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ABSTRACT 

BIODEGRADATION OF PAH CONTAMINATED SOIL AND SLUDGE 
USING NON-IONIC SURFACTANTS 

by 
Seema Narula 

Polycyclic aromatic hydrocarbons (PAHs) are one of the most prevalent environmental 

pollutants contaminating a large number of industrial and Superfund sites. 	Low 

solubility and sorption to solid surfaces limit biodegradation rates of PAHs in the 

environment. Bioremediation of these compounds have been previously tested with 

partial success. In the present study, aerobic biodegradation of three PAHs (fluorene, 

phenanthrene, and pyrene) has been studied in shaker flasks, batch fermenter, and 

bioslurry reactor, in the presence of non-ionic surfactants. A mixed bacterial culture 

derived from both a refinery sludge and an activated sludge was used as the seed 

population in the degradation studies. A non-ionic surfactant, Makon 10 (at a 

concentration above the CMC), was selected for most of the studies, based on screening a 

number of surfactants in solubilization and respirometric experiments. PAH 

biodegradation was examined in both the presence and absence of an initially clean soil, 

as well as in the presence of a real PAH-contaminated refinery sludge. The results 

obtained from batch experiments indicated an increase of 2 to 3 orders of magnitude in 

the solubility of the tested PAHs, in the presence of surfactant. Furthermore, provided 

the surfactant concentration was maintained in the reactor to overcome mass transfer 

effects, biodegradation of all three PAHs proceeded to the detection limit, even in the 

presence of soil or sludge. 
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CHAPTER 1 

INTRODUCTION 

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants 

found in soil, fresh water and marine environments. They present a serious risk to human 

health, because many of these compounds are carcinogenic. They are classified as 

priority pollutants and are present at a number of industrial as well as Superfund sites 

(EPA/540/2-91/007, 1991), particularly in the vicinity of coal gasification facilities and 

petroleum refineries. Bioremediation technologies hold great promise as economical and 

permanent solutions for this group of compounds. 

PAHs are difficult to treat primarily because of their minimal water solubility and 

strong adherence to soil. Despite their proven biodegradability, strong adsorption to soil 

makes them unavailable to microorganisms. 	In addition, their toxicity at high 

concentrations. and nutrient and mass transfer problems in soil, limit the biodegradation 

of PAHs. 

The use of surfactants can substantially enhance the bioavailability, and therefore 

the biodegradability of PAHs. Surfactant molecules consist of a hydrophilic part which is 

preferentially associated with the aqueous phase, and a hydrophobic part which is 

preferentially associated with surfaces (thus reducing surface tension). The inward 

orientation of the hydrophobic ends can create aggregates called "micelles" when the 

surfactant concentration exceeds a critical level ("critical micelle concentration", or 

CMC). Formation of micelles (Figure 1.1) allows for the partitioning of PAHs into the 
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hydrophobic pseudophase of the micellar core. This phenomena greatly increases the 

total concentration of PAHs above their aqueous solubility limit. 

PAHs can exist in several forms: they can be solubilized in surfactant micelles, 

dissolved in the surrounding solution, sorbed directly on the soil, or sorbed in association 

with sorbed surfactants. 

Higher concentrations of surfactant can actually inhibit biodegradation of PAHs 

because of: (1) preferential use of the surfactant as a substrate; (2) toxic effects of the 

surfactant; or (3) attachment of PAH to surfactant adsorbed on soil surfaces. 

Refinery sludges have proven to be resistant to biodegradation under natural field 

conditions. One option is to excavate the sludge and treat it in a bioslurry reactor. The 

basic mechanisms which determine the performance of such a process are poorly 

understood, and as a result design and operation of slurry reactors is based on trial and 

error and experience rather than proven scientific principles. 

This research focuses on surfactant enhanced biodegradation generally, and on 

decontamination of refinery sludges in particular. Various surfactants were tested to 

enhance the solubility and biodegradation of model PAH compounds (i.e., fluorene, 

phenanthrene, and pyrene). Degradation of PAHs was also studied for a simulated PAH-

contaminated soil. 



CHAPTER 2 

LITERATURE REVIEW 

The main barriers for implementing bioremediation in soil are: (a) irreversible adsorption 

of contaminants which makes them unavailable to microorganisms; (b) toxicity of the 

contaminants to the microbial consortia; (c) unsuitable pH for proper microbial growth; 

(d) oxygen mass transfer limitations; (e) temperature limitations; and (0 nutrient 

limitations. 

Because of their hydrophobicity, PAHs occur in the environment mainly attached 

to particles. PAHs are strongly sorbed to soil or sediments. As a consequence, 

remediation of hydrophobic organic contamination in soil-water or sludge systems is 

often dependent on desorption of the contaminant from the soil surface and subsequent 

incorporation of the pollutant into the bulk aqueous phase. Surfactants are used to 

increase the solubility of PAHs. 

The use of surfactants to enhance the bioremediation of contaminated 

environments has been of considerable interest in recent years. Research studies have 

reported both enhancement and inhibition of biodegradation in the presence of 

surfactants, as explained later in this chapter. Functioning as emulsifiers or solubilizers, 

surfactants can serve to increase surface area and aqueous concentration of poorly soluble 

compounds, and thus potentially improve their accessibility to microorganisms. Many 

bacteria under the right conditions produce biosurfactants and bioemulsifiers to aid in 

their attack on specific compounds. Commercial surfactants can also serve to enhance 

the transport of immiscible hydrocarbons into solution, but have on occasion proven to be 
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inhibitory to microorganisms. The mechanisms behind occurrences of surfactant 

enhancement and inhibition of microbial degradation are not well understood. in an 

effort to better understand the factors involved, a search of the literature addressing this 

subject has been conducted, as presented in the following sections. 

2.1 	Solubilization of PAHs 

Experimental studies by Edwards et al l . indicated that apparent solubilities of PAH 

compounds such as naphthalene, phenanthrene, and pyrene were proportional to the 

concentration of non-ionic surfactants above the CMC. 

Janiyani et al.2  showed that synthetic surfactants released hydrocarbons in the 

aqueous phase from an oily sludge. They observed an increase in soluble chemical 

oxygen demand with increase in concentration of surfactant and contact time (mixing). 

Volkering et al.3  observed that PAHs in the micellar phase may not be readily 

available to microorganisms due to a shell of surfactant around the PAHs. As soluble 

PAH is depleted in the aqueous phase, PAHs leak out from the micelles in a mass transfer 

dependent process. They observed the inhibition of phenanthrene mineralization in the 

presence of certain nonionic surfactants (Triton X-100, Tergitol NPX, Brij 35, and Brij 

30). Furthermore, the associated toxicity of some surfactants may contribute to inhibition 

of PAH degradation. They also observed that non-ionic surfactants at concentrations 

below the CMC had no effect on the dissolution of naphthalene, whereas the presence of 

micelles resulted in higher levels of solubility. 

Guha et al.4  reported the ability of non-ionic surfactants (Triton N101, Triton 

X100, Brij 30, and Brij 35) to solubilize hydrophobic contaminants into their micelles. 
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They found that for three of the surfactants tested (Triton N101, Triton X100, and Brij 

30), the micellar-phase bioavailable fraction of phenanthrene decreased with an 

increasing surfactant concentration above CMC, because of mass transfer effects between 

the micelle and the microorganism. 

In 1994, Edwards and his co-workers reported desorption of hydrophobic organic 

compounds from soil by solubilization, in the presence of non-ionic surfactants5. They 

showed that in a soil/aqueous system with surfactant, the hydrophobic organic compound 

is distributed at equilibrium among three separate phases: a sorbed phase, an aqueous 

phase, and a micellar pseudophase. 

Yeom et al.6  evaluated a coal tar-contaminated soil from a manufactured gas plant 

site for the solubilization of PAHs using nonionic polyoxyethylene surfactants at dosages 

greater than CMC. Longer periods were required to reach equilibrium at higher 

surfactant dosages. They developed an equilibrium model to predict the solubilization of 

PAHs from coal tar-contaminated soils for given properties of the soil, surfactant, and 

PAHs. The model predicted solubilization of PAHs reasonably well at low surfactant 

dosages. However, at high surfactant dosages (supra-CMC), the model failed to reliably 

predict solubilization. They presumed that mass transfer effects limited the attainment of 

equilibrium during their experiments. 

Yeom et al. studied the effect of nonionic polyoxyethylene surfactants on the 

solubilization rate of individual polycyclic aromatic hydrocarbons from a weathered, coal 

tar-contaminated soil obtained from a manufactured gas plant (MGP) site7. The release 

of PAHs from the MGP soil exhibited a non-equilibrium behavior. The rate of PAH 

solubilization was reported to be significantly enhanced by the surfactants. They 
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concluded that surfactants enhanced PAH release from the test soil mainly by increasing 

the diffusivity of PAHs (due to swelling of the soil organic matrix), while the increase in 

solubility resulting from partitioning of PAHs into the micellar pseudophase played a 

secondary role. 

2.2 	Biodegradation of PAHs 

The bioavailability of sorbed organic chemicals is a deciding factor in the applicability of 

bioremediation processes to contaminated sediments and soils. Sorption of pollutants 

may prevent contact between the microbes and the contaminant, or it may simply 

maintain the aqueous phase contaminant concentrations at levels too low to support 

growth. 

Auger et al.8  investigated two factors accounting for the variability of 

bioremediation when surfactants are used to increase the bioavailability of PAHs: ( ) 

surfactant toxicity; and (2) the link between microbial metabolism and mass transfer from 

a solid phase. They found the nonionic surfactants to be nontoxic. They observed that 

microbial growth was limited by the dissolution of naphthalene once the aqueous phase 

naphthalene was depleted. They reported that increasing the bioavailability by increasing 

the interfacial surface area, introducing convective mass transfer, and adding surfactant 

were all found to reduce growth rate. Their results suggested that different mismatches 

between solubilization/mass transfer and metabolic capacity might be among the factors 

responsible for variable bioremediation outcomes. 

Chandra et al .9  studied the biodegradation and desorption of fluorene in estuarine 

sediment-water slurries. Adsorption of fluorene to sediments with 1.4% organic carbon 
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was characterized with a linear isotherm. They showed desorption to be both completely 

reversible and rapid. They further evaluated the rate and extent of fluorene removal in 

systems containing a fluorene-degrading culture. They reported the rapid degradation of 

fluorene (after a lag phase) to levels below the detection limit. They concluded that the 

rate of fluorene disappearance in a biologically active system was controlled by microbial 

degradation rates and was not limited by desorption. 

Mihelcic et al.10  observed microbial degradation of naphthol, naphthalene, and 

acenaphthene under aerobic, anaerobic and denitrifying conditions in soil-water systems. 

They reported that PAHs used in their study were degraded to non-detectable levels under 

aerobic and denitrifying conditions. Under anaerobic conditions, naphthol was found to 

be degradable in 15 days, whereas naphthalene and acenaphthene showed no significant 

degradation over a long period of time. They further showed that low molecular-weight, 

unsubstituted PAHs were amenable to microbial degradation in soil-water systems under 

denitrifying conditions. 

Bouchez and his co-workers" studied the interactions of various PAHs 

(naphthalene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene) during their 

biodegradation in pairs, with one PAH at least being used as a carbon source, Inhibition 

phenomena were often observed, but synergistic interactions were also detected. 

Naphthalene was found to be toxic to the microorganisms. They noticed that mixed 

cultures were able to overcome inhibition phenomena, including the toxic effects of 

naphthalene. 

Prince et al.12  studied the bioremediation of sludge containing waste produced 

during the refining of lubricant oils in shake flasks with indigenous and other bacterial 
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sources and nutrient supplementation. They found that the indigenous bacteria were able 

to degrade the PAHs (naphthalene, phenanthrene, and pyrene) present at some locations 

at the site. They reported a lack of sufficient nutrients to sustain a sufficient level of 

microbial growth, particularly at high sludge loading. 

Volkering et a1.13  demonstrated that bacterial growth on crystalline or adsorbed 

PAHs can result in a linear increase in biomass concentration. They likewise found that 

desorption of substrate from the surface limited microbial growth. 

Ye and his co-workers" investigated the ability of Sphingornonas paucimobilis to 

metabolize a variety of high molecular weight polynuclear hydrocarbons. This organism 

was able to degrade several four- and five-ring PAHs varying in molecular size, shape, 

and chemical structure. They recommended further studies to examine whether S. 

paucimobilis can degrade PAHs in soil from a coal gasification site. 

Erickson et al.15 investigated loss of PAHs while attempting to bioremediate soils 

from a manufactured gas plant site. They reported that addition of free naphthalene and 

phenanthrene to the soils resulted in rapid loss of added chemicals, while the 

concentrations of indigenous chemicals were unchanged. The PAHs in these soils were 

thus reported to be unavailable for microbial degradation. 

Guha et al.16  developed a model to describe the biodegradation of bioavailable 

micellar-phase substrate. The hypothesis on which the model was based considered the 

following steps: (a) the contaminant is transported by filled micelles from the bulk 

solution to the proximity of the cells; (b) the exchange of the filled micelles with the 

hemi-micellar layer around the cell delivers the contaminant to the cell; (c) the 

contaminant diffuses into the cell and is biodegraded. The biodegradation kinetics were 
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explained in terms of a series of mass-transfer processes, which led to an equation similar 

in form to the Monod equation. The bioavailable fraction of the micellar-phase substrate 

was independent of the biomass concentration, and was a function of the surfactant 

concentration, the polyoxyethylene chain length, and the biomass surface characteristics. 

2.2.1 Research involving Commercial Surfactants 

Efroymson and Alexander17  observed that naphthalene initially dissolved in a 

hydrocarbon solvent was mineralized by an Arthrobacter strain that did not produce 

biosurfactants and appeared to be predominantly attached to the solvent. The addition of 

0.1% Triton X-100 (greater than CMC) enhanced the rate and extent of naphthalene 

mineralization, indicating that the surfactant was not toxic at the concentration used. Cell 

counts from the aqueous phase were greater in the presence of the surfactant, indicating 

that surfactant prevented the bacteria from adhering to the solvent-water interface. 

Laha and Luthy18  investigated the effects of nonionic surfactants on the 

biodegradation of phenanthrene in soil-water systems. The surfactants consisted of Brij 

30 (dodecylethoxylate, C 12E4), Tergitol NP-10 (nonphenylethoxylate, C8PE9.5), and 

Triton X-100 (octylphenylethoxylate, C8PE9.5), and the bacteria were a mixture of PAH-

degrading organisms. At concentrations below the CMC, no significant enhancement or 

inhibition of phenanthrene degradation was observed as compared to the surfactant-free 

control, whereas supra-CMC levels resulted in virtually complete inhibition of 

biodegradation. Possible reasons considered for the inhibition included: (1) toxicity of 

the surfactant or solubilized hydrocarbon at high concentration; (2) preferential 

metabolism of the surfactant; (3) lowering of the available substrate concentration in 
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aqueous solution due to micellization; and (4) interference with microbial membrane 

processes. Reasons (1) and (2) were experimentally ruled out, and chemical modeling 

indicated that reason (3) was not a significant concern. Thus, it was hypothesized that the 

inhibition might be due to interference with substrate transport into the cell, or to 

reversible physical-chemical interference with enzyme activity and other membrane 

proteins involved in hydrocarbon degradation. Additional work was suggested to assess 

the specific mechanisms of surfactant interference on biodegradation. 

Laha and Luthy  19 furthered their investigation of the effects of surfactants on the 

biodegradation of phenanthrene in soil-water systems by expanding to a larger group of 

commercial, nonionic surfactants. The surfactants used consisted of Brij 30, Triton X-

100, Tergitol NP-10, Tween 20, Tween 80, Brij 30/Brij 35 mix, Neodol 25-3/Neodol 25/9 

mix, CHAPS and octylglucoside. CHAPS and octylglucoside have relatively high CMCs 

and low aggregation numbers. As in their previous results, sub-CMC surfactant doses 

were non-enhancing, and supra-CMC doses for all surfactants tested resulted in complete 

inhibition of phenanthrene degradation. At sub-CMC levels, only one surfactant, 

octylglucoside, exhibited an inhibitory response. Results of partitioning experiments for 

surfactants and phenanthrene between aqueous and hexane phases indicated that exit rates 

of phenanthrene from micelles should be sufficiently high as to not limit microbial 

degradation rates. Reversible interference of micellar surfactants with cell membrane 

processes was considered to be the most likely reason for the observed results. 

Mueller et al.20  used the nonionic surfactant Tween 80 to enhance the solubility 

and biodegradation of fluoranthene by P. paucimobilis. This was the first report of the 

primary utilization of a PAH containing four or more rings by a pure microbial culture. 
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Biodegradation of this poorly soluble chemical was enhanced by surfactant addition up to 

2 g/L (well above the CMC) without exhibiting toxicity to the isolate. 

Guerin and Jones21  studied the mineralization of phenanthrene by a 

Mycobacterium species isolated from sediment and identified by making cell wall lipid 

comparisons with various genera. A series of nonionic surfactants (Tweens) were used to 

solubilize the hydrocarbon substrate for the biodegradation assays. All of the surfactants 

enhanced the aqueous solubility of phenanthrene, and thus potentially the bioavailability 

of the substrate. None of the Tween surfactants served as growth substrate when present 

as a sole carbon source. 

Aronstein et al.22  studied the effects of nonionic surfactants at sub-CMC 

concentrations on the desorption and biodegradation of sorbed aromatic compounds in 

soil. Low levels of surfactant were chosen: (1) to avoid leaching contaminants into 

underlying aquifers; (2) because of possible inhibitory effects of the surfactant above the 

CMC; and (3) for economic considerations in potential field applications. Enhanced 

mineralization of phenanthrene by a mixed soil consortium was observed for some of the 

surfactants tested, in both low and high TOC soils. 

Aronstein and Alexander23  further studied the effects of low levels of Alfonic 

810-60 and Novel H on desorption and biodegradation of phenanthrene in batch assays 

using an aquifer sand (0.4% organic matter). Both surfactants significantly enhanced 

desorption and biodegradation of phenanthrene by indigenous microbiota at surfactant 

concentrations of 10 and 100 mg/L (both above CMC), but not at lower concentrations. 

Enhanced partitioning of the PAH to the aqueous phase due to the influence of the 

surfactants was suggested as the reason for enhancements in biodegradation. 
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Tiehm24  used the anionic surfactant SDS and a series of nonionic surfactants to 

investigate the influence of surfactants on the biodegradation of PAHs. All of the 

surfactants were capable of solubilizing phenanthrene to varying degrees, and only SDS 

served as a preferred substrate in the presence of PAH for a mixed population of 

microorganisms (cultured on phenanthrene). In  the presence of SDS, inhibition of 

phenanthrene degradation increased with an increase in surfactant concentration, and was 

virtually complete at supra-CMC levels. Using mixed microbial populations, 

phenanthrene and fluoranthene were biodegraded after solubilizing in a series of eight 

nonionic surfactants. Utilization of fluorene or pyrene under the same test conditions was 

dependent on the nonionic surfactant being used, with some surfactants demonstrating an 

apparent toxicity. 

Tiehm et a1.25  studied the effect of two nonionic surfactants (Arkopal N-300 and 

Sapogenat T-300) on bioavailability of a series of PAHs in manufactured gas plant soil. 

Both surfactants enhanced the mass transfer rate of sorbed PAH into the aqueous phase. 

Solubilized PAH were found to be available for biodegradation. Reduction of PAH 

content of the contaminated soil was obtained in all cases. 

Robichaux and Myrick26  investigated the effects of various commercial 

dispersants on the biodegradation of weathered, crude petroleum by a mixed microbial 

culture obtained from a treatment plant's aeration basin. Each dispersing agent was a 

heterogeneous mixture of surfactants in organic solvents. Increasing the concentration of 

dispersants was shown to either increase or decrease oxygen uptake rates depending on 

the dispersant used, suggesting that toxic effects on microorganisms may be of concern 

with some dispersants. 
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Roch et al.27  investigated the possible adverse effects of surfactant addition on the 

biodegradation of two hydrophobic compounds, biphenyl and phenanthrene. Several of 

the surfactants tested were found to be toxic to the test bacteria and prevented the 

biodegradation of biphenyl and phenanthrene at concentrations below the critical micelle 

concentration. 

Liu et al.28  evaluated the effects of aqueous, micellized nonionic surfactants on the 

microbial mineralization of naphthalene. They observed that surfactant concentrations 

above the CMC were not toxic to the microorganisms, and that the presence of surfactant 

micelles did not inhibit mineralization of naphthalene. Naphthalene was reported to he 

solubilized by micelles of Brij 30 or Triton X-100 in liquid media and was bioavailable 

and degradable by the mixed bacterial culture. 

Tsomides et al.29  studied the effect of commercial surfactants on the 

bioremediation of PAH-contaminated sediments. Phenanthrene degradation was found to 

be inhibited by all nonionic surfactants studied, except Triton X-100. They suggested 

that the inhibition of phenanthrene mineralization may be due to the preferential 

microbial utilization of surfactant over phenanthrene, or due to toxic effects of the 

surfactants. They noticed a decrease in free aqueous surfactant concentration due to 

sorption of the surfactant to the sediment. 

Churchill et al.30  examined the effect of three nonionic surfactants (Triton X-45, 

Triton X-100, and Triton X- 165) on the rate of biodegradation of phenanthrene by pure 

bacterial cultures. All the surfactants dramatically increased the apparent aqueous 

solubility of phenanthrene, which led to enhanced biodegradation rates by two 

Pseudomonas saccharophila strains. 
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Ortega-Clavo et al.31  studied the influence on biodegradation of varying the rates 

of partitioning of phenanthrene from nonaqueous-phase liquids to water. They observed 

that concentrations of the nonionic surfactant Alfonic 810-60 that increased partitioning 

also inhibited biodegradation. 

Jahan et a1.32  studied the influence of nonionic surfactants on the biodegradation 

of poorly soluble organic compounds in soil and water. They reported that the solubility 

of phenanthrene was enhanced by the presence of micelles. Sorption of phenanthrene to 

soil was enhanced significantly in the presence of the surfactants. They reported that low 

surfactant concentrations promoted mineralization of phenanthrene without inhibitory or 

toxic effects. Their study indicated that surfactant selection for in-situ bioremediation 

purposes depends on a number of factors, mainly its hydrocarbon solubilizing power, 

sorptive properties, low toxicity to bacteria, and fate in the environment. 

2.2.2 Research involving Natural Biosurfactants 

Zhang et al.33  studied the effect of biosurfactants on the dissolution, bioavailability, and 

biodegradation of phenanthrene in a series of batch studies. Two forms of the 

biosurfactant, a monorhamnolipid and a dorhamnolipid, were tested. It was found that 

both surfactants increased the solubility and enhanced the rate of phenanthrene 

biodegradation. 	monorhamnolipid was more effective than dirharnnolipid for 

solubilization; however, overall rates of mineralization were essentially the same. 

Phenanthrene within monorhamnolipid micelles was apparently less bioavailable than 

phenanthrene within dirhamnolipid micelles. Therefore, the effect of a surfactant on 
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biodegradation is a combination of the solubilizing power of the surfactant, and the 

bioavailability of the substrate within the surfactant micelles. 

2.3 	Summary of Literature 

The literature results for three model PAHs chosen for this study are summarized in Table 

2.1  



CHAPTER 3 

OBJECTIVES 

The objectives of this research were to: 

(1) screen potential surfactants for enhancement of bioavailability and 

biodegradability of three model PAHs: fluorene, phenanthrene, and pyrene. 

(2) examine the performance of batch fermenter and bioslurry reactor in degrading the 

model PAHs in the presence of surfactants and artificially contaminated soil (from 

Pequest, NJ). 

(3) Examine the performance of batch fermenter and bioslurry reactor in degrading 

the model PAHs in the presence of a real contaminated refinery sludge. 
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CHAPTER 4 

MATERIALS AND METHODS 

4.1 	Selection of PAH Compounds 

Three model PAH compounds - fluorene, phenanthrene and pyrene - selected for the 

study are listed in Table 2.1, along with their relevant physical properties. These 

compounds are often present in PAH contaminated soil or sludge, and are representative 

of two (fluorene)- and three-ring (phenanthrene and pyrene) PAHs. Some information 

relating to their solubility and biodegradability is available in the literature (see Chapter 

2), and more research was done in the present work, to investigate the effects of a non-

ionic surfactant, Makon 10, on the solubility and biodegradation of the model PAHs, 

4.2 	Selection of Surfactants 

Commercially available surfactants selected for the study are listed in Table 4.1. These 

surfactants are all biodegradable, in order to avoid any further contamination of treated soil 

or sludge. Studies by Tiehm et al.25  indicated that ionic surfactants were not effective 

when applied to soil. In the case of cationic surfactants, negatively charged soil particles 

attract the oppositely charged part of the surfactant molecule, thereby inducing a strong 

adsorption of surfactant molecules onto the soil particles. On the other hand, anionic 

surfactants were also not effective when applied to soil, due to the repulsion between the 

soil particles and surfactant molecules, thereby minimizing the dissolution rate. Therefore, 

non-ionic surfactants were chosen to avoid significant adsorption or dissolution-limiting 

effects. 

17 
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There is a substantial body of information available in the literature on the 

application of most of these surfactants in biodegradation processes (see Chapter 2). 

4.3 	Selection of Soil 

A clean soil from Pequest, NJ was chosen as a model soil in this study because of its 

similarity to a model soil developed by the US EPA, Edison Laboratory. Soil 

characteristics are given in Table 4.2. 

4.4 Sludge Characteristics 

Experiments were also performed using a PAH-contaminated refinery sludge obtained 

from a New Jersey facility. The sludge characteristics are given in Table 4.3. 

4.5 	Preparation of Chemical Solutions 

4.5.1 Fluorene, Phenanthrene and Pyrene Standards 

To prepare stock standards for PAH compounds, carefully weighed quantities were 

solubilized in known volumes of HPLC grade acetonitrile solution using a magnetic 

stirrer for 48 hours. The stock solutions were later diluted with acetonitrile to obtain 

various standards of the model PAH compounds. 

4.5.2 Surfactant Solutions 

The surfactant solutions were prepared in distilled water by dissolving a known amount, 

and stirring for 24 hours with a magnetic stirrer. 
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4.6 	Determination of PAHs 

The model PAHs were quantified by high-pressure liquid chromatography (HPLC), using 

a model 9012 solvent pump, model 9095 autosampler, and model 9065 diode array 

detector (Varian Instruments Co., Palo Alto, CA) at room temperature. The column was 

PAH 5U, 4.6 x 150 mm (Whatman Inc., Clifton, NJ). A gradient mixture of acetonitrile 

and DI water at a flow rate of 1 ml/min was used as the mobile phase. The initial mixture 

of 43% acetonitrile (57% water) was increased to 90% acetonitrile (10% water) over a 20 

minute period. The detector was set at 205 nm for fluorene, 249 um for phenanthrene, 

and 239 nm for pyrene. Calibration curves were prepared for fluorene, phenanthrene and 

pyrene and are shown in Figures 4.1, 4.2, and 4.3, respectively. Equilibration time of 10 

minutes was provided between runs to void the system of residual contaminants. 

This procedure was arrived at by conducting a series of trial-and-error 

experiments to optimize peak separation and detection. By this method, the PAH 

detection limits were: 80 ppb of fluorene, 100 ppb of phenanthrene, and 150 ppb of 

pyrene. Only the disappearance of PAH was determined in this research. The production 

of any metabolic products (other than CO2) was not investigated. 

4.7 Inoculum and Growth Medium 

4.7.1 Inoculum 

Microbial consortia utilized to perform biodegradation experiments were isolated from a 

1:1 mixture ratio of the refinery sludge (containing approximately 453 ppm total PAHs) 

and an activated sludge obtained from the Linden, NJ POTW (which contained no 

detectable PAHs). A series of three dilutions were prepared to reduce the sludge 
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concentration and enrich the microbial populations. The dilutions were prepared in the 

following manner. Approximately 100 ml growth media were each placed into three 250 

ml shaker flasks. The first shaker flask was dosed with approximately 2 ml of mixed 

sludge solution. The shaker flask was maintained at 30 °C for 3 days. Microbial growth 

was confirmed in the shaker flask by increased turbidity. This culture functioned as the 

seed for a second shaker flask prepared in a similar manner with 2 ml from the first flask 

plus 100 ml of growth medium. This in turn provided the seed to a third shaker flask. 

The microorganisms in the third shaker flask were used as inoculum in all experiments. 

4.7.2 Growth Medium 

The growth medium used in all experiments had the composition listed in Table 4.4. The 

pH of the growth media was in the range of 7.0 to 7.2. 

4.8 Dissolved Oxygen and pH Measurement 

4.8.1 Dissolved Oxygen Concentration 

To monitor the dissolved oxygen (DO), an Ingold oxygen measurement system (Ingold 

Electrode Inc.. Wilmington, mA) was used in conjunction with a dissolved oxygen, meter 

(New Brunswick Scientific, NJ; model No. DO-50). To calibrate the DO meter, the 

probe was immersed in deionized water contained in a 14 liter Microferm fermenter 

(working volume 10 liters). Air was bubbled for 4 hours through the water at a rate of 3 

liters/min, with continuous stirring at 200 rpm. The temperature was maintained at 32.2 

°C. The DO meter was then set at 100%. The probe could not be used for continuous 

monitoring, since biomass grew on the DO membrane if the probe was left in the reactor 
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for long periods of time. Therefore, to measure DO in the slurry reactor, the probe was 

periodically inserted in the uppermost liquid part of the reactor and DO was recorded. 

According to the DO instruction manual, at 32.2 °C, 100% saturation corresponds to 7 

mg/liter of dissolved oxygen. Other measurements were made by considering a linear 

relationship over the DO meter dial gauge as specified by the manufacturer (New 

Brunswick Scientific, NJ; Model DO-50). The DO electrode was always stored in 1% 

KCI solution as recommended by the manufacturer. 

4.8.2 pH Measurement 

The pH was measured directly using an Orion pH electrode (model 95-56) connected to 

an Orion Expanded Ion-Analyzer (Model EA 920). Standard buffers of pH 4.0 and 7,0 

from Orion were used for calibration. 

4.9 	Selection of Temperature for the Study 

In this study, the temperature was selected on the basis of literature reports[19,25]  and no 

experiments were performed to determine the optimal temperature. An operating 

temperature of 30°C was selected for the shaker flask and batch fermenter studies. To 

simulate an industrial sludge tank condition, room temperature was used for the bioslurry 

reactor study. 



CHAPTER 5 

EXPERIMENTAL APPARATUS 

Initial screening experiments were conducted in 250 ml shaker flasks, followed by a 500 

ml respirometer, a 5 liter batch fermenter, and finally a 10 liter slurry reactor. All 

experiments were conducted in a batch mode. 

5.1 Shaker Flask 

Initial aerobic biodegradation studies were carried out in 250 ml Erlenmeyer flasks 

(Curtin matheson Scientific Co., Houston, TX) with a liquid content of 100-150 ml. The 

mouths were closed with sterilized tissue paper. An incubator equipped with gyratory 

shaker (Gallencamp, Serial # SG 93-01-420, New Brunswick Scientific Co,, New 

Brunswick, NJ) was used to mix the solution in the flasks at 140 rpm. The temperature in 

the shaker was maintained at 30°C for all the experiments conducted unless otherwise 

indicated. 

5.2 Respirometer 

A 500 ml respirometer (N-CON System Inc., Larchmont, NY) was used to study the 

metabolism of PAHs and surfactants at different concentrations. The Comput-Ox 

computerized respirometer consists of three main components: (1) reactor 

monitoring/data collection system, (2) reactor control unit (RCU)/waterbath, and (3) 

auxiliary cooler/circulation unit. Standard reactors are constructed of borosilicate glass. 

KOH pellets, used to absorb the carbon dioxide produced during degradation process, are 
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placed in a holder attached to the underside of the cap (as seen in Figure 5.1). During 

aerobic metabolism, the microorganisms consume oxygen present in the reactor and 

produce carbon dioxide, and thus a vacuum would be created inside the reactor. The 

solenoid valve opens by sensing the vacuum, and releases a measured amount of oxygen 

(monitored by the data collection system) to bring back the pressure in the reactor. Thus, 

the procedure is entirely automated. 

5.3 Batch Fermenter 

A 5 liter batch fermenter (New Brunswick Scientific Co., NJ, Model: Bioflo 	C) with 

built in aeration, heating, and stirring systems was used for aerobic degradation of PAHs 

in batch mode. A schematic of the fermenter is shown in Figure 5.2. 

Aeration was controlled automatically to maintain a certain level of dissolved 

oxygen in the suspension. Temperature was maintained by circulating water through the 

jacket. There are also four peristaltic pumps to feed different solutions (e.g., acid, base, 

nutrients, antifoaming agents, etc.). 

5.4 Slurry Reactor 

The 10 liter bench-scale slurry reactor is shown in Figure 5.3. 

The reactor is composed of two main sections connected by a flange: an upper 

cylindrical section, and a conical bottom section (with an air distribution ring). The 

conical bottom section reduces dead space in the reactor, and the air bubbles provide both 

oxygen and a degree of agitation. The reactor had dedicated ports for seed inoculation 

and biomass replenishment, surfactant dosage for desorption, and nutrient addition. In 
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addition, there were sample ports provided at different locations in the reactor, and a 

bottom drain. An external agitator was also used to achieve maximum agitation of the 

sludge-water slurry, thereby minimizing the possibility of settling of the sediments and 

hence ensuring homogeneity of the slurry under operation. Because of the low vapor 

pressure of PAHs, exhaust emissions from the batch fermenter and bioslurry reactor were 

not monitored. 



CHAPTER 6 

EXPERIMENTAL PROCEDURE 

6.1 Solubilization Experiments 

Solubilization experiments were performed to estimate the aqueous phase concentration 

of PAH compounds at different concentrations of surfactants. 	Batch tests for 

solubilization were performed at room temperature (approximately 25 °C). Stock 

solutions of 0.0075, 0.01, 0.06, 0.1, 0.5, 0.75, and 1.0 % (weight/volume)* for Makon 10 

were placed in 40 ml vials with an excess of each contaminant (fluorene, phenanthrene, 

and pyrene). The solutions were prepared in deionized water. All the experimental vials 

were filled to avoid any head space, thereby minimizing volatilization losses. The vials 

were agitated on an orbital shaker at 8 rpm for approximately 48 hours. These samples 

were then centrifuged at 12,000 rpm for 6 minutes to separate any undissolved PAH. 

Duplicate vials were prepared for some of the dilutions, as a check. The PAH 

concentrations were determined over time in each vial by HPLC. *Note: 1% (w/v) means 

1 g surfactant per 100 ml of solution. 

6.2 Respirometric Experiments 

6.2.1 Respirometric Studies for Biodegradation of Surfactants 

The biodegradability of the all the surfactants listed was assessed using the mixed 

bacterial culture, by performing respirometric experiments. 300 ml of 0.3% ( /v) 

surfactant in growth medium were added to 500 ml respirometer bottles. Then 5 ml of 

mixed bacterial inoculum were added to each bottle. 6-7 pellets of KOH were added to 
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the KOH pot inside the bottle and the bottles were closed. The oxygen utilization was 

noted for each surfactant over a period of 185 hours. 

6.2.2 Respirometric Studies to Assess Inhibition of Makon 10 on Microorganisms 

Based on the respirometric study for the surfactant biodegradation, Makon 10 was chosen 

as a model surfactant (see Chapter 7, Results and Discussion). In order to assess the 

inhibition or toxicity effects of Makon 10 on microorganisms, additional respirometric 

experiments were conducted, utilizing the surfactant as sole carbon source. 300 ml of 

Makon 10 at concentrations of 0.01, 0.1, 0.2, 0.5, and 1.0 % (weight/volume) in growth 

medium were placed in the respirometer bottles and inoculated with 5 ml microbial 

culture. One respirometer bottle served as a control which contained 300 ml deionized 

water and was not inoculated. The oxygen uptake data were recorded over time. 

6.2.3 Respirometric Studies with Sludge 

Respirometric experiments were conducted using 20 grams of sludge in 100 ml of 0.3% 

(w/v) Makon 10 solution [i.e., 20% (w/v) sludge] to: (i) verify the biodegradation of 

PAHs and, (ii) assess the toxicity of the sludge on microorganisms. 

300 ml DI water were placed in two respirometric bottles and the 20% (w/v) 

sludge mixture was added to the bottles. One bottle contained 0.1% glucose in addition 

to the surfactant and sludge. The oxygen utilization was noted as a function of time. 
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6.3 	Aerobic Biodegradation of PAHs by Mixed Bacterial Culture 

6.3.1 Aqueous Phase Biodegradation Studies 

Shaker flask studies were conducted to assess the batch-mode degradation of the model 

PAHs. both in the absence and presence of Makon 10. All the biodegradation studies 

were performed in 250 ml Erlenmeyer flasks, with working volume of about 150 ml. 

	

6.3.1.1 	Shaker Flask without Surfactant: First, the PAH solution was prepared by 

dissolving a known amount of PAH individually in a known volume of growth medium 

and mixing for 48 hours using a magnetic stirrer. This solution was then filtered using 

Whatman filter paper (#1). The filtered solution (150 ml) was poured in several 250 ml 

Erlenmeyer flasks, which were autoclaved at 130 °C. One of the flasks served as a 

control. In the other flasks, 2 ml of mixed bacterial culture were added, and the flasks 

were loosely stoppered with sterilized tissue paper to minimize contamination. The pH of 

all flasks was 7.1. The flasks were kept in a gyratory shaker at 30°C and 200 rpm. Initial 

samples were taken from each flask in a vial, centrifuged to separate biomass, and then 

filtered using a 50 µm membrane filter. The filtrate was analyzed for PAHs using HPLC. 

Each day, samples were withdrawn for HPLC analysis. 

	

6.3.1.2 	Shaker Flask with Surfactant: Makon 10 was added to PAH solutions in 

growth medium in order to make a final concentration of 0.01% (below CMC) and 0.3% 

(w/v) (supra-CmC concentration). This solution was mixed for 48 hours using a 

magnetic stirrer, in order to achieve the maximum solubilization of the PAHs. Then the 
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solution was filtered using #1 Whatman filter paper under vacuum, to eliminate any 

unsolubilized PAHs. This filtered solution was then autoclaved at 130 °C and inoculated 

with 2 nil bacterial culture. The experimental flasks were incubated in a gyratory shaker 

at 200 rpm, and samples were withdrawn periodically and analyzed via HPLC. 

6.3.1.3 	Shaker Flask with Surfactant and Soil: Biodegradation of the model 

compounds in the presence of Pequest soil and surfactant (Makon 10) was assessed. The 

soil was sieved and only particles that passed through No. 12 mesh were used for the 

experiments. The soil was artificially contaminated by placing a known amount of soil in 

a petri dish and adding a PAH-acetonitrile solution to cover the soil. Then the petri dish 

was placed in a fume hood overnight to evaporate the solvent (i.e., acetonitrile). Once the 

solvent was evaporated, contaminated soil (20%) was placed in Erlenmeyer shaker flasks 

and 150 ml of growth medium solution with 0.3% Makon 10 were added to it, The flasks 

were agitated on an orbital shaker for 48 hours to achieve maximum desorption of PAH 

from the soil into the aqueous phase. These flasks were then inoculated with 2 ml 

bacterial culture. Samples were taken periodically to assess the biodegradation rate of 

PAHs. 

6.3.1.4 Shaker Flask with Sludge: The biodegradation of the three target compounds 

in the sludge was investigated in 0,3% Makon 10. 150 ml of growth medium with 0.3% 

Makon 1 0 were added to 20% (w/v) sludge mixture and stirred for 48 hours. Then the 
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solution was inoculated with 2 ml of mixed culture, and samples were taken periodically. 

These experiments were conducted in duplicate. 

6.3.2 Batch Fermenter Studies with Sludge 

The batch fermenter vessel was cleaned with soap solution and dried by purging with 

compressed air. 2 liters of 0.3% Makon 10 in growth medium were poured in the reactor 

vessel. 20% sludge was added to the reactor. The temperature was 30°C, and the 

impeller speed was 200 rpm. The contents of the reactor vessel were allowed to mix for 

48 hours, and then about 5 ml of mixed bacterial inoculum was added to the reactor 

through the inoculation port at the top. Samples were withdrawn at different times 

through the sampling port, and analyzed by HPLC. 

6.3.3 Bioslurry Reactor Studies 

The slurry reactor vessel was cleaned with soap and dried by purging with compressed 

air. The reactor was charged with 4 liters of 0.3 % Makon 10 in growth medium. 20% 

sludge was added to the reactor. The impeller speed was 200 rpm. The contents of the 

reactor were agitated for 48 hours, and then about 10 ml of inoculum were added to the 

reactor through the inoculation port. Samples were withdrawn at different intervals and 

analyzed by HPLC. 

6.4 Sorption Experiments 

The sorption experiments were performed according to the US EPA protocols for the 

sorption of environmental pollutants on soils (Annual book of ASTM Standards, E 11 95-

87). The equilibration time of the model PAHs was initially estimated by recording the 
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concentration of solutes in fixed time intervals. It was assumed that the system had 

reached equilibrium when the rate of change of solute concentration between two 

consecutive measurements in a twelve hour interval was within 5%. An equilibrium time 

of about 48 hours was obtained from these preliminary studies. The soil-to-solution 

ratios that generated acceptable isotherms in the range of surfactant dosages were also 

determined by preliminary experiments, and it ranged from 0.1% to 1% (w/v). Some 

isotherms were also generated at surfactant concentrations below CMC. The Pequest soil 

was used. Different soil weights were transferred into 40 ml vials. Then 25 ml of 

surfactant-contaminant solution were added to each vial, and the vial was sealed with a 

teflon cap. For each surfactant concentration, several vials were prepared in duplicate 

and the experiments were repeated for different initial concentrations of surfactant. Two 

extra vials were prepared, one with soil and uncontaminated water, and one with 

surfactant-contaminant solution without soil, to serve as controls. The vials were placed 

on a tumbler and allowed to equilibrate for 48 hours. The concentrations of the model 

compounds in solution were determined by HPLC. 

6.5 Desorption Experiments 

These experiments were conducted to determine any adsorption of PAHs on sludge or 

soil particles during biodegradation. About 40 ml suspension mixture was collected in a 

40 ml vial from the reactor at the end of each experiment and centrifuged to separate the 

solids from the suspension. Supernatant was removed, and 5 ml acetonitrile was added to 

the vial and shaken for 4-5 hours to desorb any PAHs. Samples taken from the vial were 

analyzed by HPLC. 



CHAPTER 7 

RESULTS AND DISCUSSION 

7.1 PAH Solubility Enhancement 

Ideally, a surfactant should increase the aqueous solubility and soil desorption of the 

contaminants, it should have low affinity for the soil, and it should be biodegradable but 

with degradation rates lower than the substance it solubilizes. The following results are 

part of a screening procedure for the identification of solubility and biodegradation 

enhancers of PAHs that satisfy the aforementioned criteria. 

The model surfactant Makon 10 substantially increases the solubility of the model 

compounds, with the solubility increasing linearly with surfactant concentration above the 

CMC of 0.005%. The solubilization results are summarized in Table 7.1, and plotted in 

Figure 7.1. It was observed that the solubility of fluorene increased from 2.3 mg/I (with 

0.05% surfactant) to 95.5 mg/1 (when 1% surfactant was used). Similarly, the aqueous 

phase concentrations of phenanthrene and pyrene increased to 250 mg/1 and 188 mg/I 

respectively, with 1% makon 10 (the solubility of pyrene in water without addition of any  

solubility-enhancers is 0.14 mg/1). Therefore, the solubility of PAHs was increased by 2-

3 orders of magnitude. 

Solubilization results were not attempted with Makon 10 concentrations above 

1% because of the following: (1) the respirometric experiments indicated an inhibition 

effect for non-ionic surfactant concentrations of 1%, thereby indicating the optimal 

surfactant concentration to be below 1%; (2) the economical viability of process scale-up 

with addition of higher concentrations of surfactant is questionable; and (3) higher 
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surfactant concentrations cause foaming in commercial reactors. with entrainment of the 

slurry. 

7.2 	Results of Sorption Experiments on Pequest Soil 

Sorption experiments were performed according to the US EPA protocols to determine 

the adsorption isotherms of the three PAHs in the presence of surfactants on the Pequest 

soil (2.1% TOC). The experiments were performed with Makon 10 at concentrations 

above the CMC, and are plotted in Figures 7.2, 7.4, and 7.5. The sorption ►isotherm is 

also plotted for fluorene at below CMC (Figure 7.3). It is apparent from these results that 

the sorption characteristics of the soil change substantially as the concentration of the 

surfactant increases, and that changes in contaminant solubility influences the overall 

sorption process. As the concentration of the surfactant increases, the adsorption 

becomes less favorable and the isotherms approach zero slope. For all three PA Hs. there 

was no adsorption at or above 0.3% Makon 10. Therefore, 0.3% Makon 10 was chosen 

to perform the biodegradation experiments with soil and sludge. in order to minimize the 

adsorption of PAHs onto the soil. Moreover, there was no inhibition at 0.3% Makon 10 

to microbial growth. 

The interactions between soil particles, surfactant micelles. and aqueous phase are 

not as yet well understood. However, sorption studies of the compounds and surfactants 

of interest can reveal useful information on the behavior of the system. Various studies 

have documented the importance of surfactant sorption on the mobilization of 

contaminants in the subsurface (Edwards, Luthy). Since surfactants themselves adsorb on 

the soil, they increase the organic carbon content and they can, in some instances, 
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increase the soil sorption capacity. Depending on the soil characteristics and application 

of surfactants, the release rates of the contaminants can either increase or decrease due to 

complex sorption effects. 

7.3 	Results of Respirometric Experiments 

7.3.1 Biodegradability of Surfactants 

All the surfactants listed in the study are biodegradable, as determined using the mixed 

bacterial culture in respirometric experiments. The surfactants were added to growth 

media to make a final concentration of 0.3% (w/v) as sole carbon source for microbial 

metabolism. Oxygen utilization was noted for each surfactant and the experiment was 

conducted for 185 hours. The data are presented in Table 7.2 and Figure 7.6. The 

comparative rates of biodegradation were assessed based on the amounts of oxygen 

consumed for microbial metabolism. These results were in general agreement with those 

presented by the manufacturers, except for Tergitol NP-10 which was not biodegradable 

within the duration of this study. The maximum oxygen utilization was observed for Brij 

30, which exhibited no lag phase. Significant oxygen consumption was also observed 

with Novel I.I, Ninol 40-CO, Adsee 799, and Triton X-100. A longer lag-phase was 

observed when Adsee 799 was used as sole substrate. 

Makon 10 was chosen as the model surfactant since it was biodegradable, but at a 

slower rate than other surfactants tested. 
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7.3.2 Effect of Surfactant Concentration on Microorganisms 

In order to assess the inhibition effects of surfactant concentration on the microorganisms, 

respirometric experiments were conducted as described in Chapter 5, utilizing Makon I0 

as the sole carbon source (at concentrations of 0.01, 0.1, 0.2, 0.5, and 1.0% 

weight/volume). The results are shown in Table 7.3 and Figure 7.7. In all cases, Makon 

10 was biodegradable after a lag phase of approximately 10 hours, with no observable 

inhibition effects. 

7.3.3 Respirometric Studies with Sludge 

Respirometric studies were conducted (with 0.01% glucose, and without glucose) to test 

the biodegradation of PAHs by microorganisms in homogenized sludge samples. Table 

7.4 and Figure 7.8 show the oxygen uptake by microorganisms in 20% (w/v) slurries, 

which confirmed that the sludge did not have any toxic effects on microbial growth. As 

expected, the oxygen uptake rate was higher in the presence of 0.01% glucose. 

7.4 	Aerobic Biodegradation of PAHs as Sole Carbon Source 

Biodegradation experiments for aerobic degradation of PAHs as sole carbon source by 

mixed bacterial consortia were conducted in shaker flasks, the batch fermenter, and 

bioslurry reactor, as described in Chapter 6. 

7.4.1 Initial Results of Shaker Flask Experiments 

Four different preliminary experiments were conducted to explore the effects of 

surfactants on the degradation of PAHs. Initially, the biodegradation of PAHs as sole 
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carbon source by the mixed bacterial consortia was investigated, both in the absence and 

presence of Makon 10. 

	

7.4.1.1 	Shaker Flasks without Surfactant: 	The biodegradation of fluorene, 

phenanthrene, and pyrene was investigated in the absence of Makon 10. This experiment 

was conducted in duplicate flasks and an additional pair of flasks without inoculum was 

prepared and served as control. The results are illustrated in Table 7.5 and Figure 7.9. 

The data indicate no significant change in PAH concentrations after eight days of 

incubation, which is confirmation of their lack of bioavailability in the absence of 

surfactant. 

	

7.4.1.2 	Shaker Flasks with Surfactant: Experiments conducted in duplicate with 

0.01% (below CmC) and 0.3% (above CmC) Makon 10 under identical conditions have 

shown significant degradation of the contaminants, as presented in Tables 7.6 and 7.7, 

respectively. The concentration-time profiles for the three PAHs, with 0.01% and 0.3% 

Makon 10, are plotted in Figures 7.10 and 7.11, respectively. A 95% reduction in 

fluorene and 90% reduction in phenanthrene concentration with 0.01% Makon 10 was 

achieved within 24 hours of incubation in the test flasks. Pyrene could not be detected in 

the aqueous phase in the presence of 0.01% makon 10 (the detection limit was 0.15 ppm). 

But with 0.3% Makon 10, significant reduction in pyrene concentration from 27.2 ppm to 

0 ppm was observed in 15 days of incubation. A slight increase in pyrene concentration 

was observed within the first day of incubation. This increase in pyrene concentration 
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was also seen in experiments where higher concentrations of surfactant were used and 

suggests a lag between pyrene availability and degradation. A comparison of the results 

presented in Figures 7.9, 7.10, and 7.11 reveals that higher degradation rates are attained 

in the presence of surfactant. 'Visual observation of shaker flasks dosed with surfactant 

indicates a high concentration of the biomass. This observation can be attributed to the 

fact that the surfactant provides an additional carbon source to the inoculum as well as 

increasing PAH availability. 

7.4.1.3 	Soil-water Slurry Phase Studies with Surfactant: Biodegradation studies 

were also conducted using the Pequest soil with 2.1% total organic carbon (TOC). The 

results obtained for this soil, using 0.3% makon 10, a 1:5 soil-to-solution ratio (w/v) [i.e., 

1 gram soil per 5 ml solution], and initial concentrations of: 11.5 ppm tluorene, 1.2 ppm 

phenanthrene, and 1.8 ppm pyrene in the aqueous phase, are presented in Table 7.8 and 

Figure 7.12. Compared to earlier experiments in the absence of soil, using 0.3% Makon 

10 and model PAHs, the biodegradation rates with soil follow the same pattern, except 

that the initial aqueous concentrations of PAHs are lower in the presence of soil. This 

decrease in the initial concentration of PAHs could be attributed to one or more of the 

following reasons: (1) surfactant may sorb onto the surfaces of the soil particles, and 

hence be unavailable for PAH solubilization; (2) sorbed surfactant can enhance the 

capacity of the solid to act as a sorbent for PAHs, thereby reducing the PAH 

concentration in the aqueous phase; (3) direct sorption of PAHs on to soil organic matter 

may result in lower concentrations in the aqueous phase. The biodegradation data for the 
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soil revealed that all three model PAHs were below their detectable limits after 10 days of 

incubation. 

7.4.1.4 	Biodegradation of PAHs in Sludge: Biodegradation experiments were 

performed in the shaker flasks with 1:5 sludge-solution ratio, in the presence of 0.3% 

Makon 10. The results for the three model PAHs are presented in Table 7.9 and Figure 

7.13. Significant degradation was achieved within seven days of incubation. The slight 

decline in PAH concentrations in the controls could be due to some biological 

contamination during the course of the experiment. 

7.4.2 Biodegradation of PAHs in Batch Fermenter 

The results of a typical experiment for the biodegradation of PAHs using 0.3% Makon 10 

and 20% (w/v) sludge are given in Table 7.10 and Figure 7.14. Bacterial growth medium 

was used in the experiments. The pH was maintained between 6.9-7.0, and the 

temperature at 30°C. No PAH was detected in the reactor after seven days, which again 

may be due to a mass transfer limitation in these batch experiments. 

7.4.3 Biodegradation of PAHs in Bioslurry Reactor 

Experiments were conducted in the bioslurry reactor to determine the biodegradation rate 

and oxygen mass transfer coefficient. A 1:5 sludge to water ratio was used with 0.3% 

Makon 10. The results for this experiment are presented in Table 7.11 and Figure 7.15. 

On the 17th  day, 0.3% Makon 10 was again added to the reactor and the concentration of 
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all three PAHs increased in the aqueous phase. On day 24, nutrients were added to the 

reactor and degradation of the PAHs proceeded. No PAHs were detected after 30 days. 

On day 32, another dose of 0.3% Makon 10 was added, but no further detection of PAHs 

was observed. The results were comparable to the experiments in the Bioflo reactor. 

Clearly, this process is strongly mass transfer dependent, and the continuous presence of 

surfactant is needed to maintain a high desorption rate. At the end of these experiments, a 

mass balance was conducted for each PAH. 

7.4.3.1 Mass Balance in the Slurry Reactor: For the mass balance, a known volume 

of the slurry was placed in a 40 ml vial from the bioslurry reactor and centrifuged. The 

supernatant was removed and acetonitrile was added to the vial. The vial was shaken for 

10 hours to desorb the PAHs from the solids. A sample was taken from the vial and 

centrifuged, and the supernatant was analyzed for PAHs using HPLC. 

Mass balance for Fluorene:  

Amount of original sludge: 	 400 g 

Fluorene in original sludge: 	 38.12 mg 

Fluorene in aqueous phase with 0.3% makon 	21.64 mg (5.41 mg/1 x 4 ) 
10 at the start of the experiments: 

Fluorene extracted from the sludge after day 	17.20 mg 
15: 

38.12 mg 21.64 mg + 17.20 mg = 38.84 mg 

Fluorene in aqueous phase after added dose of 	15.84 mg (3.96 x 4 1) 
Makon 10 on day 18: 
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Fluorene extracted from the sludge after day 	0 mg 
30: 

Thus, 102% (38.84/38.12) of the fluorene was accounted for after day 18, and 

92% (15.84/ 1 7.20) after day 30. 

Mass balance for Phenanthrene 

Amount of original sludge: 	 400 g 

Phenanthrene in original sludge: 	 32.40 mg 

Phenanthrene in aqueous phase with 0.3% 	31.96 mg (7.99 mg/l x 4 I) 
Makon 10 at the start of the experiments: 

Phenanthrene extracted from the sludge after 	0 mg 
day 15: 

32.40 mg 31.96 mg 

Phenanthrene in aqueous phase after added 	0 mg 
dose of Makon 10 on day 18: 

Phenanthrene extracted from the sludge after 	0 mg 
day 30: 

Thus, 99% (31.96/32.40) of the phenanthrene was accounted for. 

Mass balance for Pyrene 

Amount of original sludge: 	 400 g 

Pyrene in original sludge: 	 64.98 mg 

Pyrene in aqueous phase with 0.3% makon 10 	51.88 mg (12.97 mg/I x 4 I) 
at the start of the experiments: 

Pyrene extracted from the sludge after day 15: 	12.64 mg 
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64.98 ME,' 51.88 mg + 12.64 mg= 64.52 mg 

Pyrene in aqueous phase after added dose of 	12.84 mg (3.21 x 4 1) 
Makon 10 on day 18: 

Pyrene extracted from the sludge after day 30: 	0 mg 

Thus, 99% (64.52/64.98) of the pyrene was accounted for after day 18, and 102% 

(12.84/12.64) after day 30. 

The mass balance studies showed that virtually all PAHs were desorbed from the 

solids, and approximately 100% biodegradation was achieved. 

7.4.3.2 Evaluation of Oxygen-Transfer Coefficient (KLa) 

The KLa value was determined by considering the uptake of oxygen by microorganisms. 

The oxygen level is maintained at 3.4 mg/1, and the oxygen is used by the microorganisms 

as rapidly as it is supplied. 

n equation form, 

dC/dt = KLa(CS  - C) - rM 	 (7.1) 

Where 

C — is the concentration of oxygen in the solution, mg/I; 

C5  — is the saturation concentration of oxygen in solution at room 

temperature, mg/I; 

KLa — is the overall mass transfer coefficient, s-1 ; and 

rM — is the rate of oxygen used by the microorganisms. 

Since the oxygen level is maintained constant, dC/dt is zero, and thus 

KLa = rm/(Cs - C) 	 (7.2) 
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To calculate the rate of oxygen used by the microorganisms (rM), the dissolved 

oxygen (DO) uptake was noted as a function of time. The data are given in Table 7.12. 

Rate (rM) = dC/dt = k (Ci-C) 	 (7.3) 

Where 

Ci — is the applied DO concentration of 3.4 mg/l; and 

k — is the respiration rate constant. 

ln(Ci - C) versus t was plotted (Figure 7.16) to find the slope, k,  which was found 

to be 0.15 min-I . 

Therefore, rM  = 0.15 (3.4 - 1) = 0.36 mg/1 . min 

Now, the overall oxygen transfer coefficient is: 

Kea = rM/(CS  - C) = 0.36/(9.21 - 3.4) = 0.062 mind  = 3.72h-1  

Where, the saturation concentration at 19.2°C is 9.21 mg/1 (assumed the same for 

distilled water). 



CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

• It was experimentally verified that concentrations of non-ionic surfactants below 1% 

are capable of large increases, up to two to three orders of magnitude, in the solubility 

of model PAH compounds (fluorene, phenanthrene, and pyrene). 

• The following surfactants were tested: Adsee 799, Alfonic, Brij 30, Makon 10, Ninol 

40-CO, Novel II, Tergitol NP-10, and Triton X- 100. Except for Tergitol NP-10 

which appeared to be non-biodegradable in respirometric experiments, Makon 10 was 

the least biodegradable (although still significant), and was therefore chosen as the 

preferred surfactant for further study. 

• No inhibition in microbial growth was observed up to 1% (w/v) makon 10. 

• No significant change in PAH concentration was observed after eight days of 

incubation in the absence of surfactant. n shaker flasks without soil or sludge, nearly 

complete biodegradation of all three PAHs was achieved after about 15 days with 

0.3% makon 10 (above CMC). In the presence of refinery sludge, the process is 

clearly mass transfer limited unless the surfactant concentration is maintained at a 

sufficient level. Nevertheless, with sufficient surfactant, biodegradation of all three 

PAHs proceeded to the detection level. 

42 
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8.2 Recommendations 

• Biodegradation studies should be performed in a continuousp reactor, under both 

aerobic and anaerobic conditions. 

• Studies should be performed with mixed substrates. 

• Pilot-scale studies, using industrial real effluents, should be undertaken. 



APPENDIX A 

TABLES 
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Table 2.1 Literature summary 

Model 
Compound 

No. 
of 
Rings 

Molecular 
Weight 

Aqueous 
S 	

20°C  
Solubility 
@  

Literature Results 

Enhancement of Biodegradation Inhibition of Biodegradation 

Fluorene 2 153 1.900 (10), (12), (13) 

Phenanthrene 3 178 0.816 (12), (13), (24) 
Tweens, above CMC (21) 
Alfonic 810-60, Novel II, above 
CMC (23) 

Triton X 100, Tergitol NP 
10,Brij 35, Brij 30, above 
CMC (3) 
Triton X 100, Brij 30, Tergitol 
NP 10, above CMC (18) 
SDS, above CMC (24) 
Below CMC (27) 
(31) 

Pyrene  3 202 0.148 (12), (13) 

4
5 



Table 4.1 Surfactants used in the study 

Surfactant 
Name 

Manufacturer Average 
 Molecular 

Weight 
Adsee 799 Witco 610 
Alfonic Vista Chemicals 354 
Brij 30 Aldrich Chemicals 363 
Makon 10 Stephan Co. - 
Ninol 40-CO Stephan Co. - 
Novel II Vista Chemicals 532 
Tergitol NP-10 Union Carbide 682 
Triton X-100 	 Aldrich Chemicals 628 

Table 4.2 Soil Characteristics 

Gravel, % 0 
Sand, % 44 
Silt, % 44 
Clay, % 12 
TOC, % 2.1 
pH 5.2 
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Table 4.3 Sludge characteristics 

 
PH 7.11 
Solids Content, % 47.1 
Bulk Density, g/ml 1.19 
TPH by IR, ppm 137,000 
Oil & Grease, ppm 222,000 
Total Acid/Base Neutrals, ppb 481,000 
Total PAHs, ppb 453,000 
Heterotrophs, #/g 2.32E+07 

Oil Degraders, #/g 3.44E+06 
Phenanthrene, mg/kg sludge 241.30 
Pyrene, mg/kg sludge 111.12 
Fluorene, mg/kg, sludge 110.25 

Table 4.4 Composition of Growth Medium 

Compound Amount 
Sodium Phosphate (Dibasic) 11.2 g 
Pottasium Phosphate monobasic 5.7 g 
Ammonium Sulfate 500 mg 
Magnesium Sulfate 100 mg 
Manganese Sulfate 10 mg 
Ferric Chloride 5 mg 
DI Water 1 literr 
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Table 7.1 Solubility of 	compounds in Makon 10 

Makon 10 
(w/v%) 

Fluorene 
(mg/L) 

Phenanthrene 

(mg/L) 

Pyrene 
(mg/L) 

0.15 0.00 1.90 0.82 

0.05 2.30 7.37 17.25 

0.10 6.27 22.15 22.40 

0.50 45.82 128.15 95.00 

0.75 69.44 166.76 150.25 

1.00  95.54 250.17 188.20 

48 
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Table 7.2 Oxygen utilization (in mg) by microbial consortia in the presence of 0.3% 
surfactant 

Time 
(Hours) 

Adsee 
799 

Brij 30 Makon 
10 

Ninol 
40-CO 

Novel II Tergitol 
NP-10 

Triton 
X-100 

0 0 0 0 0 0 0 0 

0 2.29 0 0 0 0 0 

10 101.77 135.59 0 278.84  28.93 0 546.45 

15 306.18 1367.41 0 671.86 482.30 0 844.31 

20 520.86 2553.26 24.6 854.80 1417.96 0 1003.32 

25 744.95 3651.75 91.7 994.22 2336.75 0 1148.89 

30 970.74 4476.81 156.56 1106.21 3043.36 0 1296.69 

35 1160.60 5062.89 212.48 1193.06 3648.67 0 1401.95 

40 1324.81 5520.26 266.16 1261.63 4159.94 0 1478.09 

50 1596.77 6274.11 360.10 1378.19 4999.18 0 1596.79 

55 1720.78 6618.86 400.36 1426.19 5363.34 0 1650.54 

60 1837.09 6931.44 433.91 1476.47 5696.14 0 1708.76 

65 1946.56 7223.33 462.99 1517.61 5990.36 0 1769.23 

70 2045.76 7522.11 492.06 1558.75 6243.58 0 1827.46 

75 2134.71 7816.30 516.67 1597.60 6441.33 0 1865.53 

80 2211.68 8105.89 545.74 1638.74 6607.73 0 1903.60 

90 2335.68  8636.71 599.42 1714.16 6930.89 0 2022.29 

95 2380.15 8896.37 677.61 1769.02 7133.47 0 2111.87 

100 2412.65 9149.13 762.70 1862.72 7333.63 0 2212.65 

105 2435.74 9392.70 854.41 2052.42 7531.38 0 2315.67 

110 2455.41  9620.19 937.16 2456.98 7717.08 0 2411.97 

115 2473.37 9843.08 1008.74 3229.53 7902.77 0 2492.59 

120 2492.19 10059.0 1071.37 3766.65 8081.23 0 2557.53 

125 2512.71 10265.8 1122.81 4150.64 8242.80 0 2618.00 

130 2532.38 10463.5 1174.25 4438.63 8385.06 0 2673.99 

135 2548.63 10663.4 1207.80 4708.34 8510.44 0 2714.30 

140 2563.17 10867.9 1241.35 4973.47 8655.11 0 2750.13 

145 2572.58 11072.4 1274.91 5227.18  8823.88 0 2788.20 

155 2592.25 11484.4 1342.01 5723.17  9166.27 0 2862.11 

160 2600.80 11679.0 1371.08 5956.30 9327.81 0 2891.22 

165 - 11874.4 1397.92 6191.72 9482.12 0 2918.09 

170 12065.1 1420.29 6427.14 9634.03 0 2942.73 

175 - 12253.5 1447.13 6667.14 9785.93 0 2965.12 

180 - 12432.7 1467.26 6902.56 9928.18 0 2987.52 

184  - 12575.2 1480.68 7092.27 10036.6 0 2996.48 
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Table 7.3 Inhibition of Makon 10 on microbial growth 

Time 
(Hours) 

0.01% 0.1% 0.2% 0.5% 1.0% 

0 0.0 0.0 0.0 0.0 0.0 
1 0.8 0.0 8.8 0.0 0.0 
5 13.7  0.0 23.9 0.0 0.0 

10 26.6 0.0 37.4 0.0 14.1 
15 55.6 13.7 62.9 24.1 66.7 
20 141.6 82.7 125.9  85.3 194.5 
25 334.1 145.4 220.7 175.0 372.5 
30 400.3 159.0 249.4 232.7 560.7 
35 452.8 209.6 767.9 320.7 733.2 
40 512.2 269.0 341.8 413.7 801.4 
45 578.4 364.6 447.8 572.3 865.0 
50 671.2 452.9 541.8 678.4 900.2 
55 745.8 528.4 631.9 736.1 930.8 
60 793.0 596.7 733.1 768.9 969.2 
65 850.1 633.6 822.3 787.0 930.8 
70 892.7 654.5 937.0 806.0 969.2  
75 930.8 687.5 1047.0 856.8 1018.6 
80 965.0 722.0 1119.5 912.8 1170.8 
85 965.0 755.7 1179.3 993.9 1274.3 

105 968.8 759.7 1184.9 1037.9 1340.2 
110 968.8 760.5 1199.2 1106.0 1391.1 
115 1009.1 795.9 1270.9 1163.7 1395.8 
120 1050.2 835.2 1339.5 1205.1 1403.6 
125 1095.9 863.3 1404.8 1229.2 1453.1 
130 1152.2 901.1 1470.9 1265.4 1497.0 
135 1223.0 941.2 1535.5 1306.8 1545.6 
140 1314.2 982.2 1598.4 1357.7 1601.3 
145 1396.5 1020.7 1658.2 1408.5 1654.6 

150 1431.5 1058.5 1686.9 1463.7 1705.6 
155 1433.8 1101.0 1686.9 1524.9 1758.1 
160 1472.6 1143.6 1706.8 1579.2 1788.7 
165 1506.9 1182.9 1732.3 1632.6 1818.5 

170 1540.4 1220.7 1758.6 1683.5 1879.6 

175 1570.8 1253.6 1781.7 1714.5 1936.1 

180  1601.2 1279.3 1803.2 1737.1 1991.8 
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Table 7.3 (Continued) Inhibition of Makon 10 on microbial growth 

185  1632.4 1306.6 1823.1  I781.7 2044.3 
190 1666.7 1335.5 

1841.4 
1818.0 2092.9 

195 1701.7 1362.8 1856.6 1850.7 2140.0 
200 1741.3 1391.8 1872.5 1884.3 2183.1.  
205 1783.1 1419.1 1 	86 1 1914.5 2222.3 

210 1823.5 1444.8 1898.8 1940.4 2260.0 
215 1860.8 1468.1 1910.0 1967.1 2293.7 

220 1895.8 1490.5 1919.5 1991.2 2325.1 
225 1930.0 1513.8 1929.1 2025.7 2351.7 
230 1962.0 1537.9 1938.6 2049.8  2376.0 
235 1992.4 1560.4 1946.6 2073.1 2398.8 
240 2021.3 1580.5 1953.8 2093.8 2418.4 
245 2051.0 1599.0 1960.2 2110.2 2435.6 
250 2079.9 1617.4 1965.7 2133.4 2450.5 
255 2108.9 1635.9 1971.3 2151.5 2463.9 
260 2137.0 1654.4 1976.9 2 170.5 2474.8 
265 2165.2 1672.0 1980.9 2187.7 2484.2 
270 2192.6 1688.1 1984.9 2205.0 2492.9 
275 2220.0 1706.6 1988.8 2228.3  2499.1 
280 2246.6 1725.0 1992.0 2244.6 2505.4 
285 2274.0 1744.3 1995.2 2267.9 2510.1 
290 2299.1 1761.2 1997.6 2280.0 2514.0 
295 2324.3 1774.0 1999.2 2291.2 2517.2 
300 2348.6 1787.7 2000.8 2303.2 2519.5 
305 2373.0 1799.7 12002.4 2312.7 2520.3 
310 2394.3 1809.4 2004.0 2319.6 2522.7 
315 2414.8 1814.2 2004.0 2319.6 2523.5 
320 2436.1 1817.4 2004.0 2319.6 2524.2 
325 2458.2 1822.2 2004.0 2319.6 2524.2 
330 2478.0 1827.0 2004.0 2328.2 7574.2 
335  2499.3 1835.9 2004.0 2345.5 2524.2 
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Table 7.4 Oxygen utilization (in mg) by microbial consortia in the presence of 20% 
refinery sludge 

Time (Hours) Without Glucose With Glucose 

0 0.0 0.0 

5 78.5 70.9 

10 92.2 78.2 

15 106.9 86.4 

20 122.4 92.7 

25 130.6 95.4 

30 148.9 120.0 

35 166.2 200.0 
40 183.6 295.4 

45 200.9 388.1 
50 220.1 499.9 

55 241.1 604.5 

60 256.6 685.4 

65 269.4 713.5 

70 281.3 734.4 

75 292.2 757.2 

80 303.2 778.1 

85 313.3 798.1 

90 320.6 814.4 

95 327.0 829.9 

100 332.4 842.6 

105 337.9 854.4 

110 341.6 865.3 

115 346.1 876.2 

120 349.8 885.3 

125 354.3 893.5 

130 359.8 900.8 

135 365.3 907.1 

140 370.8 913.5 

145 375.4 918.9 

150 380.8 925.3 

155 385.4 930.8 

160 389.1 935.3 

165 392.7 938.9 

170 397.3 942.6 

175 405.5 947.1 
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Table 7.5 Biodegradation of model PAH compounds without surfactants 

Days Fluorene 

(ppb) 

Fluorene 
Control (ppb) 

Phenanthrene 
(ppb) 

Phenanthrene 
Control (ppb) 

0 75.84 123.34 486.46 575.89 
1 69.41 124.79 483.77 501.43 
2 86.17 150.47 463.12 495.54 
4 78.84 162.2 419.08 490.48 
6 54.08 130.86 383.11 523.46 
8  46.23 125.58 373.6 r 	532.55 

Table 7.6 Biodegradation of PA Hs with 0.01% Makon 10 

Days Fluorene 
(ppb) 

Fluorene 
Control (ppb) 

Days Phenanthrene 
(ppb) 

Phenanthrene 
Control (ppb) 

0 1734.56 1972.62 0 1849.58 1545.08 
1 207.30 1870.20 1 591.63 1590.48 
2 136.29 1960.22 2 492.43 1478.71 
3 100.62 1732.20 5 316.53 1377.00 
6 0 1625.02 6 263.12 1321.94 

7 184.03 1291.00 
8 0.00 1290.74 
9 0.00 1279.86 



Table 7.7 Biodegradation of PAHs with 0.3% Makon 10 

Days Fluorene 

(ppm) 

Fluorene 
Control 
(ppm) 

Phenanthrene 

(ppm) 

Phenanthrene 
Control (ppm) 

Pyrene 
(ppm) 

Pyrene Control 

(ppm) 

0 42.34 42.34 38.29 38.29 27.20  27.20 
1 23.87 41.56 35.94 37.98 32.18 26.35 
2 22.63 42.36 33.89 38.02 22.96 26.39 
4 21.06 40.25 30.17 37.14 19.08 27.06 
6 17.25 41.35 25.46 36.55 15.34 25.99 
8 10.65 42.05 15.36 37.21 12.98  25.89 
10 5.32 40.01 7.54 36.55 6.32 26.54 
12 1.32 40.15 2.01 38.04 0.55 27,01 
15 0.36 41.56 0.24 37.18 0.31 27.32 
16 0.00 40.23 0.00 36.58 0.00 26.87 
18  0.00 42.35 0.00 38.19 0.00 26.33 
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Table 7.8 (a) Biodegradation of fluorene in soil-water slurries (soil/solution ratio of 
1:5) 

Days Fluorene 

(ppm) 

Fluorene Control 
(ppm) 

0 11.32 10.14 
1 10.39 9.82 
2 9.13 9.21 
6 4.74 8.82 
8  0.00 8.91 

Table 7.8 (b) Biodegradation of phenanthrene and pyrene in soil-water slurries 
(soil/solution ratio of 1:5) 

Days Phenanthrene 
(ppb) 

Phenanthrene 
Control (ppb) 

Days Pyrene 

(ppb) 

Pyrene 
Control (pith) 

0 1177.05 1230.74 0 1812.32 1712.45 
1 974.97 1124.04 1 1564.21 1594.36 
2 600.56 1257.07 2 1385.47 1648.37 
3 434.56 1326.81 4 1350.48 1702.58 
7 0.00 1382.41 6 1175.39 1523.84 

7 896.25 1511.31 
8 432.12 1542.36 
10 0.00 1568.29 



Table 7.9 Biodegradation of PAHs in 20% sludge with 0.3% Makon 10 

Days Fluorene 
(ppm) 

Fluorene 
Control 

(ppm) 

Phenanthrene 
(ppm) 

Phenanthrene 
Control (ppm) 

Pyrene 
(ppm) 

Pyrene 
Control 

(pp m) 
0 3.47 2.06 8.31 12.62 9.98 12.90 
1 1.51 2.25 8.01 13.38 12.25 13.16 
3 1.52 3.88 4.12 13.78 7.04 15.14 
4 1.44 3.34 0.72 12.76 6.54 10.61 
5 0.00 2.18 0.00 12.44 4.08 12.00 
7  0.00 3.12 0.00 13.08 0.00 11.36 

Table 7.10 Biodegradation of PAHs in Bioflo RC fermenter with 20 % sludge and 0.3% 
Makon 10 

Days Fluorene 
(ppm) 

Phenanthrene 
(ppm) 

Pyrene 
(ppm) 

0 5.41 7.99 12.97 
1 3.62 5.34 15.68 
2 3.34 4.51 6.90 
4 2.55 3.20 3.72 
5 1.86 2.88 2.97 
7 1.77 2.31 2.89 
8 0.98 1.88 1.96 

11 0.27 0.41 0.94 
13 0.00 0.00 0.00 
15  0.00 0.00 0.00 
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Table 7.11 Biodegradation of PAHs in bioslurry reactor with 20% sludge and 0.3% 
Makon 10 

Days Fluorene 
(ppm) 

Phenanthren 

e(ppm) 

Pyrene 

(ppm) 
0 5.41 7.99 12.97 
1 3.62 5.34 15.68 
2 3.34 4.51 6.90 
4  2.55 3.20 3.72 
5 1.86 2.88 2.97 
7 1.77 2.31 2.89 
8 0.98 1.88 1.96 

11 0.27 0.41 0.94 

13 0.00 0.00 0.00 

15 0.00 0.00 0.00 
17 

(Surfactant 
Addition) 

2.54 0.00 2.89 

18 3.96 0.00 3.21 
19 3.71 0.00 3.14 
20 3.65 0.00 3.12 
22 

(Nutrients 
Addition) 

3.68 0.00 3.16 

24 2.42 0.00 2.12 
26 1.02 0.00 0.65 
28 0.51 0.00 0.45 

30 0.00 0.00 0.00 

31 0.00 0.00 0.00 
32 

(Surfactant 
Addition) 

0.00 0.00 0.00 

33 0.00 0.00  0.00 
34 0.00 0.00 0.00 

35 0.00 0.00 0.00 



Table 7.12 DO uptake 

Time, t (min) (Ci - C) (mg/L)  

0.09 3.0 

0.37 2.8 

1.44 2.5 

2.54 2.2 

3.32  2.0 

4.22  1.8 

5.2  1.5 

6.29 1.2 

7.14 1.0 
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Figure 1.1 Distribution of PAR and surfactant in soil/aqueous system 
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Figure 4.1(a) Calibration curve for fluorene at low concentrations 
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Figure 4.1(b) Calibration curve for fluorene at high concentrations 



Figure 4.2(a) Calibration curve for phenanthrene at low concentrations 
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Figure 4.2(b) Calibration curve for phenanthrene at high concentrations 
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Figure 4.3(a) Calibration curve for pyrene at low concentrations 



Figure 4.3(b) Calibration curve for pyrene at high concentrations 
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Figure 5.1 Respirometer Bottle 
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Figure 5.2 Batch Fermenter 
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Figure 5.3 Bioslurry Reactor 
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Figure 7.1 Solubility of model PAHs in presence of Makon 10 
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Figure 7.2 Adsorption isotherm of fluorene at various concentrations of Makon 10 



Figure 7.3 Adsorption isotherm of fluorene at various concentrations of Makon 10 
below CMC 
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Figure 7.4 Adsorption isotherm of phenanthrene at various concentrations of Makon 10 
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Figure 7.5 Adsorption isotherm ofpyrene at various concentrations of Makon 10 
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Figure 7.6 Cumulative oxygen utilization during surfactant degradation in respirometer 
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Figure 7.7 Inhibition of Makon 10 concentration on microbial growth 
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Figure 7.8 Cumulative oxygen utilization during biodegradation of PA Hs 
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Figure 7.9 Biodegradation of PA Hs in growth medium without surfactant 
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Figure 7.10 Biodegradation of PARS in presence of 0.01% Makon 10 
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Figure 7.11 Biodegradation of PA Hs in presence of 0.3% Makon 10 
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Figure 7.12 (a) Degradation offluorene in 20% soil and 0.3% Makon 10 



Figure 7.12 (b) Degradation of phenanthrene and pyrene in 20% soil and 0.3% Makon 

10 
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Figure 7.13 Biodegradation of PAHs in 20% sludge and 0.3% Makon 10 



Figure 7.14 Aqueous phase biodegradation of PAHs in 20% sludge with 0.3% Makon 
10 in a batch fermenter 
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Figure 7.15 Biodegradation of PAHs in 20% sludge in the presence of 0.3% Makon 10 
in a bioslurry reactor 



Figure 7.16 Oxygen uptake by microorganisms  
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