
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Theses and Dissertations

Fall 1-31-1997

Application of geometric hashing techniques to retrieval of high Application of geometric hashing techniques to retrieval of high

dimensional objects in scientific databases dimensional objects in scientific databases

Joyce Ye Lu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Lu, Joyce Ye, "Application of geometric hashing techniques to retrieval of high dimensional objects in
scientific databases" (1997). Theses. 1018.
https://digitalcommons.njit.edu/theses/1018

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @
NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For
more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1018&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F1018&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1018?utm_source=digitalcommons.njit.edu%2Ftheses%2F1018&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

APPLICATION OF GEOMETRIC HASHING TECHNIQUES
TO RETRIEVAL OF HIGH DIMENSIONAL OBJECTS

IN SCIENTIFIC DATABASES

by
Joyce Ye Lu

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

January 1997

APPROVAL PAGE

APPLICATION OF GEOMETRIC HASHING TECHNIQUES
TO RETRIEVAL OF HIGH DIMENSIONAL OBJECTS

IN SCIENTIFIC DATABASES

Joyce Ye Lu

Dr. Jason T.L. Wang, Thesis Advisor 	 Date
Associate Professor of Computer and Information Science,

NJIT, Newark, NJ

Dr. Peter Ng, Committde Member 	 Date
Chairman and Professor of Computer and Information Science,
NJIT, Newark, NJ

Dr. Marvin Nakayama, Committee Member 	 Date
Assistant Professor of Computer and Information Science,
NJIT, Newark, NJ

BIOGRAPHICAL SKETCH

Author: 	Joyce Ye Lu

Degree: 	Master of Science

Date: 	 January 1997

Undergraduate and Graduate Education:

Master of Science in Computer Science,
New Jersey Institute of Technology,
Newark, New Jersey, 1997

Bachelor of Science in Computer Science,
Shanghai Jiao Tong University,
Shanghai, P.R.China, 1994

Major: 	Computer Science

ABSTRACT

APPLICATION OF GEOMETRIC HASHING TECHNIQUES
TO RETRIEVAL OF HIGH DIMENSIONAL OBJECTS

IN SCIENTIFIC DATABASES

by
Joyce Ye Lu

An approach to designing very fast algorithms for tackling the problem of

approximate object matching in very large databases of high-dimensional objects is

proposed. Given are a target object C and a database D containing information

about a set of high-dimensional objects each of which is represented as a set of

points. Our algorithms have an off-line object preprocessing (shape representation)

phase and a recognition phase. The described algorithms determine those objects

from D which are the closest to object C, according to delete or insert some points,

move and rotation. All of these can be achieved very efficiently with the help of

geometric hashing techniques. This scheme has been successfully applied to a real

scientific database.

This thesis is dedicated to
my parents

ACKNOWLEDGMENT

The author wishes to express her sincere gratitude to her supervisor, Professor

Jason T.L. Wang, for his guidance, encouragement and support throughout this

research. Special thanks to Professors Peter Ng and Marvin Nakayama for serving

as members of the committee. And Finally, a thank you to Michael Luo for his

suggestions and expert assistance throughout this project.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

2 HASHING CONCEPTS 	 4

3 DESCRIPTION OF GEOMETRIC HASHING TECHNIQUES 	 6

3.1 	General Introduction 	6

3.2 Features for Object Representation 	7

3.3 General Framework 	9

4 BASIC MEMORY IMPLEMENTATION 	 12

4.1 Problem Definition 	 12

4.2 Algorithm 	 12

4.3 	An Example of the Algorithm 	 17

5 3-DIMENSIONAL DISK-BASED IMPLEMENTATION 	 21

5.1 3D Implementation 	 21

5.2 Disk-Based Implementation 	 22

6 CONCLUSIONS 	 24

6.1 Future Directions 	 25

APPENDIX A Memory-Based Implementation 	 26

APPENDIX B Disk-Based Implementation 	 38

. APPENDIX C 3-Dimensional Implementation 	 53

REFERENCES 	 70

LIST OF TABLES

Table 	 Page

4.1 	Contents of the Hash-table 	 19

viii

LIST OF FIGURES

Figure 	 Page

1.1 Substructure Search vs Similarity Search 	 3

2.1 Hashing Concepts 	

3.1 The General Scheme of The Geometric Hashing Algorithm 	 10

4.1 Hash-table Used in the Memory Implementation 	 14

4.2 Flowchart of the Off-line Algorithm 	 15

4.3 Flowchart of the On-line Algorithm 	 16

4.4 Example of the Algorithm 	 18

5.1 Hash-table Used in the Disk-Based Implementation 	 23

ix

CHAPTER 1

INTRODUCTION

As existing molecular information repositories need to be processed more rapidly,

and a greater variety of tools become available, the computer plays an increasingly

important role in directing and streamlining the drug discovery and design process.

Computer can help researchers to quickly eliminate a priori unlikely candidates,

thus avoiding long and expensive activity screenings. More important, they can

allow researchers to identify new promising compounds based only on the available

information on the receptor site, or on other lead compounds (see [10]).

To this date, hundreds of protein structures have been determined via X-ray

crystallography and nuclear magnetic resonance (NMR) methods. These data are

readily available as public resource of molecular structure data and allow pharma-

cologists and biologists to investigate various aspects of protein structures and their

complex behaviors. In addition to these public databases, a number of other (public

and proprietary) databases of small organic molecules have been assembled through

the efforts of numerous pharmaceutical and biotechnology companies, and research

organizations.

In many cases, the critical information that enables researchers to develop

hypotheses, concerning potentially new molecular candidates for synthesis and

testing, must be recovered through a search in a potentially very large database

of relevant information. Indeed, the underlying common element to several stages

of medicinal chemistry investigation requires searching of chemical information

databases.

Given an object C and a database D containing information about the high-

dimensional structures of a possibly large set of objects, the following operations

need to be defined and carried out:

1

2

1. "structure insertion": the ability to incorporate all available structural

knowledge about object C in the database D;

2. "structure membership": determination of whether the object C is already

included in the database D;

3. "substructure search": identify and report all the member objects from D that

contain a particular substructure of object C;

4. "similarity search": identify and report all the member objects from D that

are similar to object C.

From all above, the most frequently used are substructure search and similarity

search. For a substructure search the bit screen of the hit must contain exactly all of

the query bits. Thus, the substructure search may not identify structures with minor

deviations from the query structure. It is for this reason that similarity searches have

been developed. Figure 1.1 illustrates the difference in results of a substructure search

and a similarity search.

Before concluding this chapter a final distinction should be noted. This is the

distinction between identification and recognition of those objects from the database

D which are similar to the given target object C. Identification restricts itself to

reporting only the identities of the objects from database D that match the target

object C. On the other hand, recognition entails not only the reporting of the

identities of the matching objects but also the determination and reporting of the

necessary transformations that will bring each of the identified matching objects

to best registration with the target object. Recognition is arguably a much more

difficult problem than identification. This is particularly evident in the case of very

large databases. In this thesis, we will deal with recognition.

(1) Original Model

(2) 	Result of Similarity Search 	 (3) Result of Substructure Search

Figure 1.1 Substructure Search vs Similarity Search

3

CHAPTER 2

HASHING CONCEPTS

Webster's dictionary defines the word "hash" as a verb "to chop (as meat and

potatoes) into small pieces". Strange as it may sound, this is correct. Basically,

hashing allows us to chop up a big table into several small subtables so that we can

quickly find the information once we have determined the subtable to search. This

determination is made using a mathematical function, which maps the given key to

hash cell i as shown in Figure 2.1. The cell i could then point us to the subtable of

size ni . Given a trace of R frames with N distinct addresses and a hash table of M

cells, the goal is to minimize the average number of lookups required per frame (see

[2]).

If we perform a regular binary search through all N addresses, we need to

perform 1+ log2 (N) or log2 (2N) lookups per frame. Given an address that hashes to

the ith cell, we have to search through a subtable of ni entries, which requires only

log(2ni) lookups. The total number of lookups saved is

where ri is the number of frames that hash to the ithe cell, E ri = R. The net saving

per frame is

Here, qi = ri /R denotes the fraction of frames that hash to the ith cell, and pi = ni/N

is the fraction of addresses that hash to the ith cell. The goal of a hashing function

is to maximize the quantity ∑ --qi log2pi . Notice that pi and qi are not related. In

the special case of all addresses being equally likely to be referenced, q; is equal to pi

and the expression E —pi /og2pi would be called the entropy of the hashing function.

It is because of this similarity that we will call the quantity ∑-qilog2pi the entropy

or information content of the hashing function. It is measured in units of "bits".

4

Subtables

Figure 2.1 Hashing Concepts

5

h(Addr)

n1

ni

D 111

Hash Cell

CHAPTER 3

DESCRIPTION OF GEOMETRIC HASHING TECHNIQUES

3.1 General Introduction

A general object recognition scheme, geometric hashing, is used in this thesis. It is

general in the sense that it applies to all important object recognition tasks. It creates

a uniform approach for dealing with various types of objects. Another important

merit of the method is its efficiency (see [1]).

The objects are represented as sets of local features, such as points or lines.

The only important requirement from these features is invariance under the object

transformation. The transformation invariant geometric relations among the object

features are encoded, using minimal feature subsets as reference. This is achieved by

standard methods of analytic geometry, invoking coordinate frames based on these

minimal feature subsets. The minimal feature subsets constitute coordinate frames,

in which other features are represented by their transformation invariant coordinates.

The matching procedure has two major steps. The first one precompiles the

representations of the database objects, resulting in a hash-table based on these repre-

sentations. This step is executed off-line on the database objects and is independent

of the next phase of the algorithm. The second step, recognition proper, is executed

on the target object using the previously prepared hash-table for fast on-line recog-

nition. The hash-table serves as an associative memory, allowing for fast retrieval of

'similar' object feature subsets, and hence effectively prunes the space of 'candidate'

object feature subsets.

The proposed recognition method has some major merits. First, it suggests a

unified framework for coping with the object recognition problem under all feasible

object transformation types. Second, it stands out for its efficiency in performing

on-line recognition. Thus, it creates a good base for a general and practical object

recognition system.

6

7

3.2 Features for Object Representation

Object representation plays an important role in every recognition scheme. Since

object-based recognition system match stored objects against the target, the repre-

sentation should include enough information to drive this matching process. It should

be rich enough to enable discrimination between similar objects, which suggests the

completeness of the representation. On the other hand, the representation should be

succinct to allow efficient recognition. One wants to be able to match the objects

against the target using some minimal characteristic information, so that the inherent

complexity of the matching algorithm will be small.

One way to represent objects is by selected points. These points can be derived

by any desired operator, provided that this operator is transformation invariant. We

term these points as interesting points (see [3]). The method of interesting points

extraction might vary with the type of objects in the database (see [4]).

In the implementation of geometric hashing, points were one of the main

features used for matching. In the two-dimensional affine matching case, the object

representation included a set of interesting points, which are invariant under this

transformation. They were derived as points on the boundary curves of the objects,

having sharp convexities and deep concavities. For recognition of nonconvex bodies,

points induced by concavity entrances are used for object format.

When the objects under consideration are polyhedral, or can be well approx-

imated by polyhedra, a representation by lines is effective. There are some important

characteristics for the representation by lines. First, lines are invariant under any

transformation type. Second, lines are, usually, more stable than points, and hence

line matching can yield better recognition results.

Many objects can be described by sets of the so called characteristic curves

(see [5]). These curves can be, for example, boundary curves of planar rigid bodies,

or even artificial curves depicted on outer surfaces of objects. Such curves can be

8

efficiently used for recognition under the similarity transformation, even in cluttered

images. This is because under such a transformation angles and distance ratios are

preserved (Le. the shape changes up to a scale factor) (see [6]).

One can often find several types of suitable features in the objects. These can

be a combination of points, lines and curve segments. If these features are all likely

to appear in the target, one should include in the object representation the union of

all the features.

In the above we described various suitable features for shape representation.

Naturally, one might choose different features (or combination of features), depending

on the nature of the objects in the database. However, both issues of completeness

and efficiency of the representation have to be addressed.

When considering representation by the above described local features (points,

lines, curve segments, etc.) one achieves two main goals. First, such a represen-

tation is invariant under the object transformation. Second, it creates a compact

representation of the objects, which will later allow for efficient matching. The main

drawback of representation by local features is its incompleteness. Usually, objects

cannot be fully described by a set of local features. To overcome this problem, the

object representation in geometric hashing utilizes two forms of data. One form

is local object features, which are used in the matching procedure. In addition, a

full description of the object is also stored. For example, the boundary curves of

planar rigid bodies completely describe their shapes, while a wire frame model fully

describes polyhedral objects. The local features are used for matching properly. The

additional complete representation is used after the matching step for verification

and further refinement of the objects' localization. This allows geometric hashing to

achieve both efficient matching and reliable verification.

9

3.3 General Framework

The general geometric hashing algorithm can be summarized in the following steps

(see Figure 3.1) (see [1]):

Preprocessing of model objects

For each database object :

1. Extract a set of interesting features (points, lines or other suitable features)

from the database object. Denote their number by m.

2. Determine the minimal number of features which can serve as a basis for a

coordinate frame, allowing expression of all other features by transformation

invariant coordinates. The number of these features depends on the dimension

of the object space and on the specific transformation. Denote their number

by k. Now, for each k-tuple of object points compute the coordinates of

all the other object points according to this basis k-tuple and hash these

coordinates into a table which stores all the pairs (model, basis k-tuple) for

every coordinate.

Recognition of similar objects to a given target

Given a target object:

1. Extract its interesting features. (Let their number be n.)

2. Choose a basis k-tuple and compute the coordinates of the other features in

this basis.

3. For each such coordinate check the appropriate entrance in the hash- table and

vote for the pairs(object, basis k-tuple) appearing there (see [7,8]).

Figure 3.1 The General Scheme of The Geometric Hashing Algorithm

1
0

11

4. Find the pairs which obtained the highest votes. If a certain pair scored a large

number of votes, decide that its object and basis k-tuple correspond to the one

chosen in the target.

5. For a candidate k-tuple compute the transformation giving the correspondence

between it and the target's k-tuple, compute correspondences of additional

interesting features that this transformation induces, and find the best transfor-

mation (say, in least squares sense) which produces all these correspondences.

6. Verify the transformed model against the target object. The verification can

be done not only using the interesting points, but also using any other available

information, relating to the object representation. If the verification fails, go

back to Step 2 and choose another basis k-tuple in the target objecti

CHAPTER 4

BASIC MEMORY IMPLEMENTATION

In this chapter we will start from the two-dimensional objects and describe the

suggested method in detail. We begin the presentation with the definition of the

problem.

4.1 Problem Definition

Consider the problem of information retrieval in a two-dimensional object database.

Given are a target object C in the form of a set of coordinates of the object's inter-

esting points, and also a database D which is a collection of the sets of interesting

points' coordinates for each one of the member objects.

The task at hand is to determine, for the given object C and database D, all

the objects of D that are closest to C, according to some kind of rotation, move,

along with delete or insert some interesting points.

4.2 Algorithm

We have developed a hash based algorithm as follows:

Off-line preprocessing of database objects

For each database object :

1. Represent the database object by a set of points.

2. For each noncollinear triplet of the object points :

(a) Compute the Theta angle of the triplet.

(b) Compute the coordinates of all the other points according to the basis

triplet.

12

13

(c) Compute the hash value and hash the coordinates into a table which stores

all the pairs (basis triplet, angle, model number) of every coordinate.

(Figure 4.1 shows the structure of the hash-table)

On-line recognition of target object

Given a target object:

1. Extract its interesting points.

2. For each noncollinear triplet of the target points :

(a) Compute the Theta angle of the triplet.

(b) Compute the coordinates of all the other points according to the basis

triplet.

(c) Compute the hash value and search in the hash-table for the same hash

value, and then give each matching object a vote.

3. Determine answer by thresholding the voting records.

Figure 4.2 shows the flowchart of the off-line algorithm and Figure 4.3 shows

the flowchart of the on-line algorithm.

We have implemented the algorithm and developed a memory-based version

(see Appendix I) and also a disk-based version (see Appendix II).

When we get a triplet, (x0, yo), (x1 , y1), (x3, y3), the formula used to find the

new X, Y values for an interesting point is as follows:

The data structure used here to store the

subtables are linked list.

Figure 4.1 Hash-table Used in the Memory Implementation

1
4

Figure 4.2 Flowchart of the Off-line Algorithm

15

Figure 4.3 Flowchart of the On-line Algorithm

16

17

4.3 An Example of the Algorithm

In this section, we will present a simple example. Given are a target object C

containing only four interesting points and a database D which is a collection of

three objects. (see Figure 4.4)

In the off-line preprocessing phase, for each database object (from 1 to 3), for

each noncollinear triplet, compute the Theta angle, compute the coordinates of all

the other interesting points according to the triplet and then compute the hash value

and store them into the hash-table. Table 4.1 shows part of the hash-table after the

off-line preprocess is done.

In the on-line recognition phase, for each noncollinear triplet, compute the

Theta angle and for each interesting point compute the new coordinate, hash value,

then search in the hash-table for the same index. If every item (Base, X, Y, Theta)

is matched, give that object a vote. After search is completed, the one with the

highest vote is the answer. For this example, we got the answer like this:

Figure 4.4 Example of the Algorithm

18

Table 4.1 Contents of the Hash-table

Index Base X FY Theta Object
1 3 20J0.141897 2
3 1 0 2 1.5708 3
4 0 3 0.321751
8 3 	j 1 - 2 0.321751 2
9 	I 0 	I 1 2 0.785398 2
9 2 0 3 2.67795 2

10 0 2 	 1 0.785398 3
12 0 2 3 0.982794 3
15 3 0 1 	 0.124355 3
19 3 	1 2 1 0.463648 3
19 3 1 2 0.463648 3
19 0 1 2 0.785398 3
19 0 3 2 0.321751 2
20 0 3 1 	j 1.10715 2
23 0 1 3 1.10715 2
27 1 3 0 2.81984 3
27 2 3 1 1.5708 1
27 2 1 3 1.5708 1
27 1 2 0 1.5708 1
27 1 0 2 1.5708 1
30 1 2 0 1.5708 3
32 0 	'1 3 0.197396 3
33 2 3 1 0.785398 3
33 2 1 3 0.785398 3
33 3 2 0 0.463648
33 0 1 3 0.463648 1.
33 1 0 3 1.5708 2
33 1 3 0 1.5708 2
33 3 2 1 0.321751 2
36 2 0 3 2.35619 1
36 2 0 1 0.785398 1
36 1 3 2 0.785398 1
36 1 3 0 2.35619 1
37 3 0 • 2 0.141897 2
38 3 2 0 0.588003 3
38 3 0 2 0.588003 3
39 2 1 0 0.785398 3

•
•
•

19

• object 1: 24

O object 2: 6

O object 3: 2

O the correct answer is object 1.

20

fp = fopen("hashtable.dat","r");
while ((fgets(line,100,fp))!=NULL)
{

sscanf(line,"%s%s%s%s%s",i,base,x,y,z,n);
tmp = new Item;
tmp->Base = atoi(base);
tmp->X = atoi(x);
tmp->Y = atoi(y);
tmp->Z = atoi(z);
tmp->num = atoi(n);
int index=atoi(i);
tmp->next = hash[index];
hash[index]=tmp;

}
fclose(fp);

}

void insert(int n)
{
int index =abs(n) % 100;
Item *tmp;

tmp=new Item;
tmp->X = x;
tmp->Y = y;
tmp->Z = z;
tmp->Base = base;
tmp->num=model_num;

tmp->next=hash[index];
hash[index]=tmp;
}

void display()
{

Item *tmp;

char Outputfilename[] = "hashtable.dat";

fstream Outstream;
Outstream.open(Outputfilename, ios::out);

60

for(int i=0;i<100;i++)
{

tmp=hash[i];

while(tmp != NULL)
{

Outstream<<i<<" ";

Outstream<<tmp->Base<<" "<<tmp->X<<" "<<tmp->Y<<" "<<tmp->Z
<<" "<<tmp->num<<endl;

tmp=tmp->next;
}

}

}

61

62

/***/

/*Program: 3d_match.0 	 */
/*Author : Joyce Ye Lu 	 */

/* 	 */

/*This program compares the target objet with all the database 	*/
/*objects and finds out the closest one. 	 */
/***/

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

#include <math.h>

#define Maxsize 100

#define model_num 6

struct Item

{

int Base,X,Y,Z;

int num;

Item *next;

};

typedef Item *Itempointer;

Itempointer hash[100];

int I, J, K,L, size, key;

float X0,Y0,Z0,X1,Y1,Z1,X2,Y2,Z2, X3, Y3, Z3,U,V,W, NewU, NewV, NewW;

float A[Maxsize];

int model[model_num];

void getdata();

void find_U_V_W();

void find_I_J_K_L(int n);

void find_X_Y_Z();

void find_New_UVW();

void find_key();

void form_hashtable();

void display();

void find_model();

double cal2(double[][2]);

double cal3(double[][3]);

void rev_matrix3(double[][3]);

main()

{
form_hashtable();

getdata();
find_I_J_K_L(size/3);
display();

}

void getdata()

{
char Inputfilename[25];
cout<<"Please enter your input file name:";
cin>> Inputfilename;

fstream Instream;
Instream.open(Inputfilename,ios::in);

int i=0;
while(!Instream.eof())

{
Instream>>A[i];
i++;

}

Instream.close();
size = i;

}

void find_I_J_K_L(int n)

{
for(int i=0;i<n;i++)

for(int j=0;j<n ;j++)

{
if(j != i)
for(int k=0;k<n ;k++)

{
if (k != i && k != j)

for(int 1=0;1<n; 1++)

63

{

if (1!=i && 1!=j && 1!=k)
{

I=i;J=j;K=k;L=1;

find_X_Y_Z();

find_U_V_W();
}

}

}

}

}

void find_X_Y_Z()
{

X0 = A[3*I];

YO = A[I*3+1];

Z0 = A[I*3+2];

X1 = A[J*3];

Y1 = A[J*3+1];

Z1 = A[J*3+2];

X2 = A[K*3];

Y2 = A[K*3+1];

Z2 = A[K*3+2];

X3 = A[L*3];

Y3 = A[L*3+1];

Z3 = A[L*3+2];

}

void find_U_V_W()
{

for(int i=0; i<size/3;i++)

if(i != I && i != J && i != K && i != L)

{ U = A[3*i];

V = A[i*3+1];

W = A[i*3+2];

find_New_UVW();

find_key();

find_model();
}

64

double cal2 (double matrix[] [2])
{

return (matrix [0] [0] *matrix [1] [1] -matrix [0] [1] *matrix [1] [0]) ;
}

double cal3 (double matrix [] [3])
{

double a ,b ;

a = matrix [0] [0] *matrix [1] [1] *matrix [2] [2] +
matrix [0] [1] *matrix [1] [2] *matrix [2] [0] +
matrix [0] [2] *matrix [1] [0] *matrix [2] [1] ;

b = matrix [0] [0] *matrix [1] [2] *matrix [2] [1] +
matrix [0] [1] *matrix [1] [0] *matrix [2] [2] +
matrix [0] [2] *matrix [1] [1] *matrix [2] [0] ;

return (a -b) ;
}

void rev_matrix3 (double matrix [] [3])
{

double matrix3 [3] [3] ;
double matrix2 [2] [2] ;
int i,j,k,l;
double matrix_value;

matrix_value = cal3 (matrix) ;
for (i =0; i<=2 ; i++)
{

for (j=0; j<=2; j++)
{

/* row 0 */
if (i ==0 && j==0)
{

matrix2 [0] [0] = matrix [1] [1] ;
matrix2 [0] [1] = matrix [1] [2] ;
matrix2 [1] [0] = matrix [2] [1] ;
matrix2 [1] [1] = matrix [2] [2] ;

}

else
if (i ==0 && j==1)
{

65

matrix2 [0] [0] = matrix [0] [1] ;
matrix2 [0] [1] = matrix [0] [2] ;
matrix2 [1] [0] = matrix [2] [1] ;
matrix2 [1] [1] = matrix [2] [2] ;

}
else
if (i ==0 && j==2)

{
matrix2 [0] [0] = matrix [0] 	;
matrix2 [0] [1] = matrix [0] [2] ;
matrix2 [1] [0] = matrix [1] [1] ;
matrix2 [1] [1] = matrix [1] [2] ;

}

else
/* row 1 */
if (i ==1 && j==0)
{

matrix2 [0] [0] = matrix [1] [0] ;
matrix2 [0] [1] = matrix [1] [2] ;
matrix2 [1] [0] = matrix [2] [0] ;
matrix2 [1] [1] = matrix [2] [2] ;

}

else
if (i ==1 && j==1)
{

matrix2 [0] [0] = matrix [0] [0] ;
matrix2 [0] [1] = matrix [0] [2] ;
matrix2 [1] [0] = matrix [2] [0] ;
matrix2 [1] [1] = matrix [2] [2] ;

}

else
if (i ==1 && j==2)
{

matrix2 [0] [0] = matrix [0] [0] ;
matrix2 [0] [1] = matrix [0] [2] ;
matrix2 [1] [0] = matrix [1] [0] ;
matrix2 [1] [1] = matrix [1] [2] ;

}

else
/* row 2 */
if (i ==2 && j==0)

matrix2 [0] [0] = matrix [1] [0] ;
matrix2 [0] [1] = matrix [1] [1] ;

66

matrix2 [1] [0] = matrix [2] [0] ;
matrix2 [1] [1] = matrix [2] [1] ;

}

else
if (i ==2 && j==1)

{

matrix2 [0] [0] = matrix [0] [0] ;
matrix2 [0] [1] = matrix [0] [1] ;

matrix2 [1] [0] = matrix [2] [0] ;
matrix2 [1] [1] = matrix [2] [1] ;

}

else
if (i ==2 && j==2)
{

matrix2 [0] [0] = matrix [0] [0] ;
matrix2 [0] [1] = matrix [0] [1] ;
matrix2 [1] [0] = matrix [1] [0] ;
matrix2 [1] [1] = matrix [1] [1] ;

}

matrix3 [i] [j] = cal2 (matrix2) /matrix_value ;
if (((i+j)/2)*2 != i+j)

matrix3 [i] [j] = -matrix3 [i] [j] ;
}

}

for (i=0;i<=2;i++)
for (j=0;j<=2;j++)

matrix [1] [j] = matrix3 [i] [j] ;
}

void f ind_New_UVW 0

{
int i,j,k;
double matrix [3] [3] = 	{ X1-X0 X2-X0 X3-X0,

Y1-Y0, Y2-Y0, Y3-Y0,
Z1-Z0 Z2-Z0, Z3-Z0 };

double matrix1 [3] [1] = 	{ U-X0 ,
V-Y0 ,
W-Z0};

double result [3] [1] ;

rev_matrix3 (matrix) ;

67

for (i=0;i<=2;i++)
for (j=0;j<1;j++)
{

result[i][j] = 0;
for(k=0; k<=2; k++)

result [i] [j]= matrix [i] [k]*matrix1 [c] [j] +result Di [j]
}

NewU=result[0] [0];
NewV=result[1][0];
NewW=result[2][0];

}

void find_key()
{

key= (int) (NewU*210 + NewV*120 + NewW*212);
}

void form_hashtable()
{

Item *tmp;
char i[5],base[15],x[15],y[15],z[15],n[15];
char line[100];

for (int j=0;j<100;j++)
hash[j]=NULL;

FILE *fp;
fp = fopen("hashtable.dat","r");
while ((fgets(line,100,fp))!=NULL)
{

sscanf(line,"%s%s%s%s%s",i,base,x,y,z,n);
tmp = new Item;
tmp->Base = atoi(base);
tmp->X = atoi(x);
tmp->Y = atoi(y);
tmp->Z = atoi(z);
tmp->num = atoi(n);
int index=atoi(i);
tmp->next = hash[index];
hash[index]=tmp;

68

69

}
fclose(fp);

}

void find_model()

{
Item *current;
int i;
int index = abs(key) % 100;

current = hash [index];
while(current != NULL)

{
if (current->Base==I && current->X==J && current->Y==K && current->Z==L)

model[current->num]++;
current = current->next;

}
}

void display()

int largest=model[1];
int largest_model=1;

for (int i=1;i<model_num;i++)
if(model[i]>largest)

largest = model [I]
largest_model=i;

}

cout<<"The closest model is model "<<largest_model<<endl;

for(int j=1;j<model_num;j++)
cout<<model [j] <<endl;

REFERENCES

1. Y. Lamdan, "Object Recognition by Geometric Hashing," Ph.D. dissertation,
Dept. Computer Science, New York University, New York, NY, May 1989.

2. J. S. Vitter and W. Chen, Design and Analysis of Coalesced Hashing, Oxford
University Press, New York, NY, 1987.

3. Y. Lamdan, J. T. Schwartz and H. J. Wolfson, "Affine Invariant Model-Based
Object Recognition," IEEE Transactions on Robotics and Automation,
vol. 6, no. 5, pp. 578-590, October 1990.

4. D.P. Huttenlocher and S. Ullman, "Object Recognition Using Alignment," in
Proceedings of the first Int. Conf. on Computer Vision, 1987, pp. 102-111,
London.

5. J. T. Schwartz and M. Sharir, "Identification of Partially Obscured Objects in
Two Dimensions by Matching of Noisy 'Characteristic Curves'," The Int.
J. of Robotics Research, vol. 6, no. 2, pp. 29-44, 1987.

6. R. Cyganski and J. A. Orr, "Application of Tensor Theory to Object Recog-
nition and Orientation Determination," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 7, no. 6, pp. 662-673, Nov. 1985.

7. E. Kishon and H. J. Wolfson, "Three Dimensional Curve Matching," Proceedings
of the AAAI Workshop on Spatial Reasoning and Multisensor Fusion,
October 1987, pp. 250-261, St. Charles, Illinois.

8. J. Hong and H. J. Wolfson, "An Improved Model-Based Matching Method
Using Footprints," Proceedings of the Int. Conf. on Pattern Recognition,
October 1988, Beijing, P.R.China.

9. M. R. Lindeburg, Engineer-in-Training Reference Manual, 8th Edition, Profes-
sional Publications Inc., Belmont, CA, 1992.

10. I. Rigoutsos, D. Platt and A. Califano, "Flexible Substructure Matching in Very
Large Databases of 3-D Molecular Information," Computational Biology
and Pattern Matching Group, I.B.M., T. J. Watson Research Center,
Yorktown Heights, N.Y., May 1996.

70

