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ABSTRACT

A MODEL FOR TRAVEL MODE SWITCHING

by
Lei Cao

Transportation policy research assesses the effect of policy changes such as the

imposition of a parking charge or the augmentation of passenger rail service, on

individual travel behavior. Over the last few decades, Conditional Lo it Model has been

strongly advocated among discrete choice models for transportation policy study due to

its ease of estimation and realistic outcomes.

This dissertation analyzes the necessity of the entry of constraints in the indirect

utility function. These functions are used in discrete choice models and form the basis for

travel demand modeling. This dissertation proposes a hypothesis that the explicit entry of

constraints in the systematic utility term will improve the specification of logit model

because the constraints have significant effect on individual mode switching. A new

model for incorporating constraints is developed based upon the hypothesis. Simulation

and empirical study are combined to analyze the validity of this model's structure. The

empirical evidence shows that explicit entry of constraints can effectively correct the

errors caused by missing or ignoring of constraints in the indirect utility term.
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CHAPTER 1

INTRODUCTION

Transportation policy research assesses the effect of policy changes, such as the

imposition of a parking charge or the augmentation of passenger rail service, on

individuals travel behavior. Over the last few decades, the Conditional Logit Model has

risen to be the theoretical and analytical model of choice for transportation policy studies.

However, the current use of the discrete choice theory underlying the Conditional Logit

Model may be flawed. The issue is the reported low level of accuracy on forecasting

individual travel behavior by the empirical models formed by current data. Horowitz

(1985) indicates based on his study that few existing discrete mode choice models can

explain as much as 40% - 50% of observed variation in choices, and many explain less

than 30%. The low accuracy of prediction explains that current empirical models have

significant biases or errors.

The utility derived from each potential travel alternative is assumed as the basis

for a traveler's mode choice decision. Different from the utility function used in classical

economics, the utility term used in the discrete choice models is expressed as indirect

utility function (Ben-Akiva & Lerman, 1985). An indirect utility function is a derived

utility function under given constraints. Explicit inclusion of constraint into indirect

utility function is necessary if economic theory is to be fully incorporated in the discrete

choice models. The thesis will unfold in the following fashion.



Chapter 2 presents a detailed review of the advances related with the Conditional

Logit Model. It includes the development of theoretical model and relevant empirical

findings.

Chapter 3 proposes the hypothesis. The null hypothesis states that there is no

difference between treating the effect of resource constraint as a random utility term and

as a component of systematic utility term. The alternative hypothesis states that

constraints explicitly exist in an individual's travel mode switching behavior and

therefore significantly affect individual mode switching. Ignoring these constraints in the

systematic utility term will cause the biases in the model calibration.

The alternative hypothesis is based on a modified or extended theoretical model,

the Constrained Conditional Logit Model. Chapter 4 gives a detailed description about

the formation and inclusion of constraints in utility term. The Constrained Conditional

Logit Model explicitly incorporates constraints on individual travel mode switching. It is

noteworthy that constraints that govern travel mode switching behavior are no longer

limited to monetary and time budgets in this dissertation as in classical utility

maximization framework in economics, but are extended generally to the all resources

which are consumed on the travel.

Through the simulation described in Chapter 5, the internal validity of the

Constrained Conditional Logit Model is examined. The result shows that the Constrained

Conditional Logit Model is capable of recovering the effects of constraints if they do

exist. The simulation result shows that ignoring of these effects would cause significant

biases in estimation and evaluation of the effects of a travel environmental change.



An empirical study is made• to test the hypothesis about the existence of

constraints in the real commute mode choice. The empirical study involves stated choice

surveys (SC) administered to the commute employees working at the two sites in

Newark, New Jersey. Chapter 6 introduces a detailed information about the survey sites

and the survey process. The surveys were administered through pencil and paper

questionnaires, which were sent to the respondents from the two sites.

Chapter 7 describes the empirical model's calibration and the hypothesis testing.

The Hypothesis proposed in Chapter 3 is tested by x2 and t tests. The x , 

test is for the

equality of the coefficients underlying the Constrained Conditional Logit Model and the

Conditional Logit Model. The test results show that the Constrained Conditional Logit

Model is significantly different from Conditional Logit Model. The t test is designed for

the significance test of the constraints through examining the t statistic values associated

with the coefficients of the constraint attributes. The i test result shows that effects of the

constraints on travel cost and time exist in individual commute mode switching behavior.

As the two surveys were performed on the same CBD, a series of joint estimation

are conducted with different trials for the scale factor ratios. A test is executed to examine

if the two samples can be accepted as drawn from the same target population. The tests

include two sub-test topics:

a) Parameter estimate identity for the two samples, and

b) Variance identity for the random terms of the two samples.

The both test results show that the two samples have identical parameters in the

systematic utility terms, but different variances of the random utility terms. The scale
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factor ratio or the variance ratio between the two samples is 1.3 in this study. After the

adjustment by means of scale factor ratio, a unique empirical model is obtained using the

pooled data matrix.

External validity test for the jointly estimated model is conducted in Chapter 8. A

commute mode switching and mode split analysis is made based upon the comparison of

the forecast and real mode shift values due to the pressure formed by a $3 parking charge

difference. A cross-sectional experimental design is used in the external validity test. The

WP employees are considered as the sub-sample as free parking charge currently prevails

there. The MBL employees, on the other hand, are considered as the sub-sample assigned

to the test condition, as the actual parking charge is $3 there. Both samples form a truth

set. The external validity test shows that the Constrained Conditional Logit Model

successfully predicts the effect of parking charge difference.

Finally, Chapter 9 presents the conclusion about the constraints in individual

commute mode switching. In summary. the Constrained Conditional Logit Model can

effectively correct the biases and errors caused by exclusion of constraint in indirect

utility function. The Constrained Conditional Logit Mode is identified to be a helpful tool

for assessing the effect of transportation policy.



CHAPTER 2

LITERATURE REVIEW

Discrete mode choice theory underlying the travel demand study has been developed in

recent years as the advances of the relevant sciences, such as microeconomics, psychology

and sociology. Therefore, modern travel demand analysis is considered as an extension of

these branches of science. This chapter offers a brief review of the theoretical and

methodological advances of the discrete mode choice on these relative fields.

2.1 Rationality in Decision Making

Economic theory, since it become systematic, has been based on some notion of rationality.

"It seems to be asserted that a theory of the economy must be based on rationality, as a

matter of principle. Otherwise, there can be no theory" (Arrow, 1986). Human behavior is

almost uniformly considered as a rational activity because "everyone agrees that people

have reasons for what they do. They have motivations, and they use reason (well or badly)

to respond to these motivations and reach their goals" (Simon, 1986). "Capitalists choose

to invest in the industry yielding the highest rate of return, and individuals always choose

the alternative which is the best one for their interest" (Arrow, 1986).

Reitz (1977) defines the rationality in individuals behavior: "traditional economic

theory postulates an economic man, who, in the course of being economic is also called

rational. This man is assumed to have comprehensive knowledge of the relevant aspects of

5
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his environment which, if not absolutely complete, is at least impressively clear. He is

assumed also to have a well-organized and stable system of preferences, and a skill in

computation that enables him to calculate, for the alternative courses of action that are

available to him, which of these will permit him to reach the highest attainable point on his

preference scale."

The rationality in decision making process is generally interpreted as the

maximization of utility for the individual under a budget constraint" (Arrow, 1986). Here,

utility is defined as the benefit derived from the alternative. Based upon this definition, an

individual's demand, as a function of all attributes of utility, is an immediate implication

and becomes a most important formula in economics. Utility formation becomes the most

essential element in various models of demand function.

The application of rationality theory has been criticized in some fields. Burnett and

Hanson (1982) argue that "the assumption that intra-urban travel is the outcome of a

rational decision-making process, even with limited information, seems to be dubious since

increasing evidence indicates that travel is a stable daily routine, also a constrained choice

for most likely a deep-seated avoidance behavior for many, too."

As a summary, Mauheim's (1979) description about the limitation of rational

decision making process is presented here;

1) The alternatives: Do consumers really perceive all of the available alternatives?

Do they consciously and deliberately consider every one of them? Do they scan

the set of alternatives and only examine carefully a small number? How does

past experience influence an alternative consumer will consider explicitly?
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2) The consequences: How do consumers perceive consequences? What

consequences do they consider important? What kinds of biases are there in

their perceptions of those consequences? How are these perceptions biased by

individual experiences, word of mouth, or other information?

3) The decision process: Does the consumer go through a careful analysis and

calculation of each alternative to reach a decision? Does he really formalize his

preferences explicitly in the form of an indifference curve? Does he even behave

as if he had formalized his preferences in this way? Does he choose among all

alternatives in a single step or in a sequence of decisions?

4) The static nature of the model: Don't consumers change their information, and

their preferences, over time? Don't they "learn" from actual experiences and

sometimes shift choices?

If the above assumption about the decision making, process is true, whether a certain

behavior is "rational" or reasonable" can be reached only by viewing the behavior in the

context of a set of premises or "givens"(Simon, 1986). These givens include the situation in

which the behavior takes place, the goals it is aimed at realizing, and the computational

means available for determining how the goals can be attained. An individual's activity

should not always be thought as rational behavior because individual sometimes

1) recognize only a limited number of possible alternatives,

2) be aware of only a few of the consequences of each alternative, and

3) have access to only a limited, approximate, simplified model of the real situation.

In corresponding to the rational decision making process, some modifications have
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been made in the recent years. "The decision maker satisfies, rather than maximize, the

alternatives under imperfective information awareness; that is, he looks for a course of

action that is 'good enough', to meet a minimal set of requirements"(Simon, 1976). A

business person, for example, often decides to invest in a new enterprise if he expects it to

return a "satisfactory profit," without bothering to compare it with all the alternative

investments open to him.

As the consequence of limited computation ability, when deciding among

alternative courses of action, individuals use simple, local and myopic choice procedures

which adapt choice behavior to their capacity limitations. "The simplified approach fits

the limited information-processing capacities of human beings." The world is peopled by

creatures of "bounded or limited rationality", he says, and these creatures constantly resort

to gross simplifications when dealing with complex decision problems.

Palma, Myers and Papageorgiou (1994) develop a myopic adjustment model for

an individual imperfect ability. The decision principle underlying this model is that

instead of finding at once the best allocation of resources, an individual myopically

adjusts his current allocation toward higher utility. Switching to a particular alternative is

assumed as the consequence of comparing different utility increments.

Another suggestion is proposed by Sonis (1986). He indicates that "by different way

from a totally egoistic omniscient creature who is supposed to accomplish a rational free

choice between different competitive alternatives on the basis of the individual's utility

maximization principle, homo socialis is an individual whose behavior is based on the

interaction among choice-makers and on the limitation and learning within an active
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uncertain environment." The choice behavior of homo socialis is directed by the subjective

mental evaluation of the marginal temporal utilities.' Finally he proposes: "a decision-maker

dose not choose an alternative on the basis of a comparison of utilities, but on the basis of a

comparison of the temporal marginal utilities (interpreted as the expectations of a gain in

the future) which may be influenced by social interaction, imitation and learning processes

between choice makers."

Many other theories which are quite different from utility maximization have also

been devised. Habit formation, for example, was made into a theory. "For a given price-

income change, the individual chooses the bundle that satisfies the bundle constraints and

that which requires the least change from the previous consumption bundle. It is different

from utility maximization" (Constantinides, 1990).

2.2 Discrete Choice Model -- Application of Consumer Theory

Travel mode choice models are the application of the probability decision theory (Ben-

Akiva and Lerman, 1985). This theory recognizes the imperfect information attainment for

decision makers. A random or probabilistic element is included into decision process

(Palma, Myers, and Papageorgiou, • 1994). The randomness can be incorporated in a

number of ways and many models are therefore developed in travel demand analysis (Bovy

and Bradley, 1985, Golob and Meurs, 1987). The techniques that extend decision theory

of microeconomics to the choices among the discrete sets of alternatives are provided by a

class of mathematical models called discrete choice models (Ben-Akiva and Lerman,
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1985, Domencich and McFadden, 1975). These models, like other standard models in

microeconomics, assume that an individual's preferences among the possible alternatives

can be described by a utility function. An individual selects the alternative with the greatest

utility. However, these models differentiate themselves from other discrete choice models

by accounting for the effect of uncertainty of human behavior using a random component e.

Mauheim (1979) lists the factors which have contributions to this randomness.

1) There may be service attributes that are important to some consumers but have

not been explicitly represented in our estimation of their utilities. For example,

comfort, perception of security, or other non-quantifiable attributes.

2) Consumers may not perceive all the alternatives open to them or may not have

correct information on the attributes of the alternatives. For example, because of

poor marketing, consumers are often not aware of route and schedule

information that might influence their decision.

3) There may be essentially random elements in the consumer's behavior, in that

his preferences vary from day to day or are influenced by external events. For

example, the weather or the availability of the family car.

The most practically used discrete choice model, exemplified by the Conditional

Logit Model, is developed by Domencich and McFadden (1975). The rationality is still

executed by optimization of the utility function. Utility is interpreted as the satisfaction

obtained from each alternative. The attractiveness of a particular alternative i for

individual n can be quantified in terms of a "perceived attractiveness" utility function Um.
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The utility function in discrete choice models usually consists of two components,

systematic utility term V„, and random term ε The former can be expressed by a function

of explanatory attributes regarding the alternatives. The latter is used to present omitted

attributes and un-explanatory attributes for the uncertainty in individual's behavior. The

utility can be written as

The form of the joint probability distribution describing the E„, decides the form of

choice probability function. Now, the probability of choosing a particular alternative i can

be converted to the probability Pn(i) that the utility derived from alternative I is greater than

any other alternative/ for individual n.

For a particular εn the conditional probability Pn(i I g) can be derived :

where j,;,(,) is the probability density function of 4. Hence, the probability of choosing

alternative i can be obtained as :

The random variable has joint distribution fn(εn1, 	 s„) and the variance matrix

can be expressed as :
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where, a„„ is the variance of random variable a., and can be simplified as a. , and a is the

co-variance between a, and 4

Generally, the integration in equation (2.4) is not tractable, and an approximation or

numerical method has to be used to obtain the result. Some special functions can make the

integration tractable. McFadden uses the Gumbel Distribution function as the joint

probability function and variables a, (i=1,2...J) are assumed to be independent and

identically distributed (HD) across individual n as well as alternative i. The probability

function is given by Equation (2.6),

F(εni)= exp[- exp(- µni (en, —5))]	 (2.6)

where

position parameter

-- scaling factor which is a function of variance σni² with relationship:

7.1.2	 (6(7,2i, )	 (2.7)

Now, the probability of choosing alternative i can be derived (see appendix A)

when 8,„ is assumed to be 0.

exp µni (Vni) 
Pn(i) 	 (2.8)

exp ,u (V ,y )
J=1
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This model is called the Conditional Logit Model and has been widely applied in

transportation planning. This model has become something of a standard in transportation

planning. McFadden (1974) derives the asymptotic properties of the maximum likelihood

estimator of the Conditional Logit Model in the linear parameter case.

It is worthwhile to indicate that "Presumably, modal choices also depend on the

socioeconomic characteristics (say, s) of the individual making the decision. Logically, s

would be attached to all the choices of a given commuter; but it is easily seen that the effect

of this specification is that it is then impossible to estimate the impact of s on choice."... It

is therefore conventional to attach these characteristics to one of the modes, and to define

the corresponding places in the characteristics vector of the other modes to be zero" (Viton,

1989).

In addition to the Conditional Logit Model, Multinomial Probit Model is also

studied and applied in some cases. The major difference of Probit model from logit model

is the assumption about distribution of the random term in utility function U. Ben-Akiva &

Lerman (1985) gives an expression of Binary Probit Model as:

(2.9)
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Since random term s,, is assumed as a multivariate normal distributed variable with a

vector of means 0 and a AI variance-covariance matrix Σε probit model can be used to

incorporate effect of the correlation between different alternatives to avoid the problem

associated to HD. However, only very limited applications have appeared in travel demand

literature (Daganzo, Bouthelier, and Sheffi, 1977), and there is still no evidence to suggest

in which situations the greater generality of multinomial probit is worth the additional

computational problems resulting from its use.

2.3 Dynamic Behavior Model and Panel Data

Although the Conditional Logit Model achieved great success, it is necessary to indicate

that the fourth question proposed by .Mauheim (1979) is still existed. Travelers actually

change their information and their preferences over time, and they "learn" from actual

experiences.

The interest in the study of travel behavior dynamics has grown considerably in

recent years. This is because more and more empirical studies show that some attributes

regarding travel mode choice change over time, as well as individuals and alternatives.

"Continuing sub-urbanization, improvement of communication and traffic conditions, and

air pollution policy, influence individuals' travel mode choice. On the other hand, changes

in reaction patterns of individuals, household's size, income, and even car ownership, also

contribute to the travel mode choice. Therefore, decision makers are very often required to

make continuous decisions" (Kitamura, 1990).
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In addition to the exogenous attributes described above, endogenous  attributes

would also be responsible for the dynamic characteristics of individual's behavior.

Endogenous attributes comprise characteristics arising from previous decisions and choices

and are conceptually quite different from exogenous attributes. The importance of such

endogenous attributes may be adduced from several broad areas of social science theory.

For example, notions of cumulative inertia and cumulative stress have variously informed

theoretical work on such diverse decisions as job quitting, divorce, and residential move.

Thus a decision to quit a job, divorce, or move home is postulated to be dependent upon the

time interval since commencing the job, marrying, or the previous residential move,

respectively.

Perhaps the most obvious fact contributing to the dynamic behavior is the time lags

on decision making. Kitanura (1983) summaries: "not immediately acquired information,

small magnitude change which not prompted any action, and constraints imposed on the

household may all lead to apparent response lags." The dynamic discrete choice models, in

corporation with panel date analysis, are to evaluate the impact of a change in transportation

system as well as the impact of endogenous attribute on individual's behavior.

From a statistical viewpoint, panel data has definite advantage. Panel data offers

accurate estimate of changes than would cross-sectional data. The essence of panel data is

the information on a fixed sample of decision-makers across time so that the statements can

be made about behavioral response at individual level (Fischer and Nijkamp, 1987).

Panel data may be obtained by classical panel surveys which involve the repeated

measurements on the same individuals at different points in time. The great potential of
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panel data for dynamic modeling stems from both the temporal nature of data and the data

linkage for each decision-maker. Panel data enables one to explicitly recognize the inter-

temporal nature of choice outcome, especially the role of slate dependence and serial

correlation. Therefore, there is no doubt that dynamic models of discrete choice have to be

based on panel data.

The simplest dynamic discrete choice model is the non-stationarity or temporal

independence model. This model is based on the assumption that the decisions made at

different time points are independent each other. Rust (1988) regards recurrent choice as a

sequence of static utility maximizing choices by decision-makers. Let t denote an

exogenously given sequence of time periods and assume that conditional on explanatory

attributes matrix (Xm,,,...Xm,...XmT), the sequence of decision (i, i7) obeys a multinomial

choice process with a conditional density function given by:

(2.10)

In corresponding to the non-stationarity, two other situations, structural dependence

and serial correlation, are more complex. Structural state dependency refers to the

dependency of current individual choice probabilities on preceding individual history.

Structural state dependence may arise due to a number of reasons. "Choice outcomes may

depend on previous choice (Markovian effect), on the length of time the current state has

been occupied (duration dependence effects), on previous inter-choice times (lagged
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duration dependence effect), and on the number of times different states have been occupied

(occurrence dependence effects)" (Fischer and Nijkamp, 1987).

Serial correlation refers to the variation among individuals due to both observed and

unobserved external influences including variation caused by censoring of the panel data

base. Unobserved attitudes towards alternatives may play a major role in serial correlation

(Morikawa, 1994). In mode choice analysis, for instance, latent attitudes towards modes,

such as I love driving a car, can predominantly influence mode choice behavior.

Tardiff (1980) is one of the first who made as attempt to extend discrete choice

methodology by introducing structural state dependence and heterogeneity in utility

functions as:

(2.11)

where, dnj(t-1) is a dummy variable. If individual i chooses mode/ in previous period t-t-1,

640_ 0 =1, and = 0 otherwise. The E,,, refers to unobserved time-invariant effects (fixed

effects of unobserved variables) and Ç,,„ varies among the decision-makers and time periods.

By putting various terms in Equation (2.11) equal to zero, Tardiff (1980) considers two

special cases of the general data discrete choice model: model with structural state

dependence and model with serial correlation. If we assume the transfer parameter 7,, = 0

for all individuals and alternatives, Equation (2.11) becomes structural serial correlation

model, since the choices depend upon observed serial correlation effect. Remove

In order to keep inconsistency with the notes used in this dissertation, we replace the sub - index.
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Equation (2.11) becomes a structural state dependence model, because the effects of

previous choices upon current choices are explicitly considered.

Daganzo, Bouthelier, and Sheffi (1977) performs a case study of serial correlation

model and structural state dependence effects by a two-periods binary probit model.(i = -1,1

and t = 1,2) Let X, stand for the attribute vector of the ith alternative and time t , and

assume parameter [3, in utility function as a normal distributed variable:

[3, MVN([βt, 	 (2.12)

The correlation between 13, and [3, may be specified if the joint distribution of between 3,

and 13, is defined as:

(2.13)

Another fact needed to pay an attention to is the habitual in the discrete choice

behavior. Goodwin (1977) defines habit in individual's behavior; It is convenient to use

the word 'habit' to signify various sources of resistance to a change, that, on purely

economic or 'rational' ground, would be made. These sources include a reluctance to upset

an ordered and well-understood routine, perception thresholds below which changes in the

relative attractiveness of the modes are not noticed, and barriers to the relevant information

reaching the individual. ... I would be expected that such effects will be time-dependent,

although it is not clear how".

Pollak (1970) is one of the first who incorporate habit into utility function. One of

the utility function family is



where, x, stands for the level of consumption of the kth good. a, and b, are parameters.

The dynamic models have been used in some transportation case studies (Basmann

1994 and Hartgen 1974). The results of these studies show that dynamic models represent

travel behavior more accurately and meaningfully, because dynamic assumption about the

decision making environment and behavior is much closer to the real behavior than that in

static models. Much more data about individual's behavior and alternatives has been

employed in the establishment of these models. However, how to capture dynamic process

in a quantitative model for travel behavior has not been well addressed and empirical

examinations have not been made as much as the study for the case of static choice models.

2.4 Revealed Preference, Stated Preference and RP/SP Combination

In dynamic discrete choice models, a special case is that the first term and the third term of

right side of Equation (2.11) equal to zero, which leads to a first-order Markov model of

spatial choice. If previous choice is alternative j, the probability of choosing alternative i is

called switching probability and is expressed as :

Prob(j, i) PO'„(1)=01„(t- 1)=j) = Pn(i/j) (2.15)

"An empirical examination showed that while the estimated models based on stated

preference data tend to over-estimate the actual modal switching behavior due to the

changes in transport services it is very important to incorporate the state dependence effects



into disaggregate modal choice models", Hirobata and Kawakami (1990) indicate. Their

conclusion is based upon their study of switching behavior by a mode switching model on

an intention data or stated preference data.

The survey of stated preferences (SP) is an alternative source of data on switching

behavior instead of revealed preferences data (RP). In contrast to the revealed preference

survey which records traveler's actual choice and relative explanatory attributes, a traveler

is presented with a planned or a potential future change in the transportation system and is

asked if and how he intends to modify his current choice in response to the change.

Stated preference models and data were introduced to transportation researchers by

Louviere (1988). Stated preference models have been applied successfully in a variety of

transport contexts such as route choice analysis (Bovy and Bradley, 1985). Morikawa

(1994) studies and presents different characteristics of RP and SP data as follows:

1) RP data are cognitively congruent with actual behavior, but SP date may not be,

2) SP methods can directly treat non-existing services and alternatives,

3) Trade-off among attributes are more clearly observable from SP date, and

4) Individual-specific coefficient values may be estimable from SP data.

Despite considerable progress in designing SP experiments and estimating

stochastic choice models from them, the question of relating the results to behavior in the

real market of interest remains open. One of the central issues is that distribution of random



term c„, could not be expected as identical to that which presents in RP experiments. This is

because that the factors, such as learning, boredom, or anchoring to earlier tasks, may

distort the measurement of preferences. In addition, respondents may deliberately give

biased responses in the hope of affecting the outcome of the analysis.

Bates (1988) indicates that "If we now assume that the distribution of error

appropriate to estimation applies to forecasting, we will be making estimates of the

'pseudo' utility rather than of the 'true' utility: in other words, we are making estimates of

relative preferences as expressed in a stated preference experiment rather than of what

would occur in the market."

Bates also thinks that "the simplest case is when c, which we are using to relate to

the kind of error which is compatible with models fitted to RP data, and r, which relates to

the inability of the respondent to reply to the SP exercise in a way which corresponds with

his actual behavior, are independently distributed with the same type of distribution, and

differ only in their variances. Suppose the variance are σε and 6, 1 , respectively."

Morikava (1994) presents an approach to estimate the bias effect of a SP data. He

assumes that both revealed and stated preferences can be modeled by random utility models

with discrete choices such as the Conditional Logit Model. Then the utility functions and

choice probabilities are given as follows:

RP model:	 u 	 E rep
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where, all terms are same as before, and super-index. RP and SP refer to RP and SP models,

respectively. One fundamental assumption is that the trade-off relationship among major

attributes is common to both RP and SP models. After introducing a scale factor ratio X that

represents the ratio of standard deviations of εn iRP and εniSP

(2.18)

and, assume εniRP and c„/"' have IID property, Equation (2.17) can be written as:

(2.19)

Note that scale factor ratio X in Equation (2.19) is different from scale factor u„ in

Equation (2.8). The former is the ratio of variance of SP and RP data, and the latter is the

scale factor in random term distribution.

Now, we can use both RP and SP data to jointly estimate scale factor ratio X. The

approaches can be found in some relative literature (Adamowicz, Louviere, and Williams,

1994):



1) separate estimation of both RP and SP models. Then, concatenate both data sets

after re-scale SP data relative to RP data and conduct a joint estimation.

2) compare the joint likelihood to the sum of the separate likelihoods for SP and

RP models. Accept the null hypothesis that the re-scaled parameters are

identical if the joint and summed separate likelihoods do not differ statistically.

In summary, stated preference data, combined with revealed preference data, can be

used to increase the accuracy of parameter estimation.



CHAPTER 3

PROBLEM STATEMENT AND HYPOTHESIS

Travel mode switching is defined as a particular kind of travel mode choice in Chapter 1,

where an individual shift his travel mode due to a change or changes in travel services,

such as an increment in parking charge. An individual faces the options whether to switch

to another alternative or to stay at his current travel mode. The most meaningful

characteristics of travel mode switching, comparing with some other travel mode choice

issues such as travel mode choice for vacation, is that decision-makers have their current

travel modes. What they need to consider is not only the benefit or the utility derived

from the each alternative, but also the feasibility of switching to another mode under his

current travel situation. Therefore, evaluation of transport services is different among the

travelers who habitually use different modes.

Can current travel mode choice theory and the Conditional Logit. Model

effectively be used to explain travel mode switching? As discussed in. Chapter 2,

consumer theory underlying the discrete choice models is based upon utility

maximization. It is noteworthy that the arguments in systematic utility term are the

resources consumed in travel activity by corresponding travel modes. The most

meaningful examples of consumed resources are travel cost and travel time. Generally,

the consumed resources are defined as the prices for consuming the corresponding travel

mode. As distinguished from the utility function with arguments of quantities of
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commodities used in classical economics, the utility function with arguments of prices is

called indirect utility function (Ben-Akiva & Lerman, 1985).

The quantities of commodities in utility function are substituted by the prices of

commodities by means of the constraint function:

F( q,,, q • qik,  •..) = Ck ( k = 1,2,...K ) (3.1)

where, q, and p,, are the quantity and the kth price for commodity i, and C is total

available amount for resource k. Here, price p,, is defined as the consumed kth resource

on unit of commodity

Based upon the above analysis, total amount of resource C. should be included in

the indirect utility function as a kind of constraint. Bates (1988) has indicated the

necessity of the inclusion of constraint into the indirect utility function, although he does

not identify a theoretical model or an empirical model to test this supposition. He thinks

that it is the kind of utility dealt with in discrete choice theory that causes the use of

constraints in the models. Indirect utility in discrete choice model internalises the

constraints arising from income and other sources in the random utility term.

However, should the constraints be limited to the income and time only as in the

classic economics? Kitamura (1990) suggests that the constraints that govern travel

behavior are not limited to monetary and time budgets as in classical utility

maximization. The constraints may also include spatial and temporal fixity constraints

associated with the respective activities, interpersonal linkage constraints, and other types

of constraints that portray the travel environment of each individual.

Harvey (1985) further suggests that research on constraint should be extended to

other fields as well. He explains that activity participation may depend on cognitive
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capacity, time constraints, exogenously-imposed schedules, physical needs, income,

endowment, technology, cumulative experience, authority, morality and desire or need.

For example, the need for shopping on the way home.

Up to now, the necessity of inclusion of constraint has been recognized

theoretically. It still needs to be identified through an empirical study as well as a

theoretical analysis whether these constraints should be explicitly taken into the

systematic utility term due to their significantly effects on an individual's mode switching

behavior or they should be implicitly put into the random term.

The hypothesis of this dissertation is that existence of constraints in individuals'

commute mode switching has to be considered while a theoretical model with indirect

utility function is structured. Furthermore, constraints are supposed to significantly affect

an individual's travel mode switching and therefore can be measured by a discrete choice

model which incorporates constraints in systematic utility term. Finally, the errors caused

by ignoring the existence of constraints can be specified through the internal and external

validity tests. In summary, the inclusion of constraints in the analysis of individuals'

travel mode switching behavior will be very effective for correcting the biases in

assessing the travel service changes.



CHAPTER 4

METHODOLOGY

This chapter presents the derivation of the theoretical model. This model replicates

individuals' travel mode switching behavior under the constraints. This chapter also

introduces an approach for estimating the coefficients in the model.

4.1 Formation of the Constrained Conditional Logit Model

Travel shares the individuals various resources with all other activities. If an individual's

total activities are assumed arbitrarily as the combination of travel and other activities, the

systematic utility K, can be expressed for individual a by a function of consumed

resources x„,, and x,„„ ( k=1, 2...K) as :

= Vnr (Xnrl... X nrk...xnrK)+V  no( 	 ' • X no* • • X noK)

where

V„ -- systematic utility for individual a

-- systematic utility 'attained from travel r for individual a

V„„ -- systematic utility attained from other activities o for individual a

x„, — the resource k consumed by individual a in travel

— the resource k consumed by individual a in all other activities

K -- the total number of measurable attributes (resources)



The all other factors affecting an individual's decision for assigning his resources

are included in the decision process by a random utility term c„. The total utility can be

expressed as:

(4.1)

Comparing Equation (4.1) with the utility function used in the derivation of the

Conditional Logit Model, the same place is that total utility is the sum of systematic

utility V,, and random component c,,. The different place is that the former's systematic

utility is the sum of travel systematic utility V„, and other systematic utility V,„,.

Based upon the assumptions made in Chapter 3, an individual myopically adjusts

his current allocation of resources so as to obtain higher utility. But, instead of finding at

once the best allocation of resources, utility increment maximization is used as the

strategy to deal with the issue of travel mode switching. Therefore, an individual shifts to

the alternative which provides the maximum utility increment AU,.

Generally assume that individual 17 switches travel mode from current mode c to

alternative i. The travel mode switching causes the attribute change of Ax,„., for travel and

Ax,„,, for all other activities( ) simultaneously. The total utility increment AU,

due to a travel mode switching can be written approximately as:

A U„ = A V,,,. + DI + Ac„ (4.2)

where A V,, and 4 l no are the systematic utility increment from travel and all other

activities due to travel mode switching. AE„ is the random component increment for

individual 17 due to the mode switching.
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The above equation explicitly shows that a travel mode switching is the result of a

reallocation of the resources, including the systematic utility change of all other activities

as well as the systematic utility change for travel. For instance, a saving of travel time

will increase the time spent on some other activities, such as reading or shopping, then

will increase the total utility as well.

As indicated by Ben-Akiva & Lerman(1985), the utility acquired from all other

activities can be thought of a continuous function of attributes. The systematic utility

increment AV,„, can be approximately expressed as:

(4.3)

where, 
Dv n

o is the partial derivative of the utility function for all other activities with

respect to attribute k. Consider the impossibility of attaining all information about

individual's all other consuming activities while studying individual travel mode

switching behavior, the systematic utility increment may be conveniently expressed by a

Taylor Series. The systematic utility increment Di can be written as: (approximately

by the first two terms)

(4.4)

related only to different individual 17 and attribute k. The following substitutions are used

in the above expressions (4.4):



and

Consider the systematic travel utility as a linear function as used in most of discrete

choice models:

(4.7)

the systematic utility increment AV,, can be approximately expressed as:

(4.8)

Take Equation (4.3) and (4.8) into Equation (4.2) and replace Ay,„, and Ax,„, by dxrk and

we obtain:

Note that attributes can be grouped into two sets by the constraint types, these with

resource constraint and these without resource constraint. The typical examples for the

former are time and cost. For the latter, on the other hand, are gender or attitude. Adjust

the order of attributes in systematic utility function so that the constrained attributes are

listed as k = 1, ... in, and the unconstrained attributes are k = 111+ ... K.

Assume that constrained attributes subject to the following constraints:
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where c„, is the total available amount of resources k for individual n, such as budget or

time limits. Differentiate function (4.10), the following equation can be derived,

dxnrk d, = 0 	 (4.11)

Differentiation dxnrk and dxnok,are assumed to be approximately equal to increment

and Δxnok, Equation (4.11) can be substituted by the following Equation (4.12):

= - Δxnok (4.12)

It is worthy to indicate that the attributes without constraints do not subject to Equation

(4.12). The travel attribute change Ax not company the attribute change Δxnok· For

example, the change of a traveler's attitude for carpool will not definitely affect his

attitude for pizza. Therefore, the allocation of attributes without constraints is assumed

constant over the travel mode switching (Ax„,,, = 0, k = m+1... K).

Substitute Equation (4.12) into Equation (4.9),

Combine the first two terms on the right side of Equation (4.13),

(4.14)

where

Through the substitutions above, sub-index o no longer appears. Therefore, from

now the sub-index r will be omitted. All variables in equations are the attributes

corresponding to travel unless where specific explanation is used.
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Assume that individual 11 has a travel mode set with alternative i =1, 2	 J, the

total utility increment corresponding to the mode switching from current travel mode c to

an alternative i can be re-written as

where, sub-index i is used to stands for a particular switching from c to i. For example,

Xnik in Equation (4.15) refers to the kth attribute corresponding to alternative i for

individual /1. The systematic utility which individual a attains from the current travel

mode c is,

where is the kth attribute for individual a from the current travel mode c. For

individual a, V(1) is a constant for all switching alternatives. Consider the sum of the

current systematic utility (4.16) and utility increment (4.2) as an approximate utility

attained from alternative i, A new .equation for the utility due to the travel mode

switching is formed as follows;

and substitute Equation (4.18) into (4.17), we obtain
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Since the difference between A	 (0 and Un(i) is a constant which is not related to

alternative i, maximizing Un(i) will have same result as to maximize ΔUn (i). Now,

travel mode switching process has been re-structured as the following maximization

problem :

(1 E travel Alternative d)	 (4.20)

where

xnik -- attribute k for alternative i

-- attribute k for current travel mode c

c -- the random term

and 13„, — parameters

Compare the above equation with maximization of travel utility in derivation for

the Conditional Logit Model (assume systematic utility is linear function) :

we can find that if we add maximization (4.21) with constraint condition

the two maximization processes are identical. This is because constraint function H,„



obtained as the inclusion of constraint conditions (4.10) into the total utility increment

function. Now, make the following substitutions

into Equation (4.19), and assume that random term E ni is a Weibull distributed variable

with the cumulative distribution function:

the probability for switching travel mode from current c to alternative i can be acquired

by the method developed by MacFadden (see appendix A):

where

x,,,, -- attribute k for proposed alternative i for individual n

xn,.,-- attribute k for current mode c for individual n
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y,., and [3, -- parameters for individual ii

[1„ -- Scaling factor for individual n

If the parameters in the above equation are assumed as insensitive over

individuals, sub-index n can be omitted from Equation (4.25) :

where

P(c,i) -- the probability for switching travel mode from current mode c to

proposed alternative i

By the derivation process above, a modified discrete choice model -- the

Constrained Conditional Logit Model (CCLM) is developed.

4.2 Parameter Estimation

The estimation is performed by Maximum Likelihood Method (MLE). Given that

individual n has a set of alternatives, the probability he switches travel mode from

current mode c to a particular alternative i is expressed as Equation (4.25). If individuals'

switchings are observed and the event of switching from mode c to alternative i by

individual n is recorded as Ynci= 1, the probability that all events happen is expressed as :
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The likelihood function, therefore, is :

Assume the parameter y and 13,, in Equation (4.25) are all insensitive over individuals.

To estimate the parameters, the following equations are required while maximizing

Equation (4.28):

(4.29)

and

(4.30)

Take Equation (4.25) into the above equations :

(4.31)

and

(4.32)

Take Equation (4.31) and (4.32) into Equation (4.29) and (4.30) :



Take substitution (4.35):

into Equation (4.34), we can obtain :

Take Equation (4.25) into Equations (4.33) and (4.36), we can compute the

estimates for parameters y, and 13, ( k=1,2... K ). Since Equation (4.33) and (4.36) are

implicit functions of y, and [3,., estimates for parameters 7, and 13, can only be obtained by

the trial and error method as the products with scale factor p.„, that is, the coefficients for

parameters 7, and 13,.

By the similar method developed by McFadden (1974), the maximum likelihood

coefficient estimates for y e; and 13, can be identified as consistent, asymptotically normal

and asymptotically efficient.
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CHAPTER 5

INTERNAL VALIDITY OF THE MODEL STRUCTURE

Although an extended structure model, the Constrained Conditional Logit Model, is

derived, does this model make a difference from the Conditional Logit Model on

replication of actual travel mode switching? Whether can maximum likelihood algorithm

recover the estimates that are significantly different from their parameters? An internal

validity test is conducted in this chapter by a Monte Carlo simulation to answer these

questions, and to determine the impact of assuming the Conditional Logit Model where

the actual model should be the Constrained Conditional Logit Model.

5.1 Data Generation

The first issue for the simulation is to determine the structure of systematic utility

function. For the sake of convenience, the attainment from 1968 survey in the

Washington, D. C., metropolitan area is used (Ben-Akiva & Lerman 1985). There are

three travel modes in that survey, drive alone, transit bus and share carpool. The mode

split for the three travel modes is 57%, 16% and 27%, respectively. Three attributes

included in the systematic utility function are travel time, travel cost and out-vehicle time.

The average values for these attributes are presented in Table 5.1.

The next issue is data generation. For each observation, travel time for a particular

travel mode is assumed as an independent normal distributed variable. The average travel
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times for the three travel modes are 26.7, 56.5 and 36.7 as listed in Table 5.1. The

standard deviation is 5.0.

Table 5.1 Average attribute value

Travel Time	 Travel Cost	 Out-Vehicle Time
(min)	 (cents)	 (min)

Data obtained from 1968 survey in the Washington, D. C., metropolitan area

Travel costs are assumed as three variables depending on the travel times by the

following equation :

Travel cost = (Travel time x unit cost) + Normal distributed variable (0, 5.0) (5.1)

where, unit cost for the three travel modes are 6.15, 1.24 and 1.35 $/min, respectively.

Out-vehicle times are generated as three independent normal distributed variables

with average times of 5.4, 18.6 and 10.4. The standard deviation is 1.0.

The random utility term is a Weibel" distributed variable with standard deviation.

of 1.28. The distribution function of random variable c„, is :

F(s 1 )= exp[— exp(- μnεni)] 	 (5.2)

where,	 is a scale factor defined as the function of variance σni by Equation (2.7) in

Chapter 2 (assume that [.1„, and a,,, are insensitive over individuals).
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= 2 /

In order to generate records for individual travel mode choices, the parameters for

the corresponding attributes have to be pre-determined. Table 5.2 presents the pre-

determined values for these parameters:

Table 5.2 Predetermined parameter value

In Table 5.2, y ; , y, and y, are the parameters for travel alternative specific

attributes, travel time, travel cost and out-vehicle time and, 13, , 13, and 13, are the

parameters for the constraint attributes imposed on the three travel alternative specific

attributes.

5.2 Simulation Method

The performance of the Constrained Conditional Logit Model on replicating travelers'

behavior is examined through the travel mode switching due to the designed travel

service change. In the simulation, travel cost for driving alone is assumed to rise 50 cents

for each observation. The all other attributes remain on the original values. Traveler's

mode switching due to the rising of travel cost is embodied by the Constrained

Conditional Logit Model. The simulation is conducted by the following steps :
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1) generate the travel specific alternative attributes by the approach described in

the previous section,

2) compute the systematic utility terms and the random utility terms for the three

alternatives,

3) choose the alternative with the largest sum of the systematic and random

utility as the current travel mode c for observation 1,

4) compute the proposed travel specific alternative attributes according to the

proposed travel cost rising,

5) compute the constraint functions for each switching alternative,

6) generate a Weibull random term for each switching alternative,

7) compute the sum of systematic utility and random utility term as the total

utility for each switching alternative, and

8) choose the alternative with the lamest total utility under the corresponding

constraint condition as the switching choice i.

5.3 Simulation Result

The number of observations in the simulation is 200. Based on the switching database

generated by the way described above, the coefficients are estimated by ALOGIT

software. The control file is attached in Appendix B of this dissertation. The estimation

result by the Constrained Conditional Logit Mode is listed in Table 5.3.

Table 5.3 shows that the null hypothesis of the parameter of Out-Vehicle Time

can not be rejected even at a 0.10 level of significance. (t 	 1.65).



Table 5.3 Estimation by the CCLM model
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The same database is used in the estimation by the Conditional Logit Model.

Table 5.4 presents the estimation result:

α(0) = -219.7225
a(131) = -189.5214
p - = 0.1375
p- = 0.0117
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The x2 test is used to examine the internal validity of the Constrained Conditional

Logit Model. The test is performed by examining the null difference hypothesis between

the estimated Constrained Conditional Logit Model and the estimated Conditional Logit

Model under the situation where constraints exist in individuals' travel model switching.

The x' test statistic L is computed by the following equation:

L — -2 [α(βl) - α(βc)]

= -2 H89.5214 + 90.6071

= 197.8286

where a(131) and α(βc) are the likelihood values obtained for the Conditional Logit Model

and the Constrained Conditional Logit Model as shown in Table 5.3 and Table 5.4.

The computation result shows that the null difference hypothesis for the two

models can not be accepted even at a 0.05 level of significance as the critical value for a

X 2 distributed variable at three degree of freedom is 7.815.(x 201 (3) =7.815 ). The number

of constraint attributes used in the constraint function is the sake of three degree of

freedom.

The parameter estimates obtained for the Conditional Logit Model in Table 5.4

are identified as significantly different from the predetermined parameter values as well

as the parameter estimates for the Constrained Conditional Logit Model listed in Table

5.3. In other words, if the Constrained Conditional Logit Model can capture the effects of

constraints while these constraints do exist in individuals mode switching, the

Conditional Logit Model will lost accurate estimates for these parameters.
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Also, null hypothesis of the parameters for the corresponding constraint attributes

is rejected by a t test at a 0.10 level of significance ( t„, = 1.65 ) for the three parameters

and at a 0.05 level of significance for p i and [3 2 . (t,„ = 1.96)

The same conclusion can also be attained from the comparison of goodness-of-lit

measures. Let us examine the likelihood ratio index (rho-squared bar) for both models.

The entry of constraint attributes , /7„, and 1-0 causes index's rising from 0.0117 to

0.5163. Therefore, entry of constraints into the utility function appears capable of

increasing sufficient explanation power to individuals mode switching behavior if

constraints do exist.

Finally, Table 5.5 presents a summary for the predetermined parameters, the

estimates for the Conditional Logit Model, and the estimates for the Constrained

Conditional Logit Model for the sake of easy comparison.

Table 5.5 Summary of parameter and estimate



CHAPTER 6

SURVEY AND DATA COLLECTION

Through the simulation performed in Chapter 5, the internal validity of the Constrained

Conditional Logit Model has been identified theoretically. This model can effectively

replicate the effects of constraints on individuals' travel mode switching. However, an

empirical study is still necessary for supporting this conclusion.

This chapter introduces the surveys conducted on the two sites of Newark, New

Jersey, in 1995. Each survey collects the travelers' current travel situation and travel

mode usage, as well as their preferences toward various scenarios of travel services.

6.1 Introduction of Survey Site

During the year of 1995, the surveys of commuters at two employment sites were

conducted in downtown of Newark, New Jersey. The respondents were the employees of

the Mutual Benefit Life Corporation's (MBL) headquarters building on Broad Street, and

the Prudential Insurance Corporation's Washington Plaza Building (WP).

According to two independent Employee Transportation Surveys administered in

compliance with the U.S. Clean Air Act Amendments of 1991, as of September 26, 1994,

total 893 employees of MBL Corporation work in the MBL building everyday and 756

parking spaces are available in MBL building at a parking charge of 3.00 dollar per day.

In addition, some street parking is available within a distance of three blocks.
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Bus stops are located within one block or approximately 50 yards of the

building's entrance. During the morning commute, 7 bus lines serve the MBL building

with headways of less than 15 minutes, and additional 4 lines have headways between 16-

30 minutes. Two commuter railway stations and two subway stations are located within

walking distance.

According to the survey of 1994, travel modes used by the MBL employees can

be categorized into drive alone, carpool/vanpool and public transport (bus, subway and

rail). About 60.5% of total employees drive alone to work. The market shares of carpool

and public transport are approximately 14.5% and 25%. The average one-way commute

distance for the all employees in MBL building is 18 miles.

The employees' commute travel to the Prudential - Washington Plaza Building

(WP) is similar with that to MBL. The survey of September 26, 1994 shows that there are

1958 employees working at the WP site on a daily bases, and 902 parking spaces are

provided to the Prudential employees without parking fee. Also, additional 296 off-site

parking spaces within a distance of three blocks are leased for the WP employees.

Three bus lines serve the site with 15 minute morning headways, two lines have

30 minute headways, and one with more than 30 minute headways. Subway and

commuter rail services are available within a three block or 10 minute walking distance.

The 1994 survey also shows that the market shares of travel alone, carpool or

vanpool, and public transport are 63.2%, 13.1% and 23.2%, respectively. The average

one-way commute distance for the all employees in WP building is 19.06 miles. Figure

6.1 presents the travel distance distributions for the two sites.
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Figure 6.1 Distribution of travel distance

The 1994 surveys also supply the distributions of employee's home location. The

following Table 6.1 gives the 10 most common home zip codes for the both sites.

The surveys also provide the job classification for the employees on the two sites

because this factor has been identified by some empirical studies as closely related to the

travel mode choice. Table 6.2 presents the job category for the two sites.
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6.2 Survey Instrument

The Constrained Conditional Logit Model is calibrated to a particular set of alternatives

with the data obtained from the survey instruments. The common survey instrument

consists of two sections:

a) the respondent's socioeconomic characteristics as well as current travel

situation, and

b) the scenarios of proposed travel alternatives and the respondent's choices.

In the surveys of 1995, the respondents were first requested to report their current

travel situation by answering a set of questions. These questions can be categorized into

as follows :
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1) the questions about the respondent's current commute modes and associated

attributes, such as current travel mode available to the respondent, current

travel mode and associated travel time, cost, access time... etc. The

respondents were encouraged to report the information about the other travel

mode's attributes values,

2) respondent's preferences to the existing and proposed commute modes, such

as the attitude toward the existing commute modes, and comfort and safety

appraisal for each commute mode. Each of the preferential questions consists

of seven level rank order scales, from extremely pleased to extremely

unpleased.

3) commuter's personal information related to the commute mode choice, such

as commuter's family size, income, age, gender and job classification. Some

of the questions in this section are presented as ordinal formation. For

instance, the income of the respondent consists of five levels with the equal

interval of $25,000.

The commute mode choice scenarios were presented to the respondents then with

three commute alternatives: single occupant vehicle (SOV), carpool (CP) and public

transport (PT). A total of 18 scenarios were designed for the respondents from both sites.

Each scenario provides respondents with a set of attribute values for each alternative.

Appendix C presents an example of scenarios. Table 6.3 gives the brief description of

these attributes and their value ranges:



Table 6.3 Alternatives and associated attributes

ALTERNATIVES	 ATTRIBUTES

Alternative 1, Single Occupant Vehicle

Cost of tolls and gas per day	 Current costs
Parking space charge per day 	 $0.00, $3.00, $5.00

Alternative 2, Carpool

Carpool costs per person per day	 1/2 drive alone cost
Parking space charge per day	 1/2 drive alone parking space charge
Pick up location	 Home, parking lot, shopping center
Extra time required for carpooling 	 10 min, 20 min, 30 min
Guaranteed rider home 	 15 min waiting, 35 min waiting, none

Alternative 3, Public Transit

50

Transit fare per day
Number of transfers
Extra time required for transit
Guaranteed rider home
Transit subsidy paid to you per day

Current value
Current number
15 min, 25 min, 45 min
15 min waiting, 35 min waiting, none
None, $3.00, $5.00

The sequence of 18 scenarios were randomly ordered and administered to the

respondents. The respondents were asked to choose just one travel mode according to

their tastes or preferences. Respondents were selected through the volunteer process. The

employee transportation coordinator of each firm asked for volunteers from the

permanent employees working at the site. The survey questionnaires were delivered to

the volunteer by corporate mails and total 74 respondents from MBL and 85 from WP
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returned the questionnaires. Each respondent had to complete 18 choice tasks or

observations. Respondents failing to answer the questions about their current commute

mode were excluded from the following data analysis. The final data set contains 646 and

898 observations in MBL and WP data set, respectively.



CHAPTER 7

ESTIMATION AND TEST OF HYPOTHESIS

In this chapter, empirical evidence is used to test the hypothesis proposed in Chapter 3,

that is, constraints should be explicitly included in traveler's indirect utility functions.

The hypothesis tests are conducted through the following steps:

1) The coefficients in systematic utility function are estimated by the Conditional

Logit Model and the Constrained Conditional Logit Model separately. This

process is conducted by ALOGIT software for THE MBL data and THE WP

data.

2) A X² test is performed for the null structural difference hypothesis and a I test

is performed to test the hypothesis of null coefficient for each constraint

attribute.

3) The two data sets are pooled to estimate and test the hypothesis of a common

underlying structural model for the two sites.

7.1 Coefficient Estimation

Data matrix [Xik] is formed after an initial analysis of THE MBL and THE WP survey

data in accordance to the Constrained Conditional Logit Model. The sub-index n in

Equation (4.25) is omitted since the coefficients in the empirical model are assumed in-

sensitive to the different individuals in the samples.
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where, sub-index i stands for the ith observation and k refers to the kth element in the

data set. Each observation consists of 23 elements shown as in Table 7.1.

Table 7.1 Element in each observation

Element No.	 Variable

1	 individual choice
2	 travel time for SOV, x 11

3	 travel cost for SOV, x12

4	 access time for SOV, x 13

5	 travel time for CP, x, 1

6	 travel cost for CP, x 22

7	 access time for CP, x2 3

8	 travel time for PT, x 31

9	 travel cost for PT, x32

10	 access time for PT, x33

11	 attitude for SOV, x / ./
12	 attitude for CP, x 25

13	 attitude for PT, x36

14	 traveler's age, x 17

15	 traveler's family size, x 18

16	 traveler's gender, x 19

17	 traveler's annual income, x 10

18	 designed travel time change for SOV, /7, 11

19	 designed travel cost change for SOV, 11, 12

20	 designed travel time change for CP, hc21

21	 designed travel cost change for CP, hc22

22	 designed travel time change for PT, 11,31

23	 designed travel cost change for PT, 11,32
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Equation (7.2) shows the systematic utility term including its attributes and

associated parameters.

where, the vector (1/1) refers to the systematic utility derived from each commute

alternative: single occupant vehicle (SOV), carpool (CP) or public transit (PT),

respectively. The elements in the parameter vector (1 k) are presented in Table 7.2.

Table 7.2 Parameter in systematic utility function

Number	 The attribute which parameter is corresponding to

1	 travel time (generic)
2	 travel cost (generic)
3	 access time (generic)
4	 attitude for SOV
5	 attitude for CP
6	 attitude for PT
7	 traveler's age for SOV
8	 traveler's family size for SOV
9	 traveler's gender for SOV
10 	 traveler's income for SOV

The parameter vector (a,) stands for the alternative specific constant for the

alternatives: SOV and CP. The design travel scenarios are mainly constructed in term of

changes in travel time and travel cost therefore, the attributes in constraint function 1-/a



are designed to correspond the constraints on travel time and travel cost. The constraint

function 11,, is formed in the form of Equation (7.3):

(7.3)

where, β/ and 13 7 are the parameters corresponding to the two attributes in the constraint

function. Appendix D presents the control files used in ALOGIT software. Table 7.3 and

7.4 present the estimation results by using the Constrained Conditional Logit Model for

the MBL and the WP sites, respectively.

Likelihood with Zero a(0) = -709.7053
Final Likelihood αc(β\m) = -555.8165
Rho-Squared with Zero p2 = 0.2168
Rho-Squared with constant p 2 = 0.2050



Likelihood with Zero a(0) = -986.5538
Final Likelihood a.,(13,,,) = -807.8917
Rho-Squared with Zero p 2 = 0.1811
Rho-Squared with constant p 2 = 0.1623

In Table 7.3 and 7.4, α.(0) is the maximum likelihood value where all the

parameters are zero, and αc(βm) and αc(βw,) are the maximum likelihood values for the

final estimation results. p ² and p² are the factors for the goodness-of-fit measure.

First, let us discuss the estimates associated with the travel specific attributes,

travel time, travel cost and access time. Both Table 7.3 and 7.4 above show that the

estimates corresponding to the variables of travel time and travel cost are negative as

expected. However, the t statistic values for the estimates corresponding to access time

are very small for the two sites. As the t statistic values are less than the critical value of
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1.67 under significant level of 0.05, the access time effect on the individuals travel mode

switching can be put into the random utility term. According to the analysis to the data,

this is because that the quite more respondents in the two sites did not correctly answer

the questions about their access time and access approach, especially for the alternatives

they did not use currently. The alternative specific constants for SOV are positive for the

both sites. The coefficient estimates for the attitudes are all positive as expected.

The traveler's annul income has very weak effect and this effect is contradictory

for the two sites (0.8 and -0.3 for THE MBL and THE WP, respectively). This result can

be explained as the respondents' reluctant to answer the question about their income, or

deliberately supply the wrong answers.

Table 7.5 The CLM model estimation for the MBL site
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It is noteworthy that the coefficient estimates for the constraint attributes are

negative. This result means that the existing constraints encourage the traveler to stay or

switch to an alternative with smaller attribute changes.

Table 7.5 and 7.6 present the estimation for the Conditional Logit Model by using

ALOGIT software for the two sites. The results show that the t statistic values

corresponding to access time and traveler's annul income are also less than the critical

value of 1.67.

Table 7.6 The CLM model estimation for the WP site

a(0) = -986.5538
αl(βw)= -831.4445

p2 = 0.1572
-
o2  0.1378
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7.2 Hypothesis Testing

The hypothesis that constraints will significantly affect the individuals travel mode

switching behavior is tested by:

a) a x test performed for examining the null structure difference hypothesis.

The null structure difference hypothesis suggests that the Constrained Conditional

Logit Model have same underlying structural parameters as the Conditional Logit Model.

In other words, the coefficients are not significantly different statistically for the two

models.

and c([3) in Table 7.5 and 7.6 are the likelihood values obtained by the

Conditional Logit Model, and αc(βm„) and αc(βw) in Table 7.3 and 7.4 are by the

Constrained Conditional Logit Model, the x² test statistic for the MBL site or the WP

site is computed as:

If x² test statistic X„, or X,„ is larger than the critical value x s(n), the null

hypothesis will be rejected. Sub-index s stands for the significant level and n refers to the

degree of freedom. The alternative hypothesis that the two models are significantly

different from each other will be accepted.

x2 test statistic X.,,, for THE MBL site is computed as:
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As the critical value under the significance level of 0.05 with two degree of

freedom (two degree of freedom is the result of two new parameters) is 5.991, the null

structure difference hypothesis of structural parameters for the two models is rejected for

the MBL sample. This means that the equation estimated by the Constrained Conditional

Logit Models are significantly different from the equation estimated by the Conditional

Logit Model.

By the same method as above, the null structure difference hypothesis of the

structural parameter estimates is rejected for the \VP sample as well as the MBL sample.

x² test statistic X.„, is computed as :

b) a t test performed for the null hypothesis of each coefficient in the constraint function

if the null hypothesis in X2 test is rejected.

This test examines which constraint's effect is significant statistically. The

alternative hypothesis that a particular constraint exists in travel mode switching behavior

is accepted if the null hypothesis for the coefficient corresponding to this constraint

attribute is rejected,.

The null hypothesis of constraint coefficients is rejected as the t statistics for

coefficients β, and β2 in Table 7.4 are both larger than the critical value of 1.67 under the

significant level of 0.05. This result shows that the constraints on the travel time and

travel cost both exist. The null hypothesis is rejected for 13, but accepted for 13 2 on the

MBL site.
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In summary, through the tests performed by the two data, a conclusion is reached.

As expected, constraints exist and affect individuals' commute mode switching.

7.3 Joint Data Estimation and Sample Identity Testing

The 1994 surveys for the MBL and THE WP sites show that the individuals from the two

sites have similar geographic and sociological characteristics as well as the actual

commute mode alternatives. On the surface, the two experiment sites appear identical for

all other travel attributes with the exception of a difference in parking charge. Both sites

hold financial service headquarters. Both sites are in the CBD of the same city. Both are

located near the same transportation centers. However, whether these two data can be

accepted as the two samples drawn from the same population is still needed to be

examined statistically.

On the view of discrete mode choice model, two samples drawn from the same

population should statistically have the same parameters for the systematic utility

components and same random utility distribution. As the estimation of the model supplies

the coefficient estimates, the discussion should be start from the identity of coefficients.

The discussion in Chapter 2 shows that the calibrated coefficient T, is the product

of parameter vector -γn, corresponding to the attributes in the systematic utility function

and the scale factor p„ which is elated to the variance of the random utility term. Sub-

index n (1 or 2) here stands for the different sample; the MBL or the WP sample.
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The sufficient condition for the equivalence of coefficients for the two samples: t i

= 12, is that t 1 equals to p, and y / equals to y2• However, this does not mean that

different coefficients: T1 T? , will definitely result in different parameters: y 1 # y, and

different scale factors: p 1 #p,.

Assume the variances of the two samples in this study are t 1² for the MBL and

a, ² for the WP and they can be expressed as:

(7.6)

where X is a factor called the scale factor ratio. Now, the requirement for the identity of

scale factors is transferred to be X. = 1. Therefore, we obtain:

1-1 2	 I-11	 (7.7)

where sub-index 1 and 2 refer to the sample 1 and sample 2. Providing that the scale

factor t i of sample 1 is arbitrary assumed as 1.0, we could calculate the scale factor p,

and X according to the coefficients τ1 and 1² if the parameters are identical for the two

samples. The important point is testing if the two samples have same parameters.

The test for the hypothesis of the two samples identical is performed by two sub-

tests as follows:

a) test the null difference hypothesis for the two sample's parameters, and

b) test the null difference hypothesis for the two samples scale factors, that is,

scale factor ratio is 1.0 while the parameters of the two samples are equal.
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A approach which was designed to test the identity of stated preference (SP) and

revealed preference (RP) data (Swait & Louviere, 1993) is used in this dissertation. The

key point of the test for hypothesis a) above is to find the scale factor ratio by a grid

search. The grid search is conducted by the following few steps:

1) compute separately the coefficients n and r² for the two samples,

2) set a reasonable range for the scale factor ratio A, and determine a unified

interval to obtain a set of trail scale factor 2 W . Parameter 2'-  stands for the

different trail value A,

3) concatenate both data sets as a joint data set [Xik(m) λ(¹)Xik(w)]T with a trial

scale factor ratio 21¹) . Matrix Xi k(m) and Xik(w) are the data matrix for the

MBL sample and the WP sample.

4) estimate coefficients using the joint data set with different scale factor ratio

)f')

5) repeat step 3) and 4) until a maximum likelihood value is achieved.

The e corresponding to the maximum likelihood value is the scale factor ratio

estimate. After the estimate and its corresponding likelihood are computed, the test for

parameter equality is executed by comparing the likelihood for the joint data set with the

sum of the separate likelihoods for the two samples. Accept the null hypothesis that both

samples have the same parameters in the systematic utility function if the joint and

summed separate likelihoods are not significantly different.
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If the above null hypothesis is accepted, compare the maximum joint likelihood to

the joint likelihood with scale factor ratio of 1.0, and accept hypothesis b) if the

maximum joint likelihood and likelihood with 1.0 of scale factor ratio are not different

statistically.

The separate estimations for the two samples have been conducted in section 7.1

and the coefficient estimates are listed in Table 7.3 and 7.4. Therefore, grid search is

performed by a series of joint estimations with different scale factor ratios using

ALOGIT program. The control file for the joint estimation is attached in Appendix E of

this dissertation. The WP data matrix was multiplied by a particular scale factor ratio λ( ¹)

and concatenated with the MBL data matrix to form a joint data matrix. The grid search

result is presented by Figure 7.1.

Figure 7.1 Grid search of scale factor ratio

The likelihood value ac(βp ) in corresponding to the scale factor ratio of 1.0 is

-374.0999 and the maximum likelihood value ac(βλ) found by the grid search is
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-1370.5652 at the scale factor ratio of 1.3. Table 7.7 present the estimation result with the

scale factor ratio of 1.3 by using the Constrained Conditional Logit Model.

Table 7.7 Joint estimation by the CCLM model

Scale Factor Ratio X = 1.3
Likelihood with Zero a(0) = -1696.2574
Final Likelihood αc(βλ) = -1370.5652
Rho-Squared with Zero p 2 = 0.1920
Rho-Squared with constant p - = 0.1795

The test for the parameter identity of the two samples is conducted based upon the

separate estimations in Table 7.3 and 7.4 and the joint estimation in Table 7.7. The

likelihood ratio test statistic La) for hypothesis of parameter identity is computed as:
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where, αc(βλ) is the maximum likelihood value of joint data estimation in Table 7.7,

αc(βm) and αc(βw) are the maximum likelihood values of the separate estimations in

Table 7.3 and 7.4 for the MBL sample and the WP sample. The critical value under the

significance level of 0.05 with 9 degree of freedom is 19.675. The degree of freedom

number is K+1, where K is the number of common parameters in joint model as well as

the separate models. The null hypothesis states that the parameters underlying both

models are identical.

The hypothesis of scale factor identical is tested by computing test statistic Lb)

where, αc(βp) is the likelihood value of joint data estimation with scale factor ratio of

1.0. The critical value under the significance level of 0.05 with degree of freedom of I is

3.841. (one degree of freedom is the result of the restriction on the scale factor [i i = p 2 )

The two test results show that the parameters in the systematic utility functions

are identical for the two samples, but the variances of random components are different

from each other. Finally, based on the joint estimation result in Table 7.7, the joint

Constrained Conditional Logit Model was calibrated as follows:



where, E 1 is 1 for the MBL and 0 for the WP individuals, and E2 is 0 for the MBL and 1

for the WP individuals. Parameter ,u„ is 1 for the MBL and 1.3 for the WP individuals.

The term (xik - xck) stands for the designed kth attribute change if commuter switches from

current mode c to alternative i.
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The coefficients in the constraint functions (H„) are all negative in Equation (7.8).

For example, the coefficient for the attribute of travel time change is -0.0005. This result

shows that the constraint for travel time tends to encourage individuals to remain on their

current commute modes instead of switching to an alternative. However, some variable's

contributions to the mode switching behavior, such as access time and income, are still

vague since their t statistic values are less than the critical value. Additional study on

these variables is necessary.

7.4 Discussion

In summary, empirical evidence has identified the existence of the constraints, such as

the constraint on travel cost or travel time, on individual commute mode switching

behavior. The effects of these constraints are so significant that ignoring the effects of

these constraints, when estimating the model, will cause biased coefficient estimates. The

development of the Constrained Conditional Logit Model has provided an approach for

correcting these biases and errors.

In addition, correcting the biases in the estimation of the coefficients makes the

transferability of the empirical models possible. In addition, the joint estimation improves

the estimation efficiency as well as the accuracy of the estimates.



CHAPTER 8

EXTERNAL VALIDITY AND DISCUSSION

Chapter 7 tests the Constrained Conditional Logit Model and presents evidence of its

superior performance when compared to the Conditional Logit Model. However, the

evidence is limited to construct validity tests and is therefore limited to a test of internal

validity.

Forecast and policy models are prepared to predict states of systems after

attributes have been changed. A model may succeed in demonstrating internal validity,

but this does not guarantee high quality predictions. A useful model must also be

examined for its external validity. According to Rosnow and Rosenthal (1996), external

validity is a model's performance in predicting actual states of affairs. This chapter

presents the methodology and the external validity test for carrying out the analysis.

8.1 Ideal Experimental Design for External Validity Test

An external validity test of the CCLM model examines a model's ability to predict travel

mode switching behavior associated with a designed change in travel conditions, such as

a parking charge imposition. Ideally, an external validity test should be performed by

measuring the difference between predicted travel mode switching and real mode

switching following a change in a travel attribute identical to that specified in the

forecasting model.
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One of the most important issue in external validity test is the experimental design

for obtaining the actual mode switching data. A statistically appropriate number of

individuals should be randomly selected from a target population, and the characteristics

of their travel situations relative to the travel modes available, such as travel time, cost

...etc., as well as their current choices of travel modes recorded. Then, by an equality

principle these individuals should be randomly assigned to two different experimental

conditions, the test condition and control condition. Individuals assigned to the control

condition should face a set of unchanging travel conditions and, therefore, be called the

control sub-sample. The individuals assigned to the test condition would have one

attribute changed to examine the effect of the designed attribute change on the mode

switching.

On the other hand, mode switching prediction should be made in corresponding to

the difference between the control and test conditions identical with the experiment and

be compared with the real outcome of the experiment. The comparison usually is

conducted by a particular statistical approach.

Let us take an imposition of a parking charge as an example. The external validity

test could include:

1) randomly select a set of individuals and record their current travel modes and

associated travel attributes for each travel alternative,

2) randomly assign these individuals to either the control condition or to the test

condition. The control condition maintains the individuals current travel

conditions while, the test condition imposes a designed parking charge.



71

3) observe and record the real mode choice for the two sub-samples before and

after the designed parking charge is imposed. The market share differences

between the two sub-samples are accepted as the effect of parking charge

imposition after removal of confounding effects,

4) predict travel mode switching behavior associated with the designed parking

charge imposition identical with the experiment condition using the

Constrained Conditional Logit Model model,

5) test the null difference hypothesis. The null hypothesis -- the mode split

obtained by the forecast model is statistically identical to the mode split

obtained under the real world conditions.

If the null difference hypothesis is accepted, the hypothesis that the Constrained

Conditional Logit Model prediction is identical to actual controlled switching behavior

can not be rejected. In other word, the Constrained Conditional Logit Model is externally

valid.

8.2 Actual Experimental Design for External Validity Test

An ideal external validity test is seldom supported by real world condition. The ideal

experimental design is therefore necessarily modified to be practical for the

circumstances surrounding actual research condition. The practical experimental design

must incorporate cause and effect reasoning. This implies that the two phenomenons co-

vary, the cause precedes the effect and confounding factors are eliminated.



A longitudinal design conforms to at least one of the three criteria for cause and

effect reasoning since this design can effectively guarantee the control sample and the

test sample identical by observing the sample sample's behavior before and after the test

condition is executed. The data used in longitudinal design is called panel data as

discussed in Chapter 2.

However, panel data is not available in that the researchers had no opportunity to

manipulate both test and control conditions in the actual experiment. Alternatively, two

samples may be selected based on their location in a same central business district (CBD)

and their operation in the same type of business to replace the panel data. This data is

called cross-sectional data and a cross-sectional design is then developed in this situation

to replace the longitudinal design. The principle and process of this design will be

discussed in section 8.2.1.

Data was collected in this study for the external validity test as well as for both

the Conditional Logit Model and the Constrained Conditional Logit Model estimation of

explanatory models. The Constrained Conditional Logit Model explanatory model

developed in Chapter 7 is used to produce a forecast of mode split change associated with

a change in parking charge. To remove confounding effect in cross-sectional

experimental design, all other variables (covariates) in the explanatory model are held

unchanged in the forecast.

In correspondence, a truth set was formed by combining the MBL sample with

adjusted covariates and the WP sample for completing the external validity test. The

confounding effect removal and relevant covariate adjustment will be discussed in detail

in section 8.2.2.
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The external validity test will be performed by generating a mode split forecast by

the Constrained Conditional Logit Model explanatory model. The forecast method for the

external validity test will be discussed in section 8.2.3. Finally the difference between the

forecast values and the truth set's mode split values will be tested using standard

hypothesis testing procedures.

8.2.1 Experiment Samples

In this study, two employment sites, the WP and the MBL, were chosen in combination

to reflect a natural experiment occurring on the sites. On the surface, the two experiment

sites appear identical for all other travel attributes with the exception of a difference in

parking charge. Both sites hold financial service headquarters. Both sites are in the same

CBD of a major city. Both are located near the same transportation center. The only

significant difference was the parking condition facing the respective employees.

The natural experiment arose as a result of financial problems experienced by one

of the experimental sites. The MBL headquarter site was the center of a bankruptcy

action in 1991. This action forced the management to impose $3.00 parking charge on its

employees who use its parking lot. In contrast, the Washington Plaza headquarter site of

the Prudential Issuance Corporate has had fully subsidized parking for over two decades.

The Washington Plaza headquarters site was selected as the control sites based on its

$0.00 parking charge. In neither case was alternative parking a feasible option.

The validity of the selection of the two samples is supported in Chapter 7 by the

finding that the two samples were drawn from a population reflecting the same

underlying mode switching structural model.
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8.2.2 Confounding Effect and Truth Set Formation.

In the ideal world, the control sub-sample and the test sub-sample are formed through a

random assignment of elements taken from a random sample derived from the target

population. Random assignment guarantees that the two sub-samples have identical

attribute distributions although the two sub-samples are made up of different individuals.

Theoretically, cross-sectional experimental designs should also meet the equal

distribution requirement. In this study, equal attribute distribution requirements implies,

that the \VP sample and MBL sample should have identical covariate distributions with

the only exception of the parking charge. If normal distribution is accepted as the

distribution function for the covariates, the identical distribution requirement is explained

as the same average covariate values and associated standard deviations. Take travel time

as an example. The two samples are required to have the same average travel time and

standard deviation of travel time.

However, initial examination of descriptive statistics taken from the two sites

reveals that the means and variances of the two sites are different across many variables;

different average travel time, different average income .... etc. The difference between

direct observations of the two samples' mode split will conclude confounding effect as

well as a parking charge impact.

To remove the confounding effect, an adjustment of the covariate values is

required. The WP sample's covariate values are changed and this change is reapplied into

an implicit change in the mode split. Take travel time as an example. Figure 8.1 presents

the different SOV travel time distributions for the MBL sample and the WP sample.
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Figure 8.1 Travel time distributions of two samples

Assume that travel time is a normally distributed variable for each travel mode.

The adjustment process will continue with the change of average SOV travel time and

associated standard deviation for the WP sample. Using the MBL sample's average travel

time and the standard deviation as the parameters, a set of normally distributed elements

can be generated by the random generator in Microsoft EXCEL for the WP sample. The

number of the elements in the adjusted WP sample is the same as the number of

individuals in the original WP sample.

Next is the method used to assign these elements to each individual in the WP

sample. There are n! ways to assign these elements to the total of {n} individuals. A

practical travel time adjustment process is used for this assignment. The objective is to

attain the least change between each WP individual's current travel time for SOV and the

element assigned to this individual.

This objective is completed by minimizing the square of the sum of travel time

changes for all individuals in the WP sample. This objective is expressed by a function

Gk:



where,

yj the jth element for the adjusted travel time and

-- the original ravel time before the adjustment for individual i

k -- the kth combination

The minimization process has been compiled as a computer program and this

program is attached in Appendix F.

After the assignment of the elements to each individual in the WP sample, these

elements form the adjusted travel time for the SOV mode of the WP sample. Using the

same procedure, all other covariates are adjusted for the three travel modes.

Then, these adjusted covariates are used to produce the adjusted mode choice for

the individuals in the WP sample. The mode choices were produced through a Monte

Carlo simulation using the explanatory CUM model based on the adjusted covariate

values. The simulation is conducted by the following steps:

1) Compute the systematic utility for the three travel modes, SOV, Carpool and

Transit, using adjusted covariate values for each individual of the WP sample,

2) Generate a Weibull distributed variable as the random utility term,

3) Compute the constraint values based on the original and adjusted covariate

values,

4) Choose the travel mode with the largest sum of systematic and random utility

term under the corresponding constraints.
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The truth set has now been formed by assembling the MBL sample and the WP

sample with adjusted covariates. The mode split obtained from the test sub-sample of the

truth set is considered as the experiment result in,. and will be compared with the forecast

result by the CCLM model.

8.2.3 Forecast and External Validity Test

The forecast of the impact of a $3.00 parking charge on mode split is conducted by the

explanatory CCLM model with the following process;

1) Taken as given, each WP individual's adjusted covariate values for the three

travel modes as well as their personal information are used to compute the

systematic utility and the corresponding constraints.

2) Using the explanatory CCLM model, compute each WP

probabilities to switch to each proposed travel alternative following a $3.00

parking charge imposition.

3) Add all WP individuals' switching probabilities and then divide this sum by

the total number of individuals in the WP sample. This final result is the

aggregate mode split forecast 177p .

Based on the work above, the mode split in the real world, n7, and the mode split

forecast nit, are obtained. The last step is the external validity test. The hypothesis for the

external validity is the null difference between the actual mode split values and the

forecast values. The t test is used to test the null hypothesis H,,



The mode split in the real world is assumed statistically identical to the mode split

forecast. As an alternative hypothesis, H, is listed below for the situation where two mode

split are not equal.

The test statistic 0 is a t distributed variable and its values in this test can be

computed by Equation (8.4):

where,

11? r -- the actual mode split obtained from the test sub-sample of the truth set

-- the predicted mode split based on the control sub-sample and designed

parking charge imposition

a -- the standard deviation for the aggregate mode split forecast

is -- individual number in the sample.

This test has to be performed for the three travel modes, respectively. if 0 is less

than the pre-determined two-tail critical value ts/2(n-1) under the n-1 degree of freedom

with significance of s, the external validity of CCLM model can not be rejected.

Based on the discussion above, external validity test is summarized as the

following process;
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1) Observe and record the MBL sample's mode split as the truth set's behavior to

the parking charge imposition.

2) Adjust the WP sample's covariate distributions so that the WP covariate's

distribution has the same statistical values for the travel attributes and personal

information as those of the MBL sample.

3) Use WP sample's adjusted travel attributes and personal information to make a

forecast of mode split under a $3.00 parking charge imposition.

4) Test the null hypothesis between the mode split forecast and truth set's mode

split observed from the MBL sample.

8. 3 Empirical Test

This section presents the external validity test result for the CCLM model using the cross-

section experimental design described in the above section.

A total of 58 individuals were selected from the WP site. The actual commuter

mode split for the three travel modes: SOV, Carpool and Transit, were recorded based on

the 1995 survey and are presented in the Table 8.1. The second column lists the numbers

of individuals of the sample using each commute mode and the third column presents the

mode split values.

Table 8.1 Actual un-adjusted historical mode split of the WP sample: July,1995
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A second 58 individuals were selected from the MBL. The mode split values for

the three travel modes were recorded and presented in Table 8.2.

Table 8.2 Actual un-adjusted historical mode split for MBL sample: July,1995

Table 8.3 presents the average covariates and associated standard deviations for

the covariates of the two samples. The variables in Table 8.3 are rank order variables in

the survey.

For ease of computation, the underlying distributions of the variables shown in

Table 8.3 are all assumed to act as continuous variables. It can be seen that some

covariates, such as travel cost for the SOV and CP mode, attitude for the SOV mode, Age

category and income category, differ with statistical significance between the MBL site

and the WP site.(the values are larger than the critical value of 2.0 for two-tailed t

distribution at 0.05 level of significance) Therefore, confounding effect will be included

into the comparison of the two samples' mode split if the differences on these covariates

are ignored.
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The average covariate values and standard deviations for MBL were used to

adjust the covariate distributions for the WP sample to form a truth set. The SOV travel

time is taken as an example. The original travel time values are listed in the second row in

Table 8.4. Using the average travel time for the MBL sample and the associated standard

deviation: 35.57 and 22.10, adjusted travel time for the WP sample were obtained and

assigned to each individuals in the WP sample.

The data assignment was performed by the approach developed in Section 8.2.2.

Total of 58 individuals are from the two samples. The adjusted travel time values are

listed in the third row of Table 8.4. The first row lists the original values for these

individuals.



Table 8.4 SOV travel time adjustment for individuals in the WP sample
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Table 8.4 (continued)
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Table 8.4 (continued)

A Monte Carlo simulation was next conducted, using the explanatory CCLM

model and the adjusted covariate values, to produce the individual mode choice. The

mode split values for the three travel modes were then computed by averaging the

individuals mode switching data. The mode split values with adjusted covariate values for

the WP sample are listed in the second column of Table 8.5 as well as the M131_, mode

split values in the third column. The mode split data listed in Table 8.5 form the mode

split observation of the truth set which will be used in the external validity test.

Table 8.5 The WP sample mode split with adjusted covariates

Table 8.6 presents the forecast values and the external validity test result. The

adjusted mode split values for the truth set associated with the test condition are listed in
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the second column. The mode split forecast values are listed in the third column of Table

8.6. The mode split forecasts are obtained by the explanatory CCLM model derived in

Section 7.3. The values in the parentheses are the standard deviations obtained from the

forecasting.

Table 8.6 Adjusted mode split values and forecast value comparison

Mode	 Mode Split Values	 Mode Split Values	 Forecast	 t Test
(Truth Set)	 (Forecast)	 Error	 Statistic

In fact, all WP individual's mode switching probabilities for each mode are

averaged as the sample's mode split values. The standard deviations are listed in the

parenthesis in the third column of Table 8.6 based on the average of 58 individuals in the

sample for the need of computation of statistic values. Column 4 lists the absolute values

of the differences between the truth set values and the forecast values. The t statistic

values in column 5 are computed by Equation (8.4) in Chapter 8.

The two-tail critical value for the significance of the 0.05 level with degrees of

freedom of 57 is 2.0; therefore, the null difference hypothesis can not be rejected for the

SOV and PT modes. The null difference hypothesis for CP can be rejected. The reason

for the rejection of the null difference hypothesis for the CP mode is that very few
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individuals in the two sites use carpool as their commute mode. The small number of

observation causes a loss of accuracy when computing the mode split values for carpool.

However, the mode split forecast for the WP sample generated by CCLM model is

statistically identical with the adjusted observation for the MBL sample for the SOV and

PT modes.

8.4 Comparison with Other Research

The cross-section experimental design and the empirical work conducted in the above

section can be compared with the before and after research design and external validity

test conducted by Beaton (1997). That study for the SC model by before and after design

shows that the predicted market share for SOV changes from 100% in 1993 to a predicted

83.2 % in 1995. The actual 1995 value reported from the subset of 1995 respondents is

82.2 %. The difference between forecast for switching behavior and actual switching

behavior is 1 %.

8.5 Summary

This chapter has presented the study results of an external validity test using a cross-

section experimental design for the CCLM model. The experimental technique used in

this study certifies that

1) cross-sectional experimental design can be used in external validity test where

panel data is not available. The two samples used in the cross-section

experimental design must be identified as drawn from the same target

population, and
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2) to remove confounding factor, the covariates of two samples must be adjusted

to have identical Distribution.

The CCLM model has been identified valid through internal and external validity

test. This study shows that the CCLM model can successfully forecast the mode split

change associated with a parking charge imposition for the SOV and public transit

modes.



CHAPTER 9

CONCLUSION

This dissertation develops the Constrained Conditional Logit Model based on the

hypothesis that existed resource constraints have significant effect on individual's mode

switching. Theoretical and empirical studies conducted in this dissertation support the

validity of this model and hypothesis.

The first contribution of this dissertation is the development of the CCLM model

which explicitly includes resource constraints into the decision making process and then

the switching probability function. This advance gets the discrete choice theory

underlying travel mode choice study consistent with the classical economic theory, and

specifies the assumption of inclusion of constraints proposed in some papers before. The

explanatory model estimation and the internal and external validity study in this

dissertation show that the Constrained Conditional Logit Model can successfully address

constraint issue without increasing the complexity on the model estimation.

This model therefore provides a tool for evaluating the effect of various

constraints. These constraints are no longer limited within time and cost, but extended to

a broad field. This advance makes it possible to analyze the effect of other constraints,

such as exogenously imposed schedules, physical needs, authority and morality.

The second contribution is the advance on the model estimation. A factor grid

searching approach developed originally in SP and RP data combination has been

87
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successfully applied on the joint estimation by the combination of two samples. This

process not only improves the efficiency of the estimation but also provides a tool on the

study of transferability of empirical models.

As the Constrained Conditional Logit Model can correct the errors caused by

failing to incorporate constraints in the indirect utility function, more precise estimates

for the attributes in systematic utility becomes passable. This improvement can help us to

promote the accuracy on predicting the individuals' mode switching on the different site

and situation. This advance has been identified in the external validity test.

The third contribution is the improvement on the experimental design for external

validity test. A cross-sectional design is used in this study to replace the longitude design

which is usually used with panel data in the external validity test. The cross-sectional

design makes external validity test available in the situation where researchers have no

opportunity to manipulate both test and control conditions in the actual experiment.

The cross-sectional design can also avoid the time effect in the longitude design,

such as individual's taste change with time. However, the cross-section experimental

design can only be used under the following conditions:

1) the two samples used in the cross-section experimental design must be

identified as drawn from the same target population, and

2) the two samples's covariates distribution must be identical. Otherwise, the

mode split values must be adjusted.

If the above two conditions are not true in the real situation, confounding factor

will affect the observation of the actual mode switching behavior. The confounding effect
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caused by using two samples while forming a truth set has been studied in this

dissertation. The approach for the adjustment of the covariate values of the two samples

is another important contribution. Without removal of the confounding effect by the

covariate values adjustment, cross-sectional design has seldom opportunity to be applied

since it is impractical to expect the two samples with identical distributions of attributes

in the real world.

Further work is still needed to improve the approach for establishing empirical

models. As indicated in the above chapters, how to design the proposed travel alternatives

and the associated attributes so as to avoid the errors related to RP and SP combination is

still one of the existing issues. Further study about the survey method and data collection

is a critical topic.

The analysis of the effects of other constraints, such as physical and morality, on

the individual travel mode switching is needed by more empirical studies.



APPENDIX A

DERIVATION OF CONDITIONAL LOGIT MODEL

The utility used in discrete choice models is assumed as the sum of a systematic utility

term and a random term Sub-index 17 and i here stand for individual n and

alternative i.

Given that the random term E is a Weibull distributed variable. The density

distribution function and the cumulative distribution function of εni are written as:

and

where, un and X are the scale factor and position factor. If term εni is assumed to vary

independently and identically (HD) for all alternatives and individuals, the probability

that the utility obtained from alternative i is larger than all other alternatives can be

written ac

where, J is the total number of the alternatives available. Compute the probability of

max(V nj+εnj ):
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Then write max(Vnj-+εnj j) to be Vn*+εn,* The probability can be written asn

Prob(Vn*+ε*n<ε)= Prob(ε*n<ε -

Compare Equation (A.4) with (A.5), we obtain

The probability of choosing alternative i is obtained as:
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Take Equation (A.3) into Equation (A.7), we obtain :



Take Equation (A.6) into Equation (A.$), we obtain :

(A.9)

Assume that position factor 2,n i in the above equation is zero, the probability of choosing

alternative i by individual n is obtained as :

Equation (A10) is the ordinary form of the Conditional Logit Model.



APPENDIX B

CONTROL FILE FOR SIMULATION

The following control file was used in the estimation for the Constrained Conditional

Logit Model in Chapter 5.

****Estimation for the Constrained Conditional Logit Model****

- Parameter Definition

01 Travel Time

02 Travel_Cost

03 Out-Veh Time

04 Constraint on Travel Time

05 Constraints on Travel Cost

06 Constraint on Out-Veh Time

- Systematic Utility Function ( 1-Single Occupant Vehicle, 2-Carpool, 3-Transit)

The following control file was used in the estimation for the Conditional Logit
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Model in Chapter 5.

****Estimation for the Conditional Logit Model****

DATA 19,1

PRINT 80,63,3

END

- Parameter Definition

01 Travel_Time

02 Travel Cost

03 Out-Veh Time

- Utility Function ( 1-Single Occupant Vehicle, 2-Carpool, 3-Transit)

util1001= p01*d02+p02*d03+p03*d04

util002= p01*d05+p02*d06+p03*d07

util003= p01*d08+p02*d09+p03*d10
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APPENDIX C

SURVEY QUESTIONNAIRES

Please consider each scenario independently and do not compare with others. (Values in

bold change in each scenario)

Alternative l, Single Occupant Vehicle

Cost of tolls and gas per day
Parking space charge per day

Alternative 2, Carpool

Carpool costs per person per day
Parking space charge per day
Pick up location

Extra time required for carpooling
Guaranteed rider home
Carpool subsidy paid to you per day

Alternative 3, Public Transit

Transit fare per day
Number of transfers
Extra time required for transit

Guaranteed rider home
Transit subsidy paid to you per day

Your current cost*
$5.00/day($100/month)

1/2 your current drive alone cost*
1/2 your drive alone parking. space charge

A shopping center parking lot

10 min. for each one way trip
Yes, 15 minute wait

$0.00

Current values*
Current number*

25 min. for each one way trip

Yes, 15 minute wait
$0.00/day($0.00/month)

After comparing the characteristics of the three alternatives shown above, I

choose:

***Please check one and only one alternative***

Drive alone	 )

Carpool	 )

Transit + MBL van service	 ( 1
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APPENDIX D

CONTROL FILE FOR ESTIMATION

The following control file was used in the estimation for the Constrained Conditional

Logit Model in Chapter 7.

Estimation for the Constrained Conditional Logit Model

DATA 27,1

PRINT 80,63,3

END

- Parameter Definition

01 SOV constant

02 CPconstant

03 Travel Time

04 Travel Cost

05 Access Time

07 Attitude SOV

08 AttitudeCP

09 Attitude Transit

10 Age

11 Familiar

12 Gender

13 Income

14 Travel Time Constraint

15 Travel Cost Constraint
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- Systematic Utility Function ( 1-Single Occupant Vehicle, 2-Carpool, 3-Transit)
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The following control file was used in the estimation for the Conditional Logit Model in

Chapter 7.

**** Estimation for the Conditional Logit Model****

DATA 27,1

PRINT 80,63,3

END

- Parameter Definition

01 SOV constant

02 CP_constant

03 Travel Time

04 Travel Cost

05 Access Time

07 Attitude SOV

08 Attitude_CP

09 Attitude Transit

10 Age

11 Familiar



12 Gender

13 Income

- Systematic Utility Function ( 1-Single Occupant Vehicle, 2-Carpool, 3-Transit)
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APPENDIX E

CONTROL FILE FOR JOINT ESTIMATION

The following control file was used in the estimation for the joint Constrained

Conditional Logit Model in Chapter 7.

**** Estimation for Joint Constrained Conditional Logit Model****

DATA 31,1

PRINT 80,63,3

END

- Parameters

01 SOV Constant for MBL

02 CP Constantfor MBL

03 SOV Constant for WP

04 CPConstantforWP

05 Travel Time

06 Travel_Cost

07 Access_Time

11 SOV Attitude

12 CP Attitide

13 Transit Attitude

14 Age for SOV

16 Family_size for SOV

18 Gender for SOV

20 Income for SOV

50 Travel_time_Constraint
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51 Travel cost Constraint

- Systematic Utility Function ( 1-Single Occupant Vehicle, 2-Carpool, 3-Transit)
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APPENDIX F

PROGRAM FOR ATTRIBUTE ASSIGNMENT

Program Assignment
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