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ABSTRACT

CHARACTERIZATION OF NATURAL ORGANIC MATTER AND
PRECURSORS TO TRIHALOMETHANES USING

SPECTRAL FLUORESCENCE SIGNATURES

by
Krit Punburananon

Disinfection is an essential process to kill pathogens (i.e., disease causing organisms) in

source water during the production of drinking water. Chlorine is most widely used

disinfectant because it is effective, affordable, and also provides chlorine residual to

ensure that the water is safe through the distribution system. Nonetheless, chlorine reacts

with Natural Organic Matter (NOM) and forms potentially carcinogenic Disinfection By-

products (DBPs). The major chlorination DBPs are dominantly Trihalomethanes

(THMs). However, not all organic compounds are equally reactive to THMs formation.

NOM in water samples collected from the Delaware & Raritan Canal and its

tributaries (Central New Jersey) was isolated by resin adsorption into six fractions:

Hydrophobic acid (HPOA), Hydrophobic neutral (HPON), Hydrophobic base (HPOB),

Hydrophilic acid (HPIA), Hydrophilic neutral (HPIN), and Hydrophilic base (HPIB).

HPIN, HPON, and HPOA were the major fractions in most of samples. Moreover, the

fractions' seven-day THMs Formation Potentials (THMFP) were determined HPOA was

found to be the most reactive fraction to THMs formation in addition to being one of the

most abundant fractions in the source water.

Additionally, the six fractions were also characterized by fluorescence

spectroscopy to obtain three-dimensional fluorescence spectra. The spectra shape and

peak locations are unique characteristics of organic compounds and also called Spectral



Fluorescence Signature (SFS). The SFS is the total sum of emission intensity of a sample

at different excitation wavelengths, recorded as a matrix of fluorescent intensity in

coordinates of excitation and emission wavelengths. Among the six fractions, HPOA

spectra were large and the peak intensity was also high. Therefore, fluorescence

spectroscopy could be a promising technique for characterization of HPOA fraction or

THMs precursors in the source water.

Although a large number of intensities are related to THMs precursors, many of

them are highly correlated by nature. Principle component analysis was then used to

transform the fluorescence intensities into independent parameters called Principle

Components (PCs). Best Subset Algorithm was performed to select the most important

PCs for the prediction of THMFP by multiple linear regression. The prediction of

THMFP using SFS is a rapid, inexpensive, reagent-free technique and thus can be used

for optimization of water treatment processes.
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Watch your thoughts; they become words.
Watch your words; they become actions.
Watch your actions; they become habits.

Watch your habits; they become character.
Watch your character; it becomes your destiny.

Frank Outlaw

Remember, if you ever need a helping hand, you'll find one at the end of your arm.
As you grow older you will discover that you have two hands,

one for helping yourself and the other for helping others.
Audrey Hepburn

What you do speaks so loudly that I cannot hear what you say.
Ralph Waldo Emerson

Saying is one thing. Doing is another.
Montaigne

The secret of getting ahead is getting started.
The secret of getting started is breaking your complex overwhelming tasks

into small manageable tasks, and then starting on the first one.
Mark Twain
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CHAPTER 1

INTRODUCTION

1.1 History and Background

One hundred years ago, typhoid and cholera epidemics were common throughout

American cities. Exposure to microbial contaminants such as bacteria, viruses, and

protozoa (e.g., Giardia lamblia and Cryptosporidium) was likely the greatest remaining

health risk management challenge for drinking water suppliers. Acute health effects from

exposure to microbial pathogens are documented and associated illness can range from

mild to moderate cases lasting only a few days to more severe infections that last several

weeks. These cases may result in death for those with weakened immune systems

(USEPA, 1998b; USEPA, 2006b; Krasner et al. 2006).

Over the past fifteen years, we have also learned that there are specific microbial

pathogens, such as Cryptosporidium, that are highly resistant to traditional disinfection

practices. In 1993, Cryptosporidium caused 400,000 people in Milwaukee to experience

intestinal illness. More than 4,000 were hospitalized, and at least 50 deaths have been

attributed to the disease. There have also been cryptosporidiosis outbreaks in Nevada,

Oregon, and Georgia over the past several years (USEPA, 1998a; USEPA, 2006b).

Therefore, disinfectants became an essential element of drinking water treatment because

of the barrier they provide against waterborne disease-causing microorganisms.

Disinfection is a major factor in reducing these epidemics, and is an essential part

of drinking water treatment today. It is a chemical process used in water systems to

inactivate (or kill) pathogens (i.e., disease causing organisms) found in the source water

(i.e., lake, river, reservoir, or ground water aquifer from which water is drawn and

1
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treated). Disinfection through inactivation usually involves the use of disinfectants such

as chlorine, ozone, and chlorine dioxide, and a combination of chlorine and ammonia

(chloramines) may render many of these organisms harmless (Singer, 1999; Xie, 2007).

However, the disinfectants themselves can react with naturally-occurring

materials in the water (e.g., humic and non-humic) to form unintended organic and

inorganic by-products which may pose health risks (Bull, 1982). Disinfection by-products

(DBPs) are formed when disinfectants (e.g., chlorine) react with NOM, and/or bromide/

iodide present in the source water. Different disinfectants produce different types or

amounts of DBPs (Richardson et al. 2003; Sarai, 2006).

DBPs formed during disinfection with chlorine and chloramines are Total

Trihalomethanes (TTHMs- chloroform, bromoform, bromodichloromethane, and

dibromochloromethane) and haloacetic acids (HAAS — monochloro dichloro trichloro

monobromo dibromo -.) The amount of DBPs formation in drinking water can

change from day to day, depending on the season, water temperature, amount of chlorine

dosages, the amount of plant material in the water (Sharp et al. 2006).

Many of these DBPs have been shown to cause cancer and reproductive and

developmental effects in laboratory animals. More than 200 million people consume

water that has been disinfected in the United States. Because of the large population

exposed, health risks associated with DBPs, even if small, need to be taken seriously. A

major challenge for water suppliers is how to balance the risks from microbial pathogens

and DBPs. It is important to provide protection from these microbial pathogens while

simultaneously ensuring decreasing health risks to the population from DBPs (USEPA,

2006b).
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1.2 Rules and Regulations for Disinfection By-products

The 1996 Safe Drinking Water Act (SDWA) amendments require USEPA to develop

rules and standards for DBPs in drinking water. Published in December 1998, the Stage 1

Disinfectants/Disinfection By-products Rule (DBPR) required water systems to use

treatment methods to reduce the formation of DBPs and to meet the standards. Maximum

Contaminant Level (MCL), Maximum Contaminant Level Goal (MCLG) of TTHMs,

HAA5, and others DBPs as well as their potential health effects are shown in Table 1.1

(USEPA, 1998b). In addition, MCLG for each of DBP and maximum residual

disinfectant level goals (MRDLG) for each disinfectant listed in Tables 1.2 and 1.3,

respectively (USEPA, 1998b).

While the Stage 1 DBPR is predicted to provide a major reduction in DBPs

exposure, national survey data suggest that some customers may receive drinking water

with elevated, or peak, DBPs concentrations even when their distribution system is in

compliance with the Stage 1 DBPR. Some of these peak concentrations are substantially

greater than the Stage 1 DBPR MCLs and some customers receive these elevated levels

of DBPs on a consistent basis (Krasner et al. 2006). The Stage 2 DBPR sets new

requirements provide for more consistent, equitable protection from DBPs across the

entire distribution system and the reduction of DBP peaks. As in Stage 1, the Stage 2

DBPR focuses on monitoring for and reducing concentrations of two classes of DBPs:

TTHM and HAA5. The concentrations of TTHM and HAAS are monitored for

compliance, but their presence in drinking water is representative of many other

chlorination DBPs that may also occur in the water; thus, a reduction in TTHM and

HAA5 generally indicates an overall reduction of DBPs.
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The second provision of the Stage 2 DBPR is designed to address spatial

variations in DBPs exposure through a new compliance calculation for TTHM and HAAS

MCLs. The MCL values remain the same as in the Stage 1. The Stage 1 DBPR running

annual average (RAA) calculation allowed some locations within a distribution system to

have higher DBPs annual averages than others as long as the system-wide average was

below the MCL. The Stage 2 DBPR bases compliance on a locational running annual

average (LRAA) calculation, where the annual average at each sampling location in the

distribution system will be used to determine compliance with the MCLs (USEPA,

2006a).

The Stage 2 DBPR was released simultaneously with the Long Term 2 Enhanced

Surface Water Treatment Rule (LT2) to address concerns about risk tradeoffs between

pathogens and DBPs (USEPA, 2006b). The purpose of the LT2 rule is to reduce illness

linked with the contaminant Cryptosporidium and other disease-causing microorganisms

in drinking water. This rule applies to all public water systems that use surface water or

ground water under the direct influence of surface water to treat reservoir discharge to

inactivate 4-log virus, 3-log Giardia lamblia, and 2-log Cryptosporidium. These

requirements are necessary to protect against the contamination of water that occurs in

open reservoirs (USEPA, 2006b).

1.3 Objectives

Natural organic matter in source water quality is the major factor impacting DBPs

formation following disinfection. The primary objective is to investigate the use of

fluorescence spectroscopy for characterization of Trihalomethanes (THMs) precursors in
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source water. The secondary objective is to investigate fluorescence spectroscopy

coupled with multivariate statistical analysis as a rapid, inexpensive technique to

determine the amount of THMs precursors and THMs Formation Potential (THMFP) of

water samples. The outcome would help identify the potential water quality problems

rapidly in advance and aid water utilities for source water management as well as

drinking water treatment process optimization.

Table 1.1 MCL, MCLG, and Potential Health Effect of DBPs (USEPA, 1998b;
USEPA, 2006a)



Table 1.2 MCLG for Each DBP (USEPA, 2006a)
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Table 1.3 MRDLG for Disinfectants (USEPA, 1998b)



CHAPTER 2

LITERATURE REVIEW

2.1 Current Research

Current research has been focusing on the characterization of NOM by varied techniques

to identify THMs precursors. NOM in natural water is a complex mixture of various

hydrocarbon structures with attached functional groups (Leenheer and Croué, 2003), and

its composition varies through out the year depending on the source of organics and

environmental conditions (Rodriguez et al. 2004; Sharp et al. 2006). For this reasons,

quick and accurate methods for water characterization must be developed to help water

treatment plants cope with the dynamics of changing source water quality while

maintaining drinking water quality standard. A variety of water characterization

techniques and prediction models were reviewed in this chapter.

2.2 Organic Carbon Analysis

Total organic carbon (TOC) is an aggregate measurement used to quantify the presence

of organic matter in aquatic systems. TOC can be divided into two fractions as dissolved

organic carbon (DOC) and particulate organic carbon (POC). POC is the fraction of the

TOC that is retained on a 0.45 micrometer (µm) porosity membrane (Leenheer and

Croué, 2003). DOC is the organic carbon smaller than 0.45 in diameter. POC

generally represents a minor fraction (below 10%) of the TOC. The proportion of POC

increases with a river's size and flow rate, and DOC concentrations range from 0.1

milligrams per liter (mg/L) in groundwater to 50 mg/L in bogs (Thurman, 1985).

7
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