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ABSTRACT 

APPLICATION OF GEOMETRIC HASHING TECHNIQUES 
TO RETRIEVAL OF HIGH DIMENSIONAL OBJECTS 

IN SCIENTIFIC DATABASES 

by 
Joyce Ye Lu 

An approach to designing very fast algorithms for tackling the problem of 

approximate object matching in very large databases of high-dimensional objects is 

proposed. Given are a target object C and a database D containing information 

about a set of high-dimensional objects each of which is represented as a set of 

points. Our algorithms have an off-line object preprocessing (shape representation) 

phase and a recognition phase. The described algorithms determine those objects 

from D which are the closest to object C, according to delete or insert some points, 

move and rotation. All of these can be achieved very efficiently with the help of 

geometric hashing techniques. This scheme has been successfully applied to a real 

scientific database. 
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CHAPTER 1 

INTRODUCTION 

As existing molecular information repositories need to be processed more rapidly, 

and a greater variety of tools become available, the computer plays an increasingly 

important role in directing and streamlining the drug discovery and design process. 

Computer can help researchers to quickly eliminate a priori unlikely candidates, 

thus avoiding long and expensive activity screenings. More important, they can 

allow researchers to identify new promising compounds based only on the available 

information on the receptor site, or on other lead compounds (see [10]). 

To this date, hundreds of protein structures have been determined via X-ray 

crystallography and nuclear magnetic resonance (NMR) methods. These data are 

readily available as public resource of molecular structure data and allow pharma-

cologists and biologists to investigate various aspects of protein structures and their 

complex behaviors. In addition to these public databases, a number of other (public 

and proprietary) databases of small organic molecules have been assembled through 

the efforts of numerous pharmaceutical and biotechnology companies, and research 

organizations. 

In many cases, the critical information that enables researchers to develop 

hypotheses, concerning potentially new molecular candidates for synthesis and 

testing, must be recovered through a search in a potentially very large database 

of relevant information. Indeed, the underlying common element to several stages 

of medicinal chemistry investigation requires searching of chemical information 

databases. 

Given an object C and a database D containing information about the high-

dimensional structures of a possibly large set of objects, the following operations 

need to be defined and carried out: 
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1. "structure insertion": the ability to incorporate all available structural 

knowledge about object C in the database D; 

2. "structure membership": determination of whether the object C is already 

included in the database D; 

3. "substructure search": identify and report all the member objects from D that 

contain a particular substructure of object C; 

4. "similarity search": identify and report all the member objects from D that 

are similar to object C. 

From all above, the most frequently used are substructure search and similarity 

search. For a substructure search the bit screen of the hit must contain exactly all of 

the query bits. Thus, the substructure search may not identify structures with minor 

deviations from the query structure. It is for this reason that similarity searches have 

been developed. Figure 1.1 illustrates the difference in results of a substructure search 

and a similarity search. 

Before concluding this chapter a final distinction should be noted. This is the 

distinction between identification and recognition of those objects from the database 

D which are similar to the given target object C. Identification restricts itself to 

reporting only the identities of the objects from database D that match the target 

object C. On the other hand, recognition entails not only the reporting of the 

identities of the matching objects but also the determination and reporting of the 

necessary transformations that will bring each of the identified matching objects 

to best registration with the target object. Recognition is arguably a much more 

difficult problem than identification. This is particularly evident in the case of very 

large databases. In this thesis, we will deal with recognition. 



(1) Original Model 

(2) 	Result of Similarity Search 	 (3) Result of Substructure Search 

Figure 1.1 Substructure Search vs Similarity Search 
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CHAPTER 2 

HASHING CONCEPTS 

Webster's dictionary defines the word "hash" as a verb "to chop (as meat and 

potatoes) into small pieces". Strange as it may sound, this is correct. Basically, 

hashing allows us to chop up a big table into several small subtables so that we can 

quickly find the information once we have determined the subtable to search. This 

determination is made using a mathematical function, which maps the given key to 

hash cell i as shown in Figure 2.1. The cell i could then point us to the subtable of 

size ni . Given a trace of R frames with N distinct addresses and a hash table of M  

cells, the goal is to minimize the average number of lookups required per frame (see 

[2]). 

If we perform a regular binary search through all N addresses, we need to 

perform 1+ log2 (N) or log2 (2N) lookups per frame. Given an address that hashes to 

the ith cell, we have to search through a subtable of ni  entries, which requires only 

log(2ni) lookups. The total number of lookups saved is 

where ri is the number of frames that hash to the ithe cell, E ri  = R. The net saving 

per frame is 

Here, qi  = ri /R denotes the fraction of frames that hash to the ith cell, and pi  = ni/N 

is the fraction of addresses that hash to the ith cell. The goal of a hashing function 

is to maximize the quantity ∑  --qi log2pi . Notice that pi  and qi  are not related. In 

the special case of all addresses being equally likely to be referenced, q;  is equal to pi  

and the expression E —pi /og2pi would be called the entropy of the hashing function. 

It is because of this similarity that we will call the quantity ∑-qilog2pi  the entropy 

or information content of the hashing function. It is measured in units of "bits". 
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Figure 2.1 Hashing Concepts 
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CHAPTER 3 

DESCRIPTION OF GEOMETRIC HASHING TECHNIQUES 

3.1 General Introduction 

A general object recognition scheme, geometric hashing, is used in this thesis. It is 

general in the sense that it applies to all important object recognition tasks. It creates 

a uniform approach for dealing with various types of objects. Another important 

merit of the method is its efficiency (see [1]). 

The objects are represented as sets of local features, such as points or lines. 

The only important requirement from these features is invariance under the object 

transformation. The transformation invariant geometric relations among the object 

features are encoded, using minimal feature subsets as reference. This is achieved by 

standard methods of analytic geometry, invoking coordinate frames based on these 

minimal feature subsets. The minimal feature subsets constitute coordinate frames, 

in which other features are represented by their transformation invariant coordinates. 

The matching procedure has two major steps. The first one precompiles the 

representations of the database objects, resulting in a hash-table based on these repre-

sentations. This step is executed off-line on the database objects and is independent 

of the next phase of the algorithm. The second step, recognition proper, is executed 

on the target object using the previously prepared hash-table for fast on-line recog-

nition. The hash-table serves as an associative memory, allowing for fast retrieval of 

'similar' object feature subsets, and hence effectively prunes the space of 'candidate' 

object feature subsets. 

The proposed recognition method has some major merits. First, it suggests a 

unified framework for coping with the object recognition problem under all feasible 

object transformation types. Second, it stands out for its efficiency in performing 

on-line recognition. Thus, it creates a good base for a general and practical object 

recognition system. 
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3.2 Features for Object Representation 

Object representation plays an important role in every recognition scheme. Since 

object-based recognition system match stored objects against the target, the repre-

sentation should include enough information to drive this matching process. It should 

be rich enough to enable discrimination between similar objects, which suggests the 

completeness of the representation. On the other hand, the representation should be 

succinct to allow efficient recognition. One wants to be able to match the objects 

against the target using some minimal characteristic information, so that the inherent 

complexity of the matching algorithm will be small. 

One way to represent objects is by selected points. These points can be derived 

by any desired operator, provided that this operator is transformation invariant. We 

term these points as interesting points (see [3]). The method of interesting points 

extraction might vary with the type of objects in the database (see [4]). 

In the implementation of geometric hashing, points were one of the main 

features used for matching. In the two-dimensional affine matching case, the object 

representation included a set of interesting points, which are invariant under this 

transformation. They were derived as points on the boundary curves of the objects, 

having sharp convexities and deep concavities. For recognition of nonconvex bodies, 

points induced by concavity entrances are used for object format. 

When the objects under consideration are polyhedral, or can be well approx- 

imated by polyhedra, a representation by lines is effective. There are some important 

characteristics for the representation by lines. First, lines are invariant under any 

transformation type. Second, lines are, usually, more stable than points, and hence 

line matching can yield better recognition results. 

Many objects can be described by sets of the so called characteristic curves 

(see [5]). These curves can be, for example, boundary curves of planar rigid bodies, 

or even artificial curves depicted on outer surfaces of objects. Such curves can be 
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efficiently used for recognition under the similarity transformation, even in cluttered 

images. This is because under such a transformation angles and distance ratios are 

preserved (Le. the shape changes up to a scale factor) (see [6]). 

One can often find several types of suitable features in the objects. These can 

be a combination of points, lines and curve segments. If these features are all likely 

to appear in the target, one should include in the object representation the union of 

all the features. 

In the above we described various suitable features for shape representation. 

Naturally, one might choose different features (or combination of features), depending 

on the nature of the objects in the database. However, both issues of completeness 

and efficiency of the representation have to be addressed. 

When considering representation by the above described local features (points, 

lines, curve segments, etc.) one achieves two main goals. First, such a represen-

tation is invariant under the object transformation. Second, it creates a compact 

representation of the objects, which will later allow for efficient matching. The main 

drawback of representation by local features is its incompleteness. Usually, objects 

cannot be fully described by a set of local features. To overcome this problem, the 

object representation in geometric hashing utilizes two forms of data. One form 

is local object features, which are used in the matching procedure. In addition, a 

full description of the object is also stored. For example, the boundary curves of 

planar rigid bodies completely describe their shapes, while a wire frame model fully 

describes polyhedral objects. The local features are used for matching properly. The 

additional complete representation is used after the matching step for verification 

and further refinement of the objects' localization. This allows geometric hashing to 

achieve both efficient matching and reliable verification. 
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3.3 General Framework 

The general geometric hashing algorithm can be summarized in the following steps 

(see Figure 3.1) (see [1]): 

Preprocessing of model objects 

For each database object : 

1. Extract a set of interesting features (points, lines or other suitable features) 

from the database object. Denote their number by m. 

2. Determine the minimal number of features which can serve as a basis for a 

coordinate frame, allowing expression of all other features by transformation 

invariant coordinates. The number of these features depends on the dimension 

of the object space and on the specific transformation. Denote their number 

by k. Now, for each k-tuple of object points compute the coordinates of 

all the other object points according to this basis k-tuple and hash these 

coordinates into a table which stores all the pairs (model, basis k-tuple) for 

every coordinate. 

Recognition of similar objects to a given target 

Given a target object: 

1. Extract its interesting features. (Let their number be n.) 

2. Choose a basis k-tuple and compute the coordinates of the other features in 

this basis. 

3. For each such coordinate check the appropriate entrance in the hash- table and 

vote for the pairs(object, basis k-tuple) appearing there (see [7,8]). 



Figure 3.1 The General Scheme of The Geometric Hashing Algorithm 

1
0
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4. Find the pairs which obtained the highest votes. If a certain pair scored a large 

number of votes, decide that its object and basis k-tuple correspond to the one 

chosen in the target. 

5. For a candidate k-tuple compute the transformation giving the correspondence 

between it and the target's k-tuple, compute correspondences of additional 

interesting features that this transformation induces, and find the best transfor-

mation (say, in least squares sense) which produces all these correspondences. 

6. Verify the transformed model against the target object. The verification can 

be done not only using the interesting points, but also using any other available 

information, relating to the object representation. If the verification fails, go 

back to Step 2 and choose another basis k-tuple in the target objecti 



CHAPTER 4 

BASIC MEMORY IMPLEMENTATION 

In this chapter we will start from the two-dimensional objects and describe the 

suggested method in detail. We begin the presentation with the definition of the 

problem. 

4.1 Problem Definition 

Consider the problem of information retrieval in a two-dimensional object database. 

Given are a target object C in the form of a set of coordinates of the object's inter-

esting points, and also a database D which is a collection of the sets of interesting 

points' coordinates for each one of the member objects. 

The task at hand is to determine, for the given object C and database D, all 

the objects of D that are closest to C, according to some kind of rotation, move, 

along with delete or insert some interesting points. 

4.2 Algorithm 

We have developed a hash based algorithm as follows: 

Off-line preprocessing of database objects 

For each database object : 

1. Represent the database object by a set of points. 

2. For each noncollinear triplet of the object points : 

(a) Compute the Theta angle of the triplet. 

(b) Compute the coordinates of all the other points according to the basis 

triplet. 

12 
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(c) Compute the hash value and hash the coordinates into a table which stores 

all the pairs (basis triplet, angle, model number) of every coordinate. 

(Figure 4.1 shows the structure of the hash-table) 

On-line recognition of target object 

Given a target object: 

1. Extract its interesting points. 

2. For each noncollinear triplet of the target points : 

(a) Compute the Theta angle of the triplet. 

(b) Compute the coordinates of all the other points according to the basis 

triplet. 

(c) Compute the hash value and search in the hash-table for the same hash 

value, and then give each matching object a vote. 

3. Determine answer by thresholding the voting records. 

Figure 4.2 shows the flowchart of the off-line algorithm and Figure 4.3 shows 

the flowchart of the on-line algorithm. 

We have implemented the algorithm and developed a memory-based version 

(see Appendix I) and also a disk-based version (see Appendix II). 

When we get a triplet, (x0, yo), (x1 , y1), (x3, y3), the formula used to find the 

new X, Y values for an interesting point is as follows: 



The data structure used here to store the 

subtables are linked list. 

Figure 4.1 Hash-table Used in the Memory Implementation 

1
4
 



Figure 4.2 Flowchart of the Off-line Algorithm 
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Figure 4.3 Flowchart of the On-line Algorithm 
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4.3 An Example of the Algorithm 

In this section, we will present a simple example. Given are a target object C 

containing only four interesting points and a database D which is a collection of 

three objects. (see Figure 4.4) 

In the off-line preprocessing phase, for each database object (from 1 to 3), for 

each noncollinear triplet, compute the Theta angle, compute the coordinates of all 

the other interesting points according to the triplet and then compute the hash value 

and store them into the hash-table. Table 4.1 shows part of the hash-table after the 

off-line preprocess is done. 

In the on-line recognition phase, for each noncollinear triplet, compute the 

Theta angle and for each interesting point compute the new coordinate, hash value, 

then search in the hash-table for the same index. If every item (Base, X, Y, Theta) 

is matched, give that object a vote. After search is completed, the one with the 

highest vote is the answer. For this example, we got the answer like this: 



Figure 4.4 Example of the Algorithm 
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Table 4.1 Contents of the Hash-table 

Index Base X FY Theta Object 
1 3 20J0.141897 2  
3 1 0 2 1.5708 3 
4 0 3 0.321751 
8 3 	j  1 -  2 0.321751 2 
9 	I 0 	I  1 2 0.785398 2  
9 2 0 3 2.67795 2 

10 0 2 	 1 0.785398 3 
12 0 2 3 0.982794  3 
15 3 0 1 	 0.124355 3 
19 3 	1 2 1 0.463648 3 
19 3 1 2 0.463648 3 
19 0 1 2 0.785398 3 
19 0 3 2  0.321751 2 
20 0 3 1 	j  1.10715 2 
23 0 1 3 1.10715 2 
27 1 3 0 2.81984 3 
27 2 3 1 1.5708 1 
27 2 1 3 1.5708 1 
27 1 2 0  1.5708 1 
27 1 0 2 1.5708 1 
30 1 2 0 1.5708 3 
32 0 	'1 3 0.197396 3 
33 2 3 1 0.785398 3 
33 2 1 3 0.785398 3 
33 3 2 0 0.463648 
33 0 1 3 0.463648 1. 
33 1 0 3 1.5708 2 
33 1 3 0 1.5708 2 
33 3 2 1 0.321751 2 
36 2 0 3 2.35619 1 
36 2 0 1 0.785398 1 
36 1 3 2 0.785398 1 
36 1 3 0 2.35619 1 
37 3 0 • 2 0.141897 2 
38 3 2 0 0.588003 3 
38 3 0 2 0.588003 3 
39 2 1 0 0.785398 3 

• 
• 
• 
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• object 1: 24 

O object 2: 6 

O object 3: 2 

O the correct answer is object 1. 
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fp = fopen("hashtable.dat","r"); 
while ( (fgets(line,100,fp))!=NULL) 
{ 

sscanf(line,"%s%s%s%s%s",i,base,x,y,z,n); 
tmp = new Item; 
tmp->Base = atoi(base); 
tmp->X = atoi(x); 
tmp->Y = atoi(y); 
tmp->Z = atoi(z); 
tmp->num = atoi(n); 
int index=atoi(i); 
tmp->next = hash[index]; 
hash[index]=tmp; 

} 
fclose(fp); 

} 

void insert(int n) 
{ 
int index =abs( n) % 100; 
Item *tmp; 

tmp=new Item; 
tmp->X = x; 
tmp->Y = y; 
tmp->Z = z; 
tmp->Base = base; 
tmp->num=model_num; 

tmp->next=hash[index]; 
hash[index]=tmp; 
} 

void display() 
{ 

Item *tmp; 

char Outputfilename[ ] = "hashtable.dat"; 

fstream Outstream; 
Outstream.open(Outputfilename, ios::out); 

60 



for(int i=0;i<100;i++) 
{ 

tmp=hash[i]; 

while(tmp != NULL) 
{ 

Outstream<<i<<" "; 

Outstream<<tmp->Base<<" "<<tmp->X<<" "<<tmp->Y<<" "<<tmp->Z 
<<" "<<tmp->num<<endl; 

tmp=tmp->next; 
} 

} 

} 
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/*******************************************************************/ 

/*Program: 3d_match.0 	 */ 
/*Author : Joyce Ye Lu 	 */ 

/* 	 */ 

/*This program compares the target objet with all the database 	*/ 
/*objects and finds out the closest one. 	 */ 
/*******************************************************************/ 

#include <iostream.h> 

#include <fstream.h> 

#include <stdlib.h> 

#include <math.h> 

#define Maxsize 100 

#define model_num 6 

struct Item 

{ 

int Base,X,Y,Z; 

int num; 

Item *next; 

}; 

typedef Item *Itempointer; 

Itempointer hash[100]; 

int I, J, K,L, size, key; 

float X0,Y0,Z0,X1,Y1,Z1,X2,Y2,Z2, X3, Y3, Z3,U,V,W, NewU, NewV, NewW; 

float A[Maxsize]; 

int model[model_num]; 

void getdata(); 

void find_U_V_W(); 

void find_I_J_K_L(int n); 

void find_X_Y_Z(); 

void find_New_UVW(); 

void find_key(); 

void form_hashtable(); 

void display(); 

void find_model(); 

double cal2(double[ ][2]); 

double cal3(double[ ][3]); 



void rev_matrix3(double[ ][3]); 

main() 

{ 
form_hashtable(); 

getdata(); 
find_I_J_K_L(size/3); 
display(); 

} 

void getdata() 

{ 
char Inputfilename[25]; 
cout<<"Please enter your input file name:"; 
cin>> Inputfilename; 

fstream Instream; 
Instream.open(Inputfilename,ios::in); 

int i=0; 
while(!Instream.eof()) 

{ 
Instream>>A[i]; 
i++; 

} 

Instream.close(); 
size = i; 

} 

void find_I_J_K_L(int n) 

{ 
for(int i=0;i<n;i++) 

for(int j=0;j<n ;j++) 

{ 
if(j != i) 
for( int k=0;k<n ;k++) 

{ 
if ( k != i && k != j) 

for( int 1=0;1<n; 1++) 
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{ 

if ( 1!=i && 1!=j && 1!=k) 
{ 

I=i;J=j;K=k;L=1; 

find_X_Y_Z(); 

find_U_V_W(); 
} 

} 

} 

} 

} 

void find_X_Y_Z() 
{ 

X0 = A[3*I]; 

YO = A[I*3+1]; 

Z0 = A[I*3+2]; 

X1 = A[J*3]; 

Y1 = A[J*3+1]; 

Z1 = A[J*3+2]; 

X2 = A[K*3]; 

Y2 = A[K*3+1]; 

Z2 = A[K*3+2]; 

X3 = A[L*3]; 

Y3 = A[L*3+1]; 

Z3 = A[L*3+2]; 

} 

void find_U_V_W() 
{ 

for(int i=0; i<size/3;i++) 

if(i != I && i != J && i != K && i != L) 

{ U = A[3*i]; 

V = A[i*3+1]; 

W = A[i*3+2]; 

find_New_UVW(); 

find_key(); 

find_model(); 
} 
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double cal2 (double matrix[] [2] ) 
{ 

return (matrix [0] [0] *matrix [1] [1] -matrix [0] [1] *matrix [1] [0] ) ; 
} 

double cal3 (double matrix [ ] [3] ) 
{ 

double a ,b ; 

a = matrix [0] [0] *matrix [1] [1] *matrix [2] [2] + 
matrix [0] [1] *matrix [1] [2] *matrix [2] [0] + 
matrix [0] [2] *matrix [1] [0] *matrix [2] [1] ; 

b = matrix [0] [0] *matrix [1] [2] *matrix [2] [1] + 
matrix [0] [1] *matrix [1] [0] *matrix [2] [2] + 
matrix [0] [2] *matrix [1] [1] *matrix [2] [0] ; 

return (a -b) ; 
} 

void rev_matrix3 (double matrix [ ] [3] ) 
{ 

double matrix3 [3] [3] ; 
double matrix2 [2] [2] ; 
int i,j,k,l; 
double matrix_value; 

matrix_value = cal3 (matrix) ; 
for (i =0; i<=2 ; i++) 
{ 

for (j=0; j<=2; j++) 
{ 

/* row 0 */ 
if (i ==0 && j==0) 
{ 

matrix2 [0] [0] = matrix [1] [1] ; 
matrix2 [0] [1] = matrix [1] [2] ; 
matrix2 [1] [0] = matrix [2] [1] ; 
matrix2 [1] [1] = matrix [2] [2] ; 

} 

else 
if (i ==0 && j==1) 
{ 
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matrix2 [0] [0] = matrix [0] [1] ; 
matrix2 [0] [1] = matrix [0] [2] ; 
matrix2 [1] [0] = matrix [2] [1] ; 
matrix2 [1] [1] = matrix [2] [2] ; 

} 
else 
if (i ==0 && j==2) 

{ 
matrix2 [0] [0] = matrix [0] 	; 
matrix2 [0] [1] = matrix [0] [2] ; 
matrix2 [1] [0] = matrix [1] [1] ; 
matrix2 [1] [1] = matrix [1] [2] ; 

} 

else 
/* row 1 */ 
if (i ==1 && j==0) 
{ 

matrix2 [0] [0] = matrix [1] [0] ; 
matrix2 [0] [1] = matrix [1] [2] ; 
matrix2 [1] [0] = matrix [2] [0] ; 
matrix2 [1] [1] = matrix [2] [2] ; 

} 

else 
if (i ==1 && j==1) 
{ 

matrix2 [0] [0] = matrix [0] [0] ; 
matrix2 [0] [1] = matrix [0] [2] ; 
matrix2 [1] [0] = matrix [2] [0] ; 
matrix2 [1] [1] = matrix [2] [2] ; 

} 

else 
if ( i ==1 && j==2) 
{ 

matrix2 [0] [0] = matrix [0] [0] ; 
matrix2 [0] [1] = matrix [0] [2] ; 
matrix2 [1] [0] = matrix [1] [0] ; 
matrix2 [1] [1] = matrix [1] [2] ; 

} 

else 
/* row 2 */ 
if (i ==2 && j==0) 

matrix2 [0] [0] = matrix [1] [0] ; 
matrix2 [0] [1] = matrix [1] [1] ; 
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matrix2 [1] [0] = matrix [2] [0] ; 
matrix2 [1] [1] = matrix [2] [1] ; 

} 

else 
if (i ==2 && j==1) 

{ 

matrix2 [0] [0] = matrix [0] [0] ; 
matrix2 [0] [1] = matrix [0] [1] ; 

matrix2 [1] [0] = matrix [2] [0] ; 
matrix2 [1] [1] = matrix [2] [1] ; 

} 

else 
if (i ==2 && j==2) 
{ 

matrix2 [0] [0] = matrix [0] [0] ; 
matrix2 [0] [1] = matrix [0] [1] ; 
matrix2 [1] [0] = matrix [1] [0] ; 
matrix2 [1] [1] = matrix [1] [1] ; 

} 

matrix3 [i] [j] = cal2 (matrix2) /matrix_value ; 
if (((i+j)/2)*2 != i+j) 

matrix3 [i] [j] = -matrix3 [i] [j] ; 
} 

} 

for (i=0;i<=2;i++) 
for (j=0;j<=2;j++) 

matrix [1] [j] = matrix3 [i] [j] ; 
} 

void f ind_New_UVW 0 

{ 
int i,j,k; 
double matrix [3] [3] = 	{ X1-X0 X2-X0 X3-X0, 

Y1-Y0, Y2-Y0, Y3-Y0, 
Z1-Z0 Z2-Z0, Z3-Z0 }; 

double matrix1 [3] [1] = 	{ U-X0 , 
V-Y0 , 
W-Z0}; 

double result [3] [1] ; 

rev_matrix3 (matrix) ; 
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for (i=0;i<=2;i++) 
for (j=0;j<1;j++) 
{ 

result[i][j] = 0; 
for(k=0; k<=2; k++) 

result [i] [j]= matrix [i] [k]*matrix1 [c] [j] +result Di [j] 
} 

NewU=result[0] [0]; 
NewV=result[1][0]; 
NewW=result[2][0]; 

} 

void find_key() 
{ 

key= (int) (NewU*210 + NewV*120 + NewW*212); 
} 

void form_hashtable() 
{ 

Item *tmp; 
char i[5],base[15],x[15],y[15],z[15],n[15]; 
char line[100]; 

for (int j=0;j<100;j++) 
hash[j]=NULL; 

FILE *fp; 
fp = fopen("hashtable.dat","r"); 
while ( (fgets(line,100,fp))!=NULL) 
{ 

sscanf(line,"%s%s%s%s%s",i,base,x,y,z,n); 
tmp = new Item; 
tmp->Base = atoi(base); 
tmp->X = atoi(x); 
tmp->Y = atoi(y); 
tmp->Z = atoi(z); 
tmp->num = atoi(n); 
int index=atoi(i); 
tmp->next = hash[index]; 
hash[index]=tmp; 
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} 
fclose(fp); 

} 

void find_model() 

{ 
Item *current; 
int i; 
int index = abs(key) % 100; 

current = hash [index]; 
while(current != NULL) 

{ 
if (current->Base==I && current->X==J && current->Y==K && current->Z==L) 

model[current->num]++; 
current = current->next; 

} 
} 

void display() 

int largest=model[1]; 
int largest_model=1; 

for (int i=1;i<model_num;i++) 
if(model[i]>largest) 

largest = model [I] 
largest_model=i; 

} 

cout<<"The closest model is model "<<largest_model<<endl; 

for(int j=1;j<model_num;j++) 
cout<<model [j] <<endl; 
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