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ABSTRACT 

ENHANCING THE BIOAVAILABILITY 
OF SORBED POLLUTANTS FROM SEDIMENTS USING ULTRASOUND 

by 
Rachel Mathew 

Many organic compounds, that enter aquatic systems have a strong tendency to 

sorb onto particulate matter which may be present in suspension or as sediment. 

Numerous studies have shown that the sediment in aquatic systems concentrate 

contaminants several orders of magnitude greater than the concentration in the aqueous 

phase. Particulate associated contaminants in sediments are not easily bioavailable. Hence 

the efficacy of any treatment technology would be strongly undermined if the 

contaminants are not made available for microbial utilization. Sediment associated 

contaminants can be made biologically available to various microorganisms under certain 

conditions. 

In this study, desorption studies were conducted by sonicating contaminated 

sediment obtained from Newton Creek in New York. After the sediment was 

characterized, experiments were conducted at various sonication energies and durations. 

Results indicate that sonication of the sediment suspensions significantly enhanced the 

release of organic matter into the soluble phase. Since microorganisms utilize organic 

matter only in the soluble phase, the rate and extent of biodegradation of organic matter 

can be consequently improved. 
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CHAPTER 1 

INTRODUCTION 

The toxicity and persistence of organic pollutants in aquatic sediments are dependent on 

the partitioning of the pollutant. A potential pollutant in an aquatic environment will 

partition itself among the water, sediment, atmosphere, and other biota that exist in the 

environment. If the pollutant sorbs onto the sediment or remains dissolved or dispersed in 

the water it persists in the aquatic environment and poses a potential risk to aquatic life. 

However, if it volatilizes from water, aquatic life will only be threatened by the portion 

that sorbed onto a sediment particle or dissolved in the water. 

When considering the remediation of contaminated sediment, the contaminant 

should be available in the aqueous phase. One of the remediation alternatives considered 

for organic chemicals is bioremediation. To ensure effective bioremediation, the sorbed 

contaminants must be bioavailable to the microorganisms for biological breakdown of 

these contaminants. In other words, any biodegradable contaminant associated with the 

particulate phase has to be released into the soluble phase by desorption before it can be 

degraded by microorganisms ( Mukherjee, 1992, Mukherjee et al., 1992). 

Past research has shown that various characteristics of the contaminant and 

sediment, and the duration of contact of the contaminant with the sediment affect the 

bioavailability of the contaminant (Landrum et al., 1992, Harkey et al., 1994). Most work 

that assess the bioavailability of sediment associated contaminants, evaluates the toxicity 

of the contaminant (Harkey et al.,1994, Landrum et al., 1992, Liu et al., 1996, Segstro et 

al., 1995, Suedel et al., 1993, Swartz et al., 1990). These toxicity tests have been shown 

to be influenced by the bioavailability of the sediment associated with contaminants. 

1 



CHAPTER 2 

RESEARCH OBJECTIVES 

It is known that contaminants bound to sediment and associated with the particulate phase 

are not readily available for microbial degradation. Only when the contaminant is released 

from the particulate phase into the soluble phase through various metabolic pathways can 

it be utilized by microorganisms. 

The objective of this research study was to evaluate the effect of sonication when 

used as a pretreatment process on the release of organic matter into the soluble phase. 

Considering that most organic contaminants bind preferentially to the organic matter in 

natural sediments, releasing the bound organic matter would result in a subsequent release 

of other sediment associated contaminants from the particulate phase. This achieves the 

goal of enhancing contaminant availability. To determine the influence of different 

experimental conditions the following tasks were performed: 

• Studying the effect of sonication time on the release of organic matter. This study was 

conducted at a constant temperature of 10 0  C 5 C, and at an energy output of 

750W and a frequency of 20 kHz.. 

• Studying the effect of sonication energy on the release of organic matter. This study 

was conducted at constant temperature and for a period of 60 seconds. 

2 



CHAPTER 3 

BACKGROUND AND LITERATURE REVIEW 

Assessing the persistence and compartmentalization of potentially toxic chemicals released 

into aquatic systems requires consideration of their interactions with sediments. Some 

chemicals sorb onto both suspended and settled sediments. To quantify the distribution of 

organic pollutants between the aqueous and and particulate phases of aquatic systems, 

partition coefficients are used. In aquatic systems, partitioning between water and 

sediment or suspended solid particles is crucial because it influences the further transfer of 

the compound to the biota and ultimately to humans. 

3.1 Partitioning 

The partitioning of a chemical between water and a sediment can be depicted as 

Kp=Cs 	( 3.1. 1) 
C 

where K p  = sediment/ water partition coefficient (L/ kg) 

C s = amount of chemical sorbed per unit mass of sediment (mg/ kg) 

Cw = amount of chemical in aqueous phase per unit mass of solution (mg/ L) 

Only a fraction of the sorbed chemical will partition onto aquatic organisms. This fraction 

depends on the rate of desorption of the chemical and the duration of exposure. (Podoll et 

al., 1984). 

3.1.1 Factors Influencing Partitioning 

There are various parameters that affect partitioning and an overview of some of the key 

factors are detailed below. Most of the findings are derived from information collected by 

Versar (1984) in a study of selected contaminants at a Superfund site. 

3 



4 

• pH 

The adsorption of acidic compounds such as phenol and basic compounds such as amines 

onto sediment may be significantly affected by pH. Some organic acids bind strongly with 

clays particularly when the pH of the water is about 1 unit above the pKa  value of the 

acid (Lyman et al., 1982). However highly hydrophobic neutral organics are less affected 

by pH. Highly lipophilic molecules like PCBs, PAHs and aldrin are not expected to be 

affected by pH, since they have little tendency to ionize (Versar, 1984). 

O Temperature 

Ambient temperature affects the solubility of certain organic compounds, and therefore 

their adsorption to sediments. The effect of temperature on adsorption varies with the 

compound under consideration. Studies conducted by Lyman et al. (1982) indicate an 18 

percent increase in adsorption coefficient with a temperature drop from 20°C to 5°C. 

May (1980) developed quadratic equations that showed the relationship between 

temperature and solubility for a set of 12 PAHs. The solubility data at typical water 

temperatures indicated that decreased solubility at lower temperatures results in an 

increased affinity of compounds for the solid organic phase. Little information was 

available on the effect of temperature on solubility and partitioning behavior of PCBs. 

• Dissolved organic matter 

The concentration of organic matter dissolved in water affects the equilibrium partitioning 

of organic contaminants between sediments and water. A higher concentration of 

dissolved organic matter favors a greater equilibrium concentration of contaminant in the 

aqueous phase through two mechanisms: first through the increased solubility of organic 

contaminants in water of high dissolved organic material concentration, and then through 

the increased competition for sediment adsorption sites among the organic material 

present (Hassett et al., 1980). Experiments conducted by them show that the removal of 

dissolved organic matter from water samples had no effect on the solubility of aromatic 

hydrocarbons; however the solubilities of aliphatic hydrocarbons were significantly 
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affected. Their work concluded that the presence of dissolved organic matter has no effect 

on the partitioning behavior or solubilities of PAHs. 

• Sediment particle size 

This is a secondary factor in sediment/water partitioning because it characterizes the 

sediment in terms of its composition and the amount of surface area available for sorption. 

Variations in size fractions of sediments at a site may result in a difference in adsorption of 

organic compounds. The adsorption coefficient has been shown to increase by a factor of 

10 with a 100 µm decrease in sediment particle size (Pavlou et al., 1979). The total 

surface of the sediments considerably affects the amount of contaminant being adsorbed. 

The variation in adsorption coefficients for pesticides on coarse and fine sediments was 

shown in experiments done by Karickhoff et al. (1979). 

• Dissolved inorganic compounds 

In most cases, dissolved inorganic compounds are not expected to affect sorption or 

partitioning of hydrophobic organic compounds onto sediment. An exception is the 

reduction of DDT sorption in the presence of metals because the presence of Fe H in soil 

of high organic content can facilitate reduction of DDT to DDE. However these reactions 

in sediments are not easy to quantify, because they occur only under anaerobic conditions 

and depend on the concentrations of metals or the reducing agents in water or sediment, 

• Redox potential (Eh) 

The redox potential, which is a measure of the oxidative state of a system, is more 

significant in affecting inorganics than it is for hydrophobic organics. The partitioning of 

PAHs and PCBs between sediment and water are not affected by Eh, although the DDT 

family shows an effect whose magnitude is difficult to quantify (Versar, 1984). 

Summarizing the above discussion and information from literature, the 

unnormalized partition coefficient (K d) may be expressed as a function of sediment 

organic carbon (OC), salinity (S), temperature (T), dissolved organic matter (D), sediment 
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particle size (P), and suspended particle matter (M) for most hydrophobic organic 

compounds. A form of this relationship is: 

Kd = aOC + bS + cTn  eD +  fPx + gM 	 (3.2.1.1) 

where a, b, c, e, f, g, n, and x are compound specific proportionality constants. This 

expression is theoretical and will require modification as additional information is 

obtained. 

3.2 Bioavailability 

If a chemical is bioavailable, then it should elicit some response from an organism. The 

response is a function of duration of exposure and concentration of substrate. The Sixth 

Pellston Workshop committee defines bioavailable toxicant as the total concentration of 

toxicant released from a sediment to which aquatic organisms are exposed. When the 

degree of bioavailabilty results in a measurable biological response (e.g., mortality, 

bioconcentration) it is termed as the "bioavailable effect level" (Anderson et al., 1981). 

Adams (1984) summarized the bioavailability of lipophilic organic chemicals is as it 

relates to three areas: (1) impact of organic carbon, (2) route of exposure, and (3) feeding 

habits of freshwater benthic invertebrates. 

3.2.1 Bioavailability as a Function of Organic Carbon 

The presence of organic carbon in sediments is the most important factor controlling the 

bioavailability of lipophilic organic chemicals. The use of organic carbon (OC) to predict 

the soil adsorption has become prevalent. Organic carbon is used to normalize the 

differences observed in soil partition coefficients (K p) for a given chemical with different 

soils or soil fractions. 

This relationship can be expressed as: 

K p = K oc * F oc 	 (3 .1 . 1. 1) 

where K p = the soil/ water partition coefficient (L/ mg) 



7 

K oc = the organic carbon normalized 

F oc = fraction of organic carbon = % OC / 100 

Various researchers have investigated into this relationship (Karickhoff et al., 

1979, Hassett et al., 1980, Chiou et al., 1983, and Urano et al., 1984 ), and it has also 

been shown to be applicable to chemicals other than neutral organics. This equation can 

also be used to assess the bioavailability of chemicals in surface waters and sediment 

interstitial waters. In other words the bound and non-bound concentration of a chemical in 

water as a function of suspended particles can be assessed using the water solubility and 

the K oc  for the chemical. According to Adams (1984), for waters with a suspended solids 

of 250 mg/l and 4% C, a chemical with a water solubility of 0.062 mg/I (K oc  = 72,000) 

is approximately 50% non-bound or available for uptake. As the concentration or 

suspended solids and OC change the amount of non-bound chemical also changes. 

However, it is apparent that high values of K oc  are required to decrease the 

bioavailability of a chemical since most lakes and streams have a suspended solids level of 

around 250 mg/1 and the C level of these solids are usually less than 4 %. Sources of OC 

other than sediments and suspended solids in the water column can affect the 

bioavailability of the chemical and one such source is soluble organic carbon which occurs 

both in the water column and in the interstitial water. 

3.2.2 Summary of Bioavailability Factors 

• Organic carbon is the major factor controlling bioavailability of organic chemicals 

sorbed to sediments. 

• Both DC and TOC affect bioavailability. However particulate or TOC is the 

dominant factor for the water column, whereas DC is important for interstitial water. 

• Interstitial water seems to be the principal source of exposure for benthic organisms. 

• Chemical concentrations of neutral organics in aquatic organisms and sediments can 

be normalized by the use of organic carbon. 



CHAPTER 4 

SONICATION AS A PRETREATMENT STEP 

Studies of the nature and behavior of soil and organo-mineral complexes present in it, 

demand methods for dispersion of the soil particles without use of oxidants, acids and 

other chemicals, and minimize the degradation of primary particles as far as possible.The 

use of ultrasonic energy as a method towards physically dispersing soils and 

characterizing the nature and distribution of organic matter has been studied 

(Christensen, 1986, Christensen and Sorensen, 1985, Anderson et al., 1981). However, no 

standard method is in use, as yet (Christensen, 1985). 

Factors which could affect the efficiency of dispersion include power output, 

treatment period, soil to water ratio, and specifications of the ultrasonic equipment 

(Edwards et al., 1967a; North, 1976). Once these factors are considered, the difference in 

studies which use ultrasonic energy would be the energy dissipated per ml of the soil 

suspension (Christensen et al., 1985). From all these studies, it is obvious that sonication is 

a viable technique to be used in the dispersion of soils. However, a question that arises 

with this is to decide on the duration of sonication. Results have shown that it depends 

upon the type of soil, and the time of sonication should not be extended much beyond the 

time required to achieve complete dispersion, so as to minimize degradation of primary 

particles (Edwards et al., 1967a). Edwards and Bremner have also shown that prolonged 

sonication leads to the degradation of primary particles. Gravel and sand size particles 

were reduced to clay size material. 

Advantages of using this method include: 

• simplicity of operation. 

• speed of operation 

• elimination of the use of chemicals and the consequent correction of results obtained 

• no tendency of forming flocculated suspensions 

8 
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• no need to remove organic matter or other aggregating agents and no dissolution of 

soil particles. Hence particle size analysis after dispersion is practically quantitative. 

A study conducted by Liu et al., (1996), shows that sonication enhances the 

release of toxicants from sediment. In their study, the use of a surfactant (sodium 

ligninsulfonate) along with sonication enhanced the release of toxicants. 

4.1 Ultrasonic Waves 

A vibrating wave with a frequency above that of the upper frequency limit of the human 

ear is described as ultrasonic. Generally all frequencies above 16 k c/s are termed 

ultrasonic. 

The wavelength usually determines the application for which ultrasonic power can 

be used, while the frequency required to produce a certain wavelength and the medium of 

propagation will decide the type of generator to be used. 

The transmission of sound is dependent on particle vibration, each particle of the 

medium being displaced successively as the wave travels through the medium. Any 

material possessing elasticity can support the propagation of an acoustic wave, the 

elasticity providing a restoring force that tends to return each element of the material to its 

starting point. Because the wave takes a finite time to pass through a medium, there is a 

difference in phase between the orbital movements of particles at any two points 

(Crawford, 1955). 

With the passage of an intense sound wave through a liquid, the phenomena most 

commonly associated with it is the production of cavitation. Early work (Willard, 1953) 

on the effects of ultrasonics in liquids concluded that the intensity of the propagated sound 

wave must reach a value where cavitation occurs and is responsible for the physical 

change produced. 
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4.2 Cavitation 

The formation of cavities in a liquid and its subsequent collapse followed by intense 

hydraulic shocks is called cavitation. These cavities occur mainly due to excessive flow 

rates of the liquid past obstacles or through constrictions. 

There are two kinds of cavitation bubbles. The first kind is a bubble containing gas 

previously dissolved in the liquid, like air, and forming a bubble of visible size, and the 

second is a bubble of much smaller sizes containing the vapor of the liquid in which 

cavitation is occurring. 

Willard (1953) has conducted an exhaustive analysis of the conditions required for 

the production of cavitation, and the growth and decay of the bubble. Using a high 

intensity mercury arc lamp for illumination, with a lens and mirror system, the cavitation 

bursts were photographed .With this equipment, experimental results indicate that the full 

development of cavitation by ultrasonic energy is a step by step process, with each step 

dependent on the previous phase for its development. The liquid conditions and the three 

cavitation phases are designated as the pre-initiation condition of the liquid, the initiation 

phase of cavitation, the catastrophic phase of cavitation, the bubble phase of cavitation, 

and the post-cavitation phase of the liquid. The initiation and catastrophic phases are 

fundamental and can be produced in either degassed or aerated water, while the bubble 

phase can be produced only in aerated water. The three phases of cavitation are produced 

in an interval of a few milliseconds. 

Willard (1953) has proposed that the mechanism are as follows. 

• The pre-initiation condition requires the presence of weak spots in water. These are 

carried by the water streaming into the high intensity area of the sound field. The 

strength of the weak spots must be less than that of the homogenous water, since it 

has been shown that sonically available forces required to rupture water are far below 

the threshold level required theoretically. (Harvey et al., 1944) 
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• The initiation phase begins when a nucleus of low enough strength enters the high 

intensity area. The nuclei, which is composed of stabilized gas filled cavities in the 

liquid, can be expanded and contracted by the cyclic tension and compression in the 

surrounding water. As the nucleus moves toward the highest sonic concentration its 

volume oscillates with the frequency of the sound wave and gradually but continually 

grows larger. When the cavity reaches its resonant size the catastrophic phase will 

begin. However, if the water turbulence removes the cavity from the high intensity 

area it will collapse and no further effect is produced. The initiation phase is similar in 

aerated and degassed water. 

• At the resonant size, when the catastrophic phase begins, the amplitude of vibration 

suddenly increases but stills varies at the sonic frequency. The small gas content 

prevents collapse in the case of a vapor filled cavity but the violent periodic vibration 

now radiates high amplitude shock waves. These shock waves along with the existing 

sonic waves open up lots of microcavities in the liquid surrounding them locally. These 

cavities are so minute as to be individually indistinguishable but are numerous and very 

dense. During this phase, the violently vibrating cavity streams continuously generate 

new microcavities. This phenomena continues for several milliseconds until the cavity 

passes out of the core. In degassed water, with the cessation of microcavities nothing 

further is visible, while in aerated water, the bubble phase occurs simultaneously with 

the catastrophic phase. 

• The bubble phase is not necessary for the development of the other two phases, and 

relatively few bubbles are generated during a single cavitation burst 

• A post cavitation condition is experienced with aerated water where non-collapsing 

gas bubbles are present. These bubbles are then swept by the sonically induced liquid 

circulation. 
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4.2.1 Cavitation Erosion 

The destructive action of smaller bubbles on solid surfaces immersed in an intense sound 

beam is very apparent. The erosion of surfaces by cavitation is considered to be caused by 

the forcing of the liquid under pressure into the pores of the material and its subsequent 

escape carrying small particles with it (Poulter, 1947). Assuming this theory of liquid 

penetration, the high pressure immediately surrounding the point at which cavities have 

collapsed forces the liquid into the pores of the solid.Then, during the low pressure part of 

the cycle, a liquid tension develops and the solid surrounding the pore is subjected to 

simultaneous pressure from within and on the outer surface. Under these conditions, small 

fragments of the solid can be expected to be forced off the surface and when done 

repetitiously, causes the erosion effect. 

Lord Rayleigh (1917) calculated the velocity of contraction of a cavitation bubble: 

v =( 2/3 Po/p[(r0/r)3  - 1]0.5 	 (4.2. 1 . 1 ) 

where Po  = hydrostatic pressure (kg m-2  s- ') 

p = density of the bubble (kg m-3) 

ro  = initial radius of the bubble(m) 

r 	= radius of the bubble at the particular instant (m) 



CHAPTER 5 

MATERIALS AND METHODS 

Sediment samples obtained from Newton Creek, New York were stored in a plastic bag 

placed in a airtight PVC container at 4°C until characterization work began. To prevent 

drying of the sample with repeated exposure to the atmosphere, a small quantity of the 

sediment sample was placed in several small containers. 

5.1 Sediment Characterization 

The sample emanated a strong smell which was very petroleum like, and had a black, tar-

like appearance.Characterization studies conducted include the measurement of Total 

Solids, Total Volatile Solids, Chemical Oxygen Demand (COD), Total Organic Carbon 

(TOC), particle size, pH and color. All studies were conducted in accordance with 

procedures described in the Standard Methods (1989) using reagent grade chemicals. 

5.1.1 Total Organic Carbon 

The Total Organic Carbon (TC) was estimated using a CHNS/O analyzer (Perkin Elmer, 

Model 2400, CT, USA). The analysis was performed when the combustion and reduction 

furnaces had attained temperatures of 925°C and 640°C respectively. The system was then 

purged with helium and oxygen gases. Before an actual sample run was made, blank runs 

which determine the C, H, and N signals and conditioner runs which equilibrate the 

analyzer's internal system with carbon dioxide, water vapor and nitrogen were conducted. 

When reproducibility of values were obtained, the samples were analyzed. Acetanilide was 

used as a conditioner to check the instrument's response. 

13 
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5.1.2 Particle Size Analysis 

The particle size of the sediment samples were measured using a Particle Size Analyzer 

(Malvern Instruments, Mastersizer X, UK) which was equipped with an automatic liquid 

sampler. The operation of this instrument involved aligning the lenses, measuring the 

background to account for electronic noise, and then adding the sediment suspension until 

a suitable obscuration value was obtained. 

5.1.3 Chemical Oxygen Demand 

The Chemical Oxygen Demand (COD) was determined using the Closed Reflux, 

Colorimetric Method described in the Standard Methods (1989). A HP 8453 UV-Visible 

Spectrophotometer was used to measure the absorbance of the samples at 600 nm and 

glucose standards were used for calibration. The COD of the supernatant obtained after 

centrifuging using a high speed centrifuge (Sorvall Instruments, Model RC — 28S, DE, 

USA) at 2000g for 30 minutes, was used as the soluble COD. 

5.1.4 Total Solids and Total Volatile Solids 

A clean evaporating dish was ignited at 550 ° C for 1 hour in a muffle furnace. It was then 

cooled in a desiccator and weighed before use. 5 g of the sediment was weighed into the 

dish and placed in an oven at 103 ° C - 105 ° C for at least 1 hour. The dish was cooled in 

a desiccator and then weighed. The process was repeated until a constant weight was 

obtained. 

The calculation is shown below 

mg of Total Solids/ g = ( A - B) / C 	 (5.1.4.1) 

where A = weight of dried residue + dish, mg and 

B = weight of dish, mg. 

C = weight of sample used, g 
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The residue from above was ignited at 550 C for 20 minutes in a muffle furnace until 

constant weight was attained. The dish was then cooled in a desiccator and weighed. The 

process was repeated until a constant weight was attained. 

The calculation is shown below. 

mg Volatile Solids/ g = (A - B) / C 	 (5.1.4.2) 

where A = weight of residue + dish before ignition, mg 

B = weight of residue + dish after ignition, mg 

C = weight of sample used, g 

Based on the Total Volatile Solids concentration, a 0.25 % T V S sediment suspension 

was prepared. This was used to conduct all the required characterization work outlined 

above. 

5.2 Procedure to Determine Soluble COD 

In this study the organic carbon concentration of the sediment suspensions was the 

parameter whose change, if there was any, would be measured. The procedure involved 

measuring the soluble COD before and after sonication at various sonication energies and 

duration of contact. The particulate phase was separated from the soluble phase by 

centrifuging at a Relative Centrifugal Force (RCF) of 2000 g for 30 minutes. Previous 

work done (Smith et al., 1990, Pignatello, 1989) and actual experimentation helped in 

selecting a suitable RCF value and duration that would yield a relatively clear supernatant. 

A 0.25 % TVS sediment suspension was prepared in a large glass bottle, by adding 

25 grams of the sediment per liter of deionized water. This concentration was chosen by a 

trial and error procedure, and was selected since higher concentrations could not be 

measured for COD using a UV-Visible Spectrophotometer and lower concentrations did 

not yield consistent results. A magnetic stir bar was used to stir the suspension and keep 

the sediment particles from settling. At the beginning of the sonication experiments, 50 ml 

batches of the well mixed sediment suspension were poured into 100 ml beakers and 
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sonicated as described below. Previous experimentation showed that there was no 

significant release of organic matter after 120 seconds, and hence in this study, sonication 

was carried out in 30 second intervals within a 120 second time limit. The sample was 

cooled after sonication each time. After sonication the samples were thoroughly mixed, 

and the increased dispersion was visible to the naked eye. 

25 ml of each sample was carefully poured into 50 ml disposable centrifuge tubes. 

Centrifugation of the samples were carried out in duplicates. The tubes were placed in the 

rotor symmetrically so as to keep it balanced, and the centrifuge was allowed to cool to 

5°C once again to mimic sediment bed temperatures, before centrifugation was started. 

After centrifuging at a RCF of 2000 g for 30 minutes, the tubes were taken out and the 

supernatant was carefully poured out into clean glass conical flasks. The COD test was 

carried out immediately in duplicate and using blanks. 

5.2.1 Sonication 

Sonication experiments were conducted using a sonicator (Ultrasonic Processor, Model 

VC-1500). For optimum performance the sonicator was tuned at 50 % power output 

before the start of each experiment as per the manufacturer's instructions. Sonication 

experiments were conducted in a 100 ml beaker immersed in a larger cylindrical glass 

vessel containing ice, to maintain isothermal conditions around I0°C. This temperature 

was used to mimic best the sediment bed temperature. 

To assess the influence of sonication time and output energy on the release of 

organic matter into the aqueous phase, 50 nil suspensions of the sediment at a fixed solids 

concentration of 25 g/ 1 (0.25 % T V S), were sonicated for durations of 30, 60, 90 and 

120 seconds at 30%, 40%, 50%, 60%,70%, and 80% of the maximum output energy of 

1500 W. 
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5.2.2 Centrifugation 

After sonication, these suspensions were centrifuged at a Relative Centrifugal Force 

(RCF) of 2000g for 30 minutes to separate the particulate phase from the soluble phase. 

A high speed, refrigerated centrifuge was used (Sorvall Instruments, Model. RC - 28S DE, 

USA). The supernatant was analyzed for soluble COD. 

5.2.3 Quantification 

To quantify the effect of the experimental variables selected, namely the sonication energy 

and time, on the efficacy of sonication in releasing organic matter, the change in 

concentration of the organic matter present in the aqueous phase, before and after 

sonication was used to calculate yields. The soluble phase referred to the supernatant 

obtained after centrifugation while the settled sediment particles represented the 

particulate phase. The concentration of organic matter in the soluble phase was measured 

as Chemical Oxygen Demand (COD). 

The yield of organic matter into the soluble phase was calculated using the relation 

Yield % = Soluble COD  * 100 	 (5.2.3.1) 
Total COD 

This relationship has been used in studies done to quantify solubilization efficiencies for 

different pretreatment methods (Levine et al., 1992, and Mukherjee, 1992). 

The total organic content of this system remained constant, inspite of the release of 

particulate and particulate associated organics into the aqueous phase or its conversion to 

soluble forms.The mass balance of organic carbon in the system was calculated as 

Organic Total = Organic Particulate + Organic  Soluble = Constant 

A Organic Soluble = A Organic Particulate 



CHAPTER 6 

RESULTS AND DISCUSSION 

This study involved selecting a parameter, which could be characterized or measured 

relatively easily, and whose change, if there was any, could also be measured. The organic 

carbon content of the sediment suspensions was the parameter chosen for this study. It 

was assumed that all the oxygen demand was due to organic carbon and that all the 

organic carbon was digested (Clark, 1990). As mentioned in the Materials and Methods 

section, the organic carbon concentration can be estimated stoichiometrically by using the 

COD test. The yield of organic matter into the soluble phase was calculated using the 

relation 

Yield % = Soluble COD * 100 	 (6.1) 
Total COD 

This relationship has been used in studies done to quantify solubilization efficiencies for 

different pretreatment methods. (Levine et al., 1992, and Mukherjee, 1992) 

Characteristics of the sediment are as shown Table 6.1. 

Table 6.1 Sediment Characteristics 

Parameter Sediment Characteristics 

Total Solids 0.65 g / g 

Total Volatile Solids 0.094 g / g 

Particle Size Distribution  256 µm 

pH 7.8 

Total Organic Carbon 4 % 

Total COD 320 mg /1 expressed as oxygen 

Soluble COD 20 mg /1 expressed as oxygen 
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Based on the TVS, a 0.25 % suspension of the sediment was sonicated. The result 

of varying sonication time and energy on soluble organic matter is depicted in Figures 6.1 

and 6.2. The results of the particle size analysis is shown in Figures 6.3, 6.4 and 6.5. 

At the start of the sonication experiments, most of the organic material in the 

sediment suspension was associated with the particulate phase. Hence any observed 

increase in organic carbon concentration after sonication was an indication of an increase 

in the bioavailability of organic matter in the sediment suspensions. The maximum output 

energy is 1500 W. It is observed that with an increase of sonication energy applied, there 

is an increase in the release of organic matter into the aqueous phase. Around 0 — 30 % 

output energy there is no appreciable effect, from 30 — 55 % output energy there is a 

gradual increase in the release of organic matter and around 70 % output energy a 

maximum effect is observed. However the phenomenon halts beyond this point. 

At 50 % output energy and around 90 seconds, an optimum release of organic 

matter was observed. Beyond this there was no appreciable increase in the release of 

organic matter. 

The particle size distribution in the original sediment sample was around 250 µm 

and fines of an average particle size of 11 p.m existed in small quantities (2 %). After 

sonication at 50 % output energy for 30 seconds, there was a dramatic decrease in particle 

size to around 10 µm. When sonication time was increased there was no significant 

difference in the particle size distribution. This size reduction seems to be the result of the 

dispersion of the clay and silt particles which are present in large quantities in sediments 

and are held together by weak forces of attraction. 
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Figure 6.1: Yield (COD) vs Sonication Time 
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Figure 6.2: Yield (COD) vs Sonication Energy (% output) 
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Figure 6.3: Particle Size before Sonication 
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Figure 6.4: Particle Size after Sonication for 30 seconds 
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Figure 6.5 : Particle Size after Sonication for 60 seconds 



CHAPTER 7 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

7.1 Conclusions 

At the start of the sonication experiments, most of the organic material in the sediment 

suspension was associated with the particulate phase. Hence any observed increase in 

organic carbon concentration after sonication was an indication of an increase in the 

bioavailability of organic matter in the sediment suspensions. 

The release of the particulate associated contaminants can be explained by the 

alteration in particle size distribution during sonication. Since the clustered particulate 

matter is broken down and dispersed on application of sonication energy, the available 

surface area also increases, and any particulate organic matter released from the sediment 

or present in the sediment suspension is solubilized to a certain extent into the aqueous 

phase. 

Thus the increase in soluble organic matter and the increased surface area available 

for biological activity would explain the enhancement of the bioavailability of organic 

matter associated with the particulate phase after sonication. 

7.2 Suggestions for Further Research 

Sediments are an important part of the aquatic environment providing food and a habitat 

for many aquatic biota. When sediments become contaminated, they become a source of 

contamination to overlying waters that may be relatively clean. There should exist a means 

to assess the quality of these sediments and associated contaminant concentrations, so that 

biota can be protected. Since pollutants tend to accumulate and concentrate on sediments, 

less sensitive analytical methods are required to analyze sediment samples as compared to 

water samples. Once this is done, the sediment quality can be used as a alternate indicator 

of the overlying water quality. 
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To develop a better understanding of a pollutant's sediment chemistry and 

bioavailability, data on various aspects such as total sediment, interstitial waters, particle 

size diffrentiation, depth profiles should be collected. A review of the uptake, release, 

complexation and degradation of pollutants in sediments, followed by an overall 

assessment of existing sediment quality, future expected trends in sediment quality, 

available remedial technologies for impacted sites and the usefulness of establishing 

sediment quality criteria are requirements. 

There clearly exists a need for more research into the bioavailability of chemicals. 

The role of suspended sediments in alleviating the bioavailability of pollutants for 

bioconcentration needs to be understood well. For chemicals that sorb well, 

bioconcentration and toxicity are major concerns. 

There exist various models which predict the partitioning of pollutants and their 

subsequent bioavailability. A significant impediment towards developing appropriate and 

predictive environmental models that describe the fate of pollutants, lies in the inability to 

describe sorption reactions properly. The ideas established in these models need to be 

validated using good laboratory and field studies. 



APPENDIX A 

DETERMINATION OF SOLUBLE COD 

The sediment suspensions which were sonicated at various energies and durations were 

centrifuged, and the supernatant was analyzed for soluble COD. The results obtained were 

plotted as a function of varying sonication time and varying sonication energies. To 

demonstrate the effect of varying sonication times and energies on the Yield, which was 

measured as COD, graphs of the above mentioned variables were plotted as a function of 

the Yield. 

The Yield was calculated using the relationship Yield (COD) = Soluble COD (mg/l) 
Total COD (mg/I) 

As mentioned earlier the Total COD was found to be 320 mg/I. 

Table A.1 Effect of Sonication Time on Yield 

Sonication Time (seconds) Soluble COD (mg/I) Yield (COD) 

0 20 0.0625 

15 120.67 0.3377 

30 200.57 0.6267 

60 291.7 0.911 

90 295.8 0.9243 

120 300.4 0.9387 

200 301.8 0.943 

300 301.7 0.9428 
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Table A.2 Effect of Varying Sonication Energy on the Yield 

Sonication Energy 

(% Total Output) 

Soluble COD (mg/1) 

 

Yield (COD) 

0 20 0.0625 

30 55.46 0.1733 

40 155.46 0.4858 

50 291.57 0.9111 

60 303.13 0.9472 

70 312.94 0.9779 

90 313.54 0.9798 
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APPENDIX B 

VARIATION OF PARTICLE SIZE DISTRIBUTION BEFORE AND AFTER 
SONICATION 

The particle size distribution before and after sonication was measured using a particle size 

analyzer. The results are shown below. The particle size is expressed in µm and the 

volume % represents the percentage of the total number of particles that lie in that particle 

size range. 

Table B.1 Particle Size Distribution Before Sonication 

Particle Size (µm) Volume % Particle Size(µm) Volume % 

0.5 0 20.9 0 

1.32 0 25.46 0.07 

1.6 0 31.01 0.23 

1.95 0 37.79 0.26 

2.38 0 46.03 0.17 

2.9 0 56.09 0 

3.53 0 68.33 0 

4.3 0 101.44 0.15 

5.24 0 150.67 7.86 

6.39 0 183.44 16.64 

7.78 0 223.51 25.6 

9.48 0 272.31 23.65 

17.15 0 331.77 15.43 
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Table B.2 Particle Size Distribution After 30 Seconds Sonication 

Particle Size (µm) Volume % Particle Size (um) Volume % 

0.2 0 7.01 5.52 

0.48 0 8.48 5.64 

0.59 0 10.27 5.69 

0.71 0 12.43 5.59 

0.86 0 15.05 5.26 

1.04 0 18.21 4.67 

1.26 0 22.04 3.96 

1.53 0 26.68 3.34 

1.84 0 32.29 0 

2.23 0 39.08 0 

2.7 3.95 47.3 0 

3.27 4.43 57.25 0 

3.95 4.82 69.3 0 

4.79 5.13 83.87 0 

5.79 5.35 101.52 0 
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Table B.3 Particle Size Distribution After 60 Seconds Sonication 

Particle size (µm) Volume % Particle Size (µm) Volume % 

0.2 0 7.01 6.06 

0.48 0 8.48 6.04 

0.59 0 10.27 6.01 

0.71 0 12.43 5.89 

0.86 0 15.05 5.58 

1.04 0 18.21 5.01 

1.26 0 22.04 4.26 

1.34 0 24.54 3.1 

1.52 0 26.68 3.5 

1.84 0 32.29 2.79  

2.22 3.22 39.08 2.07 

2.7 4.05 47.35 1.37 

3.27 4.74 69.3 0.82 

3.95 5.73 83.87 0.48 

4.79 5.96 101.52 0.32 

5.79 6.04 122.87 0 	 
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