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ABSTRACT 

ELECTROPHYSIOLOGIC STUDIES OF 
HYPOTHALAMIC ADENOSINE-5'-TRIPHOSPHATE SENSITIVE POTASSIUM 

CHANNELS 

by 
Dinora Hernandez 

Of particular interest in this study were the electrical phenomena involving currents 

from the ATP sensitive K channel in isolated hypothalamic ventromedial nucleus (VMN) 

neurons. These neurons may play an important role in the glucose-sensing system of the 

body. Rat VMN neurons were isolated. For neuronal isolation, the proteolytic enzyme 

pronase was used. However, pronase was too harsh. The use of papain, another 

proteolytic enzyme, led to better neuronal morphology. The perforated patch clamp 

technique was used to gain access to the cell's interior. For membrane pore formation, 

nystatin was used; but seal formation was difficult. Amphotericin was used instead, and 

this milder antibiotic worked better at seal formation. Lastly, Na/K currents obtained 

from isolated neurons were amplified, recorded, and analyzed. 
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CHAPTER 1 

INTRODUCTION 

1.1 Cellular Physiology' 

The cellular membrane of a neuron forms a selective barrier to charged particles. Ion-

specific channels allow the flow of current through the membrane in response to changes 

in membrane potential (Em). Membrane potentials arise as a result of the concentration 

gradients of charged ions across the membrane. For instance, when a membrane becomes 

permeable to one ion species, the ions will diffuse to the area of least concentration and 

thus alter the charge separation across the membrane. Therefore, the membrane potential 

depends on the concentration gradient of the permeable ion and the permeability of the 

membrane to the ion. This relationship is quantitatively shown in the Goldman equation, 

which applies when Em  is not changing [Kandel et al., 1991]: 



As observed from this equation, the greater the concentration of a particular ion 

species and the greater its membrane permeability, the greater is its role in determining 

the membrane potential. The chemical force of diffusion is not the only force acting on 

the ions. There are more positive ions outside the cell relative to the inside. By 

convention, membrane voltage is measured with respect to the extracellular space; the 

inside of the cell is at a negative potential relative to the outside. If positively charged 

potassium ions diffuse out of the cell, they would meet other positively charged ions (Na 

ions) outside. These like charges repel each other. Therefore, the electrical potential 

required to balance the diffusion potential against the concentration gradient is referred to 

as the Nernst potential. The Nernst potential for an ion, E101, is [Hille, 1992]: 

Thus, when the permeability to one particular ion is high, the Goldman equation reduces 

to the Nernst equation for that particular ion. For instance, since the permeability to K is 

greater than Na and Cl (PK >> Pct, PO  at rest, as in neurons, the equation becomes 

(Ki=150mM and Ko.----5mM): 
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Similarly, at the peak of the action potential, the membrane is much more permeable to 

Na+  than to any other ion; thus, EM  approaches ENS, the Nernst potential for Na 

(Nao=150mM, Nai= 15mM): 

The Nernst Equation can be used to find the equilibrium potential. As observed 

from the Nernst Equation, the relative concentration of a particular ion inside and outside 

the cell will determine the polarity of the membrane. Thus, the membrane is said to be 

"depolarized" when the potential inside the cell increases, it becomes less negative. In 

excitable cells (neurons, muscle cells, etc.) depolarization opens voltage-sensitive 

channels to increase sodium permeability. This depolarization allows positive sodium 

ions to flow into the cell and cause an action potential. Conversely, the membrane is said 

to be "hyperpolarized" when the potential inside becomes more negative. 

1.2 Potassium Channels 

Potassium also contributes to the characteristic changes in the membrane potential during 

an action potential. Potassium channels open more slowly than the sodium channels. 

Opening potassium channels will draw the membrane potential closer to the potassium 

equilibrium potential [Hille, 1992]. Because the concentration of K+  ions is greater inside 

the cell, the cell's interior is at a negative potential to balance the force of diffusion that 

drives K+  ions out of the cell. Depolarization of the membrane potential is caused by a 

decrease in the intracellular K+; the Nernst potential of the K+  ion becomes less negative. 

Similarly, hyperpolarization of the membrane potential is caused by an increase in 

intracellular K+  ions or an increase in K permeability. 
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There is a great variety of potassium channels found in cells. In general, open 

potassium channels stabilize the membrane potential of excitable cells, by 

hyperpolarizing the resting potential and keeping action potentials short [Hille, 1992]. 

Most potassium channels, such as the "delayed rectifiers", have voltage dependent gates 

that open after a delay in response to membrane depolarization. Other potassium 

channels, such as the "inward rectifiers" (Kir), open and allow K+  ions to enter only under 

hyperpolarization but not to exit under depolarization [Hille, 1992]. In this manner, 

allowing K+  ions to move into the cell, Kir channels prevent the membrane from 

becoming too hyperpolarized. In so doing, K11  channels keep the membrane potential 

clamped near the potassium equilibrium potential. Kir channels increase the refractory 

time and, therefore, decrease the number of action potentials that take place per unit time. 

Of particular interest in this study is a subtype of potassium channels known as the 

inward rectifier adenosine triphosphate (ATP) sensitive potassium (KATP) channel. 

The KATP  channels link bioenergetic metabolism to membrane excitability 

[Lazdunski, 1994]. 	These KATI) channels are tissue specific and have different 

physiologic functions. They influence the excitability of mammalian heart [Noma, 1983, 

Kakei et al. 1984], skeletal muscle [Spruce et al., 1985], and neurons [Ashford et al. 

1988]. The physiologic function of KATP channels has been well studied but is far from 

totally understood, in pancreatic beta cells [Cook and Hales, 1984, Rorsman and Trube, 

1985]. 

1.3 KATp Channels in Pancreatic Beta-Cells 

There are KATP channels on the t3-cell membrane, which are responsible for the detection 

of plasma glucose concentration [Ashcroft, 1988]. Under normal conditions in 13-cells 

glucose concentration is low and KATP channels are open and contribute to the resting 

membrane potential. Beta-cells respond to small variations of external glucose that 

change the intracellular ATP/ADP ratio [Lazdunski, 1994]. The pancreas does not need 
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insulin for the uptake of glucose. In this manner, the p-cell metabolism acts as an 

extracellular glucose sensor [Ashcroft et al., 1994]. 

When a meal is consumed, plasma glucose levels rise. The pancreatic β-cells 

immediately detect extracellular changes in plasma glucose levels and initiate glucose 

uptake. (See Figure L) This glucose uptake is facilitated by an insulin independent 

glucose transport GLUT-2 [Cotran et al., 1994]. The 13-cell increases its metabolism of 

Figure 1 Schematic of the detection of plasma glucose levels by the pancreatic β-cell 
KATP  channel. The rise of ATP, from glucose metabolism, causes the closing of 
KATP  channels. This closing causes depolarization of the membrane causing the 
activation of voltage-dependent Ca2+  channels. This process initiates the exocytosis 
of secretory vesicles containing insulin. [Adapted from Katzung, 1995.] 
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glucose and thus increase the intracellular levels of ATP. High intracellular ATP levels 

cause the KATP  channels to close. This closure causes K+  ions to build up inside the cell 

and depolarizes the membrane. This depolarization in the cell activates the opening of 

voltage-dependent Ca2+  channels. The resulting Ca2+  influx causes an increase in 

intracellular Ca2+  concentration; and this process, in turn, initiates the exocytosis of 

secretory vesicles containing insulin. Conversely, periods of low glucose levels cause 

KATP  channels to open and hyperpolarize the n-cell. This hyperpolarization stops the 

release of insulin. 

The main function of insulin is to increase the rate of glucose transport into certain 

cells of the body. For instance, when insulin is released, muscle cells and adipose tissue 

are able to utilize glucose. However, the pancreas as well as the brain does not need 

insulin to take up glucose. There is a certain type of diabetes, in which there is a 

malfunction of glucose regulation as will be succinctly explained. 

1.4 KATp Channels and Diabetes 

Diabetes mellitus is impaired glucose utilization, which leads to various metabolic 

disorders. In the United States, there are about 10 million people with diabetes mellitus 

[Hadley, 1996]. In fact, diabetes mellitus ranks among the top ten causes of death in the 

Western nations. Diabetes is divided into two classes: primary diabetes mellitus, and 

secondary diabetes mellitus. Secondary diabetes is a rare type of diabetes; it includes 

hyperglycemia due to destruction of pancreatic islets affected by inflammatory pancreatic 

disease, surgery, tumors, certain drugs, iron overload, and certain acquired or genetic 

endocrine pathologies [Cotran et al., 1994]. 

Primary diabetes mellitus, is divided into two classifications. Insulin-dependent 

diabetes mellitus (IDDM), or type I diabetes, also known as juvenile-onset diabetes, 

accounts for about 20% of all cases of diabetes. Non-insulin-dependent diabetes mellitus 
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(NIDDM), or type II diabetes is also known as adult-onset diabetes and accounts for 

about 80% of the cases. Type II diabetes is further divided into obese, non-obese types 

and a third uncommon form, known as maturity-onset diabetes of the young [Cotran et 

al., 1994]. Type II diabetes is distinguished by both genetic and environmental factors 

that express themselves most often in obesity. That is, this disease is closely associated 

with diet [Mazze, 1995]. In fact, more than 85% of those with type II diabetes will be 

obese at the time of detection [Cotran et al., 1994]. In obesity there is decreased insulin 

sensitivity of tissues. Insulin resistance results from chronically elevated glucose levels 

seen in the obese individual. Hence, obese individuals may exhibit type II diabetes due to 

increased insulin resistance. However, the exact pathogenic mechanism of type II 

diabetes in relation to obesity is still not known. 

Unlike Type I diabetics, who lack insulin, Type II diabetics are able to produce 

insulin. However, the insulin levels produced are less than that required to maintain 

glucose homeostasis [Cotran et al., 1994]. Type II diabetics are treated with sulfonylurea 

drugs such as tolbutamide. These drugs block KATp channels. That is, these agents 

mimic the actions of high intracellular levels of ATP and cause 13-cell depolarization. 

Ultimately, insulin is secreted and blood sugar is lowered. 

13 KArp Channels in the Nervous System 

As mentioned before, in addition to the pancreas, there are KATP channels in other tissues. 

Studies from various types of central nervous system (CNS) neurons have shown the 

presence of KATP  channels [Ashford et al., 1988]. It is speculated that the location of 

these KATP channels link cell excitability and metabolic state of the neuron. In addition, 

the brain's KATP channels might behave in a similar manner as the pancreatic 13-cell KATP  

channels. The brain has a particular interest in sensing glucose, since it is its primary 

energy source [Skoloff, 1977]. There are neurons which directly sense and alter their 

firing rates as glucose availability changes [Oomura, 1974]. A preliminary hypothesis 
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developed by Mayer (1955) linked the brain with glucose sensing. This "glucostatic 

hypothesis" proposed that the brain senses changes in blood glucose levels, and any drop 

in plasma glucose triggers meal initiation. Let us discuss the role the brain plays in 

energy balance [Levin and Routh, 1996] in relation to glucose sensing. 

1.6 Hypothalamic KATp Channels 

Historically, the hypothalamus has been considered to play a key role in appetite 

regulation. In 1940, Hetherington and Ranson observed that lesions to the VMN led to 

excessive eating and obesity in rats. Further, experiments done by Anand and Brobeck, 

showed that stimulating the VMN caused hungry rats and cats to stop eating. 

Consequently, the VMN (see figure 2a & b) was regarded to play a principal role in 

satiety control. However, the VMN, in addition to playing a role in food intake 

regulation, has other functions. Other hypothalamic areas play important roles in energy 

regulation as well. For instance the paraventricular nucleus has been found to be 

important in feeding regulation [Aravich and Sclafani, 1983]. 

The VMN plays an important role in autonomic nervous system regulation. For 

example, the VMN has been found to be involved in stimulation of the sympathetic and 

inhibition of the parasympathetic systems [Steffens et al., 1988]. Interestingly, over 

eating and lower sympathetic activity have been shown in obese Zucker rats, a genetically 

obese animal model [Holt and York, 1989]. The VMN has also been found to be 

involved in the regulation of blood glucose and insulin levels. This regulation appears to 

be, mediated by catecholamines, such as norepinephrine (NE) [Steffens et al., 1988]. For 

example, injection of NE into the VMN leads to an increase of blood glucose [Chafetz et 

a1.,1986, Steffens et al., 1981]. 
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Figure 2a Sagittal schematic of the human 
brain, showing location of the 
hypothalamus 

Figure 2b Hypothalamic frontal view sketch [Adapted 
from Kandel et al., 1991]. 
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Ventromedial [Ono et. al., 1982] and lateral [Oomura et. al., 1974] nuclei of the 

hypothalamus respond to changes in circulating glucose concentration. Further, studies 

by Levin and Dunn-Meynel, 1995, show that intracarotid glucose infusion activate 

neurons in the paraventricular and ventromedial hypothalamic nuclei. This activation 

leads to the activation of the sympathetic nervous system [Levin, 1991]. Thus, VMN 

neurons are able to sense the extracellular glucose concentration [Ashford, 1990] in a 

manner similar to the pancreatic 13-cell. It has been shown that glucose can depolarize 

these neurons through the closure of KATp channels [Ashford et al., 1990]. Thus, it is 

thought that KATP channels are inhibited as intracellular ATP concentrations in the VMH 

neurons rise in response to an increase in blood glucose [Ashford et. al., 1990]. 



CHAPTER 2 

METHODS AND RESULTS 

2.1 Introduction 

Of interest in these studies were the electrical phenomena involving currents from the 

KATP channel in isolated hypothalamic ventromedial nucleus (VMN) neurons. These 

neurons are related to the glucose-sensing system of the body. The objective of this 

project was to gain experience utilizing electrophysiological techniques. 

Electrophysiology is a basic field of study that involves recording electric currents 

originating in living cells, analyzing, and explaining those currents. The environment had 

to be adequate to maintain the preparation healthy. Experience was gained in utilizing the 

patch clamp technique. The patch clamp technique required stable positioning of an 

electrode to provide a means to observe actual potential changes within the cell. Finally, 

the signals were amplified, recorded, and analyzed. 

2.2 Animal Model 

The rat is the animal model used in these studies of brain properties because of the great 

body of data available in the literature. For instance, there is a great number of relevant 

models, such as the diabetes induced model [Bonner-Weir et al., 1981, Rivero et al., 

1991] and the genetically obese Zucker rat (fa/fa) model [Routh et al., 1990]. In addition, 

the reasonable size of rat brain allows the careful dissection of the VMN. The age of the 

rats used in these studies ranged in a narrow window of 11-18 days. During this interval, 

the brain was in a relatively undifferentiated state. However, since changes in obesity 

occur as early as 2 days of age [Moore et al., 1985] as well as in utero it can be said that 

the defect is present early on. 

1I 
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2.3 Cell Isolation 

To minimize the animal's stress, newborn. Sprague-Dawley rats (11-18 days old) were 

decapitated as quickly as possible using a small guillotine. The decapitation area and all 

instruments used were thoroughly cleaned, since rats have a keen sense of smell and 

become distressed at the smell of blood. The intact brain was immediately peeled out of 

the relatively fragile skull. The brain is very soft in nature, therefore, upon removal it was 

immersed in ice-cold oxygenated artificial cerebrospinal fluid to chill for a few minutes. 

The first priority was to keep the cells healthy, thus, the isolation procedure mimicked as 

close as possible, physiologic conditions. The artificial cerebrospinal fluid (ACSF) 

contained (in mM): 128 NaCl, 5 KC1, 1.24 NaH2PO4, 2.4 CaCI2, 1.3 MgCl2, 26 

NaHCO3, 10 D-glucose. The pH was adjusted to 7.4 using HCI. All solutions were made 

with glass-distilled water. The ACSF had oxygen (95% 0215% CO2) constantly bubbling 

through it, to maintain oxygenation of the brain. The chilled brain, was cut into a block 

containing the hypothalamic area, mounted on the cutting carriage of a vibratome 

(Campden Instruments LTD) with cyanoacrylate glue and bathed in oxygenated ACSF. 

About 4-6 coronal slices (400 µm thick) of the hypothalamus were placed in a beaker. 

The slices were maintained at room temperature in oxygenated ACSF for about 30 

minutes before exposure to enzyme. 

Each slice was digested with enzymes in a two step process. Initial time studies 

were performed to determine the optimal duration of enzymatic digestion, which varied 

depending on the litter and the size of the pup. If the isolated neurons contained more 

than one or two projections, then the time was increased. If no projections were seen then 

the enzyme concentration was decreased until satisfactory neurons were obtained. A 

viable neuron is characterized by a circular, translucent (bright), smooth surface of the 

cell body bearing preferably one or two axonal processes. 

The following protocol has been used to isolate cells for patch clamp studies [Ye 

and Akaike, 1993, Ye and McArdle, 1995]. Each slice was incubated in pronase 
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(Calbiochem, San Diego, CA), 1 mg/6m1 in oxygenated ACSF at 32°C for 20 minutes. 

The slice was subsequently maintained in thermolysine (Calbiochem) in 1mg/6ml 

oxygenated ACSF for 20 minutes. This enzymatic protocol proved too harsh to the 

isolated neurons. In addition, experiments involving the KATP  channel require that the 

neurons be maintained for longer periods of time. The isolation procedure is crucial, so a 

new enzymatic digestion protocol was implemented. 

Studies done by Proks and Ashcroft, 1993, showed that the action of papain was 

faster and less destructive to the membrane. In support of this, Huetter et al., obtained the 

best structural conservation of dissociated cortical neurons using papain. 	Their 

preliminary studies showed that papain was superior for dissociating postnatal tissue 

compared to other enzymes [Huettner and Baughman, 1986]. Therefore, 5 mg of papain 

(Worthington), and 25 mg of L-Cysteine (Sigma) were weighed out in 5 ml ACSF and 

left at room temperature for about 30 minutes to ensure full enzyme activation. Each 

slice was incubated in this oxygenated papain containing solution at 35°C for 20 minutes. 

They were subsequently maintained for 30 minutes in oxygenated papain free ACSF 

containing 1 mg/ml ovomucoid trypsin inhibitor (Worthington), and 1 mg/ml Albumin, 

Bovine Fraction V (Sigma). 

The slices recovered for 30 minutes in enzyme free oxygenated ACSF. A punch of 

the hypothalamic VMN (see Figure 3) was taken using a 500µm blunt needle. The punch 

was placed in a small (35mm x 10mm) Falcon 3001 culture dish in extracellular solution. 

This filtered bath solution contained (mM): 135 NaCI, 5 KCl, 2 CaCl2, 2 MgCl2, 5 

Hepes, pH 7.4 with IN NaOH. Punches were subjected to gentle trituration using flame-

polished Pasteur pipettes of decreasing internal diameter. The dispersed cells adhered to 

the bottom of the dish after 15 to 30 minutes. Neurons were observed under a 

microscope (Nikon Diaphot, Tokyo, Japan) equipped with phase contrast optics. The 

microscope was inverted, meaning the objective lens was underneath the dish, for top 

access of the electrode. 
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Figure 3 Coronal section sketch of a rat brain. The arrow indicates the 
location where the 500µm punch was taken [Adapted from 
Sherwood and Timiras, 19701 

2.4 Pipette Fabrication 

Patch pipettes were made from 1.5-mm glass (World Precision Instruments, Inc.) 

capillaries. Two pipettes were obtained from each capillary after pulling on a two stage 

vertical electrode puller (David Kopf Instruments, Tujunga, CA,. Model 700C). This 

instrument contained nichrome heating coils. In the first pull, the capillary was centered 

with respect to the heating coil and enough current was applied to the coil to thin out the 

capillary at the middle. In the second pull the capillary was again centered with respect to 

the heating coil, and the thinned part became disconnected into two tapered ends. To 
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obtain pipettes of consistent properties, two blocks were used, with fixed pulling length 

for the two stages needed. Additionally, fixed heat settings were used, 22A, for the first 

pull. The second pull was done by trial and error until the desired pipette resistance was 

obtained. This heat setting turned out to be around 14.5A for pipette tip resistance 

between 3MQ and 5 MQ when filled with pipette solutions. These pipettes have opening 

diameters around 0.5 to 1 µm [Hamill et al., 1981]. The nichrome heating coils were 

replaced periodically to avoid inconsistencies in the pipette tip size. 

Once the pipettes were pulled, they were fire-polished before use. Fire polishing is 

done to smooth the pipette tip for more secure seal formation. This step was observed 

under a microscope (MF-83, Narashige Scientific Instrument, Tokyo, Japan). Heat was 

supplied by a n shaped platinum-iridium wire. This wire had a small (0.5 mm) glass ball 

at its vertex. The tip of the pipette was brought in proximity to the ball and current was 

applied to the wire for a few seconds. The fragile pipettes had to be kept as clean as 

possible. The pipettes were temporarily stored in a jar, which had a special cushion with 

indentations large enough to hold each pipette until needed. 

2.5 Mechanical Setup 

The pipette provides an electrical connection between the cytoplasm and a metal 

electrode that is connected to the amplifier, CV-3 headstage (Axon instruments). The 

metal electrode consisted of a silver/silver chloride (Ag/AgCI) interface, a silver wire 

coated with silver chloride. The preparation was grounded directly with a Ag/AgCI wire. 

The headstage was mounted on a three dimensional hydraulic micromanipulator 

(Narishige Co. LTD., Tokyo, Japan) used for highly precise manipulation. A coarse 

manipulator was used to rapidly position the solution filled pipette as close as possible to 

the cell. The micromanipulator was then used to accurately advance the pipette to contact 

the membrane of the cell. 
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An oscilloscope (Model 5103N, Tektronix Inc., Beaverton, Oregon), was used as a 

guide to know when the pipette was actually touching the cell. An oscilloscope displays 

the amplitude of voltage waveforms with respect to time coming from the amplifier. (See 

figure 4.) When the pipette touched the bath solution, a dominant signal was detected, 

corresponding to the positive voltage found in the bath. The electrode resistance was 

calculated using Ohm's law, V = 1 R As the pipette approached the cell a change in 

voltage was detected, represented by an approximate 50% decline in amplitude of the 

signal. Once a patch was made, gentle suction was applied to form a seal and the 

amplitude on the oscilloscope drastically declined. At this point, the gain of the amplifier 

was increased to calculate the resistance of the seal. This step had to be performed very 

carefully, since the slightest movement during suction would excise a membrane patch 

from the cell. 

The importance of having a mechanically stable set up is imperative to obtaining a 

successful seal. For this reason, the instruments were placed on an antivibration, air table 

(Micro-g Vibration Isolation System, Model 61-463, Technical Manufacturing Corp., 

Peabody, MA). This table consisted of a heavy slab resting on partially inflated 

pneumatic supports. Except for the microscope, all instruments were off the vibration 

isolation table. The manipulators could not drift or vibrate during recording. Thus, it was 

difficult to form a seal, for there was a drift in the pipette tip. The antivibration table was 

readjusted until every corner of the table top could easily move in every direction. 

However, the drift in the pipette tip persisted. It was then speculated that perhaps the 

micromanipulator was not working properly, primarily because the movements seen were 

in the micrometer range. Finally, it was found that the micromanipulator was working 

properly, thus, the drift originated in the macromanipulator. Once this was corrected a 

giga-ohm seal was formed. 



Figure 4 The electrophysiologic recording set up. The pipette provides an electrical 
connection between the cytoplasm and the metal electrode connected to the 
amplifier. The oscilloscope displays signals from the amplifier. Signals from the 
amplifier are stored in a PC for later analysis. 
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2.6 The Voltage Clamp Technique 

Voltage clamp is a method in which the membrane voltage is controlled, and the current 

required to keep that voltage (V) is measured. The currents (I) that flow are proportional 

to the membrane conductance (G), i.e. the number of channels open. This relationship is 

shown by Ohm's law: 

Hamill et al. as well as Horn and Patlak developed the patch clamp "seal" formation 

recording technique. This technique consists of pressing a pipette tip against the surface 

of a cell, forming an electrical seal. This seal has high electrical resistance (giga (109) Ω) 

and is mechanically stable. In the cell attached conformation, although the membrane 

dimples (as shown in figure 5), the micropipette fails to penetrate. Thus, the membrane 

patch can be ruptured, by applying mild suction, keeping the pipette cell attached. In this 

whole cell recording conformation, the solution inside the pipette exchanges quickly with 

the intracellular side of the cellular membrane. Whole cell current recording measures 

the total ionic conductance in the cell membrane. Currents associated with depolarizing 

and hyperpolarizing steps can be recorded. The whole cell voltage clamp currents 

measured are suitable for studying the sum of many ionic currents flowing through 

individual channels. The whole cell method is used to quantify channels, in situations 

where there is one channel that dominates the electric characteristic of the membrane. A 

variation of the whole cell conformation is the perforated patch method, which enables 

whole cell measurements in a less invasive manner. 

2.7 Perforated Patch 

The perforated patch method consists of using nystatin to gain access to the interior of the 

cell. Nystatin is an antibiotic that forms pores in the cell's membrane. These nystatin 

transmembrane pores lower the electrical resistance to the cell's interior, providing better 
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conservation of the cytoplasmic contents such as ATP. These pores, which are 

approximately 8 A in diameter [Hille, 1992], do not allow large molecules to pass through 

their opening and are permeable only to monovalent cations and CI-  ions. Therefore, 

whole cell recordings can be made without diluting required substances from the cell's 

cytoplasm. However, intracellular content manipulations can not be made (except for 

small ions). The KATP  channel studied runs down. Run down refers to the loss of activity 

with time. By using the perforated patch method, current run down would decline, 

because ATP is not dialyzed away. 

The nystatin stock solution contained 2 mg of nystatin dissolved into 2 ml of 

methanol. After covering the tube and vortexing it, nystatin solubilization was further 

enhanced by sonication for approximately 2 minutes in a bath sonicator. The final 

solution was yellow in color and slightly cloudy in appearance. To clear the solution a 

drop of HCl was added, then the pH was adjusted to 7.0-7.4 using IN KOH. Since 

nystatin is susceptible to oxidation, the stock solution was frozen and used within two 

weeks. 

Pipettes were filled with a solution that contained 10mg/ml nystatin stock solution 

in pipette solution. The pipette solution contained in mM: 55 KCI, 70 K2SO4, 7 MgCI2, 

10 HEPES, (buffered to pH = 7.4 with KOH). When using nystatin in the pipette filling 

solution, it was difficult to obtain a seal; apparently, nystatin interferes with seal 

formation. Therefore, amphotericin, a milder antibiotic was used as follows. 

To prevent loosing activity due to prolonged storage and freezing, 3 mg of 

amphotericin B (Sigma) were weighted into small tubes and stored in the freezer. The 

stock solution of amphotericin was 60 mg/ml in 99.5 % DMSO. Since amphotericin is 

also susceptible to oxidation, the stock solution was used within one week. For 

recording, the patch pipette was filled with stock solution, diluted 250 times in pipette 

solution. The chances of getting a seal are greater in an antibiotic free solution. 

Therefore, the tip of the pipette was dipped in an antibiotic free solution and then back 
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filled with the pipette and amphotericin solution. After a seal was formed, the antibiotic 

diffused slowly to the tip to form pores. The bath had a volume of less than 0.5 ml and 

was perfused at about 2 ml/min. A small vacuum was used to reduce the fluid level, to 

minimize the immersion depth. 

2.8 Proposed Protocol 

The goal of this protocol was to determine the effects an experimental drug, BMS 

180448-01 (see figure 6), had on the isolated VMN neurons. BMS 180448-01 is 

supposed to be a KATI) channel opener (KCO). KCO agents open K channels that are 

sensitive to ATP. The mechanism of action of KATP  openers is still unknown, however, 

they might have some therapeutic potential [Atwal, 1994]. Since, the interest lied in 

determining the effect of the drug on the KATP  channel, the KCO would be applied to a 

closed channel state, to see if indeed, it opened the channel. In the absence of glucose 

(control) the channel is expected to be in the open state and an increase in channel 

activity would appear as an increase in current. 

Figure 6 BMS-180448-01 



Therefore, neurons would be isolated in glucose free solution and hyperpolarizing 

voltage steps would be introduced (described in the next section) to ensure that the 

channel was open. Conversely, glucose abolishes KATP  channel activity and induces 

action potentials [Trube et al., 1986]. The bath would then be perfused with extracellular 

solution containing glucose. Thus, a decline in conductance would be seen. After the 

current changes were allowed to decline in activity, cromakalim, (see figure 7) a known 

KCO would be applied to the bath solution and hyperpolarizing voltage steps would be 

Figure 7 Cromakalim 

applied again. Cromakalim is expected to open the channel, and the current activity is 

expected to rise. The bath would then be perfused with extracellular solution containing 

glucose, and a decline in activity was expected. Lastly, the experimental drug would be 

applied. If this drug was indeed a KCO, the channel would be expected to open. Thus, 

after applying the drug, hyperpolarizing voltage steps would be applied to see if the 

current amplitude changed. The negative potentials limit the number of channels open. 



The data would be analyzed and BMS 180448-01 channel activity would be compared 

with that of cromakalim. There should be a decrease in KATp conductance seen when 

glucose is applied. The subtraction of glucose and glucose free currents will show the 

presence of KATP channels. As a final check, high concentrations of glibenclimide 

(100µmol) would be applied to shut off all KATP channels more reliably than glucose. 

This currents would then give an idea of how much of the whole cell current was due to 

KAI?' 

2.9 Data Collection and Analysis 

Currents were amplified using the Axopatch-200/CV201 patch clamp amplifier (Axon 

Instruments, Inc., Foster City, CA). The reference potential for all measurements was the 

zero-junction potential between the solution in the pipette and the bath before forming the 

seal. The data was filtered and digitized (TL-3, Axon Instruments) at 5kHz with a 4-pole 

bessel filter. The data were stored on an IBM-PC and analyzed off line using Pclamp6 

software. 

Figure 8 shows membrane current records measured from isolated VMN neurons. 

The interior of a neuron was made electronically accessible with the perforated patch 

method, then it was voltage clamped and the membrane potential was changed in steps of 

20mV. The step depolarization, from -70mV up to 110mV, changed the ionic 

permeability of the membrane. For instance, when the neuron was depolarized, there was 

a large inward current. This inward current reversed, giving rise to a large prolonged 

outward current. Thus, this depolarization initiated a current with Na and K components. 
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Figure 8 Family of voltage-clamp currents in isolated VMN neurons. A neuronal 
membrane is stepped under voltage clamp from a holding potential of -70mV to test 
pulse potentials ranging in 20mV steps from -70mV to 110mV. 
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The properties of Na and K currents were plotted in terms of current-voltage (IN) 

relations. Figure 9 shows the peak transient Na current, obtained from each trace, as a 

function of the applied voltage potentials. The shape of the IN relations between -50mV 

to -1 OmV reflects the voltage dependent opening of the Na channels. That is the slope of 

the Na curve changed steeply, at those specific potentials. In addition, figure 8 shows that 

Figure 9 Na/K current-voltage relations of isolated VMN neurons. The VMN 
neuronal membrane potential is stepped under voltage clamp from the -70mV 
holding potential up to 110mV. Peak transient Na currents (▪) from each trace 
were plotted against the voltage applied. Steady state currents (•) are all 
outward as expected from the K channels. The shape of the I/V relations 
between -50mV and -10mV represent the voltage dependent opening of Na 
channels. 
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the early transient currents reverse their sign from inward to outward at around 48mV, as 

expected if they are carried by sodium ions. Specifically, at negative potentials to the 

sodium equilibrium potential (ENa), there is an inward current, that is, Na ions rush into 

the cell. Whereas, at potentials positive to ENa, the currents carried by Na ions are 

outward. Steady state values of membrane currents were determined by measuring data 

points within the last 5ms of the 200ms test pulse. These late currents are outward at all 

test potentials, as is expected from a current that is carried by K ions. Potassium ions 

have a reversal potential more negative than -60mV. 

The membrane potential was stepped to test pulse potentials ranging in 10mV steps, 

from a holding potential of -60mV. Figure 11 shows whole-cell currents recorded in 

response to hyperpolarizing voltage steps to between -120mV and -70mV. These are 

steady state values of membrane currents determined by measuring data points within the 

last 5ms of the 200ms test pulse. Corresponding 1/V relationships are given in figure 10. 

This figure shows an inward current, carried by K ions, under hyperpolarization. In 

addition this figure shows that there is a steep voltage dependence on hyperpolarization. 

Thus, the characteristics just described are typical of an inward rectifier. The reversal 

potential EK  would be approximated at a potential negative to -50mV, based on the 

behavior of the graph. Both current traces presented here have a small component of 

current before the applied depolarizing or hyperpolarizing pulses. This component of 

current is called "leakage current" [Hille, 1992], which is a voltage independent 

background conductance of undetermined ionic basis. To compensate for this, the 

leakage was subtracted from the actual current responses to obtain the 1/V relation. 
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Figure 10 Steady -state current/voltage (I/V) relationships for the whole cell 
currents shown in figure11. 
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Figure 11 Family of hyperpolarizing voltage-clamp currents in isolated V MN neurons. 
Whole-cell currents recorded in response to voltage-clamp steps between -120mV 
and -70mV from a holding potential of -60mV, using the perforated-patch 
configuration. 



CHAPTER 3 

CONCLUSIONS AND RECOMENDATIONS 

3.1 Conclusions 

Of particular interest, was the measurement of the ATP sensitive K channel activity. 

These type of channels are located in the pancreatic (3-cell and are responsible for the 

glucose sensing process. In addition, the KATP channel has been found in the cell 

membrane of neurons in the brain. Thus, a glucose sensing mechanism, similar to the 

pancreatic one, might be taking place in the brain. 

Neurons were isolated from the VMN of the hypothalamus. At first the brain slices 

were subjected to enzymatic digestion using pronase and thermolysine, to isolate the 

neurons. However, the neurons obtained did not survive. Thus, a new enzymatic 

protocol was implemented, using the proteolytic enzyme papain followed by a trypsin 

inhibitor, BSA. Neurons isolated with papain had better morphology. 

The perforated patch method was used to measure whole cell currents This 

technique allows membrane potential recording, voltage clamping, and intracellular 

content manipulation. This method consisted of using a pipette solution containing, the 

antibiotic, nystatin. Nystatin formed pores in the cellular membrane. These pores 

lowered the electrical resistance to the cell's interior and kept the cytoplasmic contents 

intact. Nystatin is a potent antibiotic and difficulties were encountered in seal formation. 

Therefore, amphotericin, a milder antibiotic was used, and resulted in better in seal 

formation. 

In summary, experience was obtained in making solutions, isolating neurons, 

manufacturing pipettes and utilizing the amplifier to obtain neuronal currents. The main 

difficulty encountered in working with the KATI) channel was in keeping the neurons alive 

long enough to run the intended experimental protocol. The isolation procedure 
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implemented here has been shown to work effectively for whole cell recording in other 

channels. In such experiments, the majority of channels studied respond to their agonists 

within seconds, therefore, an experiment can be done in 5-10 minutes. It is speculated 

that the KATp channel is metabolically activated. Thus, it takes approximately 15 minutes 

to determine whether the channel is a KATp channel in whole cell recordings. 

The intended protocol consisted of determining the effects of a suspected channel 

opener, BMS-180448-01, on isolated VMN neurons. Initially, the neurons were isolated 

in a glucose free solution. Depolarizing voltage steps produced Na and K currents. 

Hyperpolarizing voltage steps elicited currents, which were expected to show an increase 

in KATp channel conductance. Glucose closes the KATp channel, therefore, a decrease in 

KATp channel conductance was expected, upon glucose application to the extracellular 

solution. Once the channels were closed by glucose, cromakalim would then be applied 

to the bath solution, to open the channel, and an increase in KATp channel conductance 

was expected. The procedure just described would be compared with BMS-180448-01. 

The effect of KCO's on the KATP channel would be studied That is current amplitude 

records between cromakalim and BMS-180448-01, would be compared. The subtraction 

of glucose free currents will show the presence of KATP  channel. As a final check 

glibenclimide would be placed in the solution to completely shut off the channel. The 

currents obtained between glibenclimide and glucose would then be compared to 

determine the presence of the KATP channel in the cell membrane. 

3.2 Recommendations for Future Work 

In every area of research there is always room for improvement. The major difficulty 

encountered in utilizing this technique was keeping the preparation healthy for a 

relatively long time. Significant damage was produced to the cells by dissociating 

connective tissue through enzymatic digestion and through trituration. Other laboratories 

use the slice recording method to solve the isolation problems. For instance, Dr. Vanessa 
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H. Routh is currently working with this technique in Dr. Ashford's laboratory in 

Scotland. In tissue slice recording, the slices are placed in a special chamber to oxygenate 

and pet-fuse the slices. Disruption of the normal cellular environment is limited to the 

surface of the slice, thus keeping the slices closer to their original state than in the 

isolated neuron preparation. In addition, there is no trituration involved. On her return, 

Dr. Routh plans to implement the slice preparation for channel recordings to mitigate the 

difficulties encountered since working with the KATP channel. 

Another difficulty encountered were the rats, since there was a narrow window to 

work with (between 11-18 days). In addition there were contamination concerns, since 

the pups acquired pin worms. It took a long time to decontaminate the animal facilities. 

The difficulties involved with animal models perhaps can be avoided by increasing the 

number of animals used or implementing tissue culture cells. However, in such manner 

there would be deviations from the actual physiological functions sought, that an animal 

model can provide best. 
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