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ABSTRACT

FLAG: THE FAULT-LINE ANALYTIC GRAPH AND
FINGERPRINT CLASSIFICATION

by
Ching-Yu Huang

Fingerprints can be classified into millions of groups by quantitative measurements of
their new representations - Fault-Line Analyiic Graphs (FLAG), which describe the rela-
tionship between ridge flows and singular points. This new model is highly mathemati-
cal, therefore, human interprefation can he reduced to a minimum and the time of identif-
ication can be significantly reduced.

There are some well known featires on fingerprinis such as singular points, cores
and delias, which are global features which characierize the fingerprint pattern class, and
minutiae which are the local features which characierize an individual fingerprint image.
Singular points are more important ihan minutiae when classifying fingerprinis because
the geometric relationship among the singular poinis decide the type of {ingerprins.

When the number of fingerprini records becomes large, ihe current methads need (o
compare a large number of fingerprint candidates (o identify a given lingerprint. This is
the result of having a few syntheiic types o classily o database with millions of finger-
prints. 1t has been difficull to enlarge (he number of classification groups because there
was no computational method to sysiematically describe the geometric relationship
among singular points and ridge flows. In order to define a more efficient classification
method, this dissertation also provides a systematic approach to detect singular points

with almost pinpoint precision of 2x2 pixels using efficient algorithms.
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CHAPTER 1
INTRODUCTION

Fingerprints probably are the most important type of physical evidence which can be
used for identification [19]. A fingerprint is composed of two parts, ridges and valleys,
us shown i1 Figure 1.1, The ridges and valleys shape into different patterns which deter-
mine the type of fingetprint, As it is well known, during the life span of a person, finger-
prints remaln the same. They do not fade with the passing of time. A fingerprint can be
permanently changed [57] if and only 1f the pad of the finger is seriously hurt. Based on
these characteristics, immutable, permmanent, and that no two fingerprints have been
found the satne so fat, fingetprints have been used as ah unigue mean of identification for

people [107].

Figure 1.1 A sample of a fingerprint. Bingular points, deltas and cores, are identified by
squares. Minutiae are identified by citcles.

Fingerprint services are supplied for critninal investigation and identification, police
officer employment applications, Immigration and Naturalization Service documentation,
and for other forensic identification purposes [8] [22]. Fingerprint research can be

applied not only to criminal investigation but also to industry. Fingerprints are



convenient, nearly impossible to imitate, impossible to lose, and easy to trace. Finger-
prints may replace handwritten signatures as the standard authentication for credit cards
and personal identification cards [91]. Many building entrances and other areas of fac-

tories which need to be secure use fingerprint lockers to prevent improper access.

When identifying tmages, we need ihvariant features to compate them, There are
some well known features on fingerprints such as singular polnts and minutiae shown in
Figure 1.1, Bingular points are global features whieh characterize the fingerprint pattern
class. Minutiae are the local features which eharaeterize an individual fingerprint image.
A fingerprint has only a few singular points and many randomly distributed minutiae.
Singular points are more important than minutiae when elassifying fingerprints because
they are global features. That is why researchers try to detect singular points to simplify

the recognition process.

Kurre [24] stated that the current amount of the FBI fingerprint database is around
219 million and the total number of fingerprints Increased 12.5% over the year 1996.
This means that the total number of total records will more than double in less than a
decade. The best way to quickly identify a fingerprint against a huge database is to clas-
sify fingerprints into a large number of groups and then match the fingerprints by the

minutiae,

1.1 Motivation
When the number of fingerprints in the database is huge, the current methods are not fast
enough to compare all fingerprints within a class. The reason of this is because currently
there are only a few groups (less than ten) to classify fingerprints. In the FBI database,
each fingerprint group contains an average of 21 millions of records which is a large
number of records to be managed. The number of classification groups cannot be

increased because there is no way to precisely detect singular points and to find the



relationships between them. The problem with precise identification of singular points is
that the block, or the locator grid is not accurate enough. Researchers have detected,
although imprecisely, singular points within a block where the area size 1s 16x16 pixels.

The average block size is 48x48 and the worst case is an 80x80 pixels area [80] [94].

The purpose of this dissertation ls to provide # systematie approach both to detect
singular points and to elassify fngerprints using more efficient techuigues. In this digser-
tatlon, we have successfully detected singular polits In almost pinpolnt areas of 2x2 pix-
els, and at the same time we have clagsified them into cores and deltas. In addition to the
detecting techniques, and based on the outstanding results, fingerprints can be divided
into hundreds of thousands of groups which are based on the mathematic geometric rela-
tionship between cores and deltas. Tt Is highly human independent so that ambiguous
types can be reduced to a minimum. With so muany classifying groups, the speed of
search will increase, and the number of tesulting candidates will decrease dramatically
for the matching process. Qur algorithins will greatly improve fingerprint techhology. It

is hoped that many problems of fingerprints can be solved by our proposed approaches.

1.2 The Survey of Flogerprint Fundamentals
There are several types of research related to fingerprint processing, such as fingerprint
acquisition, enhancement, segmentation, thinning, edge detection, and direction compu-

tation. They are fundamental image processing techniques.

1.2.1 Image Acquisition

The acquisition type of fingerprints can be divided into passive and active.

a) Passive Method: In this method. the fingerprint is usually found on an object which
may be present at a criminal scene: a desk, a wall, or any possible thing. During this pro-

cess, the fingerprint is painted with some chemical powder, and then is pressed onto a



paper card [13] [105]. After the manual procedure, the card is scanned under a certain
resolution and the fingerprint is transferred into a digitized image file [7]. Generally,
after the fingerprint is pressed onto the paper card, the subsequent procedures depend
solely on the quality of the image on the card. Normally, this passive method can be
applied only onge,

b) Active Method: This method gets an Image divestly when a fingertip presses onto a
digital optic machine with a prism and a camera [251 [30] [58] [99] [102]. The machine
directly transfers the image into a digitized file. The digitizing process is the same as
with a scanner. The differences between this setive method and the passive one are that
here, the quality of the image depends on the pressure applied when the fingertip is
pressed, and if the image Is noisy, the user can repeat the procedure several number of

titnes.

The FBI uses the wavelet compression technique [5] [6] [32] to store the fingerprint
images to save the space under 500 dpi resolution. The wavelet compression is a lossy
method which means some information in compressed images may be removed, but the

method can keep the most important features such as ridges, valleys and singular points.

1.2.2 Image Enhancement

The latent fingerprint is usually noisy and need to be enhanced before it can be identified
[33] [95]. If the quality is not up to an acceptable standard, fingerprint recognition
becomes extremely difficult. Coetzee and Botha [15] developed some skills in enhanc-
ing low quality images of fingerprints. Hung [39] proposed a technique to connect bro-
ken ridges and remove the bridges in a skeleton fingerprint image. Sherstinsky [87]

restored and enhanced fingerprint images using a novel non-linear dynamic system.



1.2.3 The Segmentation of Fingerprints

Better binary images of fingerprints are very important to later processing. Because of
their latent characteristic, fingerprints are usually digitized from paper cards where the
resulting images contain not only fingerprints, but also other redundant objects. NIST
[10] developed a simple algorithm to extragt the major parts of fingerprints from these
images, The technigues of thinning, minutlae delecting, direction computing and many
others tequire that the images contaln only two gray levels, usually ridges as black and
valleys as white, In addition, the thresholding process must be automatic and not depen-

dent on human analysis.

1.2.4 Thinning and Edge Detection

The ridge counting and minutize detecting are usually applied by thinning methods. The
process of thinning is to reduce a big object into its skeleton [47] [72]. Several thinning
algotithms have been proposed [2] [31 [48] [55] [88]. Edge detection can help the recog-
nition of objects [46]. Tan and Loh [100] developed hierarchical structures for efficient
edge detection. Tabbone and Ziou [97] used two scales to detect edges. Verma [101]
also did edge detection on fingerprints. However, these techniques are noise-sensitive so

that image quality must be good.

1.2.5 Direction Computation

The vector or directional technique is widely used in flow-oriented images such as
fingerprints and optic flow because they both have the particular characteristic of
direction-oriented patterns [50] [89] [90] [98] [110]. Sherlock and Monro [86] presented
a simple model for interpreting fingerprint topology by using local ridge orientation of
block directions and describing the topological behavior of ridge flows. The ridges or
valleys can be represented as several directions which are quantized into certain numbers

and computed from the neighborhood pixels [73] [103].



Mehtre [66] [67] and Srinivasan [94] computed the block direction by a major histo-
gram within a block by a gray values difference method. In addition, Kawagoe [51] uses
the gradient in the threshold image and computes the direction for each block. The result
of the gray values difference method may need to be smoothed iteratively until the qual-
ity is good. The block size In their methods s highly dependent on the guality of the
directional image. When the block size is larger, thely method ean get only rough singu-

lar point positions even though the range may be several blocks.

Fuzzy theory has proven itself to be of slghificant importance in pattern recoghition
problems. Fuzzy methods are particularly useful when it Is not reasonable to assume the
unicertain values [18] [54] [75]. A fuzzy technlgue is proposed by Hung and Huang [44]

with a circular template applied to compute a better plxel-wise direction.

1.3 The Survey of Fingerprint Features
To compare two itnages we must have some reference points which exist in most similar
images [1] [11]. The matching process is buased on these extracted features [45] [59]
[60]. What features are helpful and how to detect them are important for fingerprint
identification. In fingerprints, there are some points which are always considered as

reference points: singular points and minutiae.

1.3.1 Singular Points

Singular points are classified as deltas or cores, ag shown in Figure 1.1. A delta, accord-
ing to Henry [35] is “‘an outer terminus: it may be formed either (a) by the bifurcation of
a single ridge, or (b) by the abrupt divergence of two ridges that hitherto had run side by
side.”” A core is ‘‘an inner terminus: the core of a loop may consist either of an even or
an uneven number of ridges (termed ‘‘rods’’) not joined together, or it may consist of

two ridges formed together at their summit (termed *‘staple’’).”’



Computationally, a singular point is defined as a location where a local maximum in
ridge curvature is detected [84]. That is, singular points can be analytically extracted
from directional patterns. The singular points are the most important landmarks in classi-
fying a fingerprint because they are the physical centers of convergences or divergences
to a tidge pattern, Detecting singular polnts 1s not ouly limited to two dimensions, but
also can be applied in three dimensions, Sander and Zueker [85] detected singularities of
3-D images by prineipal direction fields. Graphie models ean represent the behavior of
fingerprint curvatures [14], The corner and dominant points are the most important
features on curvatures [53] [74]. Qinghan [77] [78] used feature lines to identify finger-
prints. Although fingerprints seem to be composed of curvatures, the dominant points of

fingerprints are not 5o unigue that they can be considered as reference points.

A pyramidal model was proposed by Hung and Huang [43] which can detect the
singular points into a very precise position within 2x2 pixel areas and classify them as
core or delta types by the pattern domain of singular points, Hung and Huang [40] also
presented a pure mathematical method to find the center of convergence, and a gray zone

model to detect the singular points [41].

1.3.2 The Minutiae

Minutiae are randomly distributed in a fingerprint, as shown in Figure 1.1. Minutiae can
be considered ridge bifurcations, ridge endings, islands, dots and short ridges. Ratha [83]
used an orientation flow field to extract the minutiae. Hung [39] and Pernus [76]
modeled the minutiae for fingerprint matching. Hrechak [36] and Maio [62] [64] used
structural approach to fingerprint classification by minutiae matching. The process of
minutiae matching is like point pattern matching [12] which is slow because of many

computations.

Some minutiae are hard to identify because their shapes are smaller and noise sensi-

tive. Among the minutiae, bifurcation is easiest to find. Minutiae cannot be considered



as major reference points when we compare fingerprints because if the printed fingertip
is dirty, minutiae are easily removed or added to a fingerprint. It is difficult to find an
immutable reference to pattern minutiae other than singular points. Minutiae are useful
when singular points are identified and the fingerprint are classified. So, it is understand-

able that most researchers try to find singular polnts lnstead of minutige [81],

1.4 The Burvey of Fingerprint Classification
It is necessary to amplify and catalog fingerprints into more numerous subdivisions,
Then we can identity a fingerptint in a smuller subdivision instead of in the whole data-

base. Singular points are cormmonly used in the elagsification process.

1.4.1 Henry’s Patterns

The most successful person to classify fingerprints was Sir Edward Richard Henry [34)
[35]. He classified fingerprints based on the number of singular points and the relation-
ship between them into three major types: arch, loop and whorl, and divided these types
into several sub-categories: | - plain arches and tented arches; 2 - ulnar loops and radial
l()OE;S; 3 - composites, that is, combinations of arches, loops and whorls in the same print;
4 - central pocket loops and lateral pocket loops; § - twinned loops; and 6 - accidentals
which are irregular in outline and can not be placed under central pockets loops, lateral
pockets loops or twinned loops. Some satples of Henry’s categories are shown in Fig-

ure 1.2,

Today Henry’s system forms the basis of the great majority of systems employed in
English-speaking countries [4]. The organization which has the earliest and biggest
fingerprint database in the world is the Federal Bureau of Investigation (FBI) of the
United States (US) {20] {92] [93]. Two U.S. institutions, the FBI [21] [22] [23] and the
National Institute of Standards and Technology (NIST) [9] [104] [108]. have similar

classifications based on Henry’'s system. The identification process is to match the



K%muﬂ 4
(4) 80024613.wsg

() s0024355.wsq

(g) s0024902.wsq (h) 50024967 .wsq

Figure 1.2 Henry’s classification. Arch - (a) Plain Arch. (b) Tented Arch. Loop - (¢) Ul-
nar. (d) Radial. Whorl - (¢) Composites - (f) Central Pocket Loop. (g) Twinned Loop.
(h) Accidental.
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required fingerprint in certain classified groups by minutiae with providing other infor-

mation such as the ridge counting between singular points [61] [63].

Researchers classified fingerprints to the categories which are similar to Henry’s,
Cowger [16], Fitz and Green [26], Karu and Jain [49], Kawagoe and Tojo [51], Lin [59]
[60], Mehtre [68], Rao and Balek [79], and Wegstein [106]. The classification of
Henry's system was pattern-oriented and the correcihess is based on visual justification
so that it Is very hard to distinguish some similar types of fingerprints, Thetefote, preci-

sion ahd correctness is reduced snd the time for identifleation s increased.

A new representation model, Fault Line Graph (FLAG) which is a bipartite graph
[65], was proposed by Hung and Huang [37] that fingerprints can be desctibed by the
geotietrical relationships between singular polnts and fault lines which are the boun-
daries between two different directional regions, By this method, fingerprints can be
normalized into a fixed orientation by the horizon vector in the FLAG and can be classi-

fied into hundreds of thousands of groups.

1.4.2 Syntactic Approach

There is another method, "Syntactic Pattern Recognition”, also called "Pattern Descrip-
tion Language”, which presents pattetns in tertns of grammar rules to produce expres-
sions. Fu [27] [28] [29] [69] first introduced this technique. He used a formal language
technique to describe the patterns. Denning [17], Gonzalez [31] and Sudkamp [96]
addressed the fundamental concept of languages and grammars. Rao and Balck [82] pro-
posed a syntactic approach to classify fingerprints. They used strings of symbols to
represent the curvature of the fingerprint. Moayer and Fu [71] demonstrated a tree system
to represent and classify fingerprint patterns. They used a regular tree language to
describe the patterns. Lee [56] used tree automata in pattern recognition. Xiao [109]
post-processed the fingerprint by combining the statistical and structural method [36].

Hung and Huang [42] proposed a syntactic structure method to represent an object.



11

The syntactic method is seldom applied to fingerprint research nowadays because it

is too complicated to test. In addition, it is highly dependent on human processing. How-

ever, the syntactic method is useful in representing and comparing patterns when the pat-

terns have been itemized; that is, after the singular points have been detected and classi-

fled. 1In fingerprinty, the directional method is more widely used than the syntactic

method [70] [82].

1.5 The Analytical Study on Fingerprint Recognition

Hete, we show our fingerprint architecture for the detection of singular points and the

classification of fingerprints in Figure 1.3, PFor each phase of our architecture is

explained by following:

4)

b)

d)

€)

Fingerprint Imprint: Whether fingerprint is acquited from actively or passively, it
should be transferred into a gray scale digitized image.

Segmentation and Direction Computation: First, we extract only the fingerprint
images with fixed size from the bigget digitized fingerprint cards. The segmentation
process will threshold the images into two levels which we call ridges, valleys and
backgrounds [38]. Since fingerprints are flow-oriented, we can compute pixel-wise
direction by our fuzzy template technique.

Singular Points Detection: As previously stated, the singular points are the global pat-
terns in fingerprints. The detection of their accurate position is one of the major
topics in our dissertation. The pyramidal model can detect singular points within a
2x2 pixel area.

Fingerprint Normalization: Representing fingerprints by Fault Line Graph (FLAG),
we normalize each fingerprint into fixed orientation by their core-delta pair vector.
Fingerprint Classification by the FLAG: Using the attributes of core-delta pair vector

in (FLAG), we can classify fingerprints into millions of groups by mathematical
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methods where each group contains only a few fingerprints. If the fingerprints are in

the same group, the final minutiae matching will be applied to do each individual

fingerprint. So, the time of identification can be reduced significantly.

1.6 The Outhine of thiz Plasertation
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Fingerprint Imprint and Segmentation

) Direction Computation

Singular Polnts Detection

Fingerprint Normalization

Fingerprint Classification by the FLAG

Figure 1.3 The analysis, classification and recognition of fingerprints.
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CHAPTER 2
DIRECTION COMPUTATION AND ANALYSIS

It is o well-known fact that Angerprints are flow- and direction-oriented images. Thus,
the directlonal technigues are commonly applied to compute the directions of ridges and
valleys, which the resulting images are culled directional images. The directional images
are helpful in analyzing and detecting features of fingerprints. In this chapter, we pro-
pose a fuzzy model to improve the speed and compute better pixel-wise directional
images of flow oriented patterns such as fingerprints, A fuzzy template can be balanced
with any directional number N and size W so that the noise can be reduced. We also

prove the best number N for directional images is 3,

2.1 Direction Computing
After thresholding of the fingerprint image, a fingerprint is represented as black ridges,
white valleys and background fields. The fingerptints have singular points as global pat-
terns and minutiae as local patterns, respectively. A flow image can be described as a set
of concentric ridge flows. As well known, ridge flows are a direction-oriented charac-
teristic. Image quantization is a standard image processing procedure for converting a
continuous numerical scale into a finite humber of levels by discrete directions. Given a
uniformly-distributed quantization, the smallest quantization error is half the size of a
converting step. Thus, the direction field of a fingerprint will be quantized into a number
of uniformly-valued regions which are locally merged at the singular points. The direc-

tion number is ranged from 0 to N-1 if N directions are applied to the image.

Let N be the number used in representing directions of ridge flows and D =

| |
{d;, oy dy J be a set of integer directions which represent directional orientation

14



ranging (0, t}. A pixel’s Pj; direction is determined by computing all connected pixels of
neighbors Oy which are the same type (ridge or valley) as Pj; within WxW area. Then

the maximum one in the direction histogram is assigned as P;;’s direction.

2.1.1 Pixel-wise Calculation

Let W = 2w+1, for each pixel P;; = (i,j), a Wx W domain centered at p is used and the
domain is denoted as Quw(P). Given g = (a,b) € {y(P), the N orientation of a line link-
ing of P and g4 is defined by

%*_J;H , if g is connected to P,

Quan[ tan”! [

da(Pog) =y _, . otherwise.

where -1 marks a status of invalid and Quan is a quantization function which the resulied
value is in { 0, 1, ..., N=1 ). Then the lacal direction d(P) is set (o the majority direction
over the domain of Qw(P). If no majority direction can be found or muliiple directions
are found having similar high counts, a higher domain of {aw(FP) is applied. If a major-
ity still can not be found, then d(P) is set to -1 or a staius of invalid. The direction of a

ridge line can be also consider as its slope.

2.1.2 Fuzzy Circniar Technique

After thresholding the gray scale image, the image is cataloged into 2 distinct Jevels;
ridge and valley. In a square region, the disiance 1o border of the square in the diagonal
direction is larger than the distance ta the veriieal and horizonial directions. We propose
a circular method to compute the direction because the circle has a balanced number for
every direction. A circle is first divided into 2N directions, in which each cone contains
7/N angle. Then it is applied on a digitized grid plan with a radius w. ;;C,,, is the pixel at

P,,, within the circle on the digitized area as center at (i,)).
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In Figure 2.1, we can find that there are some pixels which are right on the direc-
tions 0, 1 and 2, but most pixels are not (shown as the marked area). It is no doubt that
these pixels on the direction 0, 1 and 2 should have that direction. But most of them are
uncertain. Then, the fuzzy concept is allied to solve this problem. For any pixel P, €
(;Cma | sutisfying the following fuzzy equation ls called an actual pixel. {4Vy ) is

defined as the fuzzy type marker of direction of Py

Lk
—,

Figure 2.1 The Fuzzy quadric region when N = 4,

LI

. n o, \
o Jomn) £ —— ), fork=0,4,.., 4N~
T, (k=1) < fUi,j,m,n) v (k+1), fork ( )

(m—1)
\(i=m)* + (j-n)*
N-1}. And, for any pixel Py, € {;jCy, } satisfying the following fuzzy function is

where f(i,j,m,m)=sin""( ) The {,Vy) of actual pixel € { 0, 1, 2, ..,

called a uncertain pixel.

T % (k1) S i) $ % (k) fork=2, 6,0, 4(N-1)+2

The uncertain pixel's {;V;; } € { {0, 1}, {0, 2} .., {0, L, ..., N-1} } which is a fuzzy set.

So, we have the fuzzy direction marker of P;; when N = 3 direction as following:

JVi = oV, 05 = { AB,C,D.E.F,G)
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where A={0},B={1},C={2},D={0,1 L,E={1,2},F={0,2}and G= {0,
1,2 }. G usually can be ignored. Then we have a fuzzy template T for the image. For

each ridge or valley pixel direction D ; computing, the following equation is used:

N=i [ l
D y=maxq Vi i,
v hf! gj‘

Two temnplates are shown in Figure 2.2, each of them is centered at the computing
pixel by mapping the direction number sets and the template symbols, with W= 11 (a) ¥
=3 and (b) N =4, We can see that the pixels marked In sets are those biditectional areas
which are not clearly defined in the most curtent researches, Given a partial ridge flow
as Figute 2.3(a) which the center is located at Py marked a5 *'”" and the region within
WxW is enclosed by 4 square, the valid 8-connected nelghbors for computing Py’s direc-
tion are marked as 4’7 after the template is upplied, as shown in figure 2.3(b). Figure
2.3(c) shows the results with W= |1 and N = 3, Direction dy has 7 pixels, direction d,
has 16 pixels and direction o, has 22 pixels. Ditection dy is assighed to Pj; because it has

the largest weight.

ICIC|C|E[B|B[B]. . | IP|G[C|C|CF|B] . A {0
ciclccEmmEE A 0] _|B|B|G[ECCFB[B] | B:{]
FIF|CIC|CE[B|B[BIDIB| B: (1) DDD@GCFBBBB%%
A[F|F|CICIE|B|B|D|D|A HIH|D|D[GIC[FBIBIEE| £ (5 )
A[A[AIF|CIE|BID[AJA[A] C:{ 2] A|AH|[H|[D|CBE[E[A[A| £ 1>2}’
ATATATATAIGIAIATAALA D: (0, 1) ATATATATA|DIAIALAIA[A] G- 2‘,3
A[A|A|D|B[E|[C|F[A[AlA] — 'V A|A[E[E[B|C|D[H[H[A[A H;fogé
AID|D|B|B|E|C|C|F|F[A] E:{1,2) EEBBFCGDDHHI:?D,I,'S
D|D|B|B[B|E|C[C|C[F[F B|/B|B|B|F|CIGD[D[D[D] J: 10223
I8[B[B|B[E[c/c/cjc].| F:10.2) [B[B[FIC[C|C[G[DD IIEQ‘OIS%
B[B|BIE[C[C|C G0, 1,2 HEEEEEE 10 L2, 3
(a) (b)

Figure 2.2 Template by mapping symbols and direction sets, with W =11 (a) ¥ = 3 and
(by N=4.
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_ dir:0-> 7
i L : dir:1-> 16
T HFHH )
A FFEC T dir:2-> 22
et o . .
THFFHHA T .
N LRI TR Total pixels:35
sl ®E bi: l 5 Ry s]ala
NEEINNEIEI NN The major direction: 2
(1) (b) ()

Figure 2.3 (1) The ridge flows, (b) the mask with o’ indleated us pixel Pj; to be tested,
() the result after applied circular template,

Lemma 2,1 The best number N of a fingerprint directional image is 3.

Proof

Given grids of pixels in Figure 2.4(4) with N ditection and W = 2w + | where w is the
distance from center pixel to its 8-connected neighbots, each direction angle 6 is 1t/N and
the angle ¢ between two contiguous pixels undet same w is 2sin™' (1/2w), shown in (b).
When we inspect two fault lines metging aren which is 3x3 pixels and w = 1, & will be
25in71(0.5) = 60°.

Let 8 = ¢, then NV will be 3.

i dig

B R R T TN

X =2w sin(9)

e g e g g e

R SIS R e P |

(a) (b)

Figure 2.4 (a) N directions (b) the angle ¢ between two continuous pixels.
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2.1.3 Smoothing

After the directional image is computed, it is necessary to smooth the image to filter the

local disturbance. Let S(w,h) be a smoothing function which returns the direction with
frequency in Qu(P). For example, given o partial ridge in Plgure 2.5(1), there are

some nolses in the directional image as shown In Figure 2.5(h). The resulting image

after stnoothing by using 5(3,0) s shown in Figure 2.5(g).

\\}\\\
\
\
SN
N
NN
\
\\
N

/////////\\\

//////////

(a) (b) (c)
Figure 2.5 The smnmhmg procedure. (a) The glven ridge flows. (b) is the pixel-wise
directional image. (c) is the smoothed dirgctional image of (b). "_", "/" and "\"

represent the direction 0, | and 2, respectively,

2.2 Experitents and Results Analysis

By our experiments, The average width of ridges and valleys is around 7.4 pixels under
500 dpi resolution. The template size needs to be bigger thah the average width. In our
experiments, we use W= 11. It is noticed that the direction-crossings of a digitized direc-
tional irage are convergent toward a point. In practice, direction-crossings will merge
before they reach the prospect point; that is, a phenomena of a premature convergence.

To explain the fundamental fingerprint process which includes the segmentation
and direction computation, we use two fingerprints in Figure 2.6(a) and (b) for the
demonstration. After applying the fingerprint extraction and segmentation (please see
the Appendix A and B), the thresholding images are shown in Figure 2.6(c) and (d). The

smoothed directional images are shown in Figure 2.6(e) and Figure 2.6(f). respectively.
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| 2. R INDEX

(e) ®

Figure 2.6 The more experimented result from test database. (a) s0024902.wsq (b)
s0024967.wsq. (c) is the thresholded result of (a). (d) is the thresholded result of (b). (e)
is the directional image of (c). (f) is the directional image of (d).
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Using a fingerprint s0024384.wsq from the NIST image database as a sample shown
in Figure 2.7(a), we compute its direction image by applying the template under different
Nas2,3,4,6, 8 and W= 11. The results are shown in (b), (c), (d), (e) and (f), respec-
tively. It is clear that when N = 3 a better directional image is achieved. If N is bigger,
there will be a premature phenomena of fault lnes, IF N Is less then 3, the directional
image features are lost. ‘To reduce the aforerventioned phenomeny, obtained directions
are quantized into 3 orientations in most of the experlment results, If N is not 3, we will

specify the numbetr.

2.3 Definitions and Characteristics of Dirvectional Images
According to the features of directional images, we define several related terms which

will be uzsed later and induce the characteristics based on the definitions.

2.3.1 Definitions

o A directional region Q(f) is colored by number { If the majority of the pixel-wise
directions is d; within the closed region.

o A fault line y, is defined as the boundary between two different directional regions
Qi) and Q) with k=i+j, di=d; and d;, d; & {0, 1, ..., , N-1}; denoted as y, =
Qd;, d;).

o A virtual fault line \,u}( is assumed to connect disconnected segments of a fault line,
« Wi and p ., causing by a broken fault line y, because of reaching the image borders
or noises. We still consider , Wy, \;I}( and W to be one fault line y,. As shown in
Figure 2.8, the faulfline vy is combined by v, \,pf; and Wy, and the fault line vy, is
combined by vy, \p'2 and ,\,. We will discuss why the fault line y; is not com-

bined by v, and W, later.
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(©) ()

(e) ®

Figure 2.7 (a) The original fingerprint image (b) directional image with W= 11 and N =
2()N=3(d)N=4(@)N=6(HN =8.



23

Figure 2.8 The Fault lines representation of Figute 2.6(c). (2) A fault line yry is collided
by €3(1) and £(2). The fault line 4y is combined by ,\ry, 4y and yy; wheee ) is a vir-
tual fault line.

2.3.2 Characteristics of Directional Images

We can induce the characteristics of directional images based on the definitions in Sec-

tion 2.3.1 as the following:

o A physical region is a closed area.

® Based on the aforementioned fact, a directional region is a closed area which has
boundary consisting of a sequence of connected fault lings or image borders, as

shown in Figure 2.8.

2.4 Conclusions
In this chapter, we proposed a new fuzzy model to get a better pixel-wise directional
image. We proved N = 3 will result in better directional images. Also, we analyzed the
effect of different number of directions. The bigger the number, the more noisy; the

smaller, the less information.



CHAPTER 3
SINGULAR POINTS DETECTION

Singular points, cores and deltus, are the most lmportant global patterns of fingerprints in
convergetee and divergence of ridges, respectively, Computationally, a singular point is
defined a5 a locatlon where a local maximum In sldge eurvature is detected. That is,
singular points can be analytically extracted ag reprasentational divectional patterns. The
features of singular points can be more easily demonatrated on directional images. In
this chapter, we first analyze the characteristic of the directional image and discover the
patterns of cores and deltas, Then, 4 pyramidal model {8 proposed to detect more precise
position of the singular points with better performance. Several experiment results are

then shown to explain our methods,

3.1 Definitions and Characteristics of Fault Lines
First we define several terms for fingerprint images and induce the characteristics of fault
lines based on the definitions. These terms and characteristics will be used often during

this dissertation.

3.1.1 Definitions

o A singular peint is defined as the location of the maximal direction changing area
which contains all N directions. From chapter 2, we know there will be a fault line if
there is a direction changes. In other words, a singular point is the intersection area

of fault lines. Since N = 3 is used, a singular point should contain 3 directions

0, 1, 2. The singular points can be classified into two types: cores and deltas.
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Topologically, directional measurements obtained along a circular trajectory sur-
rounding a core are monotonically varying from O to 27.

Different from a core, the direction changes around a delta can be divided into 3
disconnected ranges, each of which is monotonigally decreasing.

A directed foult line is a Fault line with 4 dlreetion,

An out-going fault line 1s a fault line polnting from the higher curvature ridge tegion
to the lower cutvatute aren as shown In Figure 3,1(1).

An in-going foult line is a fault line polnting from the lower curvature ridge region to
the higher cutvature drea,

A connection is defined between two singular polnty through fault lines.

A direct connection between singular points is established through only one fault line
Y, without transitive by other singular points.

A indirect connection is defined as two singular points which are not directly con-

nected, but they are connected via other singular points transitively.

@) Ty ©

Figure 3.1 The Directed fault lines. (a) shows a directed fault line from higher to lower
curvatures. (b) shows a core is the joining point of out-going fault lines. (c) shows a del-
ta is the joining point of in-going fault lines.

3.1.2 Characteristics of Fault lines

A singular point is the intersection point of exactly 3 fault lines.
A core is the intersection point of out-going fault lines as shown in Figure 3.1(b).

A delta is the intersection point of in-going fault lines as shown in Figure 3:1(c).
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e Due to the under-sampling effect of image quantization, the center of an ideal circle

can be classified as a core-core singular point pair. (shown as Figure 3.2.)

(b)
Figure 3.2 A core-core pair has been detected ih (2) 8 set of computet-synthesized con-
centric circles containing cores, (b) a fingerprint conslsting of a whotl pattern.

3.2 The Detection of Singular Points
Since fingerprints are direction-oriented and singular points are global patterns of ridge
flows, we can suminarize the directional patterns of cores and deltas into certain
domains. We can then detect their positions mote precisely and efficiently using a
multi-layered pyramidal model and classify them as core ot delta types. The singular
points can be detected in almost pinpoint area of 2x2 pixels which is the only possible

smallest size.

3.2.1 The Domains of Singular Points

According to Henry’s classification [35], a singular point can be classified as core and
delta types. Let £2,(P) be a function containing the pixels’ direction within a sxs pixel
area starting from P. By definition, the singular point should be located at a region

€2, (P) containing all 3 directions {0, 1, 2} with s 2 2,

Let u;(P) with i = { 0, 1, 2, 3 } be the members of a 2x2 domain ,(P) where
ug(P) is located at the left top corner, and u;(P), u3(P) and u3(P) are in clock-wise

direction around the 2x2 pixels, as shown in Figure 3.3(a). From the experiments, a core
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directional patiern will be *“2 — 1 -+ 0"’ and a delta directional pattern will be *‘1 — 2
~ 07’ in clock-wise manner starting from ug(P) around the £, (F). The patterns of cores

and deltas are shown in Figure 3.3(b) and (c¢), respectively.

The directional shifting is then defined as
ui(P)= (u;(P)+1)mod 3, with i =0,1,2,3.

It means the directional patterns of singular poinis can be shifted. In other words, a core
pattern can be shifted as ““1 — 0 — 2" and *'0 — 2 — 1’’, and a delta pattern can be

shifted as ‘20— 1" and *‘0 3 1 =3 2",

1 2
up(Py |y (P)
U (P) |ur(P) 0\
(a) (h) (e)

Figure 3.3 (a) defined the directional domain of a singular point in a £,(F) area. The
patterns of a core and a delfa points are shown in (b) and (¢), respectively.

3.2.2 The Mulii-layer Hieravehy

Let &;(J;) be an operaior (o an image J which is shrunk or enlarged by a factor of (7 x )
where k is the layer number and f {8 the control variable which could increase or decreass
by 1. The new image created by sueh an operator is called the kih shrinking or expand-

ing layer accordingly. 1t is denniad as

I =5} (L), with f=1or -1,

where I is the original image. For each pixel, in the domain of I, its value is set to the
majority direction of the corresponding r x r sub-image in I,_;. The whole procedure is

illustrated in Figure 3.4, to which the shrinking procedure is shown to the left hand side
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from lower layer [ to higher layer [, while the searching process is shown in the right
hand side from top I, to bottom Iy. a) Shrinking Phase: It is obvious that a pattern in /;_;
layer, which is not the majority in r x r area will disappear from /; layer. Thus, spurious
patterns or local ridge disturbances caused by the formation of minutiae can be totally
ighored by perfortning a proper sequence of shrinking opetators, That is, the highest
layer I, of a pyramid of # shrinking layers contalng only the characteristics of the major
singular points, though its precision {s one in (#x #)", The new pixel Py, on ) will be

the majority of down layer I, which cover the rectungle aren £,(P,.,).

b) Searching Phase: Starting from the highest shrinking layer 1, the corresponding sub-
layer domain S8, (£24(P)) for each singular point candidate (P, k) has to be examined.
First, the precision will be improved from one In (# = 9" to its descendant in (rx 0"
The type and the orientation of the new-found singular point candidate (P, 1) must the
same as those of the singular point (P, ). Subsequently, each candidate (P, h) in hth
layer must have its sub-layer domain examined in order to locate a more precise candi-
date in (h—1)th layer. This procedure continues until the highest precision or the original

layer Iy is reached.

3.2.3 Spurious Candidate Elimination

Theoretically, each candidate in Ath layer must have one corresponding candidate in the
(h—1)th layer and both of them are the same sub-type. As the resolution increases, how-
ever, the number of aforementioned spurious candidates increases. In addition, the sub-

type of the one in lower layer may be deformed due to under-sampling effect.

In the searching phase, the sub-type of a found lower-layer candidate must match
that of its parent layer. In addition, each member in domain £2,(P) must have enough

number of same type, 8-connected neighbors so that the found candidate is not a local



Figure 3.4 Illustration of the proposed pyramidal model where each ‘@’ marks a correct
singular point and each *x’ marks a direction anomaly.
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disturbance. The number of required neighbors can be defined as (mxr). By this way, we

can remove spurious candidates induced by the under-sampling side effect and noise.

Each sequentially searched square sub area in different layers has the same size.
When a candidate is detected within a 2x2 window during the searching process, the
effective searching area is enlarged fo 2n<2r in a lower-layer. The same procedure is
recursively applied until the lowest layer is reached. The final singular points are

detected on the bottom layer and the size of each one is only 2x2 pixels.

Under the consequence of the digitizing process, a point will shift around a half
pixel to its neighbors. That is the reason why we can not claim that the singular points are

detected in pinpoint size of [x] pixel.

3.3 The Theorems
After the fault lines and singular poinis are detecied and classified, we can induce some

theorems based on their characteristics as follows;

Theorem 3.1 Pault lines only iniersect al singular poinis, if the direction number N = 3.
Proof
Let ; and vi; be fault lines with yi; = 8(Dg, D) and ;= L(De, Dy). Assume that vy
intersects with \y; at a point P = (¥, y) where P is not a singular point and yi; # \i;, Since
we uge 3 directions, D, DD D, = (Do, By, Da). That means the area {3 (P) con-
fains all 3 directions. By definiilon, this interseciion area centered at P s a maximal
direction changing area which contains all 3 directions. That means P s a singular point.
This contradicts to our assumption. Therefore, fault lines only intersect at singular
points.

Theoretically, the fault lines should only intersect at singular points no matter how

big the directional number N is. But because of the digitized problem, the fault lines may
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be merged before reaching the singular points. We call this a premature phenomenon. To

reduce this premature phenomenon we use N = 3.

Theorem 3.2 No fault line can be established between two siﬁgular points having an
identical type.
Proof
From the section 3.1.2, a core poinf is the joining point of out-going fault lines and a
delta point is the joining point of in-going fault lines. Assume that a core point directly
connects with another core point, that is, the ouf-going connects with out-going. If two
out-going lines reached from different sides, there would exist a joint point. At this joint
point, the flows becomes in-going. According 1o the definition, the joint point should be
a delta point. It contradicts with our assumption. Sa, two core poinis cannot directly con-
nect. The same proof can be applied io delia points. So, there cannot be direct connec-
tions between same types of singular points,

In other words, the two ends of a fault line must be different type of singular points.
That is the reason why the fauli line yi; is combined by z\iy, 3y and Wi |, but not com-

bined by 5wy and 4y in section 2.3.1.

3.4 Experimenis and Resolis Analysis
An ellipse type fingerprint shown as Figure 3.5 is used to demonsirate our method. Gn
the top of the left hand side is the direciional image, and on the top of the right hand side
is the original fingerprint. Under ihe shrinking or searching phases, the directional image
is shrunk or expanded by a factor of (3x3). The shrinking phase is shown on the left side
of Figure 3.5, while the searching phase is shown on right hand side. The detected singu-

lar points under different resolutions are marked as rectangles in each domain and their

size indicates the precision.
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Figure 3.5 The shrinking procedure is illustrated from (a)-(d), while the extracting of

singular points are shown upside down from (e)-(h).
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The squares are shrinking into final deteciad position with 2x2 pixels.
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Figure 3.7 The classified singular poinis of Figure 3.6 with marked pores as squares and
deltas as rhombuses and connecied wiih faull lines. The numbers indicate the deiecied
order with cores first and deltas later.
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The overall methodology is analogous fo as operating a felescope. First, we wide
search the open space, then gradually adjust ihe view-finder into smaller regions, finally
focusing in on the target. More examples are shown in Figure 3.6, The rectangles in
cach image are gradually focused onio the singular points, and the final size is 2x2 pixels
which are marked as dots. Figure 3.7 shows that the combinations of fault lines and the
classified singular poinis of Figure 3.6 with marked cores ag squares and delias as rhom-

buses.

3.8 Conclusions
In this chapier, we proposed a pyramidal mathad (6 deieet singular points from finger-
print images with better accuracy than other similar mathods, We can classify them inio
core or delta type at the time of detection using simple domains. Like a bipartite graph,
singular points cannot directly connect to the same type through the fault lines. The
experimented results show that our algorithms can precisely obtain singular points within
2x2 pixel areas and classify the detected singular points into cores or deltas. With more
precise detection, we can classify fingerprints into more categories and reduce the time

of matching processes.



CHAPTER 4
THE FAULT-LINE-ANALYSIS-GRAPHS AND THEIR NORMALIZATION

In this chapter, a fingerprint by a fault-Line-Analysis-Graph (FLAG) with singular points
as vertices and fault lines as edges. We propose and prove some theorems that singular
points must exist in core-delta pairs and the FLAG is a perfect matching. A pattern model
is also proposed to analyze and predict the location of singular points. Then, a computa-
tional method can transform fingerprints into invariant arientation by the reference vec-
tor formed by the singular points. When a fingerprint is processed, it can be in any orien-
tation. How to transform the fingerprints into same orieniation is very important (o
further classification. The current classification or comparison methods mostly assumed
fingerprints were oriented acceptable, which could be done manually. However, manual
adjustment reduces the efficiency and precision of classification and may cause incorrect

identification.

4.1 The Fault Lines Graphs (FLAG)
Let a graph G(C, D, E) represent a fingerprint as C and 13 are the vertices set of core and
delta points, respectively, and £ is the edge set of fauli lines, The singular painis will be
adjacent to each other through fault lines. Using Figure 3.7 as the example, the singular
poinis, cores marked as ‘0" and delias marked as ‘&', ihe new represenied FLAG are
shown in Figure 4.1. The darker lines directly conneci fauli lines heiween cores and del-
fas and lighter lines are virtual fanlt lines that indirectly connect cores and deltas. The
relationship between cores and deltas can he described by the adjacent lisis as shown in

Figure 4.2 which cores are numbered first and deltas later.

36
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Figure 4.1 The FLAG of Figure 3.7. ‘‘0’’ and ‘‘e¢’’ indicates core and delta points,
respectively. The darker and lighter lines are directly and indirectly connected fault lines
between cores and deltas.
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Figure 4.2 The adjacent list of Figure 4.1.

No singular point deltar 2= 1 delta: 2 1
(a) (b) (©)
core;: 1—4 core: 1-34 core: 16
2313 33234 254,235
33536
deltas 3 -2 deltar 3 2 delta: 4 - 2
41 43 134—2 542,53
61,63
(d) (¢) ()
core; 14
24,25
34,36
delta: 4—1,4-2,4-3
532
633
(&)



39

Theorem 4.1 A FLAGG(C, D, E)isa bipartite graph.

Proof

In graph G(C, D, E) there are only two kinds of nodes C and D. Therefore, we can
model this graph G as 2-coloring graph. From Theorem 3.2, no fault line can be esta-
blished between two singular points having an identical type. By McHugh [65], Gis a
bipartite graph.

Theorem 4.2 Singular points, exist in core-delta pairs.

Proof

Any given FLAG G is a bipartite graph. Fram the facts of Section 3.1.2, each singular
point should be joined by exactly 3 fault lines. This indicates that graph G is a regular
graph with degree 3 for vertices C and D [65]. We can conclude that graph G is regular
and bipartite graph, so | Cl = |D|, Graph G can be represented as an edge disjoint union
of 3 complete maichings. Thus, a perfect maiching can be applied to prove that cores

and deltas must be matched, In other words, singular points show in core-delia pairs.

4.2 The Profile of Fingerprinis
From chapters 3, we know that the global paiiern of each fingerprint is decided by the
geometric relationship of singular points which are formed by exactly 3 fauli lines with ¥
= 3, That means we can maodel the patierng of fingerprints by FLAGs,

According to Moayer and Fu [69], every fingerprini pattern has concave ridges on
the top and nearly horizontal lines at the bottom. The concave ridges can be thoughit of
being composed by 3 directions as shown in Figure 4.3. We has establish there is a fault
line where there is a change of a direction. So, there must be fault lines between 0, 1,

and 0, 2, cutting the concave ridges into 3 parts.

For the same reason, there will be two more cuts and two more fault lines on the left

and right hand side when the concave ridge changes direction into near horizontal lines at
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Figure 4.3 The concave ridge with 3 directions.

the bottom. As consequence there must exist 4 fault lines, L1, L2, L3 and LA, entering a
pattern area on the fingerprint directional image. Figure 4.4(a) shows the layout of a
fingerprint where we can consider its cenier as a region requiring further attention. Fault
lines L1 and L2 or L3 and I4 may be merged like in Figure 3.7(a) or branch into more
lines like other figures in Figure 3.7. These 4 fauli lines are the free ends of all fault
lines. Extending the definition by FBI [21], the '‘patiern area’’, the middle area of a
fingerprint, in which the cores, deltas and ridges appear, determine the type of a finger-

print.

c@nc&vetﬁ A
La ¥ % L1

fauit imég\ | fy

pattern area

y )%g"
P . /j =
( o é!ﬁfmﬁ
horizontal bottom __, - o -Q(O)
(a) (b)

Figure 4.4 (a) The logic profile of a fingerprint and (b) its pattern area. L.1 and L2 will
form cores, and L3 and L4 will form deltas. The numbers 0, 1 and 2 are indicated the
direction regions €2(0), (1) and Q(2).
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Even though the singular point maybe missing (due to noise or any other reason),
we can predict its type. From Section 3.2.1, we know that the directional patterns of a
core point is any one of ‘1 — 0 — 27, “0 = 2 - 1" and 2 = 1 ~ 0", which the
directional difference is +1 and -2, and a delta point is any ong of 'O~ 1 = 27", 1 =3 2
~» 0" and 2 — 0 — 1”°, which the directional difference is -1 and +2, in clock-wise
direction manner around the singular poini. Figure 4.4(b) is the enlarged pait on the par-
tern area of Figure 4.4(a). There will be at least 4 directional regions, 0" at top and

bottom, **1"" atleft, *2" at right, separated by the 4 fault lines.

The fault lines L1, L2, L3 and 14 are formed by shifted directions “°0 «» 277, ‘2
07,0 1" and *'1 = 0" in clock-wise direction, respectively., Maiching with the pat-
terns of singular points, we can find that .1 can only form a core poini at the patiern area
because the directional difference is -2. The same theory can be applied to L4 because
the directional difference is +1. The fault line L2 can only form a delta point at the pal-
tern area because the directional difference is +2, ihe same ta L3 because the directional
difference is -1. So, L1, L4 and L2, 13 are marked core and delta poinis af each end

point at the pattern area of Figure 4.4(b).

4.3 Fingerprinis Normalization
When fingerprints are imprinied, even if iheir arieniaiion are manually adjusted, their
orieniations may shilt within a certain range, Many research efforts have assumed (hat
the orientation of the given fingerprints has been adjusted. Tn fact, the orisntation of
fingerprints may affect the efficiency and accuracy of classification and identification.
To ensure the orientations of fingerprints are well within acceptable tolerance, rotation-

normalization 1s necessary.

By Theorem 4.2, singular points have to exist in core-delta pair formations. The
vector connecting the delta point to the core point will be referred as the reference vec-

tor. The reference vector is used to normalize a fingerprint by aligning it along the
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horizontal direction using delta as the origin. For a fingerprint consisting of M core-delta
pairs, there are M? reference vectors. Each normalized fingerprint using a selected refer-
ence vector is set as a valid candidate. Therefore, a FLAG containing 2 core-delta pairs,
there are 4 reference vectors, and 4 valid templates will be established by the reference

vectors.

Theoretically, a locality within a fingerprint is a unique pattern. It means the trajec-
tories of all fault lines should be almost unique like the local ridge patierns. Recall that
fault lines are places where ridge flows change directions and each singular point is the
intersection point of fault lines. This implies that the fanlt lines configuration surround-
ing a core-delta pair can be represented as & lacality of the ridge flows. In other words, a
FLAG is a proper representation obtained from a normalized fingerprint,

The Exception:  According to Henry's patierns [35], fingerprinis having a plain arch
type do not have singular paints. In other words, there are no core-delta pairs o form the
needed reference vectors as shown in Figuie 4.5, To avercame this exception, a defor-
matjon function is needed to convert the plain arch iype fingerprinis into new patterns (o
generate the pseudo singular points. Thus, the reference vector can be constucied.
Because there are many different kind of plain arch type fingerprinis, the deformation

function is very difficult to achieve. This isciinigue will be subject of future work.

Figure 4.5 The plain arch type fingerprint (s0024611.wsq).
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4.4 The Analysis of Normalization
Recall that the best result of a detected singular point is 2x2 pixels. This implies that the
reference vector we selected may be not precise enough. This may cause a distortion in

the singular point location after the rotation.

Given a FLAG G(C, D, E), let 1 be the positional displacement, L is the distance
between D and C. Then the worst angular shifting is

._.1 w(: — . -1 .

Figure 4.6 shows the relationship between o and L under different 1. For example, L =

100, t = 3, the o = 3.65°.

By running 1700 images, the distance L i a normal distribution of (177, 59) under
500 dpi resolution (shown in Figure 4.7(a) with 4523 pairs.) We find that the core-delta
pair (shown in Figure 4.7(b) with 3363 pairs) is more reliable than other kind of pairs
because a core-delta pair has an average near 2 pairs per fingerprint. In contrast, the
averages of delta-delta pairs (shown in Figure 4.7(c) with 529 pairs) and core-core pairs

(shown in Figure 4.7(d) with 629 pairs) ave Iess than hall a pair per fingerprint.

. \
i

Figure 4.6 The relationship between ¢ and L under different 1, where ¢ is the tolerance
to rotated angle 6, L is the distance of a core-delta pair, and 7 is the tolerance of a singu-
lar point location.
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Figare 4.7 The histogram of L among the 4523 pairs of 1700 images. (a) All pairs with
average L = 177.7. (b) Only between core and delta, with L = 178 in 3363 pairs. (c)
Only between delta and delta, with L = 288.9 in 529 pairs. (d) Only between core and
core, with L = 80 in 629 pairs.
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Using the fingerprint image s0025432.wsq as our sample named as RS-0, Two tem-
plates of it are obtained by random rotations: one is named as R8-1 and the other is
named as RS-2 as shown in Figure 4.8(b) and (c), respectively. Their reference vectors
are shown in Figure 4.8(d), (e) and (f). Figure 4.8(g), (h) and (i) show the normalized
FLAG.

On Table 4.1 shows the positions of core and delta points, reference vectors and dis-
tances L before the rotation. Each image is then re-oriented based on the computed refer-
ence angle 8. We apply the methods to re-process the rotated images and show the results
in Table 4.2 with the new positions of core and delta points, rotated angle 6, new dis-
tances L and the normalized horizon vector. Afier normalization, the tolerances €, ¢ and
o’ are show in Table 4.3. o is the angle to horizontal and o™ is the difference comparing
with original rotated angle 8. It is obvious that the normalized images are almost the

same image.

Table 4.1 The core and delia points before normalization,

Core, Delia poinis | Reference Vector | L
RE-0(0") [ (250, 176), (141, 341)[ 109, -168]  [1975
RS-122%) |(204,200), (161, 3011 |[43,-191] | 1958
RS-2(=32°)1(292, 162), (112,242} [180,-80]  |197.0

Table 4.2 The core and delta points with 6 and new L afier normalization.

Core, Delta points 0 New L Horizon vector
org (0%) (302, 194), (106, 193)|-56.95°1196.0 [196, 1]
RS-1(22%) [(302, 192), (106, 194)|-77.54° 1196.0 |[196, -2]
RS-2(=32°)|(303, 199), (106, 201)|-23.96°|197.0 |(197, -2)
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Table 4.3 The tolerances 7, s and o .

v lo G
RS-0(0") | 1]0.58° |0°
RS-1(22°) | 2 |-1.16°|1.41°
e o T s
E%g( »133;) 2 11.18° 10.99

1o

4.8 Conclusions
In this chapter, we prove ihat singular poinis must exist in core-delia pairs by a bipartite
FLAG. We proposed a patiern model for fingerprints and the types of singular points can
be predicied by our model, The automatic normalization is important (o the correciness
and precision of classification of fingerprinis. A reference vector helps us to ransform a
fingerprint image to an invariant arieniaion, We analyzed the (olerance between several
random rotations and the resulis show ihal the concept of the horizon vector works very
well, With such well normallzad FLAG, we can apply the characleristics of the FLAG

model to classify fingerprinis (o mare growps.



CHAPTER §
THE MULTI-INDEX MODEL FOR FINGERPRINT CLASSIFICATION

The fingerprint classification is very important to the efficiency and accuracy of finger-
print identification. The current classification methods of fingerprints are based on
Henry’s categories which are pattern-oriented and the accuracy is based on visual justifi-
cation. It is very hard to distinguish the difference between similar fingerprint patterns
such as some tented arches and left (or right) ioops, Therefore, precision and correctness
is reduced and the time for identification is increased a lot. In this chapter, a new classif-
ication model is proposed based on the index aftributes {o renovate the current classifica-
tion problems. The time of searching or matching process of fingerprinis can be reduced
significantly for huge databases using our madels, fingerprinis can be divided into hun-
dreds of thousands of smaller groups which are based on the artributes of horizon vectors

in the normalized FLAGs.

5.1 The Classification Maodel
It has been difficuli 1o increase the number of clagsification groups because there was no
way to precisely detect the position of the singular painis, and therefore, it was not possi-
ble to establish the relationships between ihem. We can classify fingerprints into hun-
dreds of thousands groups by the index atiribiites which are the geometiic relationship in

normalized horizon veciors.

§.1.1 The Current Problems
As previously mentioned, when the number of fingerprint records is large, the current
methods are not fast enough to process the required fingerprints. The reason is because

currently there are only a few groups (less than ten) to classify fingerprints so that each

48
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group contains a large amount to manage. The three major types of Henry’s classifica-
tion are arch, loop and whorl, and these 3 types can be divided into several sub-
categories. In addition, the classification of Henry's system is pattern oriented and the
correctness is based on visual justification. It is very difficult to distinguish between
some fingerprints. Figure 5.1 shows the ambiguous type of fingerprints that they are dif-
ficult to be classified as tented arch or as left Joop types of fingerprints [35], especially
when they they are not well oriented. They are so similar that it is necessary to search in

the both groups of tented arch and left loops when the identification process is applied.

o,

e

a) s0025552.wsq (b) s0026572.wsq (c) 80026622.wsq

Figure 5.1 The ambiguous types of fingerprinis.

Kurre [24] stated that the total number of fingerprinis increased 12.5% aver the year
1996. This means that the total number of tofal records will more than double in less
than a decade. Currently, the FBI has more than 219 million fingerprints which each
group may contain an average of 21 millions of records in Henry's system with assuming
there is a uniform distribution. Just provide an idea how many fingerprints need to be
processed if the type of a fingerprint is a ambiguous like Figure 5.1. The cuirent AFIS
needs to be manually judge and check it in these two groups with combing into 44 mil-

lion fingerprints.
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5.1.2 The Attributes of a FLAG

For each normalized horizon vector, we can extract the atiributes from the FLAG. We
can build the model consisting of the horizon vector, the fault lines and the relationship
between them. Figure 5.2 illustrates this concept. This model contains three important
attributes such as the trajectories of the fault lines connecting the core-delta pair the
length of the horizon vector, and the number of ridges crossed by the horizon vector;
what are the attributes and how to discover them is important to the classification model.
Theoretically, the fault line trajectories should represent the direction change of ridge
flows and they should change smoothly. A stable and reliable attribute is important to

help describe the trajectories.

i

_,fauh line

Figure 5.2 The haorizan vecior of a FLAG.

We can quantize the atiributes of a FLAG inlo inleger numbers in order 1o reduce
the noise. We can think each arributes as the combination of correct and error quantities

as
A,‘ =t e

A quick way to reduce the error in significant amount is to divided the attributes by con-

stant Al as
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e.
This constant has to be large enough such that -~ becomes insignificantly and the same

A

¢i .
time small enough such that 3:‘* remains meaningful. We can think the constant A; as the
i

UNIT for its respect attribute. Let n; =

Ci . i
-1, where n; represents the normalized range

A

of the attribute A;. Then, the attributes can be described as a tuple

(A1, Ag, s Apy nAy), Whete A; e [0, m—1], 1<i<m,

5.1.3 The Candidate Attributes

By our experiments, the attributes can be the following

e L is the length of the horizon vector.

@ R isthe number of ridges crossing by the horizon vector.

e up, is the pixels’ average of y coordinates within the area between pair vecior and the
fault line which is above the horizon vecior.

® up. is the pixels’ average of x coordinaies within the area betwesn pair vector and the
fault line which is above the horizon vecior and their v 2 ip,.

@ %y is the pixels’ average of y coordinaies within ihe area between pair vector and the

fault line which is below the horizon vecior,

&

dn, is the pixels’ average of x coardinaiss within the area hetween pair vector and fhe
fault line which is below the horizon vector and their y > dn,,.
By running 1700 images, we have the the characteristics, average, standard devia-

tion, minimum and maximum values, and the 95% distributed ranges. of each attribute

resolution listed in Table 5.1.



Table 5.1 The characteristics of each attribute under 500 dpi resolution.

Attributes |Mean |S.D | (min, max)|95% Population
L 177.5 | 59.5 | (16, 468) | (56, 294.5)

R 13.9 |54 | (1,36) (3.1,24.7)

upy 472 | 364 |(0,170) | (0, 119)

Up, 86.5 | 38.8 | (0, 230) (8.9, 164)

dn, 324 | 284 | (0, 154) (0, 89.1)

dn, 84.6 | 33.7 ) (0, 180) (17, 152)

5.2 The Multi-Index Classification
With the normalization, the attributes are represented by discreie numbers. An array

structure can be applied to store the attribute and the corresponding address.

5.2.1 The Index Tree
A tree structure can be used to represent the relaiionship between the attributes. The root
and each internal node are arrays using the normalized attribuie values as index (o store
the corresponding address of the node in the next level. Each leaf contains the finger-
prints in the same class. The final matching process (akes place in a certain leaf.

The variables of a attribuie jA;, ; defined as the follow.
@ /iis the index level of the current attribule,
& | is the order number in index level i of the current atiribute,
e jis the order number in index level j of the pareni atiribule of the current atribute.

o f(;As, ;) is the address of the child attribute.

If there are m attributes as (A;, A,, ..., Ag, ....,A,), the multi-index classification

tree of these attributes is shown in Figure 5.3. For k-th level which represents a attribute
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Ay, it has ny_; arrays which each array has same index number n; of entries and struc-
tures. Every array contains the normalized range of the attribute Ay in level k as from 0
to ng. The first level has only one array. The number of classified groups will be

m

I1 n;.

=1

That means, the fingerprint groups will be numbered from 1 0 nyxagx... xix <1y,

Although the best candidate group is directly hit, it is necessary to consider the noisy
effect. The tolerance j;, will be applied to the numerical description in level k when it is

re-mapping in the mulii-index classification tree. So, the number of groups need to

check will be
i )
;”il(zu.:ﬂ ).
‘:

If we only consider to check the right and left neighbor of an attribute Ay, the tolerance
(; will be 1. Given attribuies (g, b, ...., ¢, ..., 4) and the tolerance i of atiributes is 1, the
groups of tuple descriptions for checking will be (afl, b1, ..., ckl, .., dE1). For
example, given a tuple description (8, 4, 20, 32, 0, 0), its multi-index classification tree is
shown in Figure 5.4 and there will be 324 possible checking groups against the all
groups. The searching will be stopped when (here is a maieh. 1f the input fingerprint can-

not be found in the possible groups, we claim thal il does nol exigt in the database.

§.2.2 Example of Classification

From Section 5.1.3, a fingerprint can be described by the index atiribuies as

(L’ R, @y’ 1_[15.:’ a—r_’yv C—;’;x)



A
h

The estimated number of combinations for each horizon vector will be
ML XNR X Ngp X Ngs X Tigy X Ny

In our experiments we use Ay = 10, Ag = 2, ku—;.,y = 5, A, = 5, Mg, = 5, and Adn, = 3.
Using the maximum range in Table 5.1, we can have the maximum estimated number of
total groups as: 48 x 19 x 47x35 x 39 x 32 = 1,872,299,520, In other words, the possibil-
ity for the same tuple description is less than 1.8 billionth. Using the average range in
Table 5.1, we can have the average estimated number of total groups as:
19x8x 18x10x 18 x 7= 3,447,360. In other words, the possibility for the same tuple

description is less than 6.5 millionth.

5.3 Experiments

Given several similar fingerprints which are classified as right loops in Henry’s system in
Figure 5.5, their tuple descriptions are listed an the bottom of each image. We can find
that the fingerprints are very similar if their tuple descriptions are similar. Different
orientation of same fingerprints will have (he same fuple description such as Figure 5.5
(c). Given other 3 images with different number of core-delta pairs which are from Fig-
ure 1.2 (e), (g) and (h), their wiple descriptions are shown under the Figure 5.6 (a), (b)
and (¢).

Our database consisis of the 1700 images of fingerprinis which are part of the NIST
PCABYS package, in addition 10 50 fingerprinis collected from our friends. We re-
tion program, we oblain the 48 fingerprints classified in ihe same group as iheir original
counterpart. Only two fingerprints did not fell into the same group, however, their clas-
sification was within p = 1. The result gives a good proof of the direction of our classifi-

cation model.
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(2) s0025112.wsq (b) §0025504. wgq () s0026411.ws
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Figure 5.6 The tuple descriptions contain different core-delta number.
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The partial matching will be done if there exists a core-delta in fingerprints, For
future work, we will study on the atiributes of the oiher two kind of pairs, core-core and

delta-delta, so thar make the partial matching more solid,

5.4 Conclugions
In this chapter, we represent a fingerprini as a sequence of numerical attributes. We can
classify fingerprints into millions of groups by the atiributes. This is a totally new con-
cept 1o fingerprints, With such an oulsianding classification, (he time for searching and
comparing will be reduced o significanily because the possible fingarprinis are narrowed
down into a very small number. Furthermore, the partial matching for incomplete finger-

prints is within reach,



CHAPTER 6
CONCLUSION

6.1 Summary of Results

The results of this dissertation about fingerprint analysis, feature extraction, pattern

modeling and re-orientation, and classification are presented below:

@

Fuzzy techniques for flow oriented image direction computing. This is a state-of-art
technique to process flow oriented images such as fingerprints, elevation of mountain
and magnetic field. A fuzzy template is designed to speedup and get better direc-
tional images. We proved that directional number N = 3 will yield the better quality

results for fingerprints.

Pyramidal model for detecting singular points. Singular points are the global
features of fingerprinis, We designed a fast algarithm to detect almost pinpoint loca-
tions of singular points and classify them as cores or delias by paitern iemplates. We
prove that fault lines only intersect ai singular poinis, and do not connect singular
points of the same type.

The FLAG and 1he fingerprints normalizaiion. We proposed a Fault Line Graph
(FLAG) to represent a fingerprint. The analysis of the patiern area of FLAGs will
help us predict the location of singular painia, We prove that the FLAG is a bipartite
graph and singular points must exist in core-delia pairs. We transform fingerprinis
into invariant orlentation by the pair vecior so thai the correctness of classification
will be improved,

The New classification model. Based on our new classification technigues, the
fingerprints can be classification into hundreds of thousands groups by the

mathematic attributes of core-delta pairs. With such an outstanding classification, the
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time of searching in a huge database can be done in a very short time, and the partial

matching can be made more possible.

6.2 Fuinre Research Direction
As always, successful research and development opens up new reseaich areas and oppor-
tunities. While invariant approaches have achieved a cerlain level of maturity, advances
are expected along several lines of investigation,

First, the type of the plain arch fingerprini needs more siudy to do the normalization
and to discover the atiribuies like the FLAG. 8o, the new classification model will cam-
pletely caver all differsnt types of fingerprinis,

Next, although the pariial malehing is made more posgible by our patiern modeling
and classification techniques, 11 nesds more research (o achieve real Hime performance
not only theoretically but practically.

Finally, although our algorithms has been successfully tested under a small database
because of limited resources, it would better to apply them to a huge database for further

test and improvement.



APPENDIX A
THE EXTRACTION OF FINGERPRINTS

Since fingerprints are scanned into images from the stored cards which may contain
some noise, The bigger images and consequent noise will reduce the processing perfor-
mance and require more memory and space. So, it is necessary (o extract the essential

contents, containing only the fingerprinis.

The Diffusion
First, we need to assume that the exiracted image N with size N,xN,, is bigger than any
other object on a fingerprint card image M which size is MxM,. We define some func-

tions and terms as followings.

e Uj;: Represents the gray level af position (j, i) of the image U.

e G(U, x1, yl, x2, y2): Returns the average gray level of the rectangle area from
(x1, y1) 10 (x2, y2) on the image [/, and boih positions are included.

e MINW, x1, y1,x2, y2): Retums the minimum gray level of the rectangle area from
(x1, yD) 1o (x2, ¥2) on the image I/, and boih positions are inciuded.

« thr: The critical valie to be an object is assigned by the maximum one beiween
M, /10 and M, /10,

e pogition(hisi, x1, X2, thi): returns ihe firsl position of the longest continous length on
hist list from position x1 10 42 and each number is greater than 7ir,

& We assume fhat gray level 0 as olyject, 255 as background,

Then we calculate the histograms histx and histy which are along the x- and y-axis

direction on the diffused image M by the following algorithm:



63

average = G(M, 0, 0, M, -1, M,~1)
for(i=0; i< M,; i++) '
for(j=0; j< M,; j++)
if G(M, j-1, i~1, j+1, i+1) < average then
{ histx[j]++; histy[i]++; }

The extracted positions will depend on the histx and histy with thr.
& min_x = position(histx, 0, M,-1, thr);

e max_x = position(hisix, M,-1, 0, thr);

®

min_y = position(histy, 0, M1, thr);
¢ max_y = position(histy, M1, 0, thr);

Then we have the temporary starting (nin_x, min_y) and ending (max_x, max_y)

position for the new image N from the image M.

The Adjustment
Since we wani 1o have a fixed size ouiput NN, itis very possible that (max_x - min_x)
or (max_y - min_y) is bigger or smalier ihan N,. We need (o locale belier positions o

focus only on the fingerprint. The adjusiing process is described as follows;

if min_x <0 ithen min_y = 0;

if min_y < 0then niin_y = O

if max_x > M, then Hiax_x = M,

if max_y > M, then max_y = M;

if max_x - min_x < N,, then max_x=min_x + N,;

if max_y - min_y < N,, then max_y=min_y + N,;

if max_x > M, then {max_x=M_, min_x = max_x - N,-1; }
if max_y > M|, then {max_y=M,; min_y =max_y - N,-1; }

Ny = max_x - min_x; Ny = max_y - min_y,

The new adjusted image N will cover from (min_x, min_y) to (max_x, max_y) of

image M.



APPENDIX B
THE SEGMENTATION OF FINGERPRINTS

Most fingerprint processes require only two levels: object and background. Some of
images or portions of an image may be too light, and some of them may be too dark. This
is a common problem with image processing, but especially in fingerprints because of
their latent characteristics. Improper threshold will generate false or remove important
minutiae such as bifurcations, islands and bridges. Therefore, how to get better thres-
holded image is an important subject to fingerprints. The new thresholded images 8 will

be segmented from N by the following algorithm.

average] G(N 0, 0, N.—1, Ny—~1)
for(i=0; i< N,; i++)

for(j=0; j<}\f y J+t)
i{f G(N, j-2, z-2, J+2, +2) > average then

if GIN, j-2, i~2, j+2 2412 GIN, j-1, i=1, j+1, i+1) AND
MIN%N j~2 =2, j+2, H2)41 “\avﬁﬁgaj h@rx
else v

if MIN(N, j=1, =1, j+1, it1)+1 £ (averagel + average)/2.0+ 1 AND
MIN(BN, ]E)L i=1, j+1, i+ 1) + (averdge - averagel)2.0+1 2 Nj; then
else T

B,‘j = 255;

else

ttM]N(N,j LI d, Jre, 2l £a Je:rg 1 AND
GN, j-2, i«”J J2, D+ 2 G, -1, JH H1) 41 then

ij =

clse
ng = 255;

The image B will be the final thresholded output with fixed size N,xN,. Using

$0024673.wsq from the test database demonstrates the extracting process, Figure A(a) is
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the original scaled image, (b) and (e) are (he hisiograms histx and Aisry of ihe diffused
image (a). The dotted lines of (b) and (&) show the min_y, max_x and min_y, max_y,

respectively. (d) is the adjusted result. (e) 1s the segmented result.
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Figure A Using s0024673.wsq from NIST as our experiment. (a) The original image. (b)
The histx. (c) The histy. (d) The result after adjustment. (e) The final thresholded image.
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