

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

5

However, the system will help users to continue the retrieval process by presenting

the preliminary results with the indications of how close it is to the query. The feedback

process is important in the sense that it improves the quality of the result in a controlled

and systematic way. On the contrary, in database system, when the result of the query

(specified in formal query language) is returned, the retrieval process halts. Users find it

very difficult to refine their original query based upon the returned result owing to the

lack of suggestions and the guidance.

1.2 Related Work

To ease the burden of formulating the query, the early research focused on providing the

traditional database system with a better language. One of the early user-friendly

database languages was the example-based database language. Zloof's Query-by-

example (QBE) was the earliest graphical database query language [4]. In QBE, instead

of writing lengthy queries, users specified the example output by making entries into

relation skeletons. There are numerous example-based languages including Summary-

Table-by-Example, Time-by-Example, Generalized-Query-by-Example, Office-by-

Example, Formanager, Picquery, etc [5]. These languages provide a two-dimensional,

graphically aided example for formulating queries; but they have different features. For

example, the Generalized-Query-by-Example supports nested relations and the

Summary-Table-by-Example allows the user to produce a summary table by using two-

dimensional skeletons. The advantage of using an example-based query language is that

the user does not have to know the syntax of the language or the data model schema such

6

as the attribute name. However, the major drawback of these languages is the inability to

handle complicated queries.

From the information system's point of view, although it eases the burden of issuing

a query, example-based query language lacks a mechanism to refine the query. To

support the need of information retrieval discussed in the last section, the information

system needs a mechanism for returning the result along with the guidance according to

user's query. This mechanism requires an interface for users to specify the queries easily

and an underlying structure which can hold the intermediate result and the suggestion

provided by the system.

Browsing technique has received more attentions since 80's after the advent of the

relational database management system (DBMS). The users of the DBMS have

difficulties of issuing queries by using the formal query language provided by the system.

Under this situation, browsing mechanisms, such as Cattell's browser for the entity-

relational database [6], SDM [7], TIMBER [8], Metro's browser for loosely structured

database [9], BAROQUE [10], and KIVIEW [11] are helpful for the users. However,

there are some limitations among the browsers for databases [3, 10]. One of them is the

scrolling boundary for browsing. The earlier browsing mechanism used for relational

databases is restricted to one relation at a time. To solve this problem, Motro proposed a

loosely structured database, which eliminates the difference between the schemas and

values [9, 10].

In traditional text-based information retrieval system, documents are represented by

collections of index terms called the representatives of documents. When a user issues a

query by a method, which is more intuitive than the formal query language, it is

7

processed and represented by a collection of index terms. The retrieval system then seeks

the representatives of documents which match the representative of the query. From the

database point of view, the information retrieval system is similar to the loosely

structured database in the sense that the whole collection of documents is treated as a

universal relation. Much of the research work has been on finding better representatives

for documents and developing faster searching techniques [1, 12]. However, little effort

has been made to help users formulate a better query [13, 14, 15]. That means, in the

information retrieval system, users can encounter the same problems as in the relational

database system but the browsing techniques for assisting query formulation can be used

in information retrieval systems. CANSEARCH [16] and CoaISORT' 1171 are browsers

which aimed to help query formulation. Some systems, including ZOG [18], 13R[2], and

Kabiria [19], built their browsers as general-purpose interfaces between users and the

system. These browsers not only assist users to formulate their query but also provide

users with an environment to explore the system knowledge and examine the documents.

As an interactively searching process involving the user and the system, the browsing

process will guide users to express precisely and to gain the information needed, step by

step.

Almost all the browsers we mentioned here share the following common properties.

They constructed a network-like structure as an underlying structure 120, 13, 21, 22, 23,

24], mostly the semantic network, which forms a browsing space. The browsing process

can traverse the network. Sometimes, the browsing process cannot proceed further

without the user understanding the meanings of the links of the semantic networks and

selecting links for traversing across the network. The other problem is that most of the

8

browsers provide only "short-sighted" browsing. The process can only start from a node

of the network and traverse to one of its neighbors. The relevant nodes which are not

neighbors of the current node cannot be examined. The final problem is the performance

issue. The browsing process heavily counts on the feedback process, which could be time

consuming because of the large number of the documents in the collection [2, 15].

In this dissertation, we propose a browser for TEXPROS. This browser consists of a

query interface for users to issue queries, a knowledge base for resolving users'

information needs, a ranking system with ranking functions for evaluating the retrieved

documents, and a retrieval process controller for monitoring browsing sessions.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we briefly introduce

TEXPROS and then describe the underlying network and its construction. In Chapter 3,

we discuss the browsing processes provided by the system. In Chapter 4, we describe the

system architecture which supports the browsing processes. Among the components in

the system architecture, we give special attention to the knowledge base and ranking unit

in Chapter 6 and 7, respectively. We give the conclusions and our future research work in

Chapter 8.

CHAPTER 2

NETWORK TRANSFORMATION

2.1 Previous Work

In TEXPROS [25, 26], there are four kinds of objects, namely folders, frame templates,

attributes and values. Documents are deposited into folders, which are organized as the

folder organization (FO) [26, 27]. Documents are classified into different types. Those of

the same type share common properties, which are characterized in terms of attributes to

form a frame template. The frame templates are organized as the document type

hierarchy (DTH) (Fig 2-3) [26, 28]. The relationships among objects are summarized in

Fig 2-2. The system catalog serves as the depository of this information (called the meta-

data knowledge) and the information about the database itself. It supports all the activities

of the system and thus it is the central part of the system. Both the system catalog and

database itself are represented uniformly.

These meta-data and information about the database itself can be organized as a

semantic network called the object network (ON) [14, 29, 26], which captures all the

relations of the objects in the system.

An object network is created to describe the view of the meta-data of TEXTPROS

(i.e. the document type hierarchy and the folder organization) and the documents (frame

instances)[14, 25]. The characteristics of the object network include:

I. The dual model is captured. The dual modeling approach is used for

classifying and categorizing documents in terms of the document type hierarchy

and the folder organization. The system catalog contains information describing

the folder organization and document type hierarchy. Both descriptions of the

9

Fig 2-2 The objects and the relationships

folder organization and the document type hierarchy with their contents are

unified as a single description, called an object network.

2. The information of all stored documents is captured. The access by value

gives users the capability of retrieving all the occurrences of an attribute value

from the database. The occurrences of an attribute value are the values of a given

attribute. In order to realize the method of access by value, an item directory is

needed to store the mapping from the values into attribute names [10].

3. A snapshot of the system catalog is provided. TEXPROS is a dynamic

document processing system. At any time, the object network always provides a

10

Fig 2-3 Document type hierarchy

11

Fig 2-4 Semantic Network

consistent snapshot of the current system. Providing a snapshot could enhance

the performance of the browsing process, as well as the classification and filing

processes.

2.2 Motivation

A semantic network consists of two major components, namely the nodes connected by

the links. The semantic meanings of these links and nodes are varied depending upon the

system [15, 30, 31]. Generally speaking, each node represents an object and each link

represents a relationship that connects two related objects. Given a node on the semantic

network, each of its outgoing links has an attribute. The labels of the links are utilized to

describe their semantic meanings. However, the excessively large number of links of

various types becomes a burden for the user [in because they have to understand the

meanings of these links.

In TEXPROS, the object network is a semantic network [30, 31]. It can be used to

describe the folders and the relationships among the folders and the document type

12

hierarchy with the attribute-values pairs. This helps the system to answer queries. If we

provide users with this network, then they are able to find out all the meta-data

knowledge in the system, which can help them, to some extent, to formulate their queries.

For instance, given a simplified semantic network as shown in Fig 2-4, we are able to

find out the child folder of the folder NJIT, if we follow its outgoing link is-parent-of

The object network of TEXPROS has four object classes FOLDER, FRAME

TEMPLATE, ATTRIBUTE, or VALUE. From the object-oriented point of view, all the

folders in TEXPROS can be organized as a class. They share a common property: each

folder contains frame instances which satisfy its criteria specified in terms of a predicate.

The relationship is-an-instance-of is used to describe the associations between instances

and their classes. In Fig 2-4, CIS and NJIT are two instances of the class FOLDER. The

FOLDER class has an attribute called has-predicate, and every instance of FOLDER also

inherits the attribute has-predicate. In the example, the predicate of the folder CIS is

..SENDER.STATUS= 'CIS'. In Fig 2-4, the sub-folder and parent-folder relationships are

represented by two attributes, is-parent-of and is-child-of According to [31], we need to

decide at what level of the knowledge that the system intends to represent when using the

semantic network. In object network, the knowledge is represented at the instance level.

This supports the "access by value" [101

However, there are some drawbacks for browsing across the object. network:

I. 	One of the issues of the semantic network is that how the property of an object

described by the attribute values can be accessed. Since the relationships do not

satisfying the property of transitivity, it is not a trivial task to identify precisely

the related objects in the object network. Consider the simplified object network

13

in Fig 2-5. In this network, three different kinds of relationships are presented,

namely has-type, has-attribute, and has-value. There are two folder objects

(NJIT and CIS); each of the folders NJIT or CIS contains documents of a type

referred to as a frame template object (Letter); the frame template object. consists

of an attribute object (Sender), which has two value objects (Roy and John).

Since the folder CIS is a child of the folder NJIT, and the folder CIS contains

documents of the Letter type, we conclude that both NJIT and CIS folders

contain documents of the Letter type. In TEXPROS, a frame template specifies a

document type in terms of attributes. Following through the relationship has-

attribute in Fig 2-5, we can conclude that the attribute Sender is an attribute of

the frame template Letter. Given the attribute Sender, following through the has-

value relationship, we find its associated values, Roy and John. In this case, we

can conclude only that there are some documents, which are sent by Roy or

John. It would become more complicated if we add that the folder CIS contains

documents of the Memo type, which has an attribute Sender also. Now, we

cannot conclude that the CIS folder contains a letter, which is sent by Roy,

although we already had some conclusion from the earlier explanation. The

reason is that these relationships, has-type, has-attribute, and has-value do not

satisfy the transitivity property. Therefore, it is not a trivial task to identify the

related information from an object in the realm of the object network.

The object network (ON) is used to capture the knowledge, which contains the

properties of objects and the relationships between objects. However, these

captured relationships tend to explore the structural relationship between objects

14

instead of the real semantic relations. For example, it is difficult to use ON only

to answer the following query: (Q1) Find documents which were sent by Roy.

Assume that the folder organization has a folder ROY, which is a child of the

folder CIS. We may retrieve the documents sent by Roy from the folder Roy.

However, some documents sent by Roy can also be located in the other folders.

Therefore, for the worst case, we may have to search through every folder of the

folder organization to find the documents sent by Roy, although these

documents must satisfy "Sender = Roy". This is a time-consuming process. Let

us take a look at those processes prior to the retrieval process before we reveal

the reason of this problem.

3. In TEXPROS, the object network is physically stored in the system catalog (14,

261. At the arrival of a new document into the system, it goes through the

classification and extraction process. This process generates the frame instance

for the document. Then the filing process stores this frame instance in the

appropriate folders. Each process is responsible for updating the system catalog.

However, after completing these processes, the object network does not keep the

relations between the frame instance and the objects such as folders where it is

kept, the frame template which specifies its type, etc. The connection between

the objects in the object network and the frame instances in the frame instance

base is lost. Without this connection, the browsing process cannot be performed

at the frame instance level. Therefore, upon the arrival of a query like Q I , die

associated frame instances cannot be found immediately.

15

The object network is used to help users to retrieve the documents they want. Since

ON cannot fully support the associations between the frame instances and the objects, we

need to transform ON into another network, which has the following characteristics:

1. To support the browsing process. The transformed network that supports the

browsing process must be able to enlarge or reduce the scope of the search

throughout the course of browsing.

2. To answer any questions related to the system catalog. The transformed

network must be able to answer questions related to the system. The obtained

network can respond to any query in the way that the ON does.

3. To retrieve the documents. The transformed network must be able to capture the

associations between frame instances (each corresponds to a document) and the

objects such as folders (where the frame instances are resided), frame templates

(which classify the documents into various types), attributes (which characterize

the properties of the document types).

In the next section, we shall describe the network transformation.

Fig 2-5 Semantic network with objects of different type

16

2.3 Network Transformation

The first step of the transformation is eliminating the relations among the objects of the

same object type. Therefore, the information of the folder organization and the document

type hierarchy will no longer exist in the transformed network (the explanation this

removal will be given in the later sections). Then objects of the same type are grouped

into classes, namely FOLDER, TEMPLATE, ATTRIBUTE, and VALUE. This simplifies

Fig 2-6 System Catalog

17

Fig 2-7 Network transformation -- Step 1

the ON (shown in Fig 2-7). By introducing the concept of classes, we can construct a

semantic network at a higher abstract level by considering the behaviors at the class

instead of the instance level.

The next step is to simplify the link relations among object classes as shown in Fig

2-7. A new temporary relation at a higher abstract level is created. That means all the link

relations in Fig 2-7 can be generalized into a unique relation relates depicted in Fig 2-8.

The frame instances which are stored in the frame instance base can also he

considered as a class FRAME-INSTANCE. In order to capture the associations between

objects and frame instances as we have described in the previous section, we introduce

18

eight new relations' between FRAME-INSTANCE and the object classes FOLDER,

TEMPLATE, ATTRIBUTE, and VALUE, introduced in Step one. These relations are

created by heuristics [32, 33] to capture any relation which is significant to the system.

For example, relation IslnFolder and its inverse relation HasFInstance are created

between the FOLDER and FRAME-INSTANCE to capture the fact that each frame

instance is deposited in some folders. These relations and the facts captured by the

system are shown in Table 2-1. Fig 2-9 is the transformed network after we augmented

these new relations into the transformed network in Fig 2-7.

The efficiency of document retrieval performance could not be enhanced if we

simply introduce the FRAME-INSTANCE class to the system. The reason is if the

semantic network is employed for retrieving documents, we have to return to the instance

level, in which every instance will be represented by a node. For users to retrieve the

documents by going through such a huge network could be frustrated. The other problem

is that during the course of the retrieval process, the browsing process has to identify a

sub-network from the original network. Without reducing the size of the original

network, the process for identifying a sub-network can be time consuming. Therefore, we

must eliminate as many as possible objects and links from the network without

downgrading the achievement of the retrieval goals. The central part of this step Of

transformation is to transform the object in ON into frame instance repository (FIR).

I Since the association between each object ctass and the frame instance class shoutd be defined for both
directions, we actually created eight new relations (four relations and their inverse relations).

19

2.4 Object Transformation

In the previous section, we enriched the semantics of the ON by introducing the frame

instance class at the cost of enlarging the size of the network, which is not a desirable

property. The goal of object transformation is to capture the associations between objects

and frame instances without creating an enormous size of the network.

In Section 2.3, a set of relations between classes (as shown in Table 2-I) is defined

for describing associations between an object and its associated frame instances. These

relations are total relations. For instance, the IslnFolder relation between the class

FOLDER and the class FRAME-INSTANCE is a total. relation because all the ►instances

of the FOLDER and FRAME-INSTANCE participate in this relation. Given an instance

of the FOLDER, a set of frame instances could be identified according to the relation

defined between the class FOLDER and the class FRAME-INSTANCE. In the

Fig 2-8 Network transformation -- Step 2

20

Table 2-1 New relations

Relation 	I Association 	1 Fact
IsInFolder(fi, F) FOLDER, FRAME-INSTANCE Frame instance fi is deposited in the folder

F.
islnFolder-1 Folder F contains frame instance fi.
IsOfTemplate(fi, FT) TEMPLATE, FRAME-INSTANCE Frame 	instance 	fi 	belongs 	to 	document

type FT.
IsOfTemplate

-1

 Template FT has a frame instance fi in t he

frame instance base.

ContainsAttr(fi, A) ATTRIBUTE, FRAME-INSTANCE Frame instance Ii contains. the attributes A.

ContainsAttr

-1

 Attribute is in the frame instance Ii.
ContainsVal(fi, V) VALUE, FRAME-INSTANCE Frame instance ii contains the value V.
ContainsVal-1 Value V i 	in the frame instance fi.

identification process, the IsinFolder behaves like a predicate which instantiates all the

instances. IslnFolder(fi, Fl) specifies all the frame instances Ii, which are kept in the

folder, Fl. Likewise, the other relations defined in Table 2-1 are self-explanatory. Based

on this concept, each node in the original ON is transformed into a frame instance

repository. In the remaining section, we shall define formally the object and FIR.

Definition 2-1 : (Object)

An object. is a. two-tuple, Obj = [Name,Type] where:

1. Name is the name of the object.

2. Type r {Folder, FrameTemplate, Attribute, Values

We shall use the notations Type(Name) and [Name, Type] interchangeably.

According to this definition, every node of ON is an object and each object belongs

to an object Type. By using name and type for identifying an object, objects of different

types are allowed to have the same name.

Definition 2-2: (Frame Instance Repository)

A frame instance repository is a four-tuple FIR = [Obj, PO, FIOP, FIE] where:

1. Obj is an object, [name, type].

2. Po is a predicate defined on the Obj, which is one of IsInFolder, IsOfTemplate,

ContainsAttr, and ContainsVal.

3. Flop= 	{fi| fi is a frame instance which satisfies Pop} where Pop is the predicate derived

from the user's vague query.

4. FIE = {fi| fi is a frame instance which satisfies PE} where PE is the predicate derived

from the topic of the exploring process.

In this dissertation, we will use FIR(Obj) to refer to the frame instance repository

associated with the object Obj. We also use Po(Obj) to refer to the predicate associated

Fig 2-9 Network transformation -- Step 3

22

with the object Obj. This notation also applies to FIop(Obj) and FrE(Obj). Note that, when

the object type is trivial, the object name alone can be used to identify the Obj.

Since the associations between the object and the frame instances are embedded in

the FIR, a new transformed network is obtained as shown in Fig 2-10 (in which, the

double-lined circles represent the FIR class).

2.5 Operation Network

By transforming the original ON into a new network, the transformed network includes

the associations among the frame instances stored in the frame instance base and the

objects stored in the system catalog. It provides a better environment (in the sense of

preciseness and efficiency) to users for effective browsing. Our intention is to use this

Fig 2-10 Network transformation -- Step 4

23

transformed network as an underlying structure for browsing. This transformed network

is called an Operation Network (OP-Net).

Definition 2-3: (Operation Network)

An operation network (OP-Net) is a four-tuple, OP = [Top, POP, FIop, G(V, E)], where:

. 	Top is a topic related to the context of the browsing process;

2. Pop is a predicate related to the topic Top;

3. Flop={fi I fi is a frame instance satisfying Pop}; and

4. G(V, E) is a graph, where

• 	Each node in V(G) is a frame instance repository; and

• Each edge (i, j) between two repositories FIR(i) and FIR(j) represents that.

these two repositories have at least one common frame instance.

In the definition of OP-Net, the first component of the four-tuple Top is a topic which is

specified in terms of objects, connected using connectives AND, OR and NOT. Any

query in the form of Boolean expression [1, 14, 25] can be transformed into a topic. For

the rest of this paper, the term topic and query will be used interchangeably. The

inclusion of Top in the definition captures the fact that the OP-Net is dynamically changed

over topics. The browsing process can be viewed roughly as a topic refining process.

Until deriving the desired result, users will keep changing from one topic to the other.

The introduction of a new topic requires reconstructing the OP-Nei. Initially, assume that

the topic is null. In this case, since the OP-Net is derived by transforming the ON, before

a user issues a topic, there corresponds a peer node and a link in the ON for every node

and the link in the OP-Net, respectively.

The second and the third components should be considered at the same time. Pop is

the predicate of an OP-Net. This predicate is produced by the system based upon the

interpreted query. It is specified in terms of relations between frame instances and objects

connected using connectives AND, OR and NOT. For example, given a topic CIS, after

topic interpretation, we find that the object CIS is a folder. If we use fi to represent a

frame instance, then the predicate Pop can be represented by IslnFolder(fi, CIS) which

characterizes the associations between the objects and the frame instances given in Table

2-1. Any frame instances that qualify this predicate appear in the OP-Net. Flop is the set of

these qualified frame instances.

The first three components defines the global property (i.e., the domain and the

contents of each node) of the OP-Net in a certain state of the browsing process. The

fourth component is a graph which describes the impact of a topic on each relevant frame

instance repository. This graph will be the interface displayed to users. For the frame

instance repository, the predicate Po of an object is used to define all the frame instances

which satisfy the predicate. In the initial state, all the qualified frame instances are

associated with the object. However, during the browsing process, we may augment strict

conditions to the global predicate Pop and thus reduce the number of the frame instances

associated with the frame instance repository. This set of frame instances is stored in Flop

and is dynamically updated throughout the browsing process.

The OP-Net is defined at the instance level. The network shown in Fig 2-10 is a

skeleton of OP-Nets. The underlying network for browsing is defined by representing

each FIR a node in the OP-Net at the instance level.

25

2.6 The Relation between OP-Net and ON

An OP-Net is derived by transforming the ON. All the relations in ON fall into two

categories, either horizontal or vertical relations. Generally speaking, the horizontal

relations are the relations between objects of the same object type and the vertical

relations are those between objects of different object types. However, the horizontal

relations do not appear in the OP-Net, because the property of the links in OP-Net and

ON are different. The only relation type has-common-frame-instance in the OP-Net is

defined on frame instances. Very often, the relations of the horizontal type are difficult to

convert into a frame-instance based relation. Consider the folder organization as an

example. It can have more than one filing path for some specific folders. Therefore, the

frame instance in the child folder which has more than one parent folders may not be in

one of its parent folder. With this, it is difficult to convert the relations among folders into

frame-instance based relations. These relations which are not in OP-Net, can be obtained

from the ON. This will be explained in Chapter 6.

CHAPTER 3

BROWSING PROCESS

Once the ON is transformed into an OP-Net, the OP-Net will serve as an underlying

structure, upon which add-on functionality will be added. A typical browsing process

consists of the following phases: the topic interpretation and rewriting, the OP-Net

construction, the topic refinement, the fact exploring, and the result examining. The

browsing process proceeds interactively. The order of the phases is insignificant. For

instance, a user may refine their original topic after examining the result. Some users may

go directly to refine the original topic immediately after viewing the constructed OP-Net.

Users are allowed to arrange the phases of the browsing process in order to meet their

needs. The flow of the browsing process is depicted in Fig 3-1].

Fig 341 The Browsing Process Flow

26

27

In this section, we shall briefly describe the browsing process and the rationale of

each sub-process. We will reveal more details of these processes when we discuss the

browsing system architecture in Chapter 4 and Chapter 5.

3.1 Topic Input and Topic Interpretation

The input of this process is a query (called raw query) issued by the user. Before the

system can do further processing, the raw query is required to be transformed into a topic.

We use topic to represent a vague query. Our intention for using topic is to have a clear

separation between the formal query and the vague query. When issuing the formal

query, users are constrained to use the formal query language, which is normally SQL or

SQL-like language. However, most information systems provide an easy-to-use interface

when dealing with the vague query. For example, by using a Boolean expression the user

needs not spend so much time becoming familiar with the syntax. Moreover, the logic of

the user's thoughts can be easily expressed by using those basic logic operators such as

AND and OR. Another common interface is the one which is supported by the natural

language processing (NLP). NLP provides an interface that allows users to make a short

statement to describe their information needs. The users have no problem using the

natural language to state any expressions. However, there is an overhead for dealing with

the language. The difficulty of using the NLP is given in [1].

Currently, TEXPROS supports only Boolean expressions. In the beginning of this

section, we have explained briefly the rationale of the topic interpretation, and we will

discuss it in detail when we present the browsing system architecture. Since users are

offered to use the Boolean expression to express their information needs, without

excessive usage of knowledge or inferences, most of the concepts in a user's mind could

be represented by a group of key-terms connected by the logical operators. However, the

system catalog in TEXPROS provides users with a lot of knowledge, which can help

reach the high recall or precision. For example, a user issues a vague query CIS. If the

system. has no knowledge, then only the documents containing the term CIS will be

retrieved. However, the term CIS that the user has in mind might be the location of the

document instead of the content of the document. That means the user perceives that this

intended document possibly is in a folder called CIS. In TEXPROS, the topic

interpretation process will identify the CIS both as a term contained in a document and as

a folder in the folder organization. In this way, both the documents containing the term

CIS and the documents stored in the CIS folder will be retrieved. In this case, we improve

the recall {I].

3.2 OP-Net Construction

The input of this process is derived from the topic interpretation. After the topic

interpretation process successfully identified the topic, the system is able to find its

relevant documents. Based upon these relevant documents, the OP-Net constructor

constructs au OP-Net to include them as an environment for browsing process. All the

key terms in the topic are transformed into objects which are represented in a formai

ObjType(ObjName). The now-formed topic contains the key terms with their types,

connected by the logic operators. Therefore we combine the relevant documents and the

relevant objects together to form an OP-Net. By specifying the relationships between the

objects and the documents, we can provide an environment for incrementally formulating

