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ABSTRACT

FLAG: THE FAULT-LINE ANALYTIC GRAPH AND
FINGERPRINT CLASSIFICATION

by
Ching-Yu Huang

Fingerprints can be classified into millions of groups by quantitative measurements of

their new representations - Fault-Line Analytic Graphs (FLAG), which describe the rela-

tionship between ridge flows and singular points. This new model is highly mathemati-

cal, therefore, human interpretation can be reduced to a minimum and the time of identif-

ication can he significantly reduced.

There are some well known features on fingerprints such as singular points, cores

and deltas, which are global features which characterize the fingerprint pattern class, and

minutiae which are the local features which characterize an individual fingerprint image.

Singular points are more important than minutiae when classifying fingerprints because

the geometric relationship among the sin allay points decide the type of fingerprints.

When the number of fingerprint records becomes large, the current methods need to

compare a large number of fingerprint candidates to identify a given fingerprint. This is

the result of having a few synthetic types to classify a database with millions of finger-

prints. It has been difficult to enlarge the minter of classification :groups because there

was no computational method to systematically describe the geometric relationship

among singular points and ridge flows. In order to define a more efficient classification

method, this dissertation also provides a systematic approach to detect singular points

with almost pinpoint precision of 2x2 pixels using efficient algorithms.
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CHAPTER 1

INTRODUCTION

Fingerprints probably are the most important type of physical evidence which can be

used for identification [19]. A fingerprint is composed of two parts, ridges and valleys,

as shown in Figure 1.1. The ridges and valleys shape Into different patterns which deter-

mine the type of fingerprint. As it is well known, during the life span of a person, finger-

prints remain the same. They do not fade with the passing of time. A fingerprint can be

permanently changed [57] if and only If the pad of the finger Is seriously hurt. Based on

these characteristics, immutable, permanent ; and that no two fingerprints have been

found the same so far, fingerprints have been used as an unique mean of identification for

people 07].

Core
- hole
- island
- dot

— delta
ridge ending
bifurcation

ridge
 valley

Figure I.! A sample of a fingerprint, Singular points, deltas and cores, are identified by
squares. Minutiae are identified by circles.

Fingerprint services are supplied for criminal investigation and identification, police

officer employment applications, Immigration and Naturalization Service documentation,

and for other forensic identification purposes [8] [22]. Fingerprint research can be

applied not only to criminal investigation but also to industry. Fingerprints are
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convenient, nearly impossible to imitate, impossible to lose, and easy to trace. Finger-

prints may replace handwritten signatures as the standard authentication for credit cards

and personal identification cards [911. Many building entrances and other areas of fac-

tories which need to be secure use fingerprint lockers to prevent improper access.

When identifying images, we need Invariant features to compare them. There are

some well known features on fingerprints: such 0.8 s ingular points and minutiae shown in

Figure Ii. Singular points are global features which characterize the fingerprint pattern

class. Minutiae are the local features which characterize an individual fingerprint image.

A fingerprint has only a few singular points and many randomly distributed minutiae.

Singular points are more important than minutiae when classifying fingerprints because

they are global features. That is why researchers try to detect singular points to simplify

the recognition process.

Kurre (241 stated that the current amount of the FBI fingerprint database is around

219 million and the total number of fingerprints increased 12.5% over the year 1996.

This means that the total number of total records will more than double in less than a

decade. The best way to quickly identify a fingerprint against a huge database is to clas-

sify fingerprints into a large number of groups and then match the fingerprints by the

minutiae.

Li Motivation

When the number of fingerprints in the database is huge, the current methods are not fast

enough to compare all fingerprints within a class. The reason of this is because currently

there are only a few groups (less than ten) to classify fingerprints. In the FBI database,

each fingerprint group contains an average of 21 millions of records which is a large

number of records to be managed. The number of classification groups cannot be

increased because there is no way to precisely detect singular points and to find the
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relationships between them. The problem with precise identification of singular points is

that the block, or the locator grid is not accurate enough. Researchers have detected,

although imprecisely, singular points within a block where the area size is 16x16 pixels.

The average block size is 48x48 and the worst case is an 80x80 pixels area [80] [94].

The purpose of this dissertation Is to provide tt systematic approach both to detect

singular  points and to classify fingerprints using more efficient techniques. In this disser-

tation, we have successfully detected singular points in almost pinpoint areas of 2...-(2 pix-

els, and at the same time we have classified them into cores and deltas. In addition to the

detecting techniques, and based on the outstanding results,  fingerprints can be divided

into hundreds of thousands of groups which are based on the mathematic geometric rela-

tionship between cores and deltas. It is highly human independent so that ambiguous

types can be reduced to a minimum. With so many classifying groups, the speed of

search will increase, and the number of resulting candidates will decrease dramatically

for the matching process. Our algorithms will greatly improve fingerprint technology. It

is hoped that many problems of fingerprints can be solved by our proposed approaches.

1.2 The Survey of Fingerprint Fundamentals

There are several types of research related to fingerprint processing, such as fingerprint

acquisition, enhancement, segmentation, thinning, edge detection, and direction compu-

tation. They are fundamental image processing techniques.

L2.1 Image Acquisition

The acquisition type of fingerprints can be divided into passive and active.

a) Passive Method: In this method, the fingerprint is usually found on an object which

may be present at a criminal scene: a desk, a wall, or any possible thing. During this pro-

cess, the fingerprint is painted with some chemical powder, and then is pressed onto a
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paper card [13] [105]. After the manual procedure, the card is scanned under a certain

resolution and the fingerprint is transferred into a digitized image file [7]. Generally,

after the fingerprint is pressed onto the paper card, the subsequent procedures depend

solely on the quality of the image on the card. Normally, this passive method can be

applied only once.

b) Active Method: This method gets an image directly when a fingertip presses onto a

digital optic machine with a prism and a camera [30] [58] [99] [102]. The machine

directly transfers the image into a digitized file. The digitizing process is the same as

with a scanner. The differences between this active method and the passive one are that

here, the quality of the image depends on the pressure applied when the fingertip is

pressed, and if the image is noisy, the user can repeat the procedure several number of

times.

The F131 uses the wavelet compression technique [5] [6] [32] to store the fingerprint

images to save the space under 500 dpi resolution. The wavelet compression is a lossy

method which means some information in compressed images may be removed, but the

method can keep the most important features such as ridges, valleys and singular points.

1,2.2 Image Enhancement

The latent fingerprint is usually noisy and need to be enhanced before it can be identified

[33] [95]. If the quality is not up to an acceptable standard, fingerprint recognition

becomes extremely difficult. Coetzee and Botha [15] developed some skills in enhanc-

ing low quality images of fingerprints. Hung [39] proposed a technique to connect bro-

ken ridges and remove the bridges in a skeleton fingerprint image. Sherstinsky [87]

restored and enhanced fingerprint images using a novel non-linear dynamic system.
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1.2.3 The Segmentation of Fingerprints

Better binary images of fingerprints are very important to later processing. Because of

their latent characteristic, fingerprints are usually digitized from paper cards where the

resulting images contain not only fingerprints, but also other redundant objects.

NIST[10]developedasimple algorithm to extract themajorparts of fingerprints from these

images, The techniques of thinning, minutiae detecting, direction computing and many

others require that the images contain only two gray levels, usually ridges as black and

valleys as white. in addition, the thresholding process must be automatic and not depen-

dent on human analysis.

1.2,61 Thinning and Edge Detection

The ridge counting and minutiae detecting are usually applied by thinning methods. The

process of thinning is to reduce a big object into its skeleton [47] [72]. Several thinning

algorithms have been proposed [2] [11 [48] [55] [881, Edge detection can help the recog-

nition of objects [46]. Tan and Loh 11001 developed hierarchical structures for efficient

edge detection. Tabbone and Ziou [97] used two scales to detect edges. Verma [101]

also did edge detection on fingerprints. However, these techniques are noise -sensitive so

that image quality must be good.

1.2.5 Direction Computation

The vector or directional technique is widely used in flow-oriented images such as

fingerprints and optic flow because they both have the particular characteristic of

direction - oriented patterns [50] [89] [90] [98] [110]. Sherlock and Monro [86] presented

a simple model for interpreting fingerprint topology by using local ridge orientation of

block directions and describing the topological behavior of ridge flows. The ridges or

valleys can be represented as several directions which are quantized into certain numbers

and computed from the neighborhood pixels [73] [103].
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Mehtre [66] [67] and Srinivasan [94] computed the block direction by a major histo-

gram within a block by a gray values difference method. In addition, Kawagoe [51] uses

the gradient in the threshold image and computes the direction for each block. The result

of the gray values difference method may need to be smoothed iteratively until the qual-

ity is good. The block size In their methods is highly dependent on the quality of the

directional image When the block size is larger, their method can get only rough singu-

lar point positions even though the range may be several blocks.

Fuzzy theory has proven itself to be of significant Importance in pattern recognition

problems. Fuzzy methods are panicularly useful when it Is not reasonable to assume the

uncertain values ON [541 (751. A fuzzy technique is proposed by Hung and Huang [441

with a circular template applied to compute a better pixel-wise direction.

1,3 The Survey of Fingerprint Features

To compare two images we must have some reference points which exist in most similar

images [I] [I 1]. The matching process is based on these extracted features [45] [59]

[60]. What features are helpful and how to detect them are important for fingerprint

identification. In fingerprints, there are some points which are always considered as

reference points: singular points and minutiae.

1,3.1 Singular Points

Singular points are classified as deltas or cores, as shown in Figure 1.1. A delta, accord-

ing to Henry [35] is "an outer terminus: it may be formed either (a) by the bifurcation of

a single ridge, or (b) by the abrupt divergence of two ridges that hitherto had run side by

side." A core is "an inner terminus: the core of a loop may consist either of an even or

an uneven number of ridges (termed "rods") not joined together, or it may consist of

two ridges feinted together at their summit (termed "staple'').''
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Computationally, a singular point is defined as a location where a local maximum in

ridge curvature is detected [84]. That is, singular points can be analytically extracted

from directional patterns. The singular points are the most important landmarks in classi-

fying a fingerprint because they are the physical centers of convergences or divergences

to a ridge pattern, Detecting singular points is not only limited to two dimensions, but

also can be applied in three dimensions. Sander and Zucker (8,5] detected singularities of

3-D images by principal direction fields, Graphic models can represent the behavior of

fingerprint curvatures [14]. The corner and dominant points are the most important

features on curvatures [53] [74]. Qinghan [77] [78] used feature lines to identify finger-

prints. Although fingerprints seem to be composed of curvatures, the dominant points of

fingerprints are not so unique that they can be considered as reference points.

A pyramidal model was proposed by Hung and Huang [43] which can detect the

singular points into a very precise position within 22 pixel areas and classify them as

core or delta types by the pattern domain of singular points. Hung and Huang [40] also

presented a pure mathematical method to find the center of convergence, and a gray zone

model to detect the singular points [41].

1.3.2 The Minutiae

Minutiae are randomly distributed in a fingerprint, as shown in Figure 1.1. Minutiae can

be considered ridge bifurcations, ridge endings, islands, dots and short ridges. Ratha [83]

used an orientation flow field to extract the minutiae. Hung [39] and Pernus [76]

modeled the minutiae for fingerprint matching. Hrechak [36] and Maio [62] [64] used

structural approach to fingerprint classification by minutiae matching. The process of

minutiae matching is like point pattern matching [12] which is slow because of many

computations.

Some minutiae are hard to identify because their shapes are smaller and noise sensi-

tive. Among the minutiae, bifurcation is easiest to find. Minutiae cannot be considered
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as major reference points when we compare fingerprints because if the printed fingertip

is dirty, minutiae are easily removed or added to a fingerprint. It is difficult to find an

immutable reference to pattern minutiae other than singular points. Minutiae are useful

when singular points are identified and the fingerprint are classified. So, it is understand-

able that most researchers try to find singular points Instead of minutiae [81].

L4 The Survey of Fingerprint Classification

It is necessary to amplify and catalog fingerprints into more numerous subdivisions.

Then we can identity a fingerprint in a smaller subdivision instead of in the whole data-

base. Singular points are commonly used In the classification process.

Henry's PoItems

The most successful person to classify fingerprints was Sit: Edward Richard Henry [34]

[35]. He classified fingerprints based on the number of singular points and the relation-

ship between them into three major types: arch, loop and whorl, and divided these types

into several sub-categories: I - plain arches and tented arches; 2 - ulnar loops and radial

loops; 3 - composites, that is, combinations of arches, loops and whorls in the same print;

4 - central pocket loops and lateral pocket loops; 5 twinned loops; and 6 - accidentals

which are irregular in outline and can not be placed under central pockets loops, lateral

pockets loops or twinned loops. Some samples of Henry's categories are shown in Fig-

ure 1.2.

Today Henry's system forms the basis of the great majority of systems employed in

English-speaking countries [4]. The organization which has the earliest and biggest

fingerprint database in the world is the Federal Bureau of Investigation (FBI) of the

United States (US) [20] [92] [93]. Two U.S. institutions, the FBI [21] [22] [23] and the

National Institute of Standards and Technology (NIST) [9] [104] [108]. have similar

classifications based on Henry's system. The identification process is to match the



(a) s0024613.wsq (b) s0026707.wsq (c) s0024390.wsq

9

(d) s0024384l.wsq (e) s0025024.wsq (f) s0024355.wsq

(g) s0024902.wsq	 (h) s0024967.wsq

Figure 1.2 Henry's classification. Arch - (a) Plain Arch. (b) Tented Arch. Loop - (c)
Ul-nar. (d) Radial. Whorl - (e) Composites - (f) Central Pocket Loop. (g) Twinned Loop.
(h) Accidental.
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required fingerprint in certain classified groups by minutiae with providing other infor-

mation such as the ridge counting between singular points [61] [63].

Researchers classified fingerprints to the categories which are similar to Henry's,

Cowger [16], Fitz and Green [26], Karl) and Jain [491, Kawagoe and Tole) [51], Lin [59]

001, Mehtre [681, Pan and Black [791, and Wegstein 11061, The classification of

Henry's system was pattern-oriented and the correctness is based on visual justification

so that it is very hard to distinguish some similar types of fingerprints. Therefore, preci-

sion and correctness is reduced and the time for identification is increased.

A new representation model, Fault Line Graph (FLAG) which is a bipartite graph

[65], was proposed by Hung and Huang [371 that fingerprints can be described by the

geometrical relationships between singular points and fault lines which are the boun-

daries between two different directional regions, fly this method, fingerprints can be

normalized into a fixed orientation by the horizon vector in the FLAG and can be classi-

fied into hundreds of thousands of groups.

1.4,2 Syntactic Approach

There is another method, "Syntactic Pattern Recognition", also called "Pattern Descrip-

tion Language", which presents patterns in terms of grammar rules to produce expres-

sions. Fu [27] [28] [29] [69] first introduced this technique. He used a formal language

technique to describe the patterns. Denning [17], Gonzalez [31] and Sudkamp [96]

addressed the fundamental concept of languages and grammars. Rao and Balck [82] pro-

posed a syntactic approach to classify fingerprints. They used strings of symbols to

represent the curvature of the fingerprint, Moayer and Fu [71] demonstrated a tree system

to represent and classify fingerprint patterns. They used a regular tree language to

describe the patterns. Lee [56] used tree automata in pattern recognition. Xiao [109]

post-processed the fingerprint by combining the statistical and structural method [36].

Hung and Huang [42] proposed a syntactic structure method to represent an object.
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The syntactic method is seldom applied to fingerprint research nowadays because it

is too complicated to test. In addition, it is highly dependent on human processing. How-

ever, the syntactic method is useful in representing and comparing patterns when the pat-

terns have been itemized: that is, after the singular points have been detected and classi-

fied, in fingerprints, the directional method. h more widely used than the syntactic

method [70] (82].

t5 The Analytical Shady on Fingerprint Recognition

Here, we show our fingerprint architecture for the detection of singular points and the

classification of fingerprints in Figure 1.1 Pm - each phase of our architecture is

explained by following:

a) Fingerprint imprint: Whether fingerprint is acquired from actively or passively, it

should be transferred into a gray scale digitized Image.

b) Segmentation and Direction Computation: First, we extract only the fingerprint

images with fixed size from the bigger digitized fingerprint cards. The segmentation

process will threshold the images into two levels which we call ridges, valleys and

backgrounds [38J. Since fingerprints are flow-oriented, we can compute pixel-wise

direction by our fuzzy template technique.

c) Singular Points Detection: As previously stated, the singular points are the global pat-

terns in fingerprints. The detection of their accurate position is one of the major

topics in our dissertation. The pyramidal model can detect singular points within a

2x2 pixel area.

d) Fingerprint Normalization: Representing fingerprints by Fault Line Graph (FLAG),

we normalize each fingerprint into fixed orientation by their core-delta pair vector.

e) Fingerprint Classification by the FLAG: Using the attributes of core-delta pair vector

in (FLAG), we can classify fingerprints into millions of groups by mathematical
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methods where each group contains only a few fingerprints. If the fingerprints are in

the same group, the final minutiae matching will be applied to do each individual

fingerprint. So, the time of identification can be reduced significantly.

The outline of thisdissertation

2: 	 Direction 	 71171

lar

modelft	classification.

Chapt er 6 	



Fingerprint Imprint and Segmentation

Direction Computation

Singular Points Detection

Fingerprint Normalization

Fingerprint Classification by the FLAG

13

Figure 1.3 The analysis, classification and recognition of fingerprints.



CHAPTER 2

DIRECTION COMPUTATION AND ANALYSIS

it Is a well-known fact that fingerprints are flow and direction-oriented images. Thus,

the directional techniques are commonly applied to compute the directions of ridges and

valleys, which the resulting images are called directional images. The directional images

are helpful in analyzing and detecting features of fingerprints. In this chapter, we pro-

pose a fuzzy model to improve the speed and compute better pixel-wise directional

images of flow oriented patterns such as fingerprints. A fuzzy template can be balanced

With any directional number N and size W so that the noise can be reduced. We also

prove the best number .N for directional images Is 3.

II Direction Computing

After thresholding of the fingerprint image, a fingerprint is represented as black ridges,

white valleys and background fields. The fingerprints have singular points as global pat-

terns and minutiae as local patterns, respectively. A Low image can be described as a set

of concentric ridge flows. As well known, ridge flows are a direction-oriented charac-

teristic. Image quantization is a standard image processing procedure for converting a

continuous numerical scale into a finite number of levels by discrete directions. Given a

uniformly-distributed quantization, the smallest quantization error is half the size of a

converting step. Thus, the direction field of a fingerprint will be quantized into a number

of uniformly-valued regions which are locally merged at the singular points. The direc-

tion number is ranged from 0 to N-1 if N directions are applied to the image.

Let N be the number used in representing directions of ridge flows and D =
r

d 1 , ..., dN} be a set of integer directions which represent directional orientation

14
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ranging (0, it]. A pixel's Pi./ direction is determined by computing all connected pixels of

neighbors Q11 which are the same type (ridge or valley) as P within WxW area. Then

the maximum one in the direction histogram is assigned as P ij's direction.

2.1.1 Pixel-wise Calculation

Let W 2w+1, for each pixel P , = (i,j), a Wx W domain centered at p is used and the

domain is denoted as ΩW(P). Given q = (a,h) E Ωw(P), the N orientation of a line link-

ing of P and q is defined by

if q is connected to P.

otherwise.

where -1 marks a status of invalid and Quan is a quantization function which the resulted

value is in { 0, N- 1 J. Then the local direction d(P) is sat to the majority direction

over the domain of Ωw(P). If no majority direction can he found or multiple directions

are found having similar high counts, a higher domain of 0214/(P) is applied. If a major-

ity still can not be found, then d(P) is set to -I or a status of invalid. The direction of a

ridge line can be also consider as its slope.

11,2 Firm Circular Technique,

After thresholding the gray scale image, the image is cataloged into 2 distinct levels;

ridge and valley. in a square region, the distance to border of the square in the diagonal

direction is larger than the distance to the vortical and horizontal directions. We propose

a circular method to compute the direction because the circle has a balanced number for

every direction. A circle is first divided into 2N directions, in which each cone contains

π/N angle. Then it is applied on a digitized grid plan with a radius w. 11 C,„„ is the pixel at

P,, within the circle on the digitized area as center at (i,j).



16

In Figure 2.1, we can find that there are some pixels which are right on the direc-

tions 0, 1 and 2, but most pixels are not (shown as the marked area). It is no doubt that

these pixels on the direction 0, 1 and 2 should have that direction. But most of them are

uncertain, Then, the fuzzy concept is allied to solve this problem. For any pixel P„„, E

(ijCmn )satisfying the following fuzzy equation Is called an actual pixel. ) is

defined a the fuzzy type marker of direction or Pa:

Figure 2.1 The Fuzzy quadric region when N 4,

4N
	  * (k- 1) 5 f(i,j,m,n) 	

4N 
* (k+1) , for k 	 0, 4,..., 4(N--1)

where f(i,j,m,n)=sin-¹( 	(m-i) 	— ) The (,1 1111 } of actual pixel E { 0, 1, 2, ...,
4(i-m)² + (j-n)

N-1 }. And, for any pixel P„,,, E (u C„„! } satisfying the following fuzzy function is

called a uncertain pixel.

N
	  * (k--1) 	 f(i,j,m,n) 	

4N 
* (k+1) , for k = 2, 6,..., 4(N-1)+2

The uncertain pixel's {zVij 	E { {0, 1}, {0, 2}	 {0, 1, ..., N-1}	 which is a fuzzy set.

So, we have the fuzzy direction marker of P i./ when N= 3 direction as following:

=	 = A,B,C,D,E,F,G



A: { 0 }

13: { 1 }

C: {2 J
D: { 0. 1 }

E: ( 1, 2 1

F: { 0, 2 }

G: { 0, 1, 2 }

A: { 0 } B: { 1 } C: { 2 }
21

D: 3
E: 0.1
F: 1.2
G: { . 3
H: ( 0, 3
1: { 0, 1, ) 2  }

J: { 1233 1
K: I O. 2, 3 1
L: ( 0, 1, 2, 3 1
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where A = { 0 }, B = 1 },C= {2 },D= {0,1 },E=1, 2 },F= {0,2} andG= {0,

1, 2 }. G usually can be ignored. Then we have a fuzzy template T for the image. For

each ridge or valley pixel direction D ij computing, the following equation is used:

N- max
 d d=0

Two templates are shown in Figure 2,2, each or them is centered at the computing

pixel by mapping the direction number sets and the template symbols, with W 11 (a) N

= 3 and (b) N = 4, We can see that the pixels marked in sets are those bidirectional areas.

which are not clearly defined in the most current researches. Oven a partial ridge flow

as Figure 2.3(a) which the center is located at Pi./ marked as "6" and the region within

WW is enclosed by a square, the valid 8-connected neighbors for computing P ii 's direc-

tion are marked as "+" after the template is applied, as shown in figure 2.3(b). Figure

2.3(c) shows the results with W 11 and N 3. Direction do has 7 pixels, direction d!

has 16 pixels and direction c1 2 has 22 pixels. Direction t/2 is assigned to Pij because it has

the largest weight.

Figure 2.2 Template by mapping symbols and direction sets, with W = 11 (a)N = 3 and
(b) N = 4.
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dir:0-> 7

dir:1-> 16

dir:2-> 22

Total pixels:35

The major direction: 2

(a) 	 (b) 	 (c)

Figure 13 (a) The ridge flows, (b) the mask with "o" indicated as pixel P,1 to be tested,
(c) the result after applied circular template,

Lemma 2.1 The best number N of a fingerprint directional image is 3.

Proof

Given grids of pixels in Figure 2.4(a) with N direction and W 2w + 1 where w is the

distance from center pixel to its 8-connected neighbors, each direction angle 6 is π/N and

the angle (1) between two contiguous pixels under same w is 2sin-¹ (1 /2w), shown in (b).

When we inspect two fault lines merging area which Is 3x3 pixels and w 1, (1) will be

2sin-¹ (0.5) = 60°.

Let 6 	 Φ, then N will be 3.

(a)	 (b)

Figure 2.4 (a) N directions (b) the angle (13, between two continuous pixels.
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2.1.3 Smoothing

After the directional image is computed, it is necessary to smooth the image to filter the

local disturbance. Let S(w,h) be a smoothing function which returns the direction with

frequency in 04(P). For example, given a partial ridge M Figure 2,5(a), there are

some noises in the directional image as shown hi Mahe 2,5(b). The resulting image

after smoothing by using S(5,0) is shown in Figure 2.54

(a) 	 (b) 	 (c)

Figure 2,5 The smoothing procedure. (a) The given ridge flows. (b) is the pixel-wise
directional image. (c) is the smoothed directional image of (b). "_". "I' and "V'
represent the direction 0, 1 and 2, respectively .

2.2 Experiments and Results Analysis

By our experiments. The average width of ridges and valleys is around 7.4 pixels under

500 dpi resolution. The template size needs to be bigger than the average width. In our

experiments, we use W = I I. It is noticed that the direction -crossings of a digitized direc-

tional image are convergent toward a point. In practice, direction -crossings will merge

before they reach the prospect point; that is, a phenomena of a premature convergence.

To explain the fundamental fingerprint process which includes the segmentation

and direction computation, we use two fingerprints in Figure 2.6(a) and (b) for the

demonstration. After applying the fingerprint extraction and segmentation (please see

the Appendix A and B), the thresholding images are shown in Figure 2.6(c) and (d). The

smoothed directional images are shown in Figure 2.6(e) and Figure 2.6(f). respectively.
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(b)(a)

(c) (d)

(e) (f)

Figure 2.6 The more experimented result from test database. (a) s0024902.wsq (b)
s0024967.wsq. (c) is the thresholded result of (a). (d) is the thresholded result of (b). (e)
is the directional image of (c). (f) is the directional image of (d).
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Using a fingerprint s0024384.wsq from the NIST image database as a sample shown

in Figure 2.7(a), we compute its direction image by applying the template under different

N as 2, 3, 4, 6, 8 and W 11. The results are shown in (b), (c), (d), (e) and (f), respec-

tively. It is clear that when N 3 a better directional image is achieved. If N is bigger,

there will be a premature phenomena of fault lints, If N Is less then 3, the directional

Image features are lost, To reduce the aforementioned phenomena, obtained directions

are quantized into 3 orientations in most of the experiment results, If N is not 3, we will

specify the number.

Definitions aittd Characteristics of Directional Images

According to the features of directional Images, we define several related terms which

will be used later and induce the characteristics based on the definitions.

13.1 Definitions

• A directional region OW is colored by number i If the majority of the pixel -wise

directions is di within the closed region.

A fault line Wk is defined as the boundary between two different directional regions

OW and OW with k i + j,	 di and di , c1,1 	10, 1, ..., N-1 }; denoted as Wk

Ω(di d1).

A virtual fault line Wk is assumed to connect disconnected segments of a fault line,

aψk andbψk,causing bya broken fault line ψk because of reaching the image borders

or noises. We still consider a ψk , Wk and bψk to be one fault line wk . As shown in

Figure 2.8, the fault line ψ1  is combined by a y ! , yl and b y, , and the fault line ψ2  is

combined by a w l 11 2. and bψ2. We will discuss why the fault line Wt is not com-

bined by a ψ1 and b ψ2 later.
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(b)(a)

(c) 	 (d)

(e)	 (f)

Figure 2.7 (a) The original fingerprint image (b) directional image with W = 11 and N
2 (c) N = 3 (d) N = 4 (e) N = 6 (f) = 8.
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Figure 28 The fault lines representation of Figure 2.6(c). () A fault line ψ3 is collided
by S.1(1) and 0(4 The fault line I is combined by a tilt and of t where ψ1  is a vir-
tual fault line.

112 Characteristics of Directional Images

We can induce the characteristics of directional images based on the definitions in Sec-

tion 2.3.i as the following:

• A physical region is a closed area.

• Based on the aforementioned fact, a directional region is a closed area which has

boundary consisting of a sequence of connected fault lines or image borders, as

shown in Figure 2.8.

2,4 Conclusions

In this chapter, we proposed a new fuzzy model to get a better pixel-wise directional

image. We proved N 3 will result in better directional images. Also, we analyzed the

effect of different number of directions. The bigger the number, the more noisy; the

smaller, the less information.



CHAPTER 3

SINGULAR POINTS DETECTION

Singular points, cores and deltas, are the most Important global patterns of fingerprints M

convergence and divergence of ridges, respectively, Computationally, a singular point is

defined as a location where a local maximum In ridge curvature is detected. That is,

singular points can he analytically extracted as representational directional patterns. The

features of singular points can be more easily demonstrated on directional images. in

this chapter, we first analyze the characteristic of the directional image and discover the

patterns of cores and deltas. Then, a pyramidal model is proposed to detect more precise

position of the singular points with better performance. Several experiment results are

then shown to explain our methods.

3.1 Definitions anti Charcteristics of Fault Lines

First we define several terms for fingerprint images and induce the characteristics of fault

lines based on the definitions. These terms and characteristics will be used often during

this dissertation.

3,1.1 Definitions

• A singular point is defined as the location of the maximal direction changing area

which contains all N directions. From chapter 2, we know there will be a fault line if

there is a direction changes. In other words, a singular point is the intersection area

of fault lines. Since N = 3 is used, a singular point should contain 3 directions

0, 1, 2 . The singular points can be classified into two types: cores and deltas.{

24
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• Topologically, directional measurements obtained along a circular trajectory sur-

rounding a core are monotonically varying from 0 to 2π.

• Different from a core, the direction changes around a delta can be divided into 3

disconnected ranges, each of which is monotonically decreasing.

· A directed fault line is a fault line with a direction,

An out -going fault line is a fault line pointing front the higher curvature ridge region

to the lower curvature area as shown in rime 3,1(a),

• An in -going fault line is a fault line pointing from the lower curvature ridge region to

the higher curvature area.

• A connection is defined between two singular points through fault lines.

• A direct connection between singular points is established through only one fault line

ψk without transitive by other singular points.

A indirect connection is defined as two singular points which are not directly con-

nected, but they are connected via other singular points transitively.

(a)	 (b)	 (c)

Figure 3.1 The Directed fault lines. (a) shows a directed fault line from higher to lower
curvatures. (b) shows a core is the joining point of out-going fault lines. (c) shows a del-
ta is the joining point of in-going fault lines.

3.1.2 Characteristics of Fault lines

• A singular point is the intersection point of exactly 3 fault lines.

• A core is the intersection point of out-going fault lines as shown in Figure 3.1(b).

• A delta is the intersection point of in-going fault lines as shown in Figure 3.1(c).
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Due to the under-sampling effect of image quantization, the center of an ideal circle

can be classified as a core-core singular point pair. (shown as Figure 3.2.)

Figure 3,2 A core-core pair has been detected in (a) a set of computer-synthesized con-
centric circles containing cores, (b) a fingerprint consisting of a whorl pattern.

3.2 The Detection or Singular Points

Since fingerprints are direction-oriented and singular points are global patterns of ridge

flows, we can summarize the directional patterns of cores and deltas into certain

domains. We can then detect their positions more precisely and efficiently using a

multi-layered pyramidal model and classify them as core or delta types. The singular

points can be detected in almost pinpoint area of 2x2 pixels which is the only possible

smallest size.

3,23 The Domains of Singular Points

According to Henry's classification [35], a singular point can be classified as core and

delta types. Let Ωs(P) be a function containing the pixels' direction within a sxs pixel

area starting from P. By definition, the singular point should be located at a region

Ωs(P) containing all 3 directions {0, 1, 2} with s

Let ui(P) with i = 0, 1, 2. 3 } be the members of a 2 x 2 domain 0 2 (P) where

u0 (P) is located at the left top corner, and u 1 (P), u2 (P) and u 3 (P) are in clock-wise

direction around the 2x2 pixels, as shown in Figure 3.3(a). From the experiments, a core
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directional pattern will be "2 —> 1 	 0" and a delta directional pattern will be "1 	 2

0" in clock-wise manner starting from u0(P) around the 0 2 (P). The patterns of cores

and deltas are shown in Figure 3.3(b) and (c), respectively.

The directional shifting is then defined as

u(P) = ( ui(P)+ 1) mod 3, with i 0,1,2,3.

It means the directional patterns of singular points can be shifted. In other words, a core

pattern can be shifted as "1 	 0 	  2" and "0 —4 2 —5, 1", and a delta pattern can be

shifted as "2 	 0	 1" and "0 -3 1	 2".

(a) 	 (I)) 	 (c)

Figure 13 (a) defined the directional domain of a singular point in a 0.2 (P) area. The
patterns of a core and a delta points are shown in (b) and (c), respectively.

3.2,2 The Multi-layer Hierarchy

Let Sf k (4) be an operator to an image I which is shrunk or enlarged by a factor of (r r)k

where k is the layer number and f is rho control variable which could increa se or decrease

by 1. The new image created by such an operator is called the kit shrinking or expand--

ing layer accordingly, It is denoted as

k = Sf k(Ik+f), with f = 1 or —1.

where /0 is the original image. For each pixel, in the domain of 'k' its value is set to the

majority direction of the corresponding r x r sub-image in .1 . The whole procedure is

illustrated in Figure 3.4, to which the shrinking procedure is shown to the left hand side



28

from lower layer /0 to higher layer In while the searching process is shown in the right

hand side from top In to bottom I. a) Shrinking Phase: It is obvious that a pattern in Ik-1

layer, which is not the majority in r x r area will disappear from 1k layer. Thus, spurious

patterns or local ridge disturbances caused by the formation of minutiae can be totally

ignored by performing a proper sequence of shrinking operators. That is, the highest

layer I ►  of a pyramid of n shrinking layers contains only the characteristics of the major

singular points, though its precision is one in (r The new pixel Pm on 4 will be

the majority of down layer which cover the rectangle area Ωr(Pmn ),

b) Searching Phase: Starting from the highest shrinking layer 40 the corresponding sub-

layer domain 5„(0 2 (P)) for each singular point candidate (P, It) has to be examined.

First, the precision will be improved from one in (r On to its descendant in V x .

The type and the orientation of the new-found singular point candidate (P', h-1) must the

same as those of the singular point (P, 1►), Subsequently, each candidate (P', h) in hth

layer must have its sub - layer domain examined in order to locate a more precise candi-

date in (h- 1)th layer. This procedure continues until the highest precision or the original

layer IQ is reached.

3.13 Spurious Candidate Elimination

Theoretically, each candidate in hth layer must have one corresponding candidate in the

(h — l)th layer and both of them are the same sub-type. As the resolution increases, how-

ever, the number of aforementioned spurious candidates increases. In addition, the sub-

type of the one in lower layer may be deformed due to under-sampling effect.

In the searching phase, the sub-type of a found lower-layer candidate must match

that of its parent layer. In addition, each member in domain 0 2 (P) must have enough

number of same type, 8-connected neighbors so that the found candidate is not a local
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Figure 3.4 Illustration of the proposed pyramidal model where each '·' marks a correct
singular point and each 'x' marks a direction anomaly.



disturbance. The number of required neighbors can be defined as (rxr) k . By this way, we

can remove spurious candidates induced by the under-sampling side effect and noise.

Each sequentially searched square sub area in different layers has the same size.

When a candidate is detected within a 2x2 window during the searching process, the

effective searching area is enlarged to 2rx2r in a lower-layer. The same procedure is

recursively applied until the lowest layer is reached. The final singular points are

detected on the bottom layer and the size of each one is only 2x2 pixels.

Under the consequence of the digitizing process, a point will shift around a half

pixel to its neighbors. That is the reason why we can not claim that the singular points are

detected in pinpoint size of 1x1 pixel.

3 The Theorems

After the fault lines and singular points are detected and classified, we can induce some

theorems based on their characteristics as follows;

Theorem 3.1 Fault lines only intersect at singular points, if the direction number N z, 3.

Proof

Let. ψi and ψi be fault lines with ψi = 0W,, DO and ψj Ω(Dc, 00, Assume that ψi

intersects with ψj at a point P (x, v) where P is not a singular point and ψi=ψj, Since

we use 3 directions, DaᴗDbᴗDcᴗDd ,w (00, Di, Di). That means the area CI:1 (P) con-

tains all 3 directions, fly definition, this intersection area centered at P is a maximal

direction changing area which contains all 3 directions. That means P is a singular point.

This contradicts to our assumption. Therefore, fault lines only intersect at singular

points.

Theoretically, the fault lines should only intersect at singular points no matter how

big the directional number N is. But because of the digitized problem, the fault lines may
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be merged before reaching the singular points. We call this a premature phenomenon. To

reduce this premature phenomenon we use N = 3.

Theorem 3.2 No fault line can be established between two singular points having an

identical type.

Proof

From the section 3.1.2, a core point is the joining point of out-going fault lines and a

delta point is the joining point of in-going fault lines. Assume that a core point directly

connects with another core point, that is, the out -going connects with out -going. If two

out -going lines reached from different sides, there would exist a joint point. At this joint

point, the flows becomes in-going. According to the definition, the joint point should be

a delta point. It contradicts with our assumption. So, two core points cannot directly con-

nect. The same proof can be applied to delta points. So, there cannot be direct connec-

tions between same types of singular points.

In other words, the two ends of a fault line must be ifferent type of singular points.

That is the reason why the fault line yi is combined by by' , ovi and Art , but not com-

bined by y i and o u2 in section

34 Experirriorns and Resillts Analysis

An ellipse type fingerprint shown as Figure 3,5 is used to demonstrate our method, On

the top of the left hand side is the directional image, and on the top of the right hand side

is the original fingerprint. Under the shrinking or searching phases, the directional image

is shrunk or expanded by a factor of (3x3). The shrinking phase is shown on the left side

of Figure 3.5, while the searching phase is shown on right hand side. The detected singu-

lar points under different resolutions are marked as rectangles in each domain and their

size indicates the precision.



Figure 3.5 The shrinking procedure is illustrated from (a)-(d), while the extracting of
singular points are shown upside down from (e)-(h).



(a) s0024613.wsq (b) g(1.07' 	 .wsq (c) s0024390.wsq
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(d) s0024591.wsq (e) s0024386.wsq (f) s0026382.wsq

(g) s0024067.wsq

Figure 36 The experimented results with different typ es of fingerprints from (it) to (s).
The squares are shrinking into final detected position with 2x2 pixels.



(a) s0024613.wsq (b) s0024356,wsq (c) s0024390.wsq
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(d) s0024591.wsq (e) 0)024386mq (f) s0026382.wsq

(g) s0024967,wsq

Figure 3.7 The classified singular points or Figure 3,6 with marked Core 	 squares and
deltas as rhombuses and connected with fault lines. The numbers indicate the detected
order with cores first and deltas later.
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The overall methodology is analogous to as operating a telescope. First, we wide

search the open space, then gradually adjust the view-finder mm smaller regions, finally

focusing in on the target. More examples are shown in Figure 3.6. The rectangles in

each image are gradually focused onto the singular points, and the final size is 2x2 pixels

which are marked as dots. Figure 3.7 shows that the combinations of fault lines and the

classified singular points of Figure 3.6 with marked cores as squares and deltas as rhom-

buses.

Conclusions
in this chapter, we proposed a pyramidal method in detect singular points from finger-

print. images with better accuracy than other similar methods. We can classify them into

core or delta type at the time of detection using simple domains. Like a bipartite graph,

singular points cannot directly connect to the same type through the fault lines. The

experimented results show that our algorithms can precisely obtain singular points within

2x2 pixel areas and classify the detected singular points into cores or deltas. With more

precise detection, we can classify fingerprints into more categories and reduce the time

of matching processes.



CHAPTER 4

THE FAULT-LINE-ANALYSIS-GRAPHS AND THEIR NORMALIZATION

In this chapter, a fingerprint by a fault-Line-Analysis-Graph (FLAG) with singular points

as vertices and fault lines as edges. We propose and prove some theorems that singular

points must exist in core-delta pairs and the FLAG is a perfect matching. A pattern model

is also proposed to analyze and predict the location of singular points. Then, a computa-

tional method can transform fingerprints into invariant orientation by the reference vec-

tor formed by the singular points. When a fingerprint is processed, it can be in any orien-

tation. How to transform the fingerprints into same orientation is very important to

further classification. The current classification or comparison methods mostly assumed

fingerprints were oriented acceptable, which could be clone manually. However, manual

adjustment reduces the efficiency and precision of classification and may cause incorrect

identification.

4.1 The Fault Lines Graphs (FLAG)

Let a graph G(C, D, E) represent a fingerprint as C and 17) are the vertices set of core and

delta points, respectively, and F is the edge set of fault lines, The singular points will be

adjacent to each other through fault lines. Using Figure 3,7 as the example, the singular

points, cores marked as "0" and deltas marked as "o", the new represented FLAG are

shown in Figure 4.1. The darker lines directly connect. fault lines between cores and del-

tas and lighter lines are virtual fault lines that indirectly connect cores and deltas. The

relationship between cores and deltas can be described by the adjacent lists as shown in

Figure 4.2 which cores are numbered first and deltas later.

36
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(a) 	 (b)	 (c)

(d) 	 () 	 (f)

(g)

Figure 4.1 The FLAG of Figure 3.7. "o" and "e" indicates core and delta points,
respectively. The darker and lighter lines are directly and indirectly connected fault lines
between cores and deltas.



(d) (e) (t)

No singular point

core: 	 I -4 2

delta: 	 2 	 1
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core: 	 l-2

delta: 	 2 	 1

(a) 	 (b) 	 (c)

core: 	 1-44
2-33

delta: 3 -4 2
4-41

core: 	 I 	 4
2 	 3; 2 -3 4

delta: 3 - 2
4 -3 I; 4 -4 2

core: 	 1- 66
2 	 4; 2 -4 5
3 	 5; 3 -4 6

delta: 4 -3 2
5 -3 2; 5 	 3
6-- 1; 6 -3 3

(g)

Figure 4.2 The adjacent list of Figure 4.1.
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Theorem 4.1 A FLAG G(C, D, E) is a bipartite graph.

Proof

In graph G(C, D, E) there are only two kinds of nodes C and D. Therefore, we can

model this graph G as 2-coloring graph. From Theorem 3.2, no fault line can be esta-

blished between two singular points having an identical type. By McHugh [65], G is a

bipartite graph.

Theorem 4.2 Singular points, exist in core-delta pairs.

Proof

Any given FLAG G is a bipartite graph. From the facts of Section 3.1.2, each singular

point should be joined by exactly 3 fault lines. This indicates that graph G is a regular

graph with degree 3 for vertices C and D (65 -1, We can conclude that graph G is regular

and bipartite graph, so I C = ID I. Graph G can he represented as an edge disjoint union

of 3 complete matchings. Thus, a perfect matching can be applied to prove that cores

and deltas must be matched, In other words, singular points show in core-delta pairs.

4.2 The Prof& of Fingerprints

From chapters 3, we know that the global pattern of each fingerprint is decided by the

geometric relationship of singular points which are formed by exactly 3 fault lines with N

3, That means we can model the patterns of fingerprints by FLAGs.

According to Moayer and Fu [69], every fingerprint pattern has concave ridges on

the top and nearly horizontal lines at the bottom. The concave ridges can be thought of

being composed by 3 directions as shown in Figure 4.3. We has establish there is a fault

line where there is a change of a direction. So, there must be fault lines between 0, 1,

and 0, 2, cutting the concave ridges into 3 parts.

For the same reason, there will be two more cuts and two more fault lines on the left

and right hand side when the concave ridge changes direction into near horizontal lines at



fault
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pattern fire a
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Figure 4.3 The concave ridge with 3 directions.

the bottom. As consequence there must exist 4 fault lines, Li, L2, L3 and L4, entering a

pattern area on the fingerprint directional image. Figure 4.4(a) shows the layout of a

fingerprint where we can consider its center as a region requiring further attention Fault

lines LI and L2 or L3 and 14 may be merged like in Figure 3.7(a) or branch into more

lines like other figures in Figure 3.7. These 4 fault lines are the free ends of all fault

lines. extending the definition by f131 1211, the "pattern area", the middle area of a

fingerprint, in which the cores, deltas and ridges appear s determine the type of a finger-

print.

concave top,

horizontal bottom_

(a) 	 (b)

Figure 4.4 (a) The logic profile of a fingerprint and (b) its pattern area. Li and L2 will
form cores, and L3 and L4 will form deltas. The numbers 0, 1 and 2 are indicated the
direction regions Q(0), C2(1) and S(2).
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Even though the singular point maybe missing (due to noise or any other reason),

we can predict its type. From Section 3.2.1, we know that the directional patterns of a

core point is any one of "1 0 2", "0 2 -->  and "2 1 0", which the

directional difference is +1 and -2, and a delta point is any one of "0 -4 1 -4 2", "1 -4 2

-4 0" and "2 -4 0 -4 1", which the directional difference is -1 and +2, in clock-wise

direction manner around the singular point. Figure 4.4(b) is the enlarged part on the pat-

tern area of Figure 4.4(a). There will be at least 4 directional regions, "0" at top and

bottom, "1" at left, "2" at right, separated by the 4 fault lines.

The fault lines Li, L2, L3 and L4 are formed by shifted directions "0 2", "2

0", "0 1" and "1 0" in clock-wise direction, respectively. Matching with the pat-

terns of singular points, we can find that Li can only form a core point at the pattern area

because the directional difference is -2. The same theory can be applied to L4 because

the directional difference is +I. The fault line L2 can only form a delta point at the pat-

tern area because the directional difference is +2, the same to L3 because the directional

difference is -1. So, Li, L4 and L2, L3 are marked core and delta points at each end

point at the pattern area of Figure 4.4(h).

43 Fingerprints N ormalization

When fingerprints are imprinted, even if their orientation are manually adjusted, their

orientations may shift within a certain range, Many research efforts have assumed that

the orientation of the given fingerprints has been adjusted, In fact, the orientation of

fingerprints may affect the efficiency and accuracy of classification and identification.

To ensure the orientations of fingerprints are well within acceptable tolerance,

rotation- normalization is necessary.

By Theorem 4.2, singular points have to exist in core-delta pair formations. The

vector connecting the delta point to the core point will be referred as the reference vec-

tor. The reference vector is used to normalize a fingerprint by aligning it along the
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horizontal direction using delta as the origin. For a fingerprint consisting of M core-delta

pairs, there are M2 reference vectors. Each normalized fingerprint using a selected refer-

ence vector is set as a valid candidate. Therefore, a FLAG containing 2 core-delta pairs,

there are 4 reference vectors, and 4 valid templates will be established by the reference

vectors.

Theoretically, a locality within a fingerprint is a unique pattern. It means the trajec-

tories of all fault lines should be almost unique like the local ridge patterns. Recall that

fault lines are places where ridge flows change directions and each singular point is the

intersection point of fault lines. This implies that the fault lines configuration surround-

ing a core-delta pair can be represented as a locality of the ridge flows. In other words, a

FLAG is a proper representation obtained from a normalized fingerprint.

The Exception: According to Henry's patterns 1351, fingerprints having a plain arch

type do not have singular points. In other words, there are no core-delta pairs to form the

needed reference vectors as shown in Figure 4.5. To overcome this exception, a defor-

mation function is needed to convert the plain arch type fingerprints into new patterns to

generate the pseudo singular points. Thus, the reference vector can be constructed.

Because there are many different kind of plain arch type fingerprints, the deformation

function is very difficult to achieve. This technique will he subject of future work.

Figure 4.5 The plain arch type fingerprint (s0024611.wsq).
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4.4 The Analysis of Normalization

Recall that the best result of a detected singular point is 2x2 pixels. This implies that the

reference vector we selected may be not precise enough. This may cause a distortion in

the singular point location after the rotation.

Given a FLAG G(C, D, E), let t be the positional displacement, L is the distance

between D and C. Then the worst angular shifting is

Figure 4.6 shows the relationship between a and L under different T. For example, L

l00, t= 3, the a 3.65°.

By running 1700 images, the distance L is a normal distribution of (177, 59) under

500 dpi resolution (shown in Figure 4.7(a) with 4523 pairs.) We find that the core-delta

pair (shown in Figure 4.7(b) with 3363 pairs) is more reliable than other kind of pairs

because a core-delta pair has an average near 2 pairs per fingerprint. In contrast, the

averages of delta-delta pairs (shown in Figure 4.7(c) with 529 pairs) and core-core pairs

(shown in Figure 4.7(d) with 629 pairs) are less than half a pair per fingerprint.

-0	 50	 100	 150	 200
L

Figure 4.6 The relationship between a and L under different 't, where a is the tolerance
to rotated angle 0, L is the distance of a core-delta pair, and 't is the tolerance of a singu-
lar point location.
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-0 100 200 300 400 500
(a) L between any two singular points

-0 100 200 300 400 500
(h) L between core and delta

-0 100 200 300 400 500
I L between 	 +And delia

-0 100 200 300 400 500
(d) L between core and core

Figure 4.7 The histogram of L among the 4523 pairs of 1700 images. (a) All pairs with
average L = 177 .7 . (b) Only between core and delta, with L = 178 in 3363 pairs. (c)
Only between delta and delta, with L = 288.9 in 529 pairs. (d) Only between core and
core, with L= 80 in 629 pairs.
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Using the fingerprint image s0025432.wsq as our sample named as RS-0. Two tem-

plates of it are obtained by random rotations: one is named as KS-1 and the other is

named as RS-2 as shown in Figure 4.8(b) and (c), respectively, Their reference vectors

are shown in Figure 4.8(d), (e) and (f). Figure 4.8(g), (h) and (i) show the normalized

FLAG.

On Table 4.1 shows the positions of core and delta points, reference vectors and dis-

tances L before the rotation. Each image is then re-oriented based on the computed refer-

ence angle 0. We apply the methods to re-process the rotated images and show the results

in Table 4.2 with the new positions of core and delta points, rotated angle 0, new dis-

tances L and the normalized horizon vector. After normalization, the tolerances T, a and

a* are show in Table 4.3. a is the angle to horizontal and a * is the difference comparing

with original rotated angle 0. It is obvious that the normalized images are almost the

same image,

Table 4.1 The core and delta points before normalization,

Table 4.2 The core and delta points with 0 and new L after normalization.
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(c )(b)(a)

(e) (f)

(g) (h) (i)

Figure 4,8 Random vocations of s0025432.wsq, (n) crin, (h) 22" and (c) —32 0 . Theft
NAG with reference vector 14are shown in (d), and (f), Theft normalized FLAGs with
horizon vectors are shown in (g), (h) and (1).



Table 4.3 The tolerances T, a and a 4
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Conclusions

In this chapter, we prove that singular points must exist in core-delta pairs by a bipartite

FLAG. We proposed a pattern model for fingerprints and the types of singular points can

be predicted by our model, The automatic normalization is important to the correctness

and precision of classification of fingerprints, A reference vector helps us to transform a

fingerprint image to an invariant orientation , We analyzed the tolerance between several

random rotations and the results show that the concept of the horizon vector works very

well With such well normalized MAO, we can apply the characteristics of the FLAG

model to classify fingerprints In more groups.



CHAPTER 5

THE MULTI-INDEX MODEL FOR FINGERPRINT CLASSIFICATION

The fingerprint classification is very important to the efficiency and accuracy of finger-

print identification. The current classification methods of fingerprints are based on

Henry's categories which are pattern-oriented and the accuracy is based on visual justifi-

cation. It is very hard to distinguish the difference between similar fingerprint patterns

such as some tented arches and left (or right) loops, Therefore, precision and correctness

is reduced and the time for identification is increased a lot, In this chapter, a new classif-

ication model is proposed based on the index attributes to renovate the current classifica-

tion problems. The time of searching or matching process of fingerprints can be reduced

significantly for huge databases using our models, fingerprints can be divided into hun-

dreds of thousands of smaller groups which are based on the attributes of horizon vectors

in the normalized FLAGs.

5.1 The Classification Model

It has been difficult to increase the number of classification groups because there was no

way to precisely detect the position of the singular points, and therefore, it was not possi-

ble to establish the relationships between then We can classify fingerprints into hun-

dreds of thousands groups by the inciex attributes which are the geometric relationship in

normalized horizon vectors.

53,1 The Current Problems

As previously mentioned, when the number of fingerprint records is large, the current

methods are not fast enough to process the required fingerprints. The reason is because

currently there are only a few groups (less than ten) to classify fingerprints so that each

48
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group contains a large amount to manage. The three major types of Henry's classifica-

tion are arch, loop and whorl, and these 3 types can be divided into several sub-

categories. In addition, the classification of Henry's system is pattern oriented and the

correctness is based on visual justification. It is very difficult to distinguish between

some fingerprints. Figure 5.1 shows the ambiguous type of fingerprints that they are dif-

ficult to be classified as tented arch or as left loop types of fingerprints [35], especially

when they they are not well oriented. They are so similar that it is necessary to search in

the both groups of tented arch and left loops when the identification process is applied.

(c) s0026622.-Z-q-(a) s0025552.wsq	 (h) s0026572

Figure 5J The ambiguous types of fingerprints.

Kurre [24] stated that the total number of fingerprints increased 12.5% over the year

1996. This means that the total number of total records will more than double in less

than a decade. Currently, the FBI has more than 219 million fingerprints which each

group may contain an average of 21 millions of records in Henry's system with assuming

there is a uniform distribution. lust provide an idea how many fingerprints need to be

processed if the type of a fingerprint is a ambiguous like Figure 5.1. The current AFIS

needs to be manually judge and check it in these two groups with combing into 44 mil-

lion fingerprints.
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5.1.2 The Attributes of a FLAG

For each normalized horizon vector, we can extract the attributes from the FLAG. We

can build the model consisting of the horizon vector, the fault lines and the relationship

between them. Figure 5.2 illustrates this concept. This model contains three important

attributes such as the trajectories of the fault lines connecting the core-delta pair the

length of the horizon vector, and the number of ridges crossed by the horizon vector;

what are the attributes and how to discover them is important to the classification model.

Theoretically, the fault line trajectories should represent the direction change of ridge

flows and they should change smoothly. A stable and reliable attribute is important to

help describe the trajectories.

Figlire 5.2 The horizon vector of a RAG.

We can quantize the attributes of n FLAG iron integer numbers in order to reduce

the noise. We can think each a ftims a the combination of correct and error quantities

as

A. = 	 e,.

A quick way to reduce the error in significant amount is to divided the attributes by con-

stant ?J as



51

e i
This constant has to be large enough such that -- 	 insignificantly and the same

c i
time small enough such that — remains meaningful. We can think the constant λi as the

c i
UNIT for its respect attribute. Let ni- =I — , where ni represents the normalized rangeλi

of the attribute A. Then, the attributes can be described as a tuple

, A9 , 	 Ak, ....,A m ), where A i E [0, ni-1], 1

5.1.3 The Candidate Attributes

By our experiments, the attributes can be the following

• L is the length of the horizon vector.

• R is the number of ridges crossing by the horizon vector.

I. 17/j), is the pixels average of y coordinates within the area between pair vector and the

fault line which is above the horizon vector.

• upx is the pixels' average of x coordinates within the area between pair vector and the

fault line which is above the horizon vector and their

• (lily is the pixels' average of y coordinates within the area between pair vector and the

fault line which is Whin, the horizon vector,

• dnx is the pixels' average of x coordinates within the area between pair vector and the

fault line which is below the horizon vector and their y dny.

By running 1700 images, we have the the characteristics, average, standard devia-

tion, minimum and maximum values, and the 95% distributed ranges. of each attribute

resolution listed in Table 5.1.



Table 5.1 The characteristics of each attribute under 500 dpi resolution.

Attributes Mean S.D (min, max)  95% Population
L	 177.5 59.5 (16, 468) 	 (56, 294.5)
R	 13.9	 5.4	 (1,36)	 ( 3.1, 24.7)

145 47.2	 36.4 (0, 170)	 (0, 119)

upx 	 86.5	 38.8 (0, 230)	 (8.9, 164)

dny 	32.4	 28.4 (0, 154)	 (0, 89.1)

dnx	 84.6	 33.7 (0, 190)	 (17, 152)

5.2 The Multi-Index Classification

With the normalization, the attributes are represented by discrete numbers. An array

structure can be applied to store the attribute and the corresponding address.

5.2.1 The Index Tree

A tree structure can be used to represent the relationship between the attributes. The root

and each internal node are arrays using the normalized attribute values as index to store

the corresponding address of the node in the next level. Each leaf contains the finger-

prints in the same class. The final matching process takes place in a certain leaf.

The variables of a attribute jAh, i defined as the follow.

• h is the index level of the current attribute.

o i is the order number in index level h of the current attribute,

• j is the order number in index level j of Ilto parent attribute of the current attribute.

• f(jAh , i ) is the address of the child attribute.
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If there are in attributes as (A 1 , A2, ...., Ak,	 the multi-index classification

tree of these attributes is shown in Figure 5.3. For k-th level which represents a attribute
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LEVEL Attributes

fingerprint
groups

Figure 5.3 The Multi-Index Classification Tree,
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Ak, it has n k-1 arrays which each array has same index number nk of entries and struc-

tures. Every array contains the normalized range of the attribute Ak in level k as from 0

to nk. The first level has only one array. The number of classified groups will be

That means, the fingerprint groups will be numbered from 1 to n 1 xn 2 x....xn k x.-xnm .

Although the best candidate group is directly hit, it is necessary to consider the noisy

effect. The tolerance Ilk will be applied to the numerical description in level k when it is

re-mapping in the multi-index classification tree. So, the number of groups need to

check will be

If we only consider to check the right and left neighbor of an attribute Ak, the tolerance

[1. 1 will be I. Given attributes (a, h, 	 a) and the tolerance p. of attributes is 1, the

groups of tuple descriptions for checking will he (04:1, b= 1, ...., 1, ). For

example, given a tuple description (8, 4, 20, 3, 0, 0), its multi-index classification tree is

shown in Figure 5.4 and there will be 324 possible checking groups against the all

groups. The searching will be stopped when there is a match. if the input fingerprint can-

not be found in the possible groups, we claim mat it does not exist in the database.

5,2.2 Example of Classification

From Section 5.1.3, a fingerprint can be described by the index attributes as
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The estimated number of combinations for each horizon vector will be

In our experiments we use XL = 10, λR = 2, X = 5, λupx = 5, X = 5, and X = 5.

Using the maximum range in Table 5.1, we can have the maximum estimated number of

total groups as: 48 x 19 x 47x35 x 39 x 32 = 1,872,299,520. In other words, the possibil-

ity for the same tuple description is less than 1.8 billionth. Using the average range in

Table 5.1, we can have the average estimated number of total groups as:

19 x 8 x 18x10 x 18 x 7 = 3,447,360. In other words, the possibility for the same tuple

description is less than 6.5 millionth.

5.3 Experiments

Given several similar fingerprints which are classified as right loops in Henry's system in

Figure 5.5, their tuple descriptions are listed on the bottom of each image. We can find

that the fingerprints are very similar if their tuple descriptions are similar. Different

orientation of same fingerprints will have the same tuple description such as Figure 5.5

(c). Given other 3 images with different number of core-delta pairs which are from Fig-

ure 1.2 (e), (g) and (h), their tuple descriptions are shown under the Figure 5.6 (a), (b)

and (c).

Our database consists of the 1700 images of fingerprints which are part of the NISI'

PCASYS package, in addition to 50 fingerprints collected from our friends. We re

scanned the donated 50 images again as our wanted fingerprints, we run our classifica-

tion program, we obtain the 48 fingerprints classified in the same group as their original

counterpart. Only two fingerprints did not fell into the same group, however, their clas-

sification was within [t = 1. The result gives a good proof of the direction of our classifi-

cation model.



The Fingerprint Attributes: (1., R, upy, 	 ilk, dnx)

A input fingerprint: (8, 4, 20, 32, 0, 0)
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LEVEL Attributes

fingerprint

groups

(8, 4, .20, 32, 0, 0) (8, 4, 20, 33, 0, 0)

Figure 5.4 The Multi-Index Classification Tree of a tuple description (8, 4, 20, 32, 0, 0).
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(a) s0025112.wsq
(5, 2, 3, 4, 2, 5)

(b) s0025504.wsq
(6, 3, 3, 4, 0, 0)

(c) s0026411.-wsq
(10, 4, 3, 9, 2, 9)

(d) s0025453.wsq
(12, 3, 0, 12, 0,0)

(e) s0024384.wsq
(12, 6, 4, 13, 0, 0)

(t') s0025943,wsq
(14, 5, 3, 16,00)0)

(g) s0026873.wsq 	 (sh) s00251 ',EL wsq
(16, 6, 6, 16„ 0,0) 	 (16, 6, 7, i, 0, 0)

0025823,wsq
(16, 6, 12, 17, 0, 0)
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(j) s0025451.wsq	 (k) s0025432.wsq	 (1) s0024355.wsq
(16, 7, 12, 4, 3, 14)	 (20, 7, 6, 18, 0, 0) 	 (20, 9, 13, 21, 0, 0)

Figure 5.5 The tuple descriptions of 4t111041 right loop types of fingerprints.

Figure 5.6 The tuple descriptions contain different core-delta number.
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The partial matching will be done if there exists a core-delta in fingerprints. For

future work, we will study on the attributes of the other two kind of pairs, core-core and

delta-delta, so that make the partial matching more solid,

14 Conclusions

In this chapter, we represent a fingerprint as a sequence of numerical attributes. We can

classify fingerprints into millions of groups by the attributes, This is a totally new con-

cept to fingerprints, With such an outstanding classification, the time for searching and

comparing will be reduced to significantly because the possible fingerprints are narrowed

down into a very small number. Furthermore, the partial matching for incomplete finger-

prints is within reach.



CHAPTER 6

CONCLUSION

6.1 Summary of Results

The results of this dissertation about fingerprint analysis, feature extraction, pattern

modeling and re-orientation, and classification are presented below:

• Fuzzy techniques for flow oriented image direction computing. This is a state-of-art

technique to process flow oriented images such as fingerprints, elevation of mountain

and magnetic field. A fuzzy template is designed to speedup and get better direc-

tional images. We proved that directional number N 3 will yield the better quality

results for fingerprints.

• Pyramidal model for detecting singular points. Singular points are the global

features of fingerprints. We designed a fast algorithm to detect almost pinpoint loca-

tions of singular points and classify them as cores or deltas by pattern templates. We

prove that fault lines only intersect at singular points, and do not connect singular

points of the same type.

• The FLAG and the fingerprints normalization. We proposed a Fault Line Graph

(FLAG) to represent a fingerprint. The analysis of the pattern area of FLAGs will

help us predict the location of singular points. We prove that the FLAG is a bipartite

graph and singular points must exist in core-delta pairs. We transform fingerprints

into invariant orientation by the pair valor so that the correctness of classification

will be improved.

• The New classification model. Based on our new classification techniques, the

fingerprints can be classification into hundreds of thousands groups by the

mathematic attributes of core-delta pairs. With such an outstanding classification, the
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time of searching in a huge database can be done in a very short time, and the partial

matching can be made more possible.

6.2 Future Research Direction

As always, successful research and development opens up new research areas and oppor-

tunities. While invariant approaches have achieved a certain level of maturity, advances

are expected along several lines of investigation.

First, the type of the plain arch fingerprint needs more study to do the normalization

and to discover the attributes life the FLAG 8o, the new classification model will com-

pletely cover all different types of fingerprints,

Next, although the partial matching is made more possible by our pattern modeling

and classification techniques, h needs more research to achieve real time performance

not only theoretically but practically.

Finally, although our algorithms has been successfully tested under a small database

because of limited resources, it would better to apply them to a huge database for further

test and improvement.



APPENDIX A

THE EXTRACTION OF FINGERPRINTS

Since fingerprints are scanned into images from the stored cards which may contain

some noise, The bigger images arid consequent noise will reduce the processing perfor-

mance and require more memory and space. So, it is necessary to extract the essential

contents, containing only the fingerprints.

The Diffusion

First, we need to assume that the extracted image N with size NnxNn„ is bigger than any

other object on a fingerprint card image A/ which size is MxMy, We define some func-

tions and terms as followings.

•Uij : Represents the gray level at position	 i) of the image U.

• G(17, x1 , y1, x2, y2): Returns the average gray level of the rectangle area from

y1) to (x2, y2) on the image U, and both positions are included.

• MIN(U, x1 , yl,x2, y2): Returns the minimum gray level of the rectangle area from

y1) to (x2, y2) on the image U, and both positions are included.

• thr: The critical value to be an object is assigned by the maximum one between

Mx/10 and My /10.

position(hist, x1, x2, th r): returns the first position of the longest continuous length on

hiss list from position x1 to .v2 and each number is greater than thr.

• We assume that gray level 0 as object, 2.55 as background.

Then we calculate the histograms him and histy which are along the x- and y-axis

direction on the diffused image M by the following algorithm:
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The extracted positions will depend on the histx and histy with thr.

o min_x = position(histx, 0, Mx -1, thr);

• max_x = position(histx,	 0, thr);

• min_y position(histy, 0, Mx-1, thr);

•max_position(histy, Mx-1, 0, 11w);

Then we have the temporary starting 	 min_y) and ending (max_x, max_y)

position for the new image N from the image Ail

The Adjustment

Since we want to have a fixed	 Nan it is very possible that (max_x - min_x)

or (max_y - min_y) is bigger or smaller Man Nn . We need to locate better positions to

focus only on the fingerprint. The adjusting process is described as follows;

if min_x <0 then 	 min_x 0;
if min_y < 0 then 	 min_y =
if max_x > Mx then 	 max_x Aix ;
if max_y > My then	 max_y = My ;
if max_x - min_x <Nn then	 max_x = min_x + Nn ;
if max y - min_y < Nn then	 max_y = min_y + NH ;
if max_x > Mx then 	 max_x Mx ; min_x = max_x - Nn-1; }
if max_y > My then	 { max_y = My ; min_y = max_y - Nn-1;
Nx = max_x - min_x; Ny = max y - min_y;

The new adjusted image N will cover from (min_x, min_y) to (max_x, max_y) of

image M.



APPENDIX B

THE SEGMENTATION OF FINGERPRINTS

Most fingerprint processes require only two levels: object and background. Some of

images or portions of an image may be too light, and some of them may be too dark. This

is a common problem with image processing, but especially in fingerprints because of

their latent characteristics. Improper threshold will generate false or remove important

minutiae such as bifurcations, islands and bridges. Therefore, how to get better thres-

holded image is an important subject to fingerprints. The new thresholded images B will

be segmented from N by the following algorithm.

average] G(N, 0, 0,	 N)-1)
for(i=0; j< N; i++)

for(j=0;	 Nx; j++)
if G(N, j-2, 1-2, j+2, 1+2) > overage then

if G(N, j-2, 1-2, j+2, 1+2)+I=-= CAN, j-1, 1- 1,1+1, i+1) AND
MIN(N, j-2, 1-2, j+2, 1+2)+1 5. average I then

B u = 0;
else

if MIN(N
, 	1- 1, 1+1, 1+1)+1 .7"-L. (overage	 average)/2.0 + I AND

MIN(N, j—1, i-1, 	 1+1) + (average - average ))12- .0+1 IVii then
0;

else
255;

else

if	 j-2, 1-2,	 i+2)+ I „ overage +I AND
G(N, j-2, 1-2, j+2,	 0(N,	 1+1) +I then

Bu 74 0;
else

=255;

The image B will be the final thresholded output with fixed size NnxNn . Using

s0024673.wsq from the test database demonstrates the extracting process, Figure A(a) is
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IN original scaled image, (b) rind (G)	 histy of IN diffused

image (a). The dotted lines of (b) iitl (G) show	 max_x and min_y, fliaX-Y)

respectively. (d) is the adjusted result. (e) is the segmented result,
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(b)(a)

(d)

(c )

(e)

Figure A Using s0024673.wsq from NIST as our experiment. (a) The original image. (b)
The histx. (c) The histy. (d) The result after adjustment. (e) The final thresholded image.
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