the fixed position z = 0. We can

therefore solve first for G(z, t) and then use (3.30), namely

to determine the flame location. Finally, the flow displacement a(t) is obtained from

(3.31). At this point, entire problem is reduced to solve (3.26)—(3.31) for the stream

function in the burned region.

3.3 Hydrodynamic Effects with Time Periodic Strain Rate
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At leading order, we have

For a constant strain rate, p, constant, the system (3.33)—(3.35) possesses an

exact solution given by Eteng, Ludford and Matalon(1986); these results are quoted

here for completeness. For the two-dimensional case (v = 0), the solution and flame

location are given by

For the axisymmetric case (v 1), the solution and flame location are given

respectively. The displacement a () follows from the relation (3.35). The results

indicate that an increase in strain rate will result in a shift in the flame standoff

distance towards the wall and a reduction in the distance between the flame and the

virtual stagnation plane.

In general, the system (3.33)—(3.35) must be solved numerically, although

asymptotic solutions can be constructed in limiting parameter regimes. For this
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This first order quasi-linear hyperbolic partial differential equation can be

solved by using the method of characteristics, cf. Smith(1978). The characteristic

curves are determined from the equation

and along each of these curves, satisfies the Ricatti equation

By comparing equation (3.34) with (3.41), one notes that the wall position,

z= —D, in addition of being a streamline is also a characteristic curve. A predictor-

corrector method is used to solve (3.41) and (3.42), and at each time step the integral

in (3.39) is evaluated by using the trapezoid rule.

Because of the potential application to turbulent combustion modelling, we

first solve the above system for an imposed time periodic strain rate; particularly we

consider

the imposed flow at x=∞ is always moving towards the wall, but otherwise place

trace the evolution of the flame after it is set in motion, and so the boundary data

are sufficient to determine G o (z, t). The flame location is then found by integrating

(3.34), with the flame assumed to reside at its steady state (corresponding to µ  = 1)

initially. In the calculations reported below, we have fixed σ = 6. Only results for the

axisymmetric (v = 1) case are reported; results for the two-dimensional configuration

exhibit similar behaviour.
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Figure 3.2 Flame position versus time for two different values of the imposed amplitude

In figures 3.2 and 3.3, we plot the flame position D, and the displacement a as

functions of time for fixed frequency w = 2 and two different values of the amplitude

of the imposed oscillation A. As expected, for small values of A the flame and

displacement are seen to respond sinusoidally about their steady states. For larger

values of A, the nonlinear effects become apparent as illustrated by the curves for

A = 0.4. In particular, the response remains periodic (this result is also readily seen

in the phase plane diagrams of both flame position D(t) and the flow displacement

a(t)), but the sinusoidal character of the curves is lost. The mean position of the

flame over one period is now further away from the wall when compared to the steady

state location (3.38). Note that the peaks of the curves are much sharper than the

troughs indicating a more rapid motion when the flame resides further upstream.

This results from the fact that, in an upstream location, the flame experiences a

large relative change in normal gas velocity over a short time interval. The nonlinear

effects are more apparent in the curves showing the variation of the displacement
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Figure 3.3 Flow displacement versus time for two different values of the imposed
amplitude A = 0.1 and A= 0.4, with ω  = 2 and σ  = 6

a(t) in time, and also in the phase planes of both flame position D(t) and the flow

displacement a(t).

We next investigate how the flame response is affected by the frequency of

imposed oscillations. As previously discovered, both experimentally and theoret-

ically, cf. Saitoh and Otsuka(1976) and Im, Bechtold and Law(1996), the flame

exhibits a phase lag with the imposed fluctuations. Our results confirm this

phenomenon and, furthermore, identify a phase lag in the flow displacement. In

figure 3.4, the phase lag is plotted as a function of frequency for fixed amplitude

neously to the fluctuating flow field and are effectively in phase. The phase lag in

the flame's response is seen to increase monotonically with w and at high frequencies

the flame is nearly 90° out of phase. On the other hand, the phase lag between the

displacement and imposed flow is non-monotonic. For modest values of c.0 they are
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Figure 3.4 Phase lag of flame and of flow displacement relative to the incoming flow as
a function of frequency with A = 0.1 and a = 6

clearly out of phase, but at high frequencies they again become in phase with one

another.

In figures 3.5 and 3.6, we plot the flame position and flow displacement as

several interesting features of these figures that are further elucidated in later figures.

We first note from figure 3.5 that the amplitude of oscillations of the flame is smaller

for the higher frequency. This trend was observed by Saitoh and Otsuka(1976)

and has been predicted in previous studies as well. However, the amplitude of the

displacement fluctuations is seen to be larger at the higher frequency. In figure 3.7 we

have plotted these amplitudes, which we define as the difference between successive

maximum and minimum locations over one period, as functions of frequency. The

amplitude of the flame is seen to be non-monotonic. At low frequencies the flame

responds almost instantaneously to the slow fluctuations in the flow and its amplitude
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Figure 3.5 Flame position versus time for two different values of frequency w 2 and
20, with A = 0.1 and α  =6

the amplitude of the fluctuations in the flow displacement increases monotonically

with (.4) and asymptotes to a finite value. At high frequencies the flame is unable to

respond to the rapid oscillations in the flow and appears to be confined to a single

location. Due to the varying strain rate of the flow impinging on the flame there is a

continual change in the divergence of the streamlines so that the flow displacement

a(t), oscillates with a finite amplitude.

The negligible response of the flame at high frequencies as compared to the

pronounced displacement effect suggests the possibility that the magnitude of the

flow displacement may temporarily exceed the flame standoff distance. This is illus-

trated in figures 3.8 to 3.11, where we have plotted both D(t) and a(t) for four


