
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Theses Electronic Theses and Dissertations 

Fall 1-31-1998 

Applications of internet technology for requirements elicitation Applications of internet technology for requirements elicitation 

Deepak Pandit 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/theses 

 Part of the Databases and Information Systems Commons, and the Management Information 

Systems Commons 

Recommended Citation Recommended Citation 
Pandit, Deepak, "Applications of internet technology for requirements elicitation" (1998). Theses. 946. 
https://digitalcommons.njit.edu/theses/946 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons 
@ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Ftheses%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/946?utm_source=digitalcommons.njit.edu%2Ftheses%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


Copyright Warning & Restrictions 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 

Please Note: The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 

Printing note: If you do not wish to print this page, then select 
“Pages from: first page # to: last page #” on the print dialog screen 



The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty. 



ABSTRACT 

APPLICATIONS OF INTERNET TECHNOLOGY 
FOR REQUIREMENTS ELICITATION 

by 
Deepak Pandit 

During the Requirements Elicitation part of a project various stakeholders need to 

be able to communicate their requirements to the developers, and the developers need to 

be able communicate their understanding back to the stakeholders. Communication 

between the various members of the project is the key factor during the Requirements 

Elicitation part of a project. 	Easing communications between stakeholders and 

developers makes the process of eliciting requirement easier, leading to better 

requirements specification and eventually a better product. 

The Requirements Elicitation Process through Internet (REPI) web site has been 

designed and implemented to explore this idea. The prototype version of REPI guides 

project members through the elicitation phase using the Software Engineering Institute's 

framework for Requirements Elicitation. The REPI web site forces stakeholders to 

explicitly describe the requirements and encourage early discussion between stakeholders 

and developers. This decreases the likelihood of misunderstood requirements, leading to 

better requirements specification. 



APPLICATIONS OF INTERNET TECHNOLOGY 
FOR REQUIREMENTS ELICITATION 

by 
Deepak Pandit 

A Thesis 
Submitted to the Faculty of 

New Jersey Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of 

Master of Science in Computer and Information Science 

Department of Computer and Information Science 

January 1998 



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE 

APPLICATIONS OF INTERNET TECHNOLOGY 
FOR REQUIREMENTS ELICITATION 

Deepak Pandit 

Dr. Murat M. Tanik, Thesis Advisor 	 Date 
Department of Computer and Information Science 
New Jersey Institute of Technology 

Dr. Franz Kurfess, Committee Member 	 Date 
Department of Computer and Information Science 
New Jersey Institute of Technology 

 Dr. Don Sebastian, Committee Membner 	Date 
Department of Industrial and Manufacturing Engineering 
New Jersey Institute of Technology 



BIOGRAPHICAL SKETCH 

Author: 	 Deepak Pandit 

Degree: 	 Master of Science 

Date: 	 January 1998 

Undergraduate and Graduate Education: 

• Master of Science in Computer and Information Science, 
New Jersey Institute of Technology, Newark, NJ, 1998 

• Bachelor of Science in Computer and Information Science, 
New Jersey Institute of Technology, Newark, NJ, 1996 

Major: 	 Computer and Information Science 



This thesis is dedicated to my family 



ACKNOWLEDGMENT 

The author wishes to express his sincere gratitude to his advisor, Dr. Tanik, for all 

his guidance and support. The author wishes to thank him for all his suggestions and help 

during the thesis writing process. 

The author appreciates all the suggestions and help from Dr. Kurfess and would 

like thank him for serving as a member of the committee. The author wishes to thank Dr. 

Sebastian for serving as a committee member and for his suggestions. Special thanks to 

Professor Jololian and Mr. Smith for their participation during my defense. 

vi 



TABLE OF CONTENTS 

Chapter Page 

1 INTERNET TECHNOLOGIES 	  1 

1.1 Web Protocols and Standards 	  3 

1.1.1 	HyperText Transport Protocol 	  4 

1.1.2 	Cookies 	  9 

1.1.3 Common Gateway Interface 	  11 

1.1.4 HyperText Markup Language 	  14 

1.2 Messaging Protocols and Standards 	  35 

1.2.1 	Simple Mail Transfer Protocol 	  37 

1.2.2 Post Office Protocol 	  41 

1.2.3 	Internet Message Access Protocol 	  44 

1.2.4 POPS vs. IMAP4 	  47 

1.2.5 Internet Media Type 	  50 

1.3 Languages 	  57 

1.3.1 	Java 	  58 

1.3.2 	JavaScript 	  70 

2 REQUIREMENTS ELICITATION 	  76 

2.1 Requirements Elicitation Framework 	  78 

2.2 Requirements Elicitation Process Model 	  80 

2.3 Requirements Elicitation Methodology and its Methods 	  83 

vii 



TABLE OF CONTENTS 
(Continued) 

Chapter Page 

2.3.1 	Fact Finding 	  84 

2.3.2 Gathering and Classification 	  86 

2.3.3 	Evaluation and Rationalization 	  88 

2.3.4 	Prioritization and Planning 	  89 

2.3.5 	Integration and Validation 	  89 

3 REQUIREMENTS ELICITATION WITH INTERNET TECHNOLOGIES 	 91 

3.1 Introduction 	  91 

3.2 REPI Web Site Description 	  92 

3.2.1 	Login Screen 	  98 

3.2.2 Menu Screens 	  98 

3.2.3 	Fact Finding Phase 	  100 

3.2.4 Gathering and Classification Phase 	  107 

3.2.5 Evaluation and Rationalization Phase 	  117 

3.2.6 Prioritization and Planning Phase 	  121 

3.2.7 Integration and Validation Phase 	  125 

3.2.8 Information Pages of the REPI Web Site 	  129 

3.2.9 Other Components of the REPI Web Site 	  133 

3.3 REPI Web Site Evaluation 	  143 

3.3.1 	Web Site Design 	  143 

viii 



TABLE OF CONTENTS 
(Continued) 

Chapter 

4 CONCLUSION AND FUTURE WORK 	  

4.1 Benefits of the REPI Web Site 	  

4.2 Limitations of the REPI Web Site 	  

4.3 Future Work 	  

Page 

152 

152 

155 

158 

APPENDICES A.1 CGI Example 	  160 

B.1 HTML Lists Example 	  160 

B.2 HTML Table Example 	  161 

B.3 Netscape Frame Example 	  162 

B.4 HTML Form Example 	  165 

C.1 ESMTP Example 	  166 

D.1 IMAP4 States Example 	  167 

D.2 IMAP4revl Example 	  167 

E.1 Java Inheritance Example 	  168 

E.2 Java Thread Example 	  170 

E.3 View of the Java Environment 	  172 

F.1 "Login Screen" of the REPI Web Site 	  

	

 	174 

G.1 Menu Pages of the REPI Web Site 	  179 

H.1 User's Fact Finding Pages 	  186 

H.2 User's Gathering and Classification Pages 	  191 

ix 



TABLE OF CONTENTS 
(Continued) 

Chapter Page 

H.3 User's Evaluation and Rationalization Pages 	  202 

H.4 User's Prioritization and Planning Pages 	  203 

H.5 User's Integration and Validation Pages 	  204 

I.1 Developer's Fact Finding Pages 	  205 

1.2 Developer's Gathering and Classification Pages 	  206 

1.3 Developer's Evaluation and Rationalization Pages 	 207 

1.4 Developer's Prioritization and Planning Pages 	  208 

1.5 Developer's Integration and Validation Pages 	  213 

J.1 REPI Web Site's Information Pages 	  214 

K.1 Read and Send Messages Pages 	  221 

K.2 What's New Page 	  223 

K.3 Todo Tasks Pages 	  224 

K.4 Help Pages 	  225 

K.5 Logout and Error Message Pages 	  226 

L.1 REPI Web Site's Style Sheet and JavaScript Source Code 	 227 

REFERENCES 	  	234 



LIST OF TABLES 

Table Page 

1 JavaScript Objects 	  71 

2 Comparison of JavaScript and Java 	  75 

3 Requirements Elicitation Process Model's Tasks 	  82 

4 SEI Compared with REPI for the Fact Finding Phase 	  101 

5 SEI Compared with REPI for the Gathering and Classification Phase 	 108 

6 SEI Compared with REPI for the Evaluation and Rationalization Phase 	 117 

7 SEI Compared with REPI for the Prioritization and Planning Phase 	 121 

8 SEI Compared with REPI for the Integration and Validation Phase 	 126 

xi 



LIST OF FIGURES 

Figure Page 

1 View of the Web 	  3 

2 HTTP Dialogue Example 	  

	

 	6 

3 HTTP Event Flow Example 	  7 

4 Cookie Example 	  11 

5 HTML Example 	  15 

6 HTML Imagemap Example 	  24 

7 CSS Example Part 1 of 2 	  27 

8 CSS Example Part 2 of 2 	  28 

9 JSSS Example 	  29 

10 CSS-P Example 	  31 

11 JASS Example 	  31 

12 Dynamic HTML Example 	  34 

13 SMTP Model 	  38 

14 SMTP Example 	  39 

15 Email Header Example 	  40 

16 POP3 Dialogue Example 	  42 

17 POP3 Session State Diagram 	  44 

18 Internet Media Type Example 1 	  52 

19 Internet Media Type Example 2 	  56 

20 Java Application Example 	  66 

xii 



LIST OF FIGURES 
(Continued) 

Figure 	 Page 

21 	Java Applet Example Part 1 of 2  	69 

22 Java Applet Example Part 2 of 2 	  69 

23 JavaScript Example Part 1 of 2 	  73 

24 JavaScript Example Part 2 of 2 	  74 

25 Requirements Elicitation Framework 	  79 

26 Requirements Elicitation Process Model 	  81 

27 REPI Web Site Structure Overview 	  93 

28 REPI Web Site Client Side Structure 	  95 

29 REPI Web Site Developer Side Structure 	  95 

30 "Login Screen" of the REPI Web Site 	  97 

31 REPI Web Site's Menu Screens 	  99 

32 	Task 5, "Identify Similar Systems," of the Fact Finding Phase 	 104 

33 	Task 1, "Requirements List," of the Gathering and Classification Phase 	 109 

34 Task 2, "Add Requirement," of the Gathering and Classification Phase 	 112 

35 	Task 2, "Capture Rationale," of the Evaluation and Rationalization Phase .... 119 

36 	Task 1, "Prioritize Requirements," of the Prioritization and Planning Phase 	 123 

37 	Task 2, "Plan development stages," of the Prioritization and Planning Phase 125 

38 "Requirements Information" Page of the REPI Web Site 	  131 

39 "Send Messages" Page of the REPI Web Site 	  135 



LIST OF FIGURES 
(Continued) 

Figure Page 

40 "Project Members" Page of the REPI Web Site 	  140 

41 CGI Example 	  160 

42 HTML Lists Example 	  161 

43 HTML Table Example 	  162 

44 Netscape Frame Example Part 1 of 3 	  163 

45 Netscape Frame Example Part 2 of 3 	  164 

46 Netscape Frame Example Part 3 of 3 	  164 

47 HTML Form Example 	  166 

48 ESMTP Example 	  166 

49 IMAP4 States Example 	  

	

 	167 

50 IMAP4revl Example 	  168 

51 Java Inheritance Example 	  169 

52 Java Thread Example 	  171 

53 View of the Java Environment, Part 1 of 2 	  172 

54 View of the Java Environment, Part 2 of 2 	  173 

55 "Login Screen" on Various Platforms Using Different Browsers 	 174 

56 "Login Screen" of the REPI Web Site 	   	175 

57 HTML Source Code for "Login Screen" 	  178 

58 User's Main Menu Screen and Developer's Main Menu Screen 	 179 

xiv 



LIST OF FIGURES 
(Continued) 

Figure Page 

59 HTML Source Code for "User's Main Menu" 	  180 

60 HTML Source. Code for "User's Main Menu" Left Frame 	  182 

61 HTML Source Code for "User's Main Menu" Title Frame 	  183 

62 HTML Source Code for "User's Main Menu" Right Frame 	  185 

63 User's Fact Finding Menu Screen 	  186 

64 HTML Source Code for "User's Fact Finding Menu" Right Frame 	 189 

65 Five Tasks of the User's Fact Finding Phase 	  190 

66 Task 1 of the User's Gathering and Classification Phase 	  191 

67 HTML Source Code for Task 1 of User's Gathering and Classification Phase 197 

68 Task 2 of the User's Gathering and Classification Phase 	  197 

69 HTML Source Code for Task 2 of User's Gathering and Classification Phase 202 

70 Two Tasks of the User's Evaluation and Rationalization Phase 	  202 

71 Task 1 of the User's Prioritization and Planning Phase 	  203 

72 Three Tasks of the User's Integration and Validation Phase 	  204 

73 Four Tasks of the Developer's Fact Finding Phase 	  205 

74 Task 1 of the Developer's Gathering and Classification Phase 	  206 

75 Three Tasks of the Developer's Evaluation and Rationalization Phase 	 207 

76 Task 1 of the Developer's Prioritization and Planning Phase 	  208 

77 Task 2 of the Developer's Prioritization and Planning Phase 	  209 

xv 



LIST OF FIGURES 
(Continued) 

Figure 	 Page 

78 HTML Source Code for Task 2 of Developer's Prioritization and Planning 
Phase 	  212 

79 Task 3 of the Developer's Prioritization and Planning Phase 	  212 

80 	Task 1 of the Developer's Integration and Validation Phase 	  213 

81 	"Requirements Information" Page of the REPI Web Site Part 1 of 2 	 214 

82 "Requirements Information" Page of the REPI Web Site Part 2 of 2 	 225 

83 HTML Source Code for the "Requirements Information" Page 	 219 

84 	"Category Information" Page of the REPI Web Site 	  219 

85 	"User Information" Page of the REPI Web Site 	  220 

86 "Read Messages" Page of the REPI Web Site 	  221 

87 "Send Messages" Page of the REPI Web Site 	  222 

88 "What's New" Page of the REPI Web Site 	  223 

89 Five TODO Tasks of the REPI Web Site 	  224 

90 Help Pages for the REPI Web Site 	  225 

91 Error Message for the REPI Web Site 	  226 

92 "Logout Screen" of the REPI Web Site 	  227 

93 Style Sheet for the REPI Web Site    228 

94 JavaScript Source Code for the REPI Web Site 	  233 

xvi 



CHAPTER 1 

INTERNET TECHNOLOGIES 

The Internet is a global network of networks connecting very large number of users 

worldwide using a simple standard common addressing system and communications 

protocol. Many networks are part of the Internet, including federal networks, regional 

networks, educational networks and some foreign networks [RICHMOND 97]. The 

Federal Networking Council (FNC), in consultation with members of the Internet and 

intellectual property rights communities, provides this definition: 

"Internet" refers to the global information system that -- (i) is logically 
linked together by a globally unique address space based on the Internet 
Protocol (IP) or its subsequent extensions/follow-ons; (ii) is able to 
support communications using the Transmission Control Protocol/Internet 
Protocol (TCP/IP) suite or its subsequent extensions/follow-ons, and/or 
other IP-compatible protocols; and (iii) provides, uses or makes accessible, 
either publicly or privately, high level services layered on the 
communications and related infrastructure described herein [LEINER 97]. 

Some of the "founding fathers" of the Internet have written a brief history of the 

Internet where they say "the Internet is at once a world-wide broadcasting capability, a 

mechanism for information dissemination, and a medium for collaboration and 

interaction between individuals and their computers without regard for geographic 

location" [LEINER 97]. 

Intranet can be thought of as a local area network based on Internet technology. It 

uses the same technologies used in the Internet; but its servers are limited to connections 

inside a company's networks; in effect, a private Internet for a company. Intranets are 



2 

the replacement for a company's Local Area Network (LAN). Intranets provide the same 

functionality as a LAN, but they are easier and cheaper. The use of open Internet 

standards provides Intranet users with more choices, easier setup and maintenance, lower 

cost of application deployment and management, cross platform access to information 

and applications, easier access to information, and lower training costs [ORACLE 96]. 

Extranets are Intranets, from different companies, joined together using the Internet, for 

the purpose of better integration between close business partners. The underlying 

technologies of all these different types of networks are the same, at least at the 

application level. This thesis views, Internets, Intranets and Extranets as being the same 

for the purposes of the REPI web site implementation. 

With the growth of the Internet, the most likely question is "When will the Internet 

do this . . .?” and not "Can the Internet do this . . .?" Companies and people are using the 

Internet for many things, including uploading and downloading of newly developed 

software, gathering ideas and specifications for new software, or beta testing using 

selected clients or the general public. The Internet is many things to many people. In this 

thesis, the Internet is viewed as a large-scale, open, multi-vendor environment for 

distributed application development. The Internet can be used for all types of 

communications needs, between developers, clients and end-users, during the application 

development process. 

This chapter of the thesis describes the technologies involved in the Internet. 

Section 1.1 describes the World Wide Web's protocols and standards. Section 1.2 



3 

describes messaging protocols and standards used for email communications. Section 1.3 

describes the programming languages used for Internet application development. 

1.1 	Web Protocols and Standards 

The World Wide Web, also referred to as just the "web," is a huge collection of hypertext 

documents linked together. It is a completely distributed network of individual web sites 

and web pages, without any overall organization. Web sites are used by many people and 

organizations for many purposes. Large and small companies use their web sites as a 

virtual public relations office or as a virtual product showcase. Individual people and 

other organizations use web pages to publish information about themselves and their 

interests. Organizations are using the Internet as virtual offices and as a new platform of 

business applications that needs to be accessed from variety of locations and/or platforms. 

Figure 1: View of the Web. Source: Butterworth, Paul. "Web Access to the Core 
Business Infrastructure." Report MCS-0260-1. Forte Software Inc. September 1996. 



4 

Figure 1 shows an overview of the World Wide Web's technology. Web client 

software uses the HyperText Transport Protocol (HTTP) to transmit a request to the web 

server across the Internet. The web server software, also using HTTP, either returns a 

static HyperText Markup Language (HTML) document from its local disk or uses 

Common Gateway Interface (CGI) scripts to communicate with external applications 

such as database servers. This part of the chapter describes the protocols and standards of 

the World Wide Web. Section 1.1.1 describes the HyperText Transport Protocol. 

Section 1.1.2 describes Cookies, used for persistence state on the client side. Section 

1.1.3 describes the Common Gateway Interface. Section 1.1.4 describes the HyperText 

Markup Language. 

1.1.1 HyperText Transport Protocol 

HyperText Transport Protocol (HTTP) is a standard method for requesting hypertext 

documents on the web and responding to such requests between two computers on the 

Internet. The protocol uses a two-tier architecture with a server application, called the 

web server, sending the hypertext documents requested by the client application, 

generally called the web browser. This protocol is a stateless protocol, meaning that the 

server does not maintain any information about the client. This makes keeping track of 

user behavior on the web difficult [RICHMOND 97]. HI-IP is also a connectionless 

protocol. The implication of this is that for each document request, the client has to 

reconnect with the server. Since most of the web pages are composed of multiple items, 

such as image files, multiple connections are needed to retrieve a single web page. This 



5 

introduces more traffic between the client and the server; but this arrangement reduces  the 

resource requirements at the server end. 	The advantage of this stateless and 

connectionless protocol is that the server can provide service to more clients with fewer 

connections because the server does not have to maintain idle connections to the client 

while  the person is reading the contents of the web pages. 

HTTP uses Internet Media Types as an open and extensible data typing mechanism 

and it is also used for type negotiations. This feature of HTTP makes it possible for it to 

be used as a generic document transportation protocol, not limited to hypertext 

documents such as HTML web pages. This freedom to transmit data of any type is one of 

the most significant advantages of HTTP [RICHMOND 97]. 

1.1.1.1 Current Version 1.0: As with any other protocol, this protocol has message 

formats and valid commands and requests. The usual sequence of communication is for 

the client to request a document using a Uniform Resource Locator (URL). The server 

responds with the requested document or with an error message. After this exchange, the 

connection between the client and the server is broken. Figure 1 shows an overview of 

the communications involved in a web dialogue. 

The general format of a URL is: 

scheme://host.domain:port/path/filename#anchor [NCSA 97]. 

Where scheme represents the type of resource being accessed. The web pages are 

delivered by the HTTP server; but other resources such as local files, gopher, Wide Area 

Information Service (WAIS), File Transfer Protocol (FTP), news, and telnet can also be 



6 

accessed using a URL. The host.domain refers to the Internet Protocol (IP) address of the 

server for the resource scheme. The port refers to the communication port used by the 

server; each type of service generally has a default communication port. The 

/path/filename is a reference to the specific file being requested, using the standard UNIX 

style pathname conventions. The anchor section of the URL is used for web pages to 

refer to named sections of a long document. All parts of the URL, expect the 

host.domain part, are optional in today's web browsers. 

GET http://megahertz.njit.edu  HTTP/1.0 

HTTP/1.0 200 Document follows 
MIME-Version: 1.0 
Server: CERN/3.0 
Date: Monday, 21-Jul-97 11:26:48 GMT 
Content-Type: text/html 
Content-Length: 51039 
Last-Modified: Monday, 21-Jul-97 03:02:03 GMT 

<html> 
<head> 
<title>WWW HOME PAGE LISTING FOR megahertz.njit.edu</title> 
</head> 
<body> 

 
 
 

Figure 2: HTTP Dialogue Example 

An example of a dialogue between the client and the server is shown in Figure 2. 

The HTTP Request header consists of the request method, URL for the target file, and the 

protocol and version information. The example, in Figure 2, shows a GET method for the 

URL, using the HTTP version 1.0 protocol. As part of the response header, the server 

returns the HTTP version, a status code and status message. The status codes can be 

divided into five categories with broad meaning: Information status codes, Success status 



7 

codes, Redirection status codes, Client error status codes, and Server error status codes 

[HERRMANN 96]. The example, in Figure 2, shows a status code, 200, with the status 

message "Document follows." The status code 200 is a general success code used for 

positive acknowledgments; the usual status message for this code is "OK." The status 

message is followed by the current date and the HTTP server name and version 

information. The next two headers identify the type and size of the data being sent by the 

server, followed by the last modified date of that file. The actual contents of the file 

follow the header information. Figure 3 shows the event flows in a client/server 

connection. 

Figure 3: HTTP Event Flow Example. Source: Hellmann, Eric. Teach 
Yourself CGI Programming with Peri in a Week. Sams.net, Indianapolis. 
Indiana. 1996. 



8 

1.1.1.2 Next Version 1.1: Internet Engineering Task Force (IETF), working with World 

Wide Web Consortium (W3C), has created HTTP version 1.1, the newest version, as a 

proposed standard, documented in Request for Comment (RFC) 2068. The current 

version of the HTTP is no longer able to meet the demands of web users because of the 

continuous growth experienced recently. 

HTTP transactions are the biggest consumers of the available Internet bandwidth. 

Measurements have shown that the web traffic on the Internet affects all layers, from low 

level transport protocols to high level application protocols. It has also been observed 

that HTTP transactions have high computational overhead in parsing HTTP messages 

[NIELSEN 97]. The purpose of the new version is to fulfill the demand and at the same 

time preserve the simplistic design of the original version. The general improvements 

made in HTTP/1.1 are the results of re-factoring the elements of HTTP/1.0 into separate 

layers and modules to produce a cleaner design that can be implemented more easily, yet 

remain flexible. HTTP is a stateless protocol that requires a reconnection for each and 

every web page that is downloaded. This constant connection/disconnection causes a big 

overhead for the TCP layer of the Internet, which was designed for connections lasting 

more than few seconds (as is usually the case with HTTP request/response cycle). The 

next generation HTTP (HTTP-NG) divides up the connection between client and server 

into many different channels and multiple requests can be sent and received using one 

connection [RICHMOND 97]. Persistent connections and pipelining are thought to be 

solutions to the problems of overhead. But persistent connections and pipelining will not 

solve all the problems; ". . . the reason is that HTTP/1.1 is designed to limit TCP 



9 

overhead produced by HTTP/1.0 but not protocol overhead due to HTTP itself' 

[NIELSEN 97]. The protocol overhead of H HTTP itself is caused by verbose messages 

that are in human readable form instead of messages that are more efficient for the server 

to parse and process. The human readable format requires complicated parsers, thus 

increasing the CPU overhead for the protocol. 

Many limitations still exist in the new version, because of an expTicit design 

decision made to keep version 1.1 backward compatible with version 1.0. The caching 

model used in HTTP/1.1 has become very complex caused by maintaining backward 

compatibility with HTTP/1.0. The Protocol Extension Protocol (PEP) is one of the areas 

being worked on to create HTTP-NG. HTTP-NG bases its architecture on a distributed, 

object-oriented model, attempting to "break down the problem using layering and 

modularization simplifying the solution and reflecting current and near future usage of the 

web" [NIELSEN 97]. The PEP allows HTTP to be dynamically extended in such a way 

that applications that use PEP do not need agreement with the rest of the Internet. This 

allows extended and regular protocols to co-exist on the Internet. It allows applications to 

use the extensions without prior agreement; if an application does not support the 

extension the transaction can either be aborted or a minimum set of capabilities can be 

negotiated [NIELSEN 97]. 

1.1.2 Cookies 

Cookies are a method of providing state information in the stateless protocol of the web. 

Cookies allow the server to transmit information to the client. The client re-transmits the 



10 

saved cookies when the server requests them. Another way of looking at cookies is to 

think of them as environment variable that can be set by the server on the client machine 

[HERRMANN 96]. On the client side the cookie is given a name and a value, which is 

stored in a file by the client browser. On the server side this name/value pair is set to the 

HTTP-COOKIE environment variable after receiving the information in a HTTP request 

header. This provides the server with a method to keep track of users connecting to the 

server. "The addition of a simple, persistent, client-side state significantly extends the 

capabilities of web-based client/server applications" [NETSCAPE 97]. 

The web server sets cookies by sending the Set-Cookie header as part of the H P 

response header, in reply to a web page requested by the browser. The Set-Cookie header 

has a name identifying the cookie and a value for that cookie. It has an expiration date, 

which defines the valid life time for this cookie; but the browser or the user could delete 

the cookie before that date. As part of the header, path and domain information is also 

sent. This information restricts the web sites and web pages that can retrieve this cookie. 

It also has an optional secure attribute which prevents it from being transmitted on 

insecure connections. The web browser sends back cookie information as part of the 

HTTP response header using the Cookie header. The Cookie header contains a series of 

name-value pairs, listing all cookies that match the path and domain information for the 

current web server and web page path. Figure 4 shows the syntax for both the Set-Cookie 

header and the Cookie header. 



11 

Set-Cookie: NAME=VALUE; expires=DATE 
path=PATH; domain=DOMAIN_NAME; secure 

Cookie: NAME1=OPAQUE_STRING1; NAME2=OPAQUE_STRING2 

Figure 4: Cookie Example. Source: Persistent Client State: HTTP Cookies. 
http://home.netscape.com. Netscape Communications Corporation. 1997. 

Cookies have many limitations in them and these limitations are of two types. The 

first type of limitations is the restrictions imposed by the standard. These restrictions are: 

only 20 cookies are allowed per server; only 300 cookies are allowed per client; and each 

cookie has to be less than 4 Kb. [NETSCAPE 97]. The second type of limitations is the 

use of the cookies. One problem is that cookies can not be forced down the user's 

throats. That is, users can prevent cookies being saved in their browsers and they can be 

easily modified. The second problem is that cookies are difficult to use to store complex 

information. Any information that needs to be maintained has to be translated into a set 

of character strings. 

But even with the above limitations, cookies have been used in many ways and for 

many purposes. Some of its current uses are: to keep track of login and registration 

information, to maintain user preferences for a given web site, to keep track of previous 

visits. Some of the newer uses for cookies are in the area of on-line shopping. Cookies 

are used to maintain the contents of a user's "shopping bag." 

1.1.3 Common Gateway Interface 

One of the major limitations of regular HTML is that it does not allow users to interact 

with the web server. The Common Gateway Interface (COI) is the standard interface 



12 

between the web server and external applications running on that server or other servers. 

Or as Herrmann puts it, "CGI programming is writing applications that act as interface or 

gateway programs between the client browser, web server, and a traditional programming 

application" [HERRMANN 96]. CGI provides a method for creating dynamic web pages 

based on input provided by the user and output provided by external applications [CGI]. 

The web browser gathers the user's input using HTML forms and passes this 

information to the web server using HTTP. The web server runs a CGI script to process 

the user's input and sends the results back to the web browser. This allows the possibility 

of interaction between users and the web site. 

CGI provides the Server Side Includes (SSI) feature that enables web pages to 

contain dynamic content instead of the static content limitations of simply retrieving a 

pre-formatted HTML file from the server. Server Side Includes are special HTML-like 

commands that are executed by the server as it parses the HTML file before sending it as 

part of the HTTP response [HERRMANN 96]. The output from SSI commands replaces 

the SSI command call text in the HTML file; in effect the results of the commands are 

included as part of the web page. There are five types of SSI commands: config, echo, 

exec, fsize,flastmod, and include. Of these the exec command and the include command 

are the most powerful. The exec command allows the CGI programmer to execute any 

program on the server and merge its output into the web page. The include command 

allows the inclusion of other HTML files providing the web designer with the ability to 

use standard web page design elements easily. For example, a standard signature and 

copyright element could easily be attached to all the web pages of a site by using the 



13 

include command at the end of all the pages. Without this feature the designer would be 

forced to maintain these standard elements in each of the pages instead of maintaining it 

in one standard template. Appendix A.1 shows an example of some of the SSI 

commands available in CGI. In this figure the top part shows the main file which uses 

the config, echo, fsize, flastmod, and the include commands. The bottom part shows the 

target for the include command, a file that has the copyright information and a standard 

signature which uses the exec command to display a graphic signature. 

One of the major problems with CGI is that of security [HERRMANN 96]. CGI 

has to capture information from the user and send this information to the server for 

processing. CGI exposes the captured information in the URL or in the hidden fields 

inside an HTML form. The information that is sent to the script can be easily edited 

allowing the possibility of intentionally corrupting the system. The input data exposed in 

a URL can easily be modified by entering the changed URL directly in the location field 

of a web browser. The hidden fields inside an HTML form can easily be edited by saving 

the HTML file and then reloading an edited version of the web page. The problem with 

this is that any input that has not been properly parsed and filtered could gain access to 

the server by executing CGI scripts or other programs on the server. Server Side Includes 

also impose several problems. The server has to parse the HTML file, searching for SSI 

commands. After finding these commands, they have to be executed and their output 

merged into the HTML file. Since the HTML files can easily be edited, the SSI exec 

command can be used to execute any program on the server. This imposes an obvious 

security risk; but the web server software provides options to control the execution of SSI 



14 

commands. The second major problem is that CGI scripts are slow. CGI scripts are 

interpreted and run on the server line by line, so long or complicated scrtipts case a 

performance problem and they do not scale well as the number of requests increases. 

1.1.4 HyperText Markup Language 

HyperText Markup Language (HTML) is the language of the web pages. HTML, a 

subset of the Standard Generalized Markup Language (SGML), provides a standardized 

method for formatting the contents of web pages. It is a collection of platform-

independent style codes, indicated by markup tags, that defines the various components of 

a hypertext document [NCSA 97]. 

HTML documents are plain text files that are interpreted by web browsers and 

displayed as formatted web pages. The HTML tags direct the browser's efforts in 

formatting the document. An HTML file contains a set of elements that can contain plain 

text, other elements or both. An element is made up of two tags paired together. The 

starting tag, in the general form of <tagname [attributes]>, denotes the beginning of an 

element and the ending tag, in the form of </tagname>, denotes the ending of an element 

Generally there are two types of markup tags; one set of tags defines the 

display characteristics of the document and another set defines the structure of the document and 

its interconnections to other documents on the web. The display related tags can be 

divided into character level tags and block level tags. For the character formatting tags, 

there are two types of tags, logical formatting style and physical formatting style. The 

logical formatting style provides a meaningful description of intent; for example, the 



15 

<strong> tag is a means of drawing attention to the text inside this tag. Web browsers 

could display the text using a bold style, a bigger size font or maybe even a different 

color. But a physical formatting style, such as <b>, denotes the actual appearance of the 

text. A minimal HTML document is shown in Figure 5. 

<html> 
<head> 
<TITLE>A Simple HTML Example</TITLE> 
</head> 
<body> 
<H1>HTML is Easy To Learn</H1> 
<P> Welcome to the world of HTML. 

This is the first paragraph. 
While short it is still a paragraph!</P> 

<P> And this is the second paragraph.</P> 
</body> 
</html> 

Figure 5: HTML Example. Source: A Beginner's Guide to HTML. 
http://www .ncsa.uiuc.edu/GeneraVInternet/WWW/HTMLPrimerAll.html. The National 
Center for Supercomputing Applications. 1997. 

HTML tags generally are not case sensitive. So in the example above, Figure 5, 

tags that are in uppercase letters are examples of tags that define the display 

characteristics of the web page and tags that are in lowercase letters are examples of tags 

that define the structure of the web page. 

1.1.4.1 Current Version 3.2: This sub-section describes the current version of HTML, 

version 3.2, which was finalized at the beginning of this year. This sub-section is 

organized into three parts. The first part contains text and graphics formatting 

information for the current version. The second part contains information about the lists, 



16 

tables and hypertext link capabilities of the current version. The last part describes 

advanced formatting features and capabilities, such as, frames, forms and image maps. 

1.1.4.1.1 Text and Graphics Formatting: In the area of text formatting, there have been 

some improvements over the previous versions. HTML 3.2 provides tags for basic 

physical text formatting options, such as, bold (<b>), italics (<1>), type writer text 

(<tt>), underline (<u>), strikethrough (<strike>), subscript (<sub>), superscript 

(<sup>), smaller size (<small>), and bigger size texts (<big>). It also provides the 

logical text formatting options, such as, citation (<cite>), code (<code>), emphasis 

(<em>), keyboard entry (<kbd>), sample (<samp>), strong (<strong>), and variable 

(<var>). One of the biggest change in the area of text formatting is the addition of the 

<font> tag and the <basefont> tag [HONEYCUTT 97]. The <font> tag specifies the 

font type to be used for a given text and the <basefont> tag specifies the general font type 

to be used throughout the HTML file. In previous versions this was left up to the browser 

to implement; but now in HTML 3.2, the web page designer has control over the font 

used to display the text in their pages. But the major limitation with this method is that if 

the specified font is not available at the client location, it is still up to the browser to find 

a replacement font. A minor solution to this problem is the face attribute of the <font> 

tag; this attribute allows the author to specify alternate fonts to use. An example of the 

<font> tag is shown below; the syntax for <basefont> is also similar to this. 

<font face="Arial", "Helvetica", "Times" size=12 color=blue> 



17 

In this example, the designer's primary choice for the font type is "Arial." The second 

and third choices are "Helvetica" and "Times," respectively. The font size and the text 

color are also specified in the <font> tag. 

In the area of graphic formatting, little has changed from previous versions. Like 

the previous version, HTML 3.2 provides the <img> tag to display inline images. An 

example for this tag is shown below: 

<img src="sample_l.gif" align=bottom align=left 
vspace=20 hspace=20> 

<img src="sample_2.gif" width=320 height=240 border=2> 

In the first example, the "sample_1.gif" image is displayed, aligned to the bottom left 

relative to the surrounding text and a space of 20 pixels is given between the image and 

the surrounding text, both vertically and horizontally. In the second example, the 

"sample_2.gif" image is displayed with a 2 pixel border around it, and hints for the 

suggested size of the image are given in pixels. 

1.1.4.1.2 Lists, Tables and Links: HTML 3.2 has made some changes in its support for 

lists, over previous versions. The lists created on web pages can come in several forms: 

numbered, bulleted, menu, directory, and definition lists. The major changes to HTML 

3.2 in the area of lists, over previous versions, are the addition of several attributes to the 

<01> tag and the <ul> tag [HONEYCUTT 97]. Additional attributes, such as, compact, 

type, and start allows control over the type of numbers used in an ordered list. Addition 

of the <type> attribute to the <ul> tag provides manual control over the type of bullets 

used in unordered lists. One minor change in the area of lists is the addition of the 



18 

compact attribute to the <dl> tag, which allows the creation of definition lists using a 

smaller font size. 

The <ol> tag is used to create an ordered list and the <ul> tag is used to create an 

unordered list. The numbered list is a type of ordered list and the bulleted list is a type of 

unordered list. The menu lists and directory lists are similar to the unordered lists, the 

<menu> tag and the <dir> tag are primarily used for identification purposes. The 

definition list type, also called the glossary list, allows the creation of dictionary type 

listing with indented definition paragraphs. Examples for all three types of lists are 

shown in Appendix B.1. 

The need for tables has existed almost since the beginning of the World Wide Web. 

Tables provide a natural method to display information such as comparative analysis and 

other tabular data. Tables can also be used to invisibly divide the web page into different 

sections for layout purposes. One possible use for this method would be in web pages 

that attempt to simulate print publications, as in multi-column newspaper format. HTML 

3.2 finally provides official support for the creation of tables using HTML tags; but 

Netscape and Microsoft extensions have long been used to create tables on the web 

[HONEYCUTT 97]. The HTML 3.2 <table> tag along with the <tr>, <td>, <th>, and 

<caption> tags allows the creation of a table composed of rows and columns. Attributes 

such as border, align, rowspan, colspan, width, height, cellpadding, cellspacing, bgcolor, 

bordercolor, and valign, provide additional options to control the display characteristics 

of the table. An example of a table, with all these tags and attributes, is shown in 

Appendix B.2. 



19 

Links are the most important feature of the World Wide Web. The HTML anchor 

tag, <a>, is used to encode hypertext links in web pages. There have been no changes in 

the anchor tag, since the previous version of HTML. An example of a hypertext link 

using the anchor tag is shown below. The URL following the href attribute can be 

specified using either an absolute reference or a relative reference. The <base> tag can 

be used to fix the base, for relative references. A named bookmark can also be used to 

refer to subsections of an HTML document. An anchor tag example is shown below: 

<a href=http://megahertz.njit.edu/-dnp3128/Thesis/LOGIN.HTM> 
REPI Web Site 

</a> 

1.1.4.1.3 Frames, Forms, and Imagemaps: The use of frames provides the web page 

designer with a flexibility that would not be possible by any other means. Even though 

frames have been supported since Netscape Navigator version 2.0, HTML 3.2 still does 

not support the creation of frames as a standard [HONEYCUTT 97]. But since the top 

two web browsers Netscape Navigator and Microsoft Internet Explorer, with a combined 

market share of over 90%, support frames and since the use of frames has become quite 

common on the World Wide Web, this section describes the <frame> tag and its 

associated tags and attributes. 

The <frameset> tag creates independently controllable sub-windows, called 

frames, within the web browser's main window on the client machine [HONEYCUTT 

97]. These frames provide the web designer with the ability to organize the web site 

more clearly and present navigation options in an easier to use manner. Each frame is in 

essence an independent mini-browser; in-fact an option in the <frame> tag provides for 



20 

the launching of another browser, completely independent from the previous instance of 

the browser. But one frame can control another frame within the same browser, including 

the ability to load new HTML files into another frame, or to create and destroy more 

frames within other frames. The major problem with the use of frames is that it does not 

degrade well in browsers that don not support Netscape's <frame> extension tag. At 

least the tables are displayed, although in a very unattractive manner, in browsers such as 

Lynx; but the frames can not even be displayed in such text based browsers. But as a 

solution to this problem, the <noframes> tag is provided, which allows the creation of 

content for text based browsers. 

Frames have to be created using two sets of HTML files. The first set contains only 

one file, the frame creating file, also called the frame document. The second set contains 

one file for each frame created in the frame document. The frame creating file uses the 

<frameset> tag to create the frames and uses the <frame> tag to point to the HTML files 

that contain the contents of individual frames. An example of the frame document, 

"frames.htm," is shown in Appendix B.3, first figure. The <frameset> tag uses the rows 

and the cols attributes to divide the main window into four frames. First the browser 

window is divided into two frames, using the cols attribute, the left frame occupying 

1/5th of the width and the right frame occupying 4/5th of the width. Next, the left frame 

is divided into two frames, using the rows attribute; the top frame occupies 10% of the 

height and the bottom frame occupies the remaining height of the browser window. Then 

the right frame is divided into two frames, again using the rows attribute; the top frame 

occupies 10% of the height and the bottom frame occupies the remaining height of the 



21 

browser window. Attributes for the <frameset> tag, such as, frameborder, border, and 

bordercolor allow control over how the borders between the frames are displayed. Using 

the name attribute, the top left frame is named "LOGO" and using the src attribute, its 

contents are linked to the "logo.htm" file. The top right frame is named "HEADER" and 

its contents are in the "header.htm" file. The bottom left frame is named "NAV_BAR" 

and its contents are in the "nav_bar.htm" file. The bottom right frame is named "MAIN" 

and its contents are in the "main.htm" file. Support for text based browsers is provided, 

using the <noframes> tag, by listing and providing a link to the HTML files that make up 

individual frames. 

The second set of files is shown in the second and third figures of Appendix B.3. 

Each file, in the second figure of Appendix B.3, is separated using the HTML comment 

tags (<-- and -->). The first file, "logo.htm," simply loads an image file as the logo. The 

second file, "header.htm," displays a title for this page. The third file, "nav_bar.htm" 

provides a set of links to open the individual frames. The second figure of Appendix B.3 

shows the fourth file, "main.htm," which provides information about this web page. The 

links in the navigation bar frame show several methods of controlling an HTML page 

with multiple frames in it. The "Logo" link clears the current browser window and 

displays the "logo.htm" file. The "Header" link destroys the right two frames and 

displays the "header.htm" file. The "Navigation Bar" link shows the effect of targeted 

frame loading; it displays a navigation menu in the bottom right frame. The "Main" link 

opens up another instance of the browser to display the "main.htm" file. 



22 

Forms are the main method of gathering user input and providing interaction 

between the web user and the web site. Without forms, the World Wide Web can only be 

used as a publishing system instead of as a "platform" for application development. 

HTML 3.2 provides increased support for forms when compared with previous versions. 

The <form> tag is used to create an input form on the web page and to provide 

connections to the server side programs to process the entered input. Additional tags, 

such as <textarea>, <select>, and <input> allow the creation of various types of data 

fields on the form. The <textarea> tag provides for a free-form text entry field. The 

<select> tag provides for the creation of a select scroll box or the drop-down list. The 

<input> tag can be used to create various types of data controls using the type attribute. 

Forms support is one of the first steps in expanding the role of HTML and the 

World Wide Web. HTML can use forms to create interactive web pages and through 

interaction World Wide Web can be used as more than just a publishing system. But 

forms have several limitations in them. A major limitation is that HTML forms have no 

intelligence of their own. All forms data have to be sent to the server for even the 

simplest of error checking, such as checking to see if all the data fields are filled in. A 

simple addition of a "required" attribute to a data field would save one trip to the server 

in many cases. Another limitation is that HTML forms are very primitive compared to 

the features and control available in a graphical platform such as Microsoft Windows. 

Forms are not displayed consistently across platforms because the browser for a given 

graphical platform uses the native graphical widgets and controls to display the HTML 



23 

form widgets and controls. So the "look and feel" of the HTML form can not be 

maintained across platforms. 

Appendix B.4 shows an example of a form with various data fields and controls in 

it. The example form has four text input fields, one password field, two check box 

controls, a group of radio option controls with three buttons in the group, a multi-select 

scroll box, a drop down list box, and a text area control. It also has a submit command 

button and a reset command button. The submit command button uses the post method to 

send the form data to the server, where the "form.cgi" script will be executed to process 

the forms data. The reset command button will clear all the data fields and re-display the 

form. 

Imagemaps are ordinary graphic images, on which different areas can be linked to 

different resources on the Internet. Imagemaps can be used as a graphical menu, a more 

attractive alternative to a simple text based menu. Imagemaps are the natural choice for 

applications with links that have a spatial relation to each other [HONEYCUTT 97]. An 

example would be to use a map of the world or a country to provide links to regional 

information. The major disadvantage is that imagemaps are limited to graphical browsers 

and even then image load can be turned off by users using low bandwidth connections. 

Imagemaps can be created on the server side or on the client side. HTML 3.2 

improves the use of imagemaps by providing official support for client-side imagemaps. 

The basic difference is the location of the mapping coordinates for the hot spots. A hot 

spot is a well-defined area on the imagemap which is linked to a URL. In server-side 

imagemaps, the browser sends the coordinates of the mouse click to the server. The 



24 

server then uses a map file to look up the target address and retrieves the target, if the 

clicked coordinates are inside a hotspot. The major limitation with this method is that a 

trip to the server is needed just to find the target location. An improvement on this is that 

the hot spot area coordinates can be included directly in the HTML file containing an 

image map, by using the <MAP> and <AREA> tags along with the usemap attribute of 

the <IMG> tag. This method of imagemaps are called client-side imagemaps 

[HERRMANN 96]. In the client-side imagemaps, the client browser uses the map 

coordinates from the <AREA> tag to find the target URL if the clicked coordinates are 

inside a hotspot. The client then sends a HTTP request header using the target URL. 

Client side imagemaps and server side imagemaps both have advantages and 

disadvantages. Browsers can use client side imagemaps to provide immediate feedback to 

the user, as the user moves the mouse cursor over an imagemap. For example, the target 

URL can be displayed on the status line of the browser as the mouse cursor moves from 

one area on the map to another area. The disadvantage is that map area coordinates have 

to be maintained in the HTML file. Server side imagemaps use a separate map file to 

store the map area coordinates, but each click on an imagemap requires a trip to the 

server. 

<html> 
<head><title>HTML <em>Imagemap</em> Example</title></head> 
<body><map name=menumap> 
<area shape=rect coords="0,0,100,100" href=rectangle.htm> 
<area shape=circle coords="110,110,5" href=circle.htm> 
<area shape=poly coords="150,150,200,200" href=polygon.htm> 
<area shape=default href=noref></map> 
<center><img src="menumap.gif" usemap=#menumap></center> 
</body> 
</html> 

Figure 6: HTML Imagemap Example 



25 

An example of a client-side imagemap is shown in Figure 6. In this imagemap, 

four hot spots are defined. The first area defined is a rectangle, from coordinates "0,0" to 

"100,100," which points to the "rectangle.htm" file. The second area is a circle, with a 

radius of 5 centered at "110,110," which points to the "circle.htm" file. The last defined 

area is a polygon, from coordinates "150,150" to "200,200," which points to the 

"polygon.htm" file. If the clicked coordinates are outside these areas, a default area is 

defined that does not refer to any location. 

1.1.4.2 HTML 4.0: HTML was originally designed as a standard for representing text 

and images on web pages. But with the increased popularity and availability of the World 

Wide Web, HTML is increasingly being used for more powerful applications. HTML 

and web pages created from them are becoming a universal platform-independent client 

interface, used as a "universal desktop" for a broad range of applications running on the 

Internet application servers [NETSCAPE 96]. Netscape's white paper on their vision for 

future network centric applications states that HTML could be thought of as a universal 

"resource definition language," similar to resource files found in traditional programming 

environments. "HTML truly blends content and applications until the two become 

indistinguishable - in effect, the content is the application" [NETSCAPE 96]. To support 

this increased responsibility, HTML has to evolve to provide the necessary functionality. 

In the past the World Wide Web Consortium (W3C), an organization that directs 

the future of the web, had adapted many of the advances made by Netscape as standard 

tags in their latter versions of the HTML standard. The support for forms is one of the 



26 

examples for past versions of the HTML standard, and the support for tables in HTML 

version 3.2 is a recent example. But with the recent popularity of Microsoft Internet 

Explorer, Microsoft has gained enough market share to make strong advances of their 

own. Now W3C's role has changed from merely adopting advances made by Netscape, 

into acting as an arbitrator between the advances made by Netscape and Microsoft 

[ZGODZINSKI 97]. 

For the next version of the HTML standard, HTML 4.0, Dynamic HTML represents 

the advances made by Netscape and Microsoft that have to be adapted as standard. 

HTML has been evolving in two general areas: increased power and more flexibility. For 

the past versions of the standard, forms, imagemaps, and tables represented the increase 

in power and flexibility. For the next version, Dynamic HTML represents the increase in 

power and style sheets represent the increase in flexibility. The general direction and the 

basic idea behind HTML is to separate the contents of a page from its presentation style. 

W3C's idea is to stop using HTML tags to define layout and presentation issues. HTML 

has had two types of character formatting, logical and physical, since its earliest version. 

The separation of logical and physical styles was an early effort at separating the contents 

and the presentation style. The World Wide Web Consortium's Cascading Style Sheets 

(CSS) specification is the recent step taken in separating content from presentation. 

1.1.4.2.1 Cascading Style Sheets: Cascading Style Sheets is a mechanism to attach 

styles to HTML elements such as <body>, <P>, etc. CSS is set of rules that consists of 

an HTML selector and style declarations. A simple CSS rule is shown here: Hi (color: 



27 

blue]. In this example, the HTML selector is the level one heading tag, <H1 >, and the 

style declaration is the value "blue" set to the color attribute of the <H1> tag. After this 

style has been defined, all level one headings in this HTML file will be displayed in blue 

color. 

<html> 
<head> 

<title>Title</title> 
<link rel=stylesheet type="text/css" 

href="http://style.com/cool.css" title="Cool"> 
<style type="text/css"› 

@import url(http://style.com/basic);  
Hi {color: blue} 

</style> 
</head> 
<body> 

<H1>Headline is blue</H1> 
<P STYLE="color: green"> 

While the paragraph is green. 
</p> 

</body> 
</html> 

Figure 7: CSS Example Part 1 of 2. Source: Wium Lie, Hakon and Bos, Bert. 
Cascading Style Sheets, level 1. W3C Recommendation REC-CSS1-961217. 

http://www.w3.org/pub/WWW/TR/REC-CSS/. World Wide Web Consortium. 1996. 

This simple idea of attaching styles to HTML elements can be extended in many 

forms. Style sheets come in three varieties: linked style sheets, embedded style sheets, 

and inline style sheets. The different possible methods of using CSS are shown in Figure 

7. In this example, the "Cool" style is linked from a separate style sheet, stored at a 

location referred to by the URL specified in the href attribute. The embedded type of 

style sheets is shown in two examples; the imported example and the attached example. 

The "basic" style sheet is imported from the given URL. A style declaration is attached 



28 

to the <HI> tag. The inline type of style sheets is shown as the <P> tag is modified by 

adding the CSS style attribute. 

Netscape's version of Cascading Style Sheets is implemented using JavaScript and 

the proprietary <layer> tag. JavaScript is described in more detail in Section 1.3.2. 

Netscape's version of CSS is called by various names: JavaScript Style Sheets (JSSS), 

JavaScript Accessible Style Sheets (JASS), JavaScript based Style Sheets, and Dynamic 

Style Sheets. JavaScript Style Sheets technology is a non-standard method not approved 

by the W3C. Since JSSS is incompatible with W3C's CSS and it is at odds with the 

future of HTML and other web publishing technologies, it is not focused on too much. 

<Style type="text/css"> 
P 	{ color: blue, font: italic; text-align: center) 

</style> 

<style type="text/css"> 
.IMPORTANT { color: red; text-decoration: underline; ) 

</style> 

class=IMPORTANT> 
An example of the important text, which will be 
displayed using a red underlined characters. 

</P> 

Figure 8: CSS Example Part 2 of 2. Source: Spelman, Jennifer and Rein, Lisa. "CSS or 
JSS: Which will better suit your needs?" 
http://www.netscapeworld.com/netscapeworld/nw-07-1997/nw-07-css.html. 
NetscapeWorld. 1997. 

Examples of CSS and JSSS notations for style definition and class definition are 

shown in Figures 8 and 9, respectively. Both examples define a similar style for the 

HTML tag <P> and create a logical style class called "IMPORTANT" with a set of 

display properties. An example of how to use the logical style in an HTML file is also 



29 

shown in Figure 8. As can be seen from these examples CSS and JSSS are more similar 

than they are different. 

<Style type="text/javascript"> 
tags.P.color = "blue"; 
tags.P.fontStyle = "italic"; 
tags.P.lineHeight = "1.5"; 
tags.textDecoration = "capitalize"; 
tags.textAlign = "center"; 

</style> 

<style type="text/javascript"> 
classes. IMPORTANT.all.color = "red" 
classes.IMPORTANT.all.textDecoration = "underline" 

</style> 

<P class=IMPORTANT> 
An example of the important text, which will be 
displayed using a red underlined characters. </P> 

Figure 9: JSSS Example. Source: Spelman, Jennifer and Rein, Lisa. "CSS or JSS: 
Which will better suit your needs?" 
http://www.netscapeworld.com/netscapeworld/nw-07- I 997/nw-07-css.html. NetscapeWorld. 1997. 

There are many advantages in using CSS to define layout and presentation instead 

of using HTML tags for those purposes. The separation of content from presentation 

provides the key benefit of cross-platform uniformity. Style sheets can be used at 

platform level to get an exact match across platforms, and HTML files can be used as just 

a container for the document's contents including scripts. 

The second major advantage is that Cascading Style Sheets are designed to 

gracefully degrade [SPELMAN 97]. CSS uses a hierarchy of formatting levels. At the 

highest level, global style sheets are used to define a consistent "look and feel" for the 

whole web site. At the next lower level individual style sheets can be used, linked to 

either a small subset of pages or even individual pages. At an even lower level, CSS 



30 

formatting attributes can be used inside individual HTML tags. At the lowest level, 

individual users can use their own style sheets to define their custom "look and feel." 

Another way of looking at this same advantage is to think of it as providing inheritance 

and aggregation control for formatting HTML elements. That is, a generic style can be 

defined at the <body> tag level and all tags inside the <body> tag inherit the style 

defined at the <body> level [SPELMAN 97]. 

CSS also provides support for people with disabilities. For example, a visually 

impaired user can use customized style sheets that use audio to "display" the contents of a 

web page stored in a generic HTML file. Other forms of disabilities can be overcome by 

using different types of style sheets to "display" the contents in a manner that is 

accessible to those users. 

"Another advantage is that separating content from presentation allows authors to 

be authors and designers to be designers" [REIN 97]. A content creator can create the 

web page's contents and a designer can design the web pages without interaction or 

dependencies between each other. 

W3C's draft on Positioning using Cascading Style Sheets (CSS-P) provides a 

superset of functionality over the <layer> positioning technique and it also provides the 

flexibility, power and ease of use provided by CSS [REIN 97]. For example, the CSS-P 

notation for positioning items is shown in Figure 10 with the script code to dynamically 

change its properties. 



31 

<img name="image_name" style="position: absolute; top:10px; 
left:25px" src="css_p.gif"› 

document.images["image_name"].style.top = "15px" 
document.images["image_name"].style.left = "30px" 
document.images["image_name"].src = "2nd_img.gif" 

Figure 10: CSS-P Example 

But Netscape's notation for the same positioning requires the use of <layer> tag to 

surround the <img> tag. An example for the <layer> notation is given in Figure 11 with 

the JavaScript code to dynamically change its properties. This not only creates extra 

unnecessary lines, but its usage for manipulation is also unnatural as can be seen from 

mixed thinking required for manipulating the properties of <layer> and its associated 

<img>. 

<layer top=10 left=25 name="layer_name"> 
<img src="layer.gif" name="image_name"> 

</layer> 
document. layers ["layer_name"] . top = 15 
document. layers ["layer_name"] . left = 30 
document. images ["image_name"].src = "2nd_img.gif" 

Figure 11: JASS Example 

CSS-P's other advantage is that it is fully compatible with the CSS concept of 

linked style sheets and hierarchical formatting control. As an example, the common need 

to position a company's logo consistently on all the pages in a web site, is used to 

illustrate the disadvantages of the Netscape's technology in comparison with W3C's 

CSS-P technology. Using Netscape's <layer> notation, every page on the web site 

requires an extra set of tags and specification to position the logo. This creates 



32 

maintenance problems in any web site that has more than a few pages. Using W3C's 

approach one style sheet can be used to define the logo's position and other 

characteristics. Every page on the web site uses this style sheet to position the company's 

logo on that web page. This method requires maintenance on only one file, the style sheet 

[REIN 97]. Another limitation of the Netscape method is that the <layer> tag only 

supports the use of pixels and percentages when positioning HTML elements. CSS and 

CSS-P supports many other methods for representing positions, including pixels, 

percentages, points, ems, etc. Another limitation of the Netscape's JSSS is that, as the 

name suggests, it requires JavaScript; but CSS can be used with any scripting language 

[SPELMAN 97]. 

Taking these issues into account, Spelman and Rein wrote "JSSS is harder to use 

than CSS, but offers a superset of capabilities," because of the power of JavaScript 

[SPELMAN 97]. Their article comparing the pros and cons of CSS vs. JSSS concludes 

that CSS should be used unless the extra dynamic capability is needed at the cost of extra 

work and loss of compatibility. 

1.1.4.2.2 Dynamic HTML: Today's HTML based web pages are static and non-

interactive by themselves. Additional support such as CGI programming or Java 

programming is needed to dynamically change the contents of web pages or to provide 

any level of interaction for the user. Both methods require a round trip to the web server 

before the contents of the page can be changed. This method of changing the page's 

contents or providing interaction is not only less responsive, it also increases network 



33 

traffic and server load. The answer to these problems is to provide more control of the 

HTML web page to the browsers allowing them to make changes to the web page without 

requiring a round trip to the server. "Dynamic HTML adds richer, more engaging user 

interfaces to the HTML presentation language, while also greatly reducing the workload 

on networks and servers" [MICROSOFT 97a]. 

Netscape uses JASS, layers, and dynamic fonts to provide the functionality of 

Dynamic HTML. JASS allows the creation of style sheets using JavaScript. But JASS 

only provides dynamic abilities while the browser is parsing and rendering a web page. 

Once the web page has been loaded, it can not be altered using JASS. Layers technology 

allows web designers to position page elements using the <layer> and <ilayer> tags. 

But this technology combines the presentation of a page to its contents; this is 

incompatible with W3C CSS which separates the presentation of the page from its 

contents. But according to Netscape, layers technology builds on existing standards by 

adding dynamic extensions, with a tag, to existing HTML scripts [ZGODZINSKI 97]. 

Microsoft's version of the Dynamic HTML provides an object model for the web 

page [MICROSOFT 97a]. The web page becomes an object that can be manipulated 

using scripts or programs. It also includes multimedia and database features. Database 

features allow easier creation of dynamic forms for applications such as master-detail 

order entry. In applications such as these, sorting or recalculations can be applied without 

a trip to the server. Multimedia features allow movements of graphics in 2 dimensional 

plane or in the 3 dimensional space. 



34 

Dynamic HTML is compatible with the W3C CSS specification, which makes it 

compatible with current browsers and existing HTML pages. The Dynamic HTML 

Object Model does not add new tags to HTML; it makes existing tags, attributes, and 

CSS attributes programmable using any type of scripts, controls or applets [CLUTS 97]. 

Dynamic HTML provides access to all the elements on the page, exposing their 

properties, methods, and events. An example of this is shown in Figure 12. In this 

example, the level one heading tag has been extended with two events, "onmouseover" 

and "onmouseout," and a style sheet has been added to the page. This example changes 

the level one heading into a red color when the mouse cursor moves over the heading text 

and changes it to blue color when the mouse cursor moves away from the heading text. 

<style> 
.redText {color:Red) 
.blueText (color:Blue) 

</style> 

<H1> 
onmouseover = "this.className = 'redText' " 
onmouseout = "this.className = 'blueText' " 

Make this text red 
</H1> 

Figure 12: Dynamic HTML Example. Source: Cluts, Nancy Winnick. The Dynamic 
HTML Object Model. http://www.microsoft.com/intdev/ie4/omdoc-f.htm. Microsoft 
Corporation. April 1997. 

Microsoft has published a report that compares Netscape's version of Dynamic 

HTML with its own version [MICROSOFT 97b]. In general this report, claims that 

Microsoft's version is more compatible with W3C specifications and that it provides 

greater control and flexibility for web page designers. More specifically, this report says 



35 

that Microsoft's Dynamic HTML has a more comprehensive object model exposing more 

elements on a web page that can be programmed with more language options than 

Netscape's Dynamic HTML. Microsoft's Dynamic HTML has the ability to be changed 

after load time, whereas Netscape's version can only be changed at or before load time. 

Microsoft's version provides more control in positioning page elements and allows full 

animation of those elements. Microsoft's Dynamic HTML allows data binding from 

different sources whereas Netscape does not provide any database features in its Dynamic 

HTML. Netscape uses Java multimedia classes to provide multimedia support, Microsoft 

uses HTML and scripts to provide the same support. Microsoft claims that their Dynamic 

HTML provides an easier method to make pages interactive and that its technology is 

based on open standards. 

1.2 	Messaging Protocols and Standards 

One of the earliest applications on the Internet was the electronic mail, which provided 

the ability for people to exchange messages between one computer and another computer. 

These electronic messages are exchanged between computers using several protocols, 

such as Simple Mail Transport Protocol (SMTP), Post Office Protocol (POP), Internet 

Mail Access Protocol (IMAP). Until recently these electronic messages, or email as it is 

commonly called, were limited to text only messages without any formatting attributes 

other than spaces and tabs. But now email clients provide the ability to send formatted 

messages using HTML. Besides formatted text messages, email can now include just 



36 

about any type of content using the Internet Media Type standard, formerly called 

Multipurpose Internet Mail Extensions (MIME). 

This part of the chapter first describes the mail access paradigms. After that, SMTP 

is described, which is a protocol for sending email messages on the Internet. Next the 

POP and IMAP protocols are described and compared. These two protocols provide for 

the ability to remotely access email from client machines. Finally the Internet Media 

Type standard is described, which provides a standard method for describing an email 

message's contents. 

A client machine on the Internet has to connect to a mail server to access the user's 

email messages. There are three mail access paradigms: Off-line, Disconnected, and On-

line [GRAY 954 In "off-line" mode, the client software completely downloads the 

contents of a mailbox and removes it from the server. The user is then allowed to read 

and manipulate the messages and folders on the client side using local storage. Any 

changes made on the client side are not reflected on the server side. The major 

disadvantage for this mode is that it does not give access to a user's messages from more 

than one client machine. If a user accesses email from more than one client using the 

"off-line" method then some of the messages will be stored in one computer and other 

messages will be stored in other computers. "Disconnected" mode and "on-line" mode 

provide different levels of support for this common situation, where access to the 

common mailbox is needed from more than one location. In "disconnected" mode the 

client software connects, downloads the contents and disconnects. The messages are still 

left intact on the server. After the user reads and manipulates the messages on the client 



37 

side using local storage, the client software re-connects to the server and updates the 

server's state. This provides for people who access their email from different computers. 

In "on-line" mode, the client software is in continuous contact with the server and any 

changes made to the messages or the folders happen directly on the server. This also 

supports people who want location independent access to their email; but this mode's 

extra cost is in its need for a continuous connection to the server. 

In summary, the "off-line" mode provides on-demand access to a single client while 

the "on-line" mode provides access to multiple clients. "Off-line" mode minimizes 

connect time and server requirements; while "on-line" mode needs longer connect time, 

bigger server storage and more processing power. "On-line" mode does not maintain any 

state information on the client side, which makes it attractive for diskless clients or for 

"public" client machines such as computer labs. "On-line" mode also provides for the 

possibility of shared mailboxes [GRAY 95b]. 

1.2.1 Simple Mail Transfer Protocol 

Simple Mail Transfer Protocol (SMTP), as the name suggests, is simply meant for 

transferring mail from one computer to another computer. For SMTP to reliably and 

efficiently transfer the electronic mail, a transmission subsystem providing a reliable 

ordered data stream channel is needed. SMTP is not dependent on any particular 

transmission protocols. SMTP can work across transport service environments by using a 

common inter-process communication environment [RFC821]. 



38 

Figure 13: SMTP Model. Source: Postel, Jonathan B. "Simple Mail Transfer 
Protocol." Request for Comment (RFC) 821. http://ds.intemic.net/rfchfc821.txt. 1982. 

Figure 13 shows an overview of the SMTP model, described here. The SMTP 

design provides for a sender to communicate and send commands to a receiver, which 

receives and responds to the given commands. A SMTP session is as follows: user A on 

host 1 requests to send mail to another user_B on host_2. The sender-SMTP establishes 

a two-way transmission channel to a receiver-SMTP; the receiver-SMTP might be the 

final destination host_2 or it might be an intermediate node on the network. The sender-

SMTP uses the MAIL command to indicate the sender of the mail and the RCPT 

command to indicate the receiver of the mail. SMTP-receiver is not required to accept 

arbitrary recipient addresses; but some servers accept arbitrary addresses and forward 

them to another host, forming a relay chain from the sender to the final destination 

[RFC1939]. After each step, the receiver-SMTP has to acknowledge the command or 

reject it. After the RCPT command, the receiver-SMTP might reject the recipient but not 

the transaction, indicating that this receiver is just an intermediary. After the source and 

the destination have been identified, the message text and headers are sent using the 

DATA command. An example of this session is shown in Figure 14. In this example, 

email headers are not explicitly sent by the client after the DATA command; so the 



39 

sender-SMTP automatically generates the required minimum headers such as "Date," 

"From," "Message-Id," and "Status." 

Server> 220 megahertz.njit.edu  ESMTP Sendmail 8.8.5/8.6.9 
ready at Wed, 13 Aug 1997 12:14:57 -0400 (EDT) 

Client> HELO megahertz.njit.edu  
Server> 250 megahertz.njit.edu  Hello megahertz.njit.edu  

[128.235.251.100], pleased to meet you 
Client> MAIL FROM:<dnp3128> 
Server> 250 <dnp3128>... Sender ok 
Client> RCPT TO:<dnp3128@megahertz.njit.edu> 
Server> 250 <dnp3128@megahertz.njit.edu>... Recipient ok 
Client> DATA 
Server> 354 Enter mail, end with "." on a line by itself 
Client> <Email message body sent here> 
Client> . 
Server> 250 MAA05271 Message accepted for delivery 
Client> QUIT 
Server> 221 megahertz.njit.edu  closing connection 

Figure 14: SMTP Example 

Besides the commands shown in the above session dialogue, Figure 14, other 

commands are supported by SMTP. These commands provide for mailing list expansion 

(EXPN) forwarding, user lookup (VRFY), and sending to a group list. In addition to these 

commands and the MAIL method of mailing email, SMTP provides for three other 

methods of sending mail. SMTP distinguishes between two types of email delivery: 

"sending" and "posting." An email is "posted" to a user's mailbox; on the other hand an 

email is "sent" to the user's terminal. The "sending" method of email delivery is 

supported by using the commands: SEND, SOML, and SAML. However, these commands 

are optional and are not required to meet the minimum implementation standard 

[RFC821]. Besides the standard SMTP, several service extensions are defined in 

[RFC1869]; SMTP servers with these extensions are identified by "ESMTP" in their 



40 

initial response and ESMTP also responds to the initial EHLO command instead of the 

HELO command. An example session with an ESMTP server is shown in Appendix C.1. 

As pan of their response to an EHLO command, they list all the extensions that they 

support. If a client issues a HELO command to an ESMTP server then the regular 

response is given as defined in [RFC821]. In Appendix CA, the HELP command is used 

to show a listing of the new commands supported by ESMTP. 

The format for the email's headers is documented in [RFC822]. This document 

specifies the syntax of Internet mail headers. The headers section of an email consists of 

several header lines followed by a single blank line. Each individual header can be multi-

lined with the second and subsequent lines indented with whitespace. Headers consist of 

a field name, a colon, and a field data. Whitespaces are not allowed before the colon, and 

field data has additional syntax requirements for certain fields. 

Received: from njit.edu  (homer.njit.edu  [128.235.35.70]) by 
megahertz.njit.edu  (8.8.5/8.6.9) with SMTP id 0AA27585 
for <dnp3128@megahertz>; Mon, 28 Jul 1997 14:52:19 -0400 
(EDT) 

Received: from ocean.njit.edu  by njit.edu  (5.x/SMI-SVR4) 
id AA08402; Mon, 28 Jul 1997 14:52:43 -0400 

Received: by ocean.njit.edu  (SMI-8.6/SMI-SVR4) 
id OAA02495; Mon, 28 Jul 1997 14:39:11 -0400 

Date: Mon, 28 Jul 1997 14:39:11 -0400 
From: tanik@homer.njit.edu  (Dr. Murat Tanik) 
Message-Id: <199707281839.0AA02495@ocean.njit.edu> 
To: dnp3128@megahertz.njit.edu  
Subject: Re: Thesis Draft for Section 2.1 
Mime-Version: 1.0 
Content-Type: text/plain; charset=us-ascii 
Content-Transfer-Encoding: 7bit 
Content-Md5: pSUkOef4WsuPnBLxJDLLcA== 
Status: RO 

Figure 15: Email Header Example 



41 

An example for the email header section is shown in Figure 15. This example 

shows 13 header lines. The multi-lined "Received:" lines describe the route taken by the 

email, including the timing information for each node. The "From" header and the "To" 

header contains the email address for the message's source and destination, respectively. 

The general format of the email address is user@host.network, where the user field can 

either be one word or in a format such as "lastname.firstname." The host.network section 

provides the host name and the network name for the mail server. The "Message-Id" 

header provides a unique identification for this message; the general format for this 

consists of the date and time of the message, followed by the process id for the mail 

server, and the host name and network name for the mail server. The "Subject" header 

has no format requirements for its field data. The next four header lines are described in 

Section 1.2.5, titled "Internet Media Type." The "Status" header contains informational 

attributes about the email, such as: read, opened, deleted, etc. 

1.2.2 Post Office Protocol 

The Post Office Protocol - Version 3 (POP3), is used to allow client machines to remotely 

access the email stored on a mail server [RFC1939]. The important point about the POP3 

is that it is only used for message retrieval; sending email messages is still dependent on 

SMTP. POP3 is not intended to provide extensive manipulation operations because 

POP3 clients are supposed to download all the messages and manipulate them on the 

client side. A POP3 session starts with client software establishing a connection to the 

server software. The POP3 server responds with a greeting, and then an exchange of 



42 

commands and responses is initiated between the client and the server, until the client 

closes the connection or the connection is terminated by an external event. 

Server> +OK UCB Pop server (version 1.831beta) at 
megahertz.njit.edu  starting. 

Client> USER dnp3128 
Server> +OK Password required for dnp3128. 
Client> PASS ****** 
Server> +0K dnp3128 has 2 message(s) (1632 octets). 
Client> STAT 
Server> +OK 2 1632 
Client> LIST 
Server> +OK 2 messages (1632 octets) 
Server> 1 990 
Server> 2 642 
Server> . 
Client> LIST 3 
Server> -ERR Message 3 does not exist 
Client> RETR 1 
Server> +OK 990 octets 
Server> <The POP3 server sends the entire message here> 
Server> . 
Client> DELE 1 
Server> +OK Message 1 has been deleted. 
Client> STAT 
Server> +OK 1 642 
Client> RSET 
Server> +OK 2 messages (1632 octets) 
Client> STAT 
Server> +OK 2 1632 
Client> QUIT 
Server> +OK Pop server at megahertz.njit.edu  signing off. 

Figure 16: POP3 Dialogue Example 

An example of a POP3 session is shown in Figure 16. Upon receiving the 

greetings, the client sends the userid and password using the USER/PASS pair of 

commands. The server accepts the authorization information and sends an 

acknowledgment. The client then requests a status of the mailbox using the STAT 

command. The server responds with the information of two emails with a total size of 



43 

1632 octets. All multi-line responses from the server are terminated with a dot in the 

ending line. The client requests a LIST and the server responds with the information of 

the first message being 990 octets and the second message being 642 octets. The client 

requests a LISTing of the third message, for which the server responds with a negative 

acknowledgment, -ERR. The client RETRieves the first message and the server sends the 

contents of the first message. The client DELEtes the first message and requests a 

STATus. The server responds with the information that there is one message with a total 

size of 642 octets. The client resets the mailbox, using the RSET command and requests 

another STATus. The server responds with the original information of two messages 

totaling 1632 octets. The client issues the QUIT command and the server responds with a 

positive acknowledgment. Some other commands supported by POP3 are not shown in 

this example. The TOP command provides for the ability to retrieve only the top n lines 

specified in the command. The UIDL command allows the client to retrieve a unique 

identification for any of the email messages stored in the mailbox. The APOP command 

provides for an alternate way for the authorization function of the USER/PASS command 

pair. This command encodes the password information instead of transmitting it as plain 

text, as in the PASS command. 

A POP3 session is a progression through different states between the client and the 

server and these states are AUTHORIZATION, TRANSACTION, and UPDATE 

[RFC1939]. A state diagram is shown in Figure 17, showing the progressions that are 

possible in a POP3 session. In the AUTHORIZATION state, the client identifies the user 

to the server. Upon a successful authorization, the server locks the user's mailbox and 



44 

the client initiates a number of transactions in the TRANSACTION state. After all the 

transactions are complete, the client closes the connection and the server enters the 

UPDATE state to commit the client's transactions and release the mailbox. 

Figure 17: POP3 Session State Diagram 

1.2.3 Internet Message Access Protocol 

The Internet Message Access Protocol (IMAP), in its current version 4 (IMAP4), is an 

alternative for the POP method for remote mail access. IMAP4revl, the latest revision of 

IMAP4, allows a client to access and manipulate messages in a remote folder on the 

server, as if these folders were stored on the local machine [IMAP4rev1]. IMAP supports 

all three mail access paradigms; thus making POP and Distributed Mail System Protocol 

(DMSP) no longer necessary for "off-line" and "disconnected" modes, respectively. 

IMAP, which once stood for "Interactive Mail Access Protocol," is really designed for 

interactive access to a common mailbox from anywhere on the Internet. The user reads 



45 

and manipulates their email messages directly on the server instead of on the client as in 

the case of POP. "IMAP is designed to permit manipulation of remote mailboxes as if 

they were local" [GRAY 95b]. 

An IMAP4rev1  session is a progression through many states, just as the POP3 

session. In IMAP4rev1 the sessions are "Initial Connection," "Non-Authenticated," 

"Authenticated," "Selected," and "Logout." Appendix D.1 shows the state transitions as 

defined in [IMAP4rev1]. The "Initial Connection" state is the state after the client 

connects to the server. The "Non-Authenticated" state is the state during the login 

process. The "Authenticated" state is the state after the login process, either from an 

explicit login or from a pre-authenticated connection. After a mailbox has been selected, 

the session is in the "Selected" state. Just before the connection is closed, the session is 

in the "Logout" state. 

IMAP4rev1  provides for message attributes that can be manipulated by the user. 

These message attributes come in two types: system flags and user-defined flags. The 

system defined flags are "\Seen," which indicates that a message has been read, 

"\Answered" which indicates that a reply has been sent for this message, "\Flagged," a 

generic indicator drawing special attention to this message, "Deleted," indicating that 

this message is marked for deletion, "Draft," indicating that this message's composition 

has not been completed, and "\Recent." The "\Recent" is a special system flag that can 

not be set by the user, it is automatically set by the server when new messages are 

received by it and the user has not yet "\Seen" it. In addition to these system defined 

flags, users can create and maintain their own flags. Both types of flags can either be 



46 

session flags, valid only for the current session or permanent flags, persistent across 

sessions. 

IMAP4rev1 provides for complete control over remote mailboxes, including 

commands for creating, deleting, and renaming mailboxes, also called folders 

[IMAP4rev1 ]. It also has operations for manipulating messages with commands such as 

APPEND, COPY, EXPUNGE, FETCH, and LIST. IMAP4rev1  supports server side 

searching, with the SEARCH command; status checking, with EXAMINE, SELECT, and 

STATUS commands; and status flag maintenance, with the STORE command. The 

FETCH command can also be used to retrieve message structures, parts of messages or 

the full message. IMAP4rev1, like POP3, depends on SMTP to send messages. 

In IMAP4revl, client commands are tagged with a command identifier such as 

"A001." Server responses can either be tagged or untagged; tagged responses provide a 

direct response to the corresponding tagged command from the client and untagged 

responses provide additional data requested by client commands. Appendix D.2 shows 

an example for the IMAP4rev 1 session. Like the POP3 session, an IMAP4rev1 session 

starts out with a login command. The LOGIN command can be used to login to the mail 

server. But like the USER/PASS command pair in POP3, LOGIN command sends the 

password openly. An AUTHENTICATE command is provided for coded transmission of 

password and other data. The CAPABILITY command is used for a negotiation of 

encoding schemes and other features supported by the server. 

The client-server dialogue in an IMAP4rev1 session consists of a series of 

commands sent by the client, for which the server responds with data, possibly multi-line, 



47 

sent to the client. An IMAP4rev1  server could send status updates to a client, without an 

explicit request by the client. In the example session, shown in Appendix D.2, the 

SELECT command is used to select a mailbox to work with; this puts IMAP4rev  session 

into "Selected State." The server responds with status information about the selected 

mailbox including such information as the number of messages and recent messages, 

allowed flags, read/write permissions, etc.. Then the SEARCH command is used to get 

information about new messages in the user's inbox. The FETCH command is used to 

retrieve the "Date" and "From" headers and the status flags for messages 2 to 4. The first 

message's status flag is updated using the STORE command and the EXPUNGE 

command is used to delete those messages. The first message is copied to the "Junk" 

folder using the COPY command. Finally the session is closed with the LOGOUT 

command. 

1.2.4 POP3 vs. IMAP4 

IMAP4 is similar to POP3 in many ways [GRAY 954 Both are mail access only 

protocols, relying on SMTP for email delivery. Both require a mail server to be "always 

up" receiving email and storing them in a user's "inbox." Both protocols are open, 

platform independent, Internet standards that can be used from anywhere on the Internet 

without requiring any email gateways. Both support message identifiers that are unique 

across sessions. But the similarities end here; IMAP provides more features, which 

makes it a better choice for most applications. The only situation where POP would be a 

better choice than IMAP is when server resources are limited or connection time needs to 



48 

be short. POP does not maintain a user's email on the server and no processing is done 

on the server. IMAP stores both new and old email for all the users on the server and 

email header parsing, searching and selection is done on the server. POP allows users to 

quickly download all their messages and work on them off-line, while IMAP requires a 

continuous connection while the user works on their messages. Using IMAP in "off-line" 

mode requires the same amount of server and connection resources as using POP. POP 

could be used in such a manner that quasi-online mode is possible [RFC1939]. POP3's 

UIDL command or the RETR command could be used without using the DELE 

command. This will allow clients to retrieve the messages and leave the original on the 

server. To prevent old messages as showing up as new messages, some state information 

has to be maintained by the client. A side effect of this type of use is that old messages 

accumulate on the server. 

IMAP has many advantages over POP [GRAY 95a], [GRAY 95b]. Gray's article 

on remote mail access concludes that "supporting online and disconnected access is 

essential for a growing fraction of mail users and POP is inadequate for proper online and 

disconnected support, whereas [MAP does a good job for all three messages access 

paradigms" [GRAY 95a]. IMAP's advantages are in the areas of improved support for 

message management and improved performance for on-line connections. 

IMAP includes the ability to set standard and user-defined message status flags. 

Remote folder and multiple folder manipulation provides for organizing messages on the 

server. Multiple folders, including a hierarchy of folders, can be created on the server, or 

multiple servers, to store and organize all the email messages in a user's mailbox. It also 



49 

supports simultaneous update and update discovery in shared folders [GRAY 954 

IMAP can be used to access non-email information such as usenet messages and other 

documents. This capability can be used to unify different categories and sources of 

information [GRAY 95a). 

IMAP servers have built-in support for Internet Media Types. So they can provide 

access to an email message's structure such as a listing of all MIME content in a message. 

[MAP also provides for server side searching and selection, which makes selective 

download of multi-part MIME content possible. These features of IMAP optimize on-

line performance during a session, minimizing data transfer across the network. The next 

section describes MIME in more detail. 

Another IMAP advantage is that the server automatically notifies the client of any 

state changes to a mailbox. In the case of a single user mailbox, this feature might not 

seem very important, but in the case of shared mailboxes this feature becomes essential. 

This obviously requires a continuous network connection for the server to send 

"unsolicited" status updates. 

IMAP also has certain disadvantages, mostly in the area of resource requirements. 

IMAP is more complex and requires more effort to implement the server. IMAP is still 

not widely used, even though the original protocol was documented in 1988. IMAP4 is a 

functional superset of POP3; but IMAP4 is not backward compatible with POP3 or with 

earlier IMAP versions. As IMAP clients are not yet as popular as POP clients, this makes 

transition difficult. IMAP clients have to maintain the connection to the server 

throughout an email session, while the user reads the messages and does other 



50 

maintenance tasks on their mailboxes. But POP clients can be disconnected during this 

"idle" time and then reconnected to send/retrieve new messages. 

POP has some disadvantages when compared with IMAP. POP3 clients usually 

transfer the entire contents of the mailbox, even though the RETR command can be used 

transfer individual messages. POP3 doesn't allow access to the mailbox from multiple 

locations. But this feature can be simulated using the "Leave Mail On Server" option 

provided by most POP3 clients. But messages left on the server cannot be marked as 

"already read;" thus a subsequent access to the mailbox will list "read" messages as 

"new." Some clients solve this problem by maintaining state information about read 

messages on the client machine. But this state information is not accessible to other 

computers or other clients; so the problem is once again solved only if one client on one 

computer is used to access the mailbox. 

In summary IMAP provides a superset of POP features, which allow much more 

complex interactions, while making the process much more efficient; but at the cost of 

backward compatibility and extra resource requirements on the server side. 

1.2.5 Internet Media Type 

RFC822 defines the email's message body as flat text with no support for any other type 

of content. RFC2045 and its related documents redefines the contents of an email's 

message body. Internet Media Type, formerly called Multipurpose Internet Mail 

Extensions (MIME) is a technique for encoding arbitrary files as attachments to the 

Internet email messages. It allows an email's message body to be used for non-textual 



51 

messages and multi-part messages in addition to the regular textual messages already 

defined [RFC2045]. Internet Media Type defines the standard representation for 

"complex" message bodies [CONNECTED 97]. A "complex" message body can consist 

of binary data encoded into plain text message. A "complex" message body can also 

consist of multiple parts, where each part is a different binary file or a text message. In 

addition to this "complex" message body, Internet Media Type messages can also contain 

messages in languages other than English. Internet Media Type allows all this while 

completely maintaining backward compatibility with RFC822 message bodies. 

MIME messages can be sub-divided into several parts: Message, Entity, Body part, 

and Body [RFC2045]. The term 'Message' either means a complete RFC822 message or 

a message in a message body of type "message/rfc822" or "message/partial." "The term 

`Entity' refers to the MIME-defined header fields and contents of either a message or one 

of the parts in the body of a multipart entity" [RFC2045]. Body part refers to "an entity 

inside of a multipart entity" [RFC2045]. The term 'Body' means the body of an entity, 

which means it is either a body of a message or a body of a body part. The relationship 

among these parts is circular because MIME allows the possibility of one message 

containing another message. Figure 18 shows an example for the structure of a multi-part 

complex message using the Internet Media Type. In this example, the main message has 

four parts: plain text, binary data, message, and a mixed multipart. The third part, 

message, has two sub-parts: plain text and binary data. The fourth part, mixed multipart, 

has two subparts: an image and a message. The second sub-part of the fourth part has 

two parts to it: plain text and an alternative multipart. This alternative multipart has two 



52 

sub-parts: a plain text and a rich text. Using the language of [RFC2045], this example 

could be divided as follows: the complete example is a message and everything under 

"4.2" in the example is also a message; the main headers and the text are an example of 

an entity; each of the sections 1, 2, 3, and 4 are also entities; and sections 4.1, 4.2, 4.2.2.1, 

4.2.2.2 of the example are also entities. 

HEADER (RFC822 header of the message) 
TEXT 	MULTIPART/MIXED 

1 TEXT/PLAIN 
2 APPLICATION/OCTET-STREAM 
3 MESSAGE/RFC822 

HEADER (RFC822 header of the message) 
TEXT 	(RFC822 text body of the message) 
3.1 	TEXT/PLAIN 
3.2 	APPLICATION/OCTET-STREAM 

4 MULTIPART/MIXED 
4.1 	IMAGE/GIF 
MIME 	(MIME header for the IMAGE/GIF 
4.2 	MESSAGE/RFC822 
HEADER (RFC822 header of the message) 
TEXT 	(RFC822 text body of the message 
4.2.1 	TEXT/PLAIN 
4.2.2 	MULTIPART/ALTERNATIVE 

4.2.2.1 	TEXT/PLAIN 
4.2.2.2 	TEXT/RICHTEXT 

Figure 18: Internet Media Type Example 1. Source: Crispin, M. "Internet Message 
Access Protocol - Version 4rev1." Request for Comment (RFC) 2060. 
http://www.internic.net/rfc/rfc2060.txt. December 1996. 

To handle this "complex" message body, the Internet Media Type standard defines 

several new header fields in addition to the standard email headers, shown in Section 

1.2.1, titled "Simple Mail Transfer Protocol." These headers can come in two locations 

inside a message. It is always a part of the regular RFC822 message header; in cases of 



53 

multipart messages these headers may also appear within each of the parts. The first 

header, "Mime-Version," identifies the MIME version used in the email. If this header is 

left out then it is assumed that the message body appears as it is defined in [RFC822], 

meaning it contains plain text message in the English language. The next two headers, 

"Content-Type" and "Content-Transfer-Encoding," identify the type of data and the 

encoding used on it. The "Content-Type" header's field data are formatted as a basic 

type, followed by a slash (I) and then followed by subtype. The type information is 

followed by additional type specific parameters. The purpose of all these is to identify 

the data in such a manner that the client program can deal with it appropriately by 

possibly displaying it, using built-in methods or with the help of an external program, or 

allowing the user to save it to a file. In general the top level identifier declares the 

general type of data and the subtype identifier specifies the data's format. In the example 

given in the Section 1.2.1, titled "Simple Mail Transfer Protocol," the type information 

identifies the email message to consist of plain text using the "us-ascii" character set. 

Other possible values for the "Content-Type" header is shown below with an explanation 

for each. Five of these general types are called "discrete types," that is types whose 

content is ignored as far as the MIME processing is concerned. The other two types are 

called "composite types," that is types that need additional handling by the MIME 

processor [RFC2045]. Another way of describing these two is to say that MIME, by 

itself, understands "composite types" and does not understand "discrete types." There are 

seven basic media types defined in the Internet Media Type standard and they are: 

Application, Audio, Image, Multipart, Text, Video [RFC2046]. 



54 

The "discrete types" are described here. The Application media type is the generic 

type used for any binary data file. The most common subtype is the "octet-stream," 

which describes the data as uninterrupted binary data. Parameters are used for specific 

applications and data formats. The Postscript subtype is also defined for the Application 

media type. The Audio media type is used for audio files such as Sun's au format or 

Microsoft's way format. The Image media type is used to transfer image files; the two 

most common subtypes are Compuserv's gif and Joint Picture Expert Group's jpeg. The 

Text media type is used for both plain text messages and formatted text messages, such as 

those using HTML or other conventions. Text from word processors is not considered to 

be part of the Text media type because these formats usually require an external 

application to view or edit them; these formats can be supplied as parameters to the 

Application media type. The character set used in the text message is specified as a 

parameter. The Video media type is used to transfer video files such as Motion Picture 

Expert Group's mpeg format. The Internet Media Type definition also specifies that all 

unrecognized type and subtypes should be treated as uninterrupted binary data, that is, of 

the type "application/octet-stream" [RFC2046]. 

The two "composite types" are described here. The Multipart type informs that an 

email message is composed of multiple parts. A unique boundary string is specified as 

the parameter in the "Content-Type" header, which is used to separate the different parts 

of a Multipart message. Several subtypes such as mixed, alternative, digest, parallel, are 

defined for this type, with the mixed subtype being the most common. The mixed subtype 

refers to a generic mix of several subtypes. The alternative subtypes refers to messages 



55 

containing multiple versions of the same data, perhaps in different file formats or with 

different level of detail. The alternative subtype's order has additional semantics in that 

the order listed in the message is from least preferred version to the most preferred 

version; but the client program should choose the "best" possible version of the message 

and only that version should be presented to the user. The digest subtype is meant for 

messages consisting a listing of many individual messages of the type "message/rfc822." 

This subtype is useful when presenting a compilation of several messages, perhaps those 

from a mailing list. The parallel subtypes indicates that all the different parts of the 

message should be presented to the user simultaneously. The Message media type is used 

to describe a message that contains other messages. The rfc822 subtype is used to 

indicate that each message is a RFC 822 compatible message. The partial subtype is 

used to indicate that each part is part of a larger message that needs to be combined by the 

client. The external-body subtype is used when pointing to a message stored in another 

mail server or in another machine accessible by this server. The parameter is used to 

describe the access mechanism and the message body is used to describe the location for 

the actual message and its actual "Content-Type." An example of the external-body 

subtype is shown in Figure 19. The first "Content-Type" refers to the actual message 

body, which is described by the second set of headers. Other possible values for the 

"access-type" parameter are "ftp," "anon-ftp," "tftp," "local-file," and "mail-server" 

[RFC2046]. These options allows the external message to be retrieved from a file on 

another machine, from a file on the local machine or from a mail server on the network. 



56 

Other possible parameters for the external-body subtype are: expiration, size, and 

pet 	mission [RFC2046]. 

Content-Type: message/external-body; 
access-type = local-file; 
name = "/u/nsb/Me.jpeg" 

Content-Type: image/jpeg 
Content-Id: <id42@guppylake.bellcore.com> 
Content-Transfer-Encoding: binary 

Figure 19: Internet Media Type Example 2. Source: Freed, N. and Borenstein, N. 
"Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types." Request for 
Comment (RFC) 2046. http://www.internic.net/rfc/rfc2046.txt. 1996. 

Internet Media Type standard was designed to be transparent to existing mail 

protocols and systems. This is accomplished by translating binary data files into plain 

text messages; so in effect binary data become part of the regular plain text email 

message already supported by existing mail protocols and systems. There are two 

encoding methods used in translating Internet Media Type data to plain text messages: 

base64, and quoted-printable. The standard RFC822 message consists of 7bit "us-ascii" 

data with each line less than 1000 characters. Most non-English language can not be 

represented by this 7 bit encoding; thus these languages are either encoded or sent as 8bit 

message. The 7bit messages are those that can be handled by many systems on the 

Internet and so this is considered to be the least common denominator. Messages sent as 

8bit might not survive across platforms or mail gateways. For this reason, binary data 

and other languages are either encoded as base64 or quoted-printable. As the name 

suggests, the quoted-printable encoding produces output that is more or less readable if 

the original data had not been binary. The base64 encoding produces output that is dense 



57 

and uniform, but unreadable by humans. But base64 is more, common on the Internet 

because quoted-printable encoding increases the size of the message more than the 

base64 encoding. The "Content-Encoding" header can appear either as part of the 

RFC822 header or in each section of a multipart message. For the header that appears at 

the top along with RFC822 headers, this describes the encoding used on the entire 

message. For the header that appears as part of a multipart message, this describes the 

encoding used for that part of the message. 

MIME headers also allow a brief description to be attached to a MIME message by 

using the "Content-Description" header. Additional MIME headers can be used that are 

not recognized by the standard described in [RFC2045]. These additional headers have to 

begin with "x-" such that a new header might read "x-PriorityLevel." 

1.3 Languages 

Static HTML does not provide enough client side intelligence. Powerful applications on 

the web require a powerful user interface on the client side. Client side programming can 

be of two types: scripts and compiled programs. Choices such as JavaScript and 

VBScript exist for the script type of client side programming on the web. For compiled 

programs, languages such as C, C++, Delphi, Java, and Visual Basic can be used to create 

various types of client side programs. These client side programs are called by various 

names such as plug-ins, controls, or applets. This part of the chapter describes the Java 

programming language and the JavaScript language, in the two Sections 1.3.1 and 1.3.2. 

These two are chosen because the two most popular web browsers, Netscape Navigator 



58 

and Microsoft Internet Explorer, supports them; other languages and scripts are not 

supported by both browsers at the same level. 

1.3.1 Java 

A simplified way of describing Java is to say that it is "a new programming language, 

with elements from C, C++ and other languages, and with libraries highly tuned for the 

Internet environment" [LINDEN 96]. A complicated way of describing Java is to say that 

it is "a simple, object-oriented, network-savvy, interpreted, robust, secure, architecture 

neutral, portable, high-performance, multithreaded, dynamic language" [SUN]. This sub-

section describes Java taking a middle road between these two extremes. 

1.3.1.1 Java Language Features: The Java programming language environment 

("Java" for short), as the name suggests, consists of a programming language and an 

environment for the language's use. The language itself was designed to be object-

oriented from the ground up, with strong influences from C++. But the language removes 

many features from C++, making Java applications more robust and easier to develop. It 

provides extensive compile-time and run-time checking. The memory management 

model has been simplified considerably, removing programmer control over pointers, 

which eliminates entire classes of programming errors. Automatic garbage collection, 

part of the Java run-time system, also increases a Java application's ease of development 

and reliability. Besides C/C++, Java borrows from other languages such as Eiffel, 

SmallTalk, Objective C, and Cedar/Mesa [GOSLING 95]. Java has elements of 



59 

concurrency from Mesa, exceptions from Modula-3, dynamic linking and automatic 

storage management from Lisp, interface definitions from Objective C, and ordinary 

statements from C/C++ [LINDEN 96]. Java language allows developers to use it for 

three types of programming: symbolic, numeric, and systems [KRAMER 96]. Java's 

object-orientedness and dynamic linking provides features similar to the symbolic 

programming language Smalltalk. Java's platform independent data types and well-

defined arithmetic operations provides for writing stable numerical algorithms across 

platforms. Java's control structures and other statements similar to C and C++, allows 

systems programming. 

Java's syntax is very similar to that of C/C++; but some of the semantics and details 

of other semantics have changed [GOSLING 95], [ECKEL 97], [LINDEN 96]. It has the 

standard primitive data types of C++, but removes the struct and union data types and 

adds the Boolean data type. Java, as part of its effort to support internationalization, uses 

the Unicode character set for the char data type. Java arrays and strings are true objects, 

unlike in C++. Java creates two types of string objects: the String class is used for read-

only objects and the StringBuffer class is for read/write objects. Java removes the goto 

statement; but provides expanded functionality using the continue and break statements. 

The new operator is used, like in C++, to allocate memory for objects; but recovering 

memory is left up to the automatic garbage collector which runs as a low priority thread 

in the Java run-time environment. Java also removes the automatic coercions feature of 

C++; an explicit cast is required in such situations. The biggest change from C++ to Java 

is the removal of all support for pointers and pointer arithmetic. Java has no free- 



60 

standing functions; instead all functions are created as methods of some class_ Java also 

has no class declarations; only class definitions are allowed [ECKEL 97]. Java removes 

operator overloading, but function overloading is still available. Even though Java was 

built from the ground up to be object-oriented, it doesn't support multiple inheritance, 

only single inheritance is possible. Multiple inheritance can be simulated by using the 

interface mechanism, whereby a sub-class inheriting from the super-class implements the 

interface for another class. This feature is conceptually similar to Objective C's protocols 

feature [GOSLING 95]. Java also removes all support for preprocessor; the effect of the 

#include command from C/C++ is supported by using the import command. Constants, 

#define from C or const from C++, can be achieved using the final keyword before a 

variable declaration. In C++ classes, the protection keywords apply to blocks of code; in 

Java these keywords have to be prefixed for each member definition. Java doesn't 

support C++'s version of protected classes. In Java the keyword protected means that 

class member is accessible to inheritors and to others in the same package; this makes it 

similar to file level protection in C++. Java also doesn't support changing protection 

levels through inheritance. C++ inline keyword's functionality is replaced with a similar 

functionality from the final keyword. 

An example of a Java applet is listed in Appendix E.1, showing some of the 

concepts described above. In this example, Shapes is an abstract interface listing two 

functions: getArea and getPerimeter. The Coordinates class holds the coordinates for a 

shapes object. The Square class and the Circle class are examples of multi-inheritance. 

These classes extends the Coordinates class and implements the Shapes interface. This 



61 

example also shows some of the other features of Java mentioned above, such as C++ 

style syntax and support for object-oriented paradigm. 

Java has built-in support for multithreading at the language level with the use of the 

Thread class. Java provides synchronization primitives such as monitors and condition 

locks, and its system libraries are written to be thread safe. This provides a safe 

environment for conflict-free operation of multiple concurrent threads of execution. The 

start method and the run method, provided by the Runnable interface, are the key 

functions needed to make an application or an applet multi-threaded. The Thread class is 

used to create different objects for each thread of execution needed. An example of a 

multi-threaded applet is shown in Appendix E.2. 

Java supports exception handling, which is also shown in Appendix E.2. 

Exceptions are unexpected events that can be caught by using the try statement and the 

catch statement. When any Java statement executed within the try block results in an 

error, an exception is thrown. Different catch blocks, containing the exception handler 

code, can be created to catch different exceptions. The throw statement can be used to 

throw user defined or system defined exceptions. 

A Java program is organized into different levels; going from the highest to the 

lowest, the levels are: applications or applets consist of a set of imported packages, each 

of them containing one or more classes with many methods [LINDEN 96]. Java deals 

with these various levels with five different types of visibility and accessibility. The 

public items can be accessed from anywhere; protected items are accessible only within 

the package or the subclasses of other packages; the default visibility is that items can be 



62 

accessed by any class of its package; private protected restricts access to the class and its 

own subclasses; and a private item is only visible inside its class. Java also supports 

automatic garbage collection and networking [LINDEN 96]. 

The complete Java system includes a number of system libraries [GOSLING 95]. 

The Java Base System provides the minimal implementation consisting of the language 

package for data types, threads, exceptions and other fundamental classes; the I/O 

package providing streams and random-access files; the network package supporting 

sockets and interfaces for Internet protocols; the utility package providing container 

classes and other classes; and the Abstract Windowing Toolkit (AWT) which provides an 

abstract layer for interfacing with the graphical user interface systems. The extended set 

includes support for 2-dimensional and 3-dimensional graphics programming; multimedia 

and telephony applications; network and systems management; electronic commerce; and 

encryption and authentication [VONDRAK 97]. Other features such as Java Beans 

provide for software component building; Remote Method Invocation (RMI) allows 

function calls across the network. Java also provides for database access across the 

network and platform boundaries using the Structured Query Language (SQL) and the 

Java DataBase Connectivity (JDBC). 

The AWT provides the ability for uniform interface design across different GUIs. 

It has several input objects such as Button, Checkbox, Choice, and TextField [JAMSA 

96]. Java supports event driven programming like many other visual languages. The 

action method is used to define the code for a given GUI widget. 



63 

1.3.1.2 Java Environment Features: Java is a more than a programming language, it is 

also an environment where Java applications and applets execute. This environment is 

shown in the two figures of Appendix E.3. Java is designed to be a cross-platform 

environment that allows the creation of portable applications. Java applications are 

distributed as bytecode, also called J-code. 	Bytecodes are "architecture neutral 

intermediate format designed to transport code efficiently to multiple hardware and 

software platforms" [GOSLING 95]. Bytecode either gets interpreted by a Java 

interpreter or is compiled into native machine code by a Just In Time (JIT) compiler, both 

implemented on the target environment. Besides the architecture neutral instruction 

format, Java specifies the size and behavior of its data types and arithmetic operations on 

them. This eliminates machine dependent word size and other platform specific 

implementation details. There are no "implementation-dependent" notes in the Java 

language specification. This architecture neutral and portable language environment of 

Java defines the Java Virtual Machine (VM). Two different views of the Java 

environment are shown in Figures 53 and 54 of Appendix E.3. The Virtual Machine is 

implemented on top of a machine's native operating system and Java applications and 

applets run on top of the Virtual Machine. Java VMs are designed exactly to be the same 

on all systems and they are either installed as part of the web browser or as part of the 

operating system. The Virtual Machine insulates the Java application and applets from 

the differences in the underlying operating systems; thus providing an uniform 

programming interface on any hardware [KRAMER 96]. With this understanding, 

bytecode can be thought of as high-level machine code for the Java VM implemented by 



64 

the Java interpreter and run-time system. For an application to run on multiple platforms, 

the traditional scheme of binary distribution is not possible. So Java applications are 

compiled for a single virtual machine, which in turn must be implemented in each of the 

target physical machine and environment. A model of the Java platform shows how the 

Java Virtual Machine fits into the overall picture. The Java Platform has two main parts: 

the Java Virtual Machine and the two sets of APIs. The Java VM's machine dependent 

part is separated into the porting interface section of the platform; this makes Java VM 

easier to port to different hardware and software platforms. As mentioned above, the 

Java platform has the minimum API required for all implementations and an extended 

API that is optional at this time, but might move into the base standard [KRAMER 96]. 

The Java language environment creates a middle ground between very high level 

scripting languages and very low level compiled languages [GOSLING 95]. Scripting 

languages are portable but slow. Compiled languages are non-portable but fast. Java is 

both portable and provides performance that is comparable with compiled languages 

when used with just in time compilers. Just in time compilers improve the speed of Java; 

but Java is not 100% portable. Java uses the AWT to provide an abstract interface into 

the native window systems, such as X/Motif on UNIX, Windows on Microsoft Windows, 

and Toolbox on Macintosh. For Java applets and applications to be completely cross-

platform, all its dependencies and libraries, including access to third part software, have 

to be cross-platform. The interface between the Java Virtual Machine and the native 

operating system or the windowing environment will always be implementation and 

platform dependent [SHIFFMAN 97]. Java is simpler and easier to use, like scripting 



65 

languages, and provides for powerful applications like compiled languages. Blundon's 

article discusses the promises made by Java and their reality [BLUNDON 96]. Java is a 

good environment for building client side software, but for the server side it still needs to 

improve. Java provides a secure environment. Even though Java applications and 

applets can be "written once and run anywhere," their behavior is not completely 

consistent across platforms. Java can increase the productivity of developers and increase 

the quality of the applications developed. 

1.3.1.3 Java Applications: Java applications are just like any other applications, in that 

they have full access to the local machine that they are running on. They can read and 

write to the local file system and make network connections to any computer on the 

network. They can also invoke native code by calling externally linked functions which 

can be written in any language, such as C or C++. Java applications can not be run inside 

the browser or the applet viewer; instead the Java interpreter is used to run the Java 

application. Java applications also do not have any built-in downloading mechanism, 

unlike the Java applet which is automatically downloaded. Java applications also require 

the Java Platform to run; but this platform support can come in any way, including as a 

separate program, embedded as part of the operating system, or as part of the Java 

application itself [KRAMER 96]. A Java application does not require a network, unlike 

the applets used inside a browser; of course applets can be loaded from the local file 

system. 



66 

Besides the differences in restrictions., Java applications also start differently from 

Java applets, Since Java applications are similar to any other stand alone application and 

the Java language is similar to CIC++, the startup is also similar to C/C I applications. 

Java applications start execution in a public function called "main" similar to the 

convention used in C. In fact the function signature is also similar to the "main" function 

in a C application. The minimum requirements for a Java application are shown in Figure 22. 

 

public class JavaApplication 

public static void main (String args[ ]) 

system.out.println ("The minimal Java applications); 
/* main */ 

1* JavaApplication *1 

Figure 20: Java Application Example 

1.3.1.4 Java Applets: Java enables a programmer to extend Internet browsers by 

embedding Java programs, called "applets," on a web page. Applets can be thought of as 

small applications that can only be run from within a browser or an apples viewer. Java 

applets provides a developer with the flexibility to develop a more sophisticated user 

interface. Java applets provides the full range of event-driven pop-up windows and 

graphical user interface widgets [VONDRAK 97]. The main difference between Java 

applets and Java applications is that applets have to live inside a "sandbox" with more 

security restrictions. The sandbox security system is composed of several features of the 

Java language and the Java platform and environment operating together; these features 



67 

of the "sandbox" include: class loader, bytecode verifier, security manager, and the lack 

of pointers in the Java language. Other security features of the Java environment includes 

the Java ARchive (JAR) file format and digital signatures, which combine to prevent 

unauthorized modifications to the applets being used across the network. Since applets 

can be downloaded from anywhere and run on the local machine, security issues are very 

important. By default web browsers prevent all applets on the network from doing 

anything "dangerous," such as reading from or writing to the local file system; making 

connections to computers on the network other than where it came from; or executing 

native code on the local machine. There are two different ways that applets are loaded by 

a Java system: over the net or by the file system. The way an applet enters the system 

affects what it is allowed to do. If an applet is loaded over the net, then it is loaded by the 

applet class loader, and it has security restrictions enforced by the applet security 

manager. If an applet resides on the local file system, then it is loaded by the file system 

loader. Applets loaded via the file system have the same restrictions as that of Java 

applications. In effect the Java security model for applets creates a "sandbox" and 

prevents applets from reaching outside. But digitally "signed" applets from trusted 

sources can be allowed to step out of the "sandbox." Java applets loaded from the local 

file system are also allowed to step out of the "sandbox;" in fact these applets are more 

similar to Java applications than they are similar to Java applets loaded from across the 

network. Since applets are meant to be downloaded from across the network, they are 

usually small in size; but there are no specified limitations on the size of an applet or an 

application. 



68 

The Java applet execution environment is very different from the Java application 

execution environment. In one sense both these environments are the same, that is both 

of them are interpreted to run on the Java virtual machine. But Java applets execute 

within the browsers. In the course of a browsing session a web page containing a Java 

applet might be revisited or reloaded again and again. As the web page is scrolled up and 

down, many applets can come and go out of view. This type of behavior makes Java 

applets to be started, paused, resumed, stopped and restarted. In this sense an applet's 

environment is very different from that of the application's environment. Java provides 

the init, start, run, paint, repaint, stop, and destroy methods to handle this unique 

environment [JAMSA 96], [LINDEN 96]. These methods are overridden by the applet 

developer; but these methods are not called directly by the developer instead the run time 

environment automatically calls these methods as needed. The init method is used to 

initialize the applet and it is called when the applet is first loaded into memory. The start 

and stop methods are used to start and stop the applet, respectively. These methods are 

automatically called when the browser visits or leaves the page; but they can also be 

called explicitly by the programmer. The run method is not directly related to applets, 

but this is the function used to start a thread of execution. The paint method is called 

each time the browser needs to update the display, so this method can contain code for 

displaying output. This method can only be called by the browser itself; the repaint 

method is provided for situations where the programmer needs control of when the 

display is updated. The destroy method is similar to a destructor for a C++ class; this 

method is called when the browser discards the applet. 



69 

<html> 
<title>Java Applet Example</title> 
<body> 

<center>This page contains an applet, which is displayed 
in the panel below</center><br> 
<applet code="JavaApplet.class" width=320 height=200 

align=middle vspace=25 
alt="This browser doesn't support Java Applets 

or it is disabled." 
param name="Title" value="Java Applet Example"› 

</applet> 
</body> 
</html> 

Figure 21: Java Applet Example Part 1 of 2 

Java applets can either be run from within the applet viewer or they can be run from 

within the browser. Figure 21 shows the HTML code needed to run an applet within the 

browser. This web page displays a message and loads an applet below that message. The 

Java code for the applet is shown in Figure 22. The applet code retrieves the parameter 

specified in the HTML by calling the getParameter method when the applet is initialized. 

The paint method is used to display the parameter and some environment variables from 

the Java environment on the client side. 

import java.awt.*; 
import java.applet.*; 

public class JavaApplet extends Applet 
{ String AppletTitle; 

public void init() 
{ AppletTitle = getParameter ("Title"); 

if (AppletTitle == null) 
AppletTitle = "Not Specified" 

} /* init */ 
public void paint (Graphics g) 
{ g.drawString ("Java Applet's Title is " + AppletTitle, 

5, 15} 
} /* paint */ 

} /* JavaApplet */ 

Figure 22: Java Applet Example Part 2 of 2 



70 

1.3.2 JavaScript 

"The intersection of Java and JavaScript is the empty set" [LINDEN 96]; that is, Java and 

JavaScript have very little to do with each other. JavaScript is a simple scripting 

language with a similar syntax to that of Java; but it has very little functional similarities 

with Java. JavaScript provides the power of control structures and conditional tests with 

the simplicity of a scripting language. JavaScript can be used both on the client side and 

on the server side. On the client side, JavaScript makes it easy to enhance web pages and 

validate form input. On the server side, JavaScript makes it easy to access databases from 

any vendor on any platform. JavaScript is a compact, object-based scripting language for 

client-side and server-side "programming." 

JavaScript's syntax is similar to Java's syntax; but it doesn't support many features 

of Java, such as static binding and strong type checking. JavaScript objects can be 

dynamically created, without declaring them beforehand, and they are automatically 

created when needed. JavaScript supports four basic data types: a generic object type, a 

number type that can hold integers or floating point number, a string type and a boolean 

type. It also has arrays and pointers to functions. Most of the regular control structures 

and loop structures are supported. JavaScript is object-based rather than object-oriented; 

this means lack of support for classes and inheritance. 

JavaScript is primarily intended for interaction with HTML pages and the web 

browser itself; for this purposes it exposes many tags and controls of the web page and its 

browser. An object.variable notation can be used to get and set many properties of the 

web page and the web browser. This allows JavaScript scripts to modify HTML pages, 



71 

while Java applets usually run inside a sub-area of an HTML page with very little control 

outside this sub-area. Some of the objects exposed by JavaScript are shown in Table 1. 

Table 1: JavaScript Objects. Source: Shah, Rawn. "Beginner's JavaScript." 
http://www.javaworld.com/javaworld/jw-03-1996/jw-03-javascriptintro.html. 

JavaWorld. 1996. 

Objects Description 
Anchor HTML anchor tag object 
Applet Java applet object 
Button, Checkbox, Password, RadioButton, 
Reset, Submit, Text, TextArea 

Objects for different items on an HTML 
form  

Date Date object and methods to manipulate and 
display it. 

Document Object describing the HTML page 
Form An object for the entire HTML form 
History History list of the browser 
Link HTML link object 
Location Object describing a URL 
Math Mathematic constants and functions 
Selection A text selection inside an HTML form's 

textarea item or an text input item. 
String A generic string object with methods for 

manipulation and display 
Window Object 	describing 	the 	current 	browser 

window or a document window 

JavaScript "programming" is an event-driven programming model. JavaScript 

scripts usually modify the web page in place or they interact in response to events 

generated by the user. New HTML tags are used for the purposes of JavaScript. 

Specifically the <script> tag is used to contain the JavaScript scripts. The <script> 

section of the HTML page can be inside the <head> section, inside the <body> section, 

or both. JavaScript script placed inside the <head> section is executed before the rest of 



79 

the HTML page is displayed. JavaScript also adds several parameters to HTML tags. 

These parameters are used to call JavaScript functions in response to events. These 

functions can be used for error checking or other types of data validation before the user 

input data is sent to the server. They can also be used to control what the browser 

displays. 

Several event handlers are defined for the objects of an HTML form [SHAH 96]. 

These event handlers are: onBlur, onChange, onClick, onFocus, onLoad, OnMouseOver, 

onSelect, onSubmit, and on Unload. The onBlur and onChange events are fired when an 

HTML form item looses focus or the value is changed, respectively. The onFocus is fired 

when items get focus. The onClick event is fired when HTML form items such as Button, 

Checkbox, or Radio,Button is clicked on or when selected. This event is also fired when 

an HTML link is clicked on. The onLoad and On Unload events are fired when an HTML 

window or a frame is loaded and unloaded, respectively. The onMouseOver event is fired 

when a mouse cursor moves over a link on the HTML page. The onSelect event is fired 

when some text inside the HTML form's text field or textarea field is selected. 



73 

<html> 
<head> 

<title>JavaScript Example</title> 
<script language="JavaScript"> 
<!-- 

document.write ("This text will be displayed before 
the actual body of the HTML page is displayed."); 
document.write ("Current Date & Time is " 	Date); 

--> 
</script> 

</head> 
<body> 

<script language="JavaScript" src="jscript.js"></script> 
<Hl> 

An example of JavaScript script that validates a 
HTML form's data 

</H1> 
<br> 
<form> 

<input type="checkbox" name="OS_Type" 
value="Win3.x/95" onchange="set_os(this)"> 

<input type="checkbox" name="OS_Type" 
value="Mac 0S8" onchange="set_os(this)"> 

<input type="checkbox" name="OS_Type" value="Unix" 
onchange="set_os(this)"> 

<input type="checkbox" name="CPU_Type" value="x86" 
onchange="set_cpu(this)"> 

<input type="checkbox" name="CPU_Type" 
value="68000s/PowerPC" 
onchange="set_cpu(this)"> 

<br> 
<input type="button" value="OK" 

onclick="check_matching(this.form)"> 
</form> 

</body> 
</html> 

Figure 23: JavaScript Example Part 1 of 2 

An example of a JavaScript script is shown in Figure 23. This script displays the 

current date and time in the <head> section of the web page. It also validates the data 

from an HTML form and displays an error message for invalid data. As the example 

shows, it is common practice to enclose the script inside a comment to prevent older 

browsers from misinterpreting this code. In this example, the script code in the <head> 



74 

section is embedded along with the HTML code. As an alternative the "SRC" parameter 

can be used to store the JavaScript code in a separate file; as shown for the script in the 

<body> section. The script from that separate file is shown in Figure 24. 

var OS_value; 
var CPU_value; 

function set_os (OS_Type) 
{ 
OS_value = OS_Type.value; 
} /* set_os */ 

function set_cpu (CPU_Type) 

CPU_value = CPU_Type.value; 
} /* set_cpu */ 

function check_matching (inputform) 
{ 

if (OS_value == "Win3.1/95") AND (CPU_value != "x86") 
{ 

document.write ("Win3.1 or Win95 can only run on x86 
platform."); 

} /* if */ 
if (OS_value == "Mac 0S8") AND 

(CPU_value != "68000s/PowerPC") 

document.write ("Mac OS8 can only run on 68000s 
or PowerPC platform.") ; 

} /* if */ 
} /* check_matching */ 

Figure 24: JavaScript Example Part 2 of 2 

A comparison of Java and JavaScript is presented in Table 2. For Java, only the 

applets are considered since Java applications can not run inside a web browser. Bruce 

Eckel says that 80% of client-side programming problems can be solved using JavaScript; 

but Java is needed for the remaining 20%, the "really hard stuff', which can not be solved 

using scripting alone [ECKEL 97]. 



75 

Table 2: Comparison of JavaScript and Java 

JavaScript Java 
Interpreted by the web browser. Compiled into bytecode and then 

interpreted by the web browser and the 
Java Virtual Machine. 

Object-based: Built-in objects and their 
methods and properties can be used, but 
classes and inheritance are not supported. 

Object-oriented: Classes with single 
inheritance is supported, in addition to the 
built-in objects; multiple inheritance is 
possible using the interfaces mechanism. 

JavaScript code is embedded and integrated 
with HTML code; but it can be separated 
into a different file. 

Java code is separate from HTML code; but 
Java applets are accessed from HTML 
pages. 

Loose typing and Dynamic binding. Strong typing and Static binding. 



CHAPTER 2 

REQUIREMENTS ELICITATION 

Requirements Elicitation is one of the earlier stages of Requirements Engineering (RE), 

which itself is one of the earlier stages of software development process. Requirements 

Engineering in general consists of detecting the requirements, validating and verifying 

them for correctness and consistency, and representing them in an understandable 

manner. The three main goals of the RE process are to improve the understanding about 

the system and transform this understanding from an informal representation into a 

formal representation, while achieving a common agreement among all the people 

involved. These three goals of the RE process are represented as the three dimensions of 

Requirements Engineering, specification, agreement, and representation in [POHL 93]. 

This leads to the four general processes of RE: requirements elicitation, requirements 

analysis, requirements validation, and requirements specification [RAGHAVAN 94]. 

Requirements Elicitation is defined as "the process through which customers, buyers, or 

users of a software system discover, reveal, articulate, and understand their requirements" 

[RAGHAVAN 94]. Requirements Elicitation can also be thought of as the process of 

gathering different viewpoints from different sources and reaching an agreement on a 

common viewpoint. "The prime objective of the requirements definition process is to 

achieve agreement on what is to be produced" [BRACKETT 90]. The Requirements 

Elicitation process has also been called identifying, gathering, determining, 

76 



77 

formulating, extracting, or exposing requirements [RAGHAVAN 94]. Each of these 

different terms expresses the different connotations that exist in the process. 

[RAGHAVAN 94] describes the Requirements Elicitation steps as: 

• Identify the sources of requirements, 

• Gather information about their needs, 

• Analyze the information for implications, inconsistencies, or unresolved 

issues, 

• Reconcile the differences in understanding between users and analysts, and 

• Generate the requirements statements. 

These steps are typically iterated until a complete and common understanding of the 

system to be developed has been reached among the people involved. The people 

involved in the Requirements Elicitation process are: analysts, developers, customers, and 

users. 

Requirements Engineering is a very important step for a project's success 

[RAGHAVAN 94], [POHL 93], [DAVIS 93]. It has been shown that "the later in the 

development life cycle that a software error is detected, the more expensive it will be to 

repair" and that many errors remain undetected until development has "progressed" 

beyond the stage in which the errors were made [DAVIS 93]. It has also been shown that 

it takes more time to fix errors in later stages of development as compared to earlier 

stages of development. Another observation is that errors made in earlier stages build up 

and cause more errors in later stages. Experience has shown that incorrect, incomplete, or 

misunderstood requirements are the most common causes for poor quality, cost overruns, 



78 

and late delivery of software systems [RAGHAVAN 94]. Requirements Elicitation's 

importance is directly tied to the significance given to Requirements Engineering in 

general because eliciting requirements is the first step of Requirements Engineering. So 

the Requirements Elicitation process is essential for the development of quality software 

products [MILLER 93], [CHRISTEL 92]. 

Because of the importance given to Requirements Elicitation, many techniques 

have been developed for this process. Many techniques have elaborated on the general 

procedure described above. Some are high-level frameworks, process models, or 

methodologies that provide general guidelines for eliciting requirements. Others are low-

level techniques or methods that provide specific tactics for eliciting requirements. These 

techniques give detailed processes, specific questions or categories of questions to ask, 

structured meeting formats, individual or group behaviors, and templates for organizing 

and recording information [RAGHAVAN 94]. 

2.1 	Requirements Elicitation Framework 

Existing models, methodologies, and techniques for Requirements Elicitation had failed 

to adequately address the problems inherent in the Requirements Elicitation activity 

[CHRISTEL 92]. The problems not addressed by existing methods were that of scope, 

communication, and volatility. The problems of scope are those dealing with ill-defined 

system boundaries and unnecessary design information [CHRISTEL 92]. 

Communications problems in the Requirements Elicitation process were of two types: 

understanding among the participants of the process and understanding among those 



79 

affected by the process [MILLER 93]. The problem of volatility is the changing and 

evolving nature of requirements [CHRISTEL 92]. In response to this, the Software 

Engineering Institute (SEI) took the existing processes, methodologies and techniques of 

Requirements Elicitation and combined them to form a framework, which presents them 

in relation to each other. 

Process 
Model 

Methods 	 Methods 

Guides 	 Selects 	• 	Selects > 
 
Methods 	 Methods 

Methodology  

Framework 

Figure 25: Requirements Elicitation Framework 

SEI's Requirements Elicitation framework consists of a process model, a 

methodology, and a set of techniques or methods. Figure 25 shows this framework and 

its elements in relation to each other. The idea behind the framework is take individual 

methods and techniques and combine them into a methodology which can be tailored for 

each situation [CHRISTEL 92]. For this purpose the process model is used to guide the 

methodology. The process model provides a strategy that improves upon the problems of 

Requirements Elicitation mentioned above. The methodology recommends the methods 

and techniques to be used based on the situation at hand [MILLER 93]. 

The rest of the chapter describes this framework in more detail. The next section of 

this chapter describes the process model for the framework. Methodology and Methods 



80 

along with the different stages of the process model and the activities of each stage in the 

process model are then discussed in the last section of this chapter. 

2.2 	Requirements Elicitation Process Model 

Requirements Elicitation deals with fact-finding, information gathering, and integration 

[CHRISTEL 92]. Later on, the gathered information has to be validated. Elicitation 

implies communication between different sets of people: analysts, customers, developers, 

and users. The requirements analysts are responsible for the capture of system 

requirements from the user community and its communication to the developer 

community [CHRISTEL 92]. The analyst is the middleman between the user and the 

developer. The analyst also has to make sure other people, such as customers, are 

involved in the Requirements Elicitation and that all the affected groups have a common 

understanding of these requirements. Recognizing the importance of this communication, 

a structured model for this process of communication is created as the main part of the 

framework. This process model governing the framework is shown in Figure 26. 



81 

Figure 26: Requirements Elicitation Process Model. Source: Christel, Michael 
G. and Kang, Kyo C. Issues in Requirement Elicitation. Technical Report 
CMU/SEI-02-TR-12 or ESC-TR-92-012. Software Engineering Institute, 
Carnegie Mellon University, Pittsburgh, PA. September 1992. 

In this process model each stage provides a feedback loop to the previous stages, 

showing that Requirements Elicitation is iterative and not necessarily linear. Iteration is 

necessary for reducing the complexity of the Requirements Elicitation and to handle the 

changing requirements. The iterative nature of the process model allows the requirements 

to be created in chunks and incrementally [MILLER 93]. The different stages of the 

process model combine the available methods and techniques into one model. Within the 

unified model, the stages are separated to achieve certain objectives that are necessary for 

the creation of the final set of requirements. Each stage has separate sets of activities that 

are meant for users of the system and its developers, user-oriented tasks and developer- 



82 

oriented tasks, respectively. 	This is similar to the notion of C-requirements, 

customer/end-user requirements, and D-requirements, developer requirements, mentioned 

in [BRACKETT 90]. The user-oriented tasks and the developer-oriented tasks for each 

of the stages in the process model are shown in Table 3. Section 2.3 discusses these tasks 

in more detail, for each of the stages. 

Table 3: Requirements Elicitation Process Model's Tasks. Source: Christel, Michael G. 
and Kang, Kyo C. Issues in Requirement Elicitation. Technical Report CMU/SEI-02-
TR-12 or ESC-TR-92-012. Software Engineering Institute, Carnegie Mellon University, 
Pittsburgh, PA. September 1992. 

Stages 
User-Oriented Tasks Developer-Oriented Tasks 

Fact-Finding Identify relevant parties.  
Determine operational and 
problem context.  
Identify similar systems.  
Perform context analysis. 

Identify domain experts. 
Identify domain and 
architectural models. 
Conduct technological surveys. 
Assess cost/implementation 
constraints. 

Requirements 
Gathering and 
Classification 

Get wish list. Classify wish lists. 

Rationalization 
and Evaluation 

Perform abstraction to answer 
questions of the form "Why do 
you need X?"; this in effect 
moves from statements of 
"how" to statements of "what."  
Capture rationale to support 
future requirements evolution. 

Perform risk assessment. 

Prioritization and 
Planning 

Determine criticality. Prioritize requirements based on 
cost and dependency. 

Integration and 
Validation 

Address completeness issue 

Check that requirements are in 
agreement with the original 
goals  
Obtain authorization to move to 
the next step of development 

Resolve conflicts 



83 

Both sets of these tasks are important. They complement each other: the user-

oriented tasks study the user community and the developer-oriented tasks study the 

technology. 

Studying user needs is a first step to any solution, along with gaining an 
understanding of available technologies and existing tools. These two 
tasks interact. Without an understanding of technologies one may aim for 
the impossible, and without an understanding of needs, one may solve the 
wrong problem [Quoted in CHRISTEL 92]. 

2.3 	Requirements Elicitation Methodology and its Methods 

The difference between a methodology and a method is that methodology is more 

general. A methodology "offers a set of guidelines or principles which in any specific 

instance can be tailored" [Quoted in CHRISTEL 92] for each situation; but a method 

describes a single procedure for all situations. A method is described as "consisting of a 

grammar of steps and principles for applying them rather than just a collection of 

notations" [CHRISTEL 92]. 

The methodology described in [CHRISTEL 92] consists of several sets of activities 

described in five stages: fact-finding, requirements gathering, evaluation and 

rationalization, prioritization and planning, and integration and validation. The stages are 

executed according to the process model described above [MILLER 93]. The stages are 

briefly described here and described in detail, along with their activities, in the sub-

sections. 

In the fact-finding stage, the client organization is examined and facts are collected 

regarding high level goals of the system to be implemented. Existing similar systems are 



84 

identified and high-level constraints are also determined. The second stage, requirements 

gathering, captures information which determines what is to be built. The Evaluation and 

rationalization stage identifies inconsistencies in the gathered information and also 

describes the reason for the gathered information to be expressed as a requirement. The 

next stage, prioritization and planning, orders the requirements according to their relative 

importance and plans for addressing them in that order. The final stage, integration and 

validation, combines all the information gathered in the previous stages and creates a set 

of requirements. These requirements are validated to determine if they meet the original 

high-level goals of the client, gathered in the first stage. 

As mentioned above, elicitation implies a communication loop between two sets of 

people. Section 2.2 described a process model for this communication loop. In each 

stage of the process model, a set of activities is described here for both sets of people. 

One set of activities is for the user community and the other set is for the developer 

community. 

Besides the methods to be discussed below, there are other alternatives for 

Requirements Elicitation: determining directly, deriving from existing systems, normative 

analysis, strategy set transformation, critical success factors, key indicator analysis, 

prototyping, scenarios, and information needs analysis [CHRISTEL 92]. 

2.3.1 Fact-Finding 

This is the first phase of the Requirements Elicitation process model discussed above. In 

this phase the main goals are "determine what problem is to be addressed, who needs to 



85 

be involved in the decision making process, and who will be affected by the problem's 

formulation and solution" [MILLER 93]. More specifically these goals are separated into 

tasks and they are distributed between users/customers and developers. These tasks are: 

identify relevant parties; identify domain experts; determine operational and problem 

context; identify domain and architectural models; identify similar systems; conduct 

technological surveys; perfoiiii context analysis; and assess cost/implementation 

constraints [CHRISTEL 92]. The output of these activities are "defined to be a statement 

of problem context, a statement of the overall objectives, and supporting representations 

of the boundaries and interfaces of the system" [MILLER 93]. 

For well-understood problem domains, the execution of this phase need not be as 

complex as in other cases [CHRISTEL 92], [MILLER 93]. Since a general understanding 

may already exist in these problem domains, a single iteration of this phase may suffice. 

If such an understanding does not exist, multiple iterations may be needed, looping back 

from the validation phase. Even if multiple passes are needed, later passes through this 

phase need not be as complex as earlier phases [CHRISTEL 92]. 

The Joint Application Design (JAD) technique; structured interviews; graphical 

Issue-Based Information System (gIBIS); Organizational Requirements Design for 

Information Technology (ORDIT); Customers Actors, Transformation process, 

Weltanschauung (world view) Owner, and Environmental constraints (CATWOE), 

objectives analysis model, domain models and technical surveys are some of the 

techniques that are used in this phase of the process model [MILLER 93]. 



86 

JAD is used as a framework for the activities of this phase. A tailored version of 

the JAD technique, as used in this process model, consists of several stages executed in 

order: project research, preparation, session, and the final phase [MILLER 93]. In the 

project research stage, structured interviews are used to capture information which can be 

documented using gIBIS. In the preparation stage, ORDIT, CATWOE, objectives 

analysis models, domain models, and technical surveys are used to represent the acquired 

information. The formalized representation is then checked for conflicts, inconsistencies, 

and unresolved or missing information. The JAD sessions are used to gather the missing 

information and correct other errors in the gathered information. In the final phase, newly 

acquired information is integrated with previously gathered information. Once again the 

information is checked for conflicts, consistency and completeness. If any issues remain 

after this check, the fact-finding phase is reiterated, otherwise this phase is considered to 

be finished. 

2.3.2 Gathering and Classification 

In the phase the main goal "is to obtain information regarding what is to be built in 

relation to the goals, objectives, and constraints developed in the fact-finding stage" 

[MILLER 93]. This stage lists two main activities: get wish list for the users/customers 

and classify wish lists for the developers [CHRISTEL 92]. Wish lists have to be gathered 

from users and customers, which are then classified into different viewpoints by the 

developers. The output of these activities are "representations and documents detailing 

the customer and user oriented objectives and needs" [MILLER 93]. 



87 

JAD is used as the framework for this phase also. Structured interviews and 

questionnaires are used to capture the information directly from the end-users and other 

stakeholders. The gathered information's underlying rationale is then obtained using 

gIBIS. Many users and customers providing requirements information, will generate 

many different points of view for the system to be built. Multiple viewpoints make it 

difficult to analyze and identify conflicting view points and other inconsistencies. 

COntrolled Requirement Expression (CORE) method can be used to organize these 

viewpoints. Viewpoints are further divided into meaningful components to handle the 

problem of changing requirements and incremental requirements development. Entity 

diagrams and data flow diagrams can be used to model these components [CHRISTEL 

92]. 

In this phase, the JAD technique starts with the problem research stage which 

gathers the objectives, needs, and requirements from the users and customers. Structured 

interviews, questionnaires, observations, and Scenario Based Requirements Elicitation 

(SBRE) are used to gather information during this stage [CHRISTEL 92], [MILLER 93]. 

The JAD preparation stage organizes and evaluates information obtained in the previous 

step. The JAD session discusses and compares the requirements gathered in this phase 

and their relation to the objectives, goals, and constraints gathered from the fact-finding 

phase. Any conflicts found in the preparation stage are discussed during the session. The 

last stage of the JAD technique, the final phase, formally documents the information from 

this stage of the process model. This documentation also includes any conflicts found in 

this stage. 



88 

2.3.3 Evaluation and Rationalization 

"The goal of this phase is to fully develop and evaluate the underlying rationale behind 

the requirements gathered to this point" [MIT J  ER 93]. The activities for this phase are: 

to rationalize about the requirements for the users/customers and to perform risk 

assessment for the developers [CHRISTEL 92]. The purpose of these activities is to 

ensure completeness and consistency of the requirements gathered. The objectives, goals, 

and constraints developed in the first phase of the Requirements Elicitation process 

model are compared with the requirements detailed in the second phase of the process 

model. The comparison is performed to see if the requirements address the right issues 

meeting the right goals and solving the right problems. A series of interviews, between 

the analyst and the stakeholders, is needed to evaluate the requirements model against the 

rationale provided by the usage of gIBIS in earlier phases. This evaluation identifies 

missing rationale and unnecessary items. This rationalization process also identifies true 

requirements that are hidden behind the rationale [CHRISTEL 92]. Technical surveys 

from the first phase of the model are used to perform risk assessment in this phase. 

The gIBIS method is used for capturing the rationale behind the requirements; its 

issues-positions-arguments framework is well-suited for this purpose. Domain analysis 

and its models, such as features model and entity-relationship model, are also very useful 

in this phase. Domain analysis is the "definition of features and capabilities common to 

systems in advance of software development" [CHRISTEL 92]. The entity relationship 

model is useful for communicating to the developers the issues for end-users, and the 

features model is useful for communicating to the end-users the issues for the developers. 



89 

2.3.4 Prioritization and Planning 

"The goal of the prioritization phase is to arrange the requirements in order of relative 

importance from the view of the client and view of the developer" [MILLER 93]. The 

activities of this phase consist of a review of the requirements and arrangement of them 

based on mission criticality, cost, dependency, user needs and ability of the requirements 

to be incremented [MILLER 93], [CHRISTEL 92]. The Quality Function Deployment 

(QFD) method is used to prioritize the requirements gathered in the earlier phases of the 

process model. 

Once again, a tailored version of the JAD is used as the framework for this phase. 

In this phase the JAD process starts with the preparation stage in which the QFD inputs 

are arranged and organized for the participants of the meeting. QFD inputs come from 

the requirement models, objectives, goals and constrains created in the earlier phases of 

the process model. The next phase of the JAD process, the JAD session, is used to 

construct the QFD matrix from its inputs. The matrix is based on the "wants" of the user 

community and the "howl" of the developer community. "The 'wants' and 'hows' create 

the two community's desires and abilities" [MILLER 93]. In the final phase of the JAD 

process, the completed QFD matrix is evaluated and reviewed by the stakeholders to 

finish the prioritization phase of the process model. 

2.3.5 Integration and Validation 

The goal of this phase is to "reduce the conflicts found in the requirements, to address 

completeness and to validate the requirements" [MILLER 93]. Activities in this phase 



90 

consist of checking for completeness by filling in uncompleted requirements and 

consistency, conflict, and validation checking to deteimine if the requirements meet the 

original goals, objectives, and constraints from the fact-finding phase of the process 

model. Outputs of this phase are a set of requirements; if they are complete then the 

Requirements Elicitation process is considered to be finished, but if they are incomplete 

then more iterations through the process model are needed to complete the requirements. 

It is important for stakeholders to be involved in this phase of the process model. If 

the final integration and validation is performed by the developer community it could be 

viewed as the developers' interpretation of the requirements. A sense of shared 

ownership among the developer community and the user community would be lost in 

such an event. 

The JAD technique is used as the framework for this phase of the process model. 

The primary contribution of the JAD technique is in its use as "a means to validate 

information already gathered" in earlier phases [CHRISTEL 92]. The JAD process starts 

with a preparation phase in which the analysts organize and package all the documents 

and models from the previous phases of the process model. The analysts review these 

documents and models for consistency, completeness, and validity. The JAD session is 

used to resolve any open issues and the priority of the requirements are reviewed. A 

decision on how to proceed is determined based on this review of requirements. The 

decision is either to proceed to the next step in the software development or to remain in 

the Requirements Elicitation phase and reiterate through the process model. 



CHAPTER 3 

REQUIREMENTS ELICITATION WITH INTERNET TECHNOLOGIES 

3.1 Introduction 

Requirements Engineering is a very important step for a software development project's 

success. Requirements Elicitation, considered to be the first step in Requirements 

Engineering, is the focus of this thesis. Requirements Elicitation is mainly about 

communications among different people within and across companies. During this part 

of Requirements Engineering, various stakeholders need to be able to communicate their 

requirements to the developers, and the developers need to be able communicate their 

understanding and generate feed back to the stakeholders for validation. The problem is 

that Requirements Elicitation techniques currently used produce a lot of documentation 

and require a lot of communication between and among stakeholders of a product and the 

developers of the product. Easing communications between stakeholders and developers 

makes the process of eliciting requirements easier, leading to better requirements 

specification. Better specification, ultimately, leads to a better product. The hypertext 

metaphor of the World Wide Web (WWW) on the Internet is used as a vehicle for easing 

communications between stakeholders and developers. It is hoped that applying Internet 

technologies will ease the process for Requirements Elicitation. 

Several approaches for automated Requirements Elicitation exist; the approaches 

taken are computer-assisted group processes, automated analysis of documents, 

automated requirement verification, and CASE prototyping [PLAYLE 96]. This chapter 

91 



92 

describes the application of Internet technologies for the problem of Requirements 

Elicitation using SEI's framework for Requirements Elicitation. In this chapter, the 

Requirements Elicitation Process through Internet (REPI) is described in detail. REPI is 

a prototype web application developed to implement the ideas of using the SEI 

framework to elicit requirements through the Internet. REPI is a groupware type system 

that uses the Internet as the meeting place for the group to meet for the purposes of 

eliciting requirements. Many Internet technologies could be used to develop a web site. 

Each technology has its own learning curve and its own benefits and limitations. The 

World Wide Web (WWW) technology of the Internet is used as the platform for this 

system. Specifically, the REPI web site uses the technologies of HTTP, HTML, Style 

Sheets, and JavaScript, as described in Chapter 1, to build a demo product for eliciting 

requirements using SEI's framework for Requirements Elicitation described in Chapter 2. 

This chapter of the thesis describes the REPI demo web site and evaluates its 

design, in Sections 3.2 and 3.3 respectively. Section 3.2 is sub-divided along the major 

parts of the web site: SEI's Requirements Elicitation process model parts of the web site 

and the utility parts of the web site. Section 3.3 uses the framework for web site design 

evaluation described in [HONG 97] to evaluate the REPI web site's design. 

3.2 REPI Web Site Description 

This section of the thesis describes the REPI web site which is to be used as the platform 

for eliciting requirements in a distributed and an asynchronous manner. It is distributed 

because members of a given project need not be in the same location, they need not meet 



93 

physically. They contribute their information electronically using the Internet and the 

REPI web site. Requirements and other information are collected and stored in a 

database on the server which is connected to the web site. As different users from 

different locations log in, the collected knowledge of the whole project is displayed to 

each and every member of the project. It is asynchronous because users need not be 

logged in at the same time and these people are not only separated by distance; they could 

also be separated by time zones. Individual users are working alone, at their own pace 

and at the time of their own choice. But the whole project's work is collected and the 

most up to date information is displayed to all the users at the same time. 

LOGIN Screen 

User's 	 Developer's 
Main Menu 	 Main Menu 

S El 	 SE I 
Utility 	Help 	 Phase 	

Utility 	Help 
Phase 

Menus 	Menu 	 Menus 	Menus 	Menu 
Menus 

 

	

 Read 	
	  

	

 Read 	
 

Fact Finding 	Messages 	Fact Finding 	 Fact Finding 	Messages 	Fact Finding 

Gathering 	 Gathering 	 Gathering 	 Gathering 
— 	and 	  Send 	— 	and 	 — 	and 	— Send 	— 	and 

Classification 	Messages 	Classification 	 Classification 	Messages 	Classification 

Evaluation 	 Evaluation 	 Evaluation 	 Evaluation 
— 	and 	— What's 	— 	and 	 — 	and 	 What's 		and 

Rationalization 	New 	Rationalization 	 Rationalization 	New 	Rationalization 

Prioritization 	 Prioritization 	 Prioritization 	 Prioritization 
— and 	— Todo 	— 	and 	 — and 	— Todo 	— a"d 

Planning 	 Tasks 	Planning 	 Planning 	Tasks 	 Planning 

Integration 	 Integration 	 Integration 	 Integration 
— and 	 — and 	 — and 	 — and 

Validation 	 Validation 	 Validation 	 Validation 

Figure 27: REPI Web Site Structure Overview 



94 

The REPI web site is organized as a series of pages branching from the two primary 

menu pages, as shown in Figures 27 through 29. The two primary menu pages divide the 

complete set of web site users, for a given project, along their lines of responsibility: the 

client side people are responsible for providing the requirements for a product, and the 

development side people are responsible for understanding the product. Each of the two 

primary menus branches of into another set of menus, one for each of the five phases of 

the SEI's Requirements Elicitation process model. Figures 28 and 29 show the web site 

structure for the client side users and for the development side users, respectively. Each 

menu of this set, for each of the five phases, displays a different web page based on the 

tasks of that phase. Besides the pages from this main structure, several additional menus 

and pages are attached as common items to the two primary menu pages and to all the 

other pages branching off them. A "Login" page is included as the main page for the 

REPI web site, this page is used to branch off into the two primary menu pages. The 

"Login Screen" is described in Section 3.2.1. The web pages branching off from the 

primary menu structures are described in Sections 3.2.2 to 3.2.8. The additional menus 

and pages are described in Section 3.2.9. 



95 

User's 
Main Menu 

Fact Finding 
Menu 

 
Gathering and 
Classification 

Menu 

Evaluation and 
Rationalization 

Menu 

Prioritization and 
Planning Menu 

V 

Integration and 
Validation Menu 

Identify 
rrelevant 
people 

Describe 
the 

Problem 

Define 
Goals 

List 
Mission 

Scenarios 

Identify 
Similar 

Systems 

List Requirements 

 Add 
Requirements 

	   	Perform  
Abstraction 

	
Capture 

Rationale 

  Prioritize 

Requirements 
List 

	Address 
Completeness 

	
Validate 

Requirements 

Obtain 
 Authorization 

Figure 28: REPI Web Site Client Side Structure 

Developer's 
Main Menu 

 

Fact Finding 
Menu 

 
Gathering and 	Evaluation and 
Classification 	Rationalization 

Menu 	 Menu 

 

Prioritization and 
Planning Menu 

 

integration and 
Validation Menu 

Identify 
 domain 

Identify 
— domain 

models 

Conduct 
— technological 

survey 

Assess 
constraints 

experts  
	 Risk  Classify 

Assessment Requirements A t 

List 	 	Feasibility 

Requirements 	 Analysis 

Add 	 	Cost/Benefit 

Requirements 	 Analysis 

Prioritize 
 Requirements 

Plan 
development 

stages 

Identify 
	architectural 

models 

	Resolve 
Conflicts 

Figure 29: REPI Web Site Developer Side Structure 



96 

The screen shots shown in this chapter are from the Netscape Navigator Ver. 4.03 

browser as displayed on the Microsoft Windows 95 platform. The appendices of this 

thesis lists the source code and shows the screen shots for the selected web pages of the 

REPI web site. For the sake of print quality, the background images in the bottom two 

frames of the REPI web site's pages are not printed and for the sake of the thesis' size, 

some of the pages are compressed and shown along with other related pages. The 

appendices also shows several screen shots from various other browsers and platforms. 

As the REPI web site developed for this thesis is a demo version, none of the back-end 

functionality described are implemented at this time. The demo version displays an error 

message whenever these parts of the web site are accessed. 

3.2.1 Login Screen 

[AL-RAWAS 96] describes the problem of requirements traceability as the inability to 

trace the human source for the actual requirements and their related information. 

Requirements traceability becomes very important during later stages of the 

Requirements Engineering, for validation and review. Traceability is also important 

during later stages of the software development cycle, if changes need to be made to the 

requirements or if more detailed information is necessary later on. [AL-RAWAS 96] 

shows that most requirements are only linked to people by their job titles, user groups or 

departments. In long term projects, people could be prompted, change groups or even 

companies. Requirements linked to an individual's name serve traceability better than 

other forms of linkage. 



97 

The REPI web site could be located either on an internal server within the 

companies Intranet or on a server on the Extranet, shared by many cooperating 

companies. It could also be on a public server connected to the Internet, in cases where 

requirements are elicited from the general public or from people who work for many 

different organizations. All this connectivity requires some level of security. 

For all these purposes, REPI requires a unique method of identification for all 

project members using the REPI web site. A user id and a password are needed before 

any person is allowed to use the REPI web site; for this a "Login Screen" is created as the 

home page for the REPI web site. Figure 30 shows this home page as it is displayed by 

Netscape Navigator Ver. 4.03 on the Microsoft Windows 95 platform. Appendix F.1 

shows the "Login Screen" as it is displayed on different platforms by various web 

browsers. 

Figure 30: "Login Screen" of the REPI Web Site 



98 

This is the main page for the REPI web site and it provides a simple user id and 

password based security for the REPI web site. Initially project managers from the client 

side organization and the development side organization will be provided with a 

management level user id and password. These managers will identify other people who 

should be involved in the project using the "Identify Potential Stakeholders" task and the 

"Identify Domain Experts" task of the Fact Finding Phase. As people are identified, they 

will be given either user level or management level access as required. They will also be 

partitioned as either client side users or development side users. The back end process for 

this page should either load the "User's Main Menu" or the "Developer's Main Menu" 

based on the type of login id and password entered by the user. As the back end process 

is not implemented in the demo version of the REPI web site, two direct links are 

provided for these two parts of the web site; clicking on the "Login" button displays an 

error message. 

3.2.2 Menu Screens 

As mentioned above the REPI web site is divided between user oriented pages and the 

developer oriented pages, following the division of user oriented tasks and developer 

oriented tasks of the SEI's framework for Requirements Elicitation [CHRISTEL 92]. 

Two sets of menus are provided for these two types of project members, client side users 

and development side users. Figure 31 shows the two menu screens. Part 1 of Figure 31 

shows the "User's Main Menu" screen and part 2 of the figure shows the "Developer's 

Main Menu" screen. 



99 

Figure 31: REPI Web Site's Menu Screens 

Both sets of menu screens are designed to be as similar as possible. The visual 

appearance and the front end behavior of the two pages should be identical. The real 

difference between the two pages are in the messages displayed and the back end 

behavior of clicking on various links. Visually the menu screens are divided into four 

frames. The top left frame holds the logo graphics for the REPI web site. The top right 

frame displays the current title for the screen. As the user navigates through the different 

pages of the REPI web site, the title frame should reflect the current phase of the SEI 

Requirements Elicitation process model. The bottom left frame lists the current menu 

items for the screen. This frame itself is divided into three sections using the HTML 

<TABLE> tag. The top part of the table is used for the different phases of the process 

model. Generally this top part provides a link into each task of the current phase for the 

current user group. The middle part of this table is used for generic project management 

oriented tasks; these "tasks" are not part of the SEI Requirements Elicitation process 

model. Rather, as described further in Section 3.2.9, they are generic useful items which 

should make using the REPI web site easier. The last part of this table is used for generic 



100 

web site related links; specifically links such as "Main Menu," "Help," and "Logout" are 

provided. If the current page is one of the main menu pages then the "Main Menu" link is 

not displayed. If the current page is one of the help pages then "Help" link is not 

displayed. The "Logout" link, used to exit the REPI web site and redisplay the "Login 

Screen," is always displayed. The bottom right frame is used as the main display area for 

the actual forms needed in each of the tasks. The contents of this frame are completely 

dependent on the current phase, the current task and the type of user logged in to the 

REPI web site. Sections 3.2.3 to 3.2.7 describes these pages in detail, where each section 

is used for a different phase of the SEI's Requirements Elicitation process model. 

The rest of this chapter doesn't describe the logo frame, title frame and the left 

frame. The logo frame is constant throughout the REPI web site. The title frame displays 

the current phase of the SEI's Requirements Elicitation process model. The left frame's 

contents have been just described above. The description of the REPI web site presented 

below, in Sections 3.2.3 to 3.2.9.4, refers only to the right frame of the given web page. 

3.2.3 Fact Finding Phase 

The Fact Finding phase of the SEI Requirements Elicitation process model examines the 

context of the project and the product to be developed. The client side members of the 

project examine their organization and their reasons for the project. The development 

side members of the project examine the technology and the domain of the product to be 

developed. Table 4 lists the mapping between the SEI tasks for the Fact Finding phase, 



101 

as described in [CHRISTEL 92], and the REPI web site tasks for the Fact Finding phase. 

The user oriented or client side tasks are listed first and then the development side tasks. 

Table 4: SEI Compared with REPI for the Fact Finding Phase 

Side 
SEI's Tasks REPI's Tasks 

Client 
Side 

Tasks 

Identify relevant parties.  
Determine operational and problem 
context 

Identify relevant people 
Describe the Problem  
Define Goals  
List Mission Scenarios 

Identify similar systems. Identify similar systems. 
Perform context analysis. 

Identify domain experts. Identify domain experts. 
Development 

Side 
Tasks 

Identify domain and architectural models 

Conduct technological surveys. 

Identify domain models. 

Conduct technological 
surveys. 

Assess cost/implementation 
constraints. 

Assess constraints. 

3.2.3.1 User's Tasks 

3.2.3.1.1 Identify Relevant People: This task identifies the potential stakeholders of the 

project. Any Requirements Elicitation effort needs a set of people to work with. This 

web page can be used by project managers to identify people who could contribute to the 

success of the project. The people identified might be end users of the actual product to 

be built. They could be the customers or owners of the product to be built; people who 

actually authorized the project or people who are going to pay for it. They could be 

management level people, such as supervisors of end users, whose input could be of use 



102 

for the project's success. The web page displays a simple form for users to enter the 

stakeholder's name and basic contact information. It also has an option button group for 

categorizing the stakeholder into one of three pre-defined categories: "End User," 

"Customer," or "Management." 

Other information about the stakeholder, such as their job description or title, could 

be of use in this page; but full information about each project member can be viewed 

from a separate page of the KEPI web site. Specifically the "Project Member" menu item 

from the "Todd Tasks" page, described in Section 3.2.9.3.3, can be used to view all 

available information about each member of the project team. 

3.2.3.1.2 Describe the Problem: This task allows the users to describe the perceived 

problem from their point of view. This allows each stakeholder to define their view 

point, possibly separate and contradictory to other view points. The web page presents a 

simple text area for the users to describe the problem using their own words. 

3.2.3.1.3 Define Goals: In this tasks the users are expected to define the major goals to 

be achieved by the project. Each stakeholder can enter multiple goals by repeatedly using 

the form and giving a separate goal name each time. This provides the developers with a 

list of major areas of work to be done for the project. The web page presents a text box 

for the goal name and the text area for the users to enter the goal description. 



103 

3.2.3.1.4 List Mission Scenarios: Major scenarios for the product's use are identified in 

this task. The scenario has a name and general description associated with it. An event, 

action, reaction framework is used to list the steps of the scenario. The right side of the 

web page for this task is divided into three frames. The top frame has a text box and text 

area for the scenario name and its description. The middle frame holds the text boxes for 

the event, action, reaction framework. The bottom frame has three JavaScript buttons. 

The first button, labeled "One More Event Line," is to be used for creating another event 

line in the middle frame. If the scenario to be described has a complex or a long set of 

events, actions or reactions then more event lines can be created using this button. The 

second button, labeled "Enter Scenario" is to be used for signaling the finished scenario. 

The last button is the standard HTML form's clear button, used for clearing the contents 

of the form data fields. 

3.2.3.1.5 Identify Similar Systems: This task is used to identify systems that are in 

some way, shape or form similar to the product to be developed. This allows users to 

identify potential sources of reuse materials, either in the form of analysis, design or 

perhaps the implementation level details itself. To be of any use, these potential sources 

have to be identified and categorized according to their usefulness. This task is used to 

identify these sources and list the similarities and differences between these systems and 

the product to be developed. As seen in Figure 32, the REPI web site's view for this task 

is presented in four frames on the right side of the web page. The top frame has a text 

box to identify the system for potential reuse. It also has a text area for a general 



104 

description of this system. The middle part is divided into two sub-frames. The left sub-

frame lists the similarities identified between this system and the product to be built. The 

right sub-frame lists the differences identified between this system and the product to be 

built. The bottom frame has a text area to enter new information about this system. The 

left button, labeled "Enter Similarity" should be used if the newly entered information is a 

description of a similarity between the two systems. The right button, labeled "Enter 

Difference" should be used if the newly entered information is a description of a 

difference between the two systems. The middle button is the standard clear button used 

to clear the contents of the form data fields. 

Figure 32: Task 5, "Identify Similar Systems," of the Fact Finding Phase. 



105 

3.2.3.2 Developer's Tasks 

3.2.3.2.1 Identify Domain Experts: This task is similar to the user oriented task 

"Identify relevant people" executed in the same phase of the SEI's Requirements 

Elicitation process model. This tasks identifies the domain experts and the development 

experts for the project. The user oriented task identified people to contribute their 

specific needs for the product to be developed. The developer oriented task identifies 

people to contribute the specific needs for developing the product in a given domain. The 

application expert or the domain expert has knowledge in the general area of the product. 

For example a project that develops an application for a bank might require domain 

experts with knowledge about the laws that apply in the banking and finance industries. 

The development expert has knowledge in the product development areas. For example a 

project that develops the software for Internet banking might need experts in the areas of 

network and Internet security issues. 

The web page displays a simple form for users to enter the expert's name and basic 

contact infoiniation. It also has an option button group for categorizing the expert into 

one of two pre-defined categories: "Application Expert" or "Development Expert." As 

mentioned in Section 3.2.3.1.1., other information about the project member could be of 

use in this page; but full information about each project member can be viewed from a 

separate page of the REPI web site. Specifically the "Project Member" menu item from 

the "Todo Tasks" page, described in Section 3.2.9.3.3, can be used to view all available 

information about each member of the project team. 



106 

3.2.3.2.2 Identify Domain Models: This task allows developers to identify the different 

models that will be used during the product's development. The REPI web site demo 

allows the developers to enter information about the domain model and the architectural 

model. The domain model refers to information about the product's general area. For 

example if the product to be built is an Automatic Teller Machine (ATM) software 

system for a bank then the domain model might contain information about how the ATM 

transactions are generally applied in the banking industry. The architectural model refers 

to information about the product design. Using the ATM software example again, the 

architectural model might contain information about using a client-server model for 

developing the front end software and the back end software. The REPI web site page for 

this task also contains a search button which is provided for the possibility that is 

information needs to be searched for. As the development process is just beginning such 

information might not be readily available for input. In case the information is available a 

file import button is also provided. This button allows the developers to provide a link 

into an external file that contains the necessary information. 

3.2.3.2.3 Conduct Technological Survey: This task is used to enter technological 

survey information about the technologies that will be used during a product's 

development. For example if the project's purpose is to provide the software for Internet 

banking then this task can be used to enter information about the Internet security 

technologies such as Secure Sockets Layer (SSL), which is a security protocol needed for 

secure web applications. 



107 

The REPT web site demo provides a text box to enter a name for the technology 

survey. A survey should be named because multiple surveys, in different technological 

areas, might be needed for the product's development. The demo web page for this task 

also provides a text area to enter the survey information. A search button is provided to 

search for survey information and a file import button is provided to link into an external 

file that contains the survey information. 

3.2.3.2.4 Assess Constraints: The purpose of this task is to gather information about the 

constraints imposed by the client side people. A constraint is an implied requirement that 

limits the design solution or implementation level choices of the system. The REPI web 

site displays a drop down box to select the constraint and provides a text area to enter the 

information about this constraint. For example the users might impose the choice of 

Microsoft Windows 95 as the software's platform. In such a case the developers need to 

gather information about this constraint's implications. One such implication might be 

the need for a developer who is familiar with the Windows 95 Application Programming 

Interface (API). 

3.2.4 Gathering and Classification Phase 

The Gathering and Classification phase of the SEI Requirements Elicitation process 

model is responsible for capturing and organizing a set of requirements for the product to 

be developed. The client side members of the project provide the requirements based on 

their needs and the development side members of the project classify the requirements 



108 

based on various attributes. The client side people are also allowed to provide 

information for the requirement's attributes. The development side people are also 

allowed to add requirements to the database. Table 5 lists the mapping between the SEI 

tasks for the Gathering and Classification phase, as described in [CHRISTEL 92], and the 

REPI web site tasks for the Gathering and Classification phase. The user oriented or 

client side tasks are listed first and then the development side tasks are listed. 

Table 5: SEI Compared with REPI for the Gathering and Classification Phase 

Side 
SEI's Tasks REPI's Tasks 

Client 
Side 

Tasks 

Get wish list. List Requirements  
Add Requirements 

Development 
Side 

Tasks 

Classify wish lists. Classify Requirements  
List Requirements  
Add Requirements 

3.2.4.1 User's Tasks 

3.2.4.1.1 List Requirements: This is not a task of the SEI Requirements Elicitation 

process model per se, rather it is a utility function useful in this phase of the process 

model and throughout the Requirements Elicitation effort. This "task" allows the users to 

list all the available requirements. It also allows the users to filter, sort, and define their 

own viewpoint into the requirements database. Several commonly useful pre-defined 

views are also provided here. Figure 33 shows the REPI presentation for this "task." 



109 

Figure 33: Task 1, "Requirements List," of the Gathering and Classification Phase 

As shown in Figure 33, the right side of the web page is divided into two major 

parts. The top part defines the controls for the different views and the bottom part lists 

the actual requirements. Specifically the top row has 10 buttons which indicate the detail 

level for the displayed set of requirements. Level "1" indicates that only top level 

requirements such as "UR1," "UR2" or "UR3" are displayed. Level "2" indicates the 

next level requirements such as "UR3.1" or "UR3.2" are also displayed. Up to nine 

levels are defined using the first nine buttons. The last button, labeled with a "*" symbol, 

indicates that all the levels are to be displayed. On the second line of the display, a drop 

down list box is used to list the pre-defined views into the requirements database. The 



110 

users can select commonly useful views such as, "Undefined Requirements" or "Verified 

Requirements" to view these set of requirements from the database. Next to this, a text 

box and a command button is used to allow the users to define their own views into the 

database. Client side cookies can be used to preserve these user defined views across 

sessions. The next line, in the display, presents the column headings for the requirements 

list. The first two columns display the unique requirements identification number and the 

title of the requirement. These two provide the software and the human, ways of uniquely 

identifying the requirements, and thus need to be displayed at all times. The middle three 

columns can be customized by the users by selecting the type of information they need to 

view. For example the default values for these columns indicate that the "Category," the 

"User Priority" level and the level of "Importance" is displayed. But other attributes of 

the requirements such as level of understanding or the type of requirement can also be 

displayed in any of these three columns. The last column is used to display the current 

status for the given requirement. 

3.2.4.1.2 Add Requirements: This is one of the most important tasks in the 

Requirements Elicitation process model. This is the primary means of adding 

requirements by the users. Client side users add or modify the requirements in this task. 

Besides the main paragraph describing the requirement, it should have several attributes 

associated with it. These attributes provide supplementary information about the 

requirement, its relationship to other requirements and assist in requirements management 

[KAR 96]. A unique method of identification is needed, both for the software and for 



111 

humans, to distinguish between the different requirements. Different types of categories 

are needed to classify requirements. The "Add Requirements" page allows user to 

provide both the main paragraph and these supplementary properties. 

The requirements identification number, labeled as "Req Id," is used as the unique 

identification method by the software. The requirement title, a user provided text string, 

is used as the identification method by the humans. Each requirement is also categorized 

into several categories. Several pre-defined categories, based on the problem domain, 

could be defined. Users are also allowed to define their own categories. But if each and 

every user defines his or her own category it defeats the purpose of having categories. So 

some method of social control or software assisted security control needs to be provided, 

to allow only selected users to define new categories. Other users should be restricted to 

selecting a pre-defined category as they add new requirements. Each requirement can be 

held up to different levels of compliance. The compliance level defined here include 

"Mandatory," "Goal," "Objective," and "Optional." The exact semantics of these 

compliance levels has to be based on some external common understanding, such as a 

contract document. A requirement evolves through different stages. This evolution is 

reflected in the "Current Status" attribute with several status levels defined, such as "To 

Be Determined" (TBD), "To Be Reviewed" (TBR), "Defined," "Verified" and "Deleted." 

A requirement can be classified into several broad categories such as "Functional 

requirement," "Non-Functional requirement," or "Interface requirement." Some of the 

broad categories have several sub-categories such as "Performance requirement" or "User 

Interface requirement." The "Requirement Type" attribute is used for this classification 



112 

including the classification for information that is deemed to be a "Design Constraint" 

rather than an actual requirement. A given requirement has to be verified before it comes 

useful. Depending on the type of requirement and the available information on it 

different methods of verification can be used. The "Verified By" attribute is used to 

indicate the type of verification method desired for a given requirement. These methods 

are "Inspection," "Analysis," "Demonstration," and "Test." These attributes provide 

additional information about the requirement. Besides all these attributes each 

requirement has to have a description that defines the requirement itself. 

Figure 34: Task 2, "Add Requirement," of the Gathering and Classification Phase. 



113 

Figure 34 shows the REPI implementation for the "Add Requirement" task of the 

Gathering and Classification phase. This web page is designed to display all the 

properties that need to be entered for a requirement to be fully defined. The web page 

first uses a drop down list box to list the next available requirement identification number 

and provides a text box for the user to enter the requirement title. To the right side of 

this, another drop down list box is used to list the pre-defined categories. A text box is 

provided for the users to enter their own category. The next row provides the list of 

compliance levels and current status indicators. Either an end user or a management level 

user can select the proper compliance level needed for this requirement and define its 

current status. Next a text area box is presented for the user to enter a paragraph 

describing the requirement itself. Requirements can come in several forms, for a example 

a graph or table might be a requirement specifying the need to meet some performance 

level. A picture or some other multimedia element can be used to provide a sample for 

some quality requirement. A requirement might refer to a standards document specifying 

the need to meet that standard. To handle these types of requirement a JavaScript file 

import button is provided. This feature can be used to import these sources of 

requirement. An external file can be referred to using the file dialog box, that is 

displayed as the user clicks on this button. This external file can contain any type of data 

and can be in any format. The bottom part of the web form uses an HTML table to 

display the attributes of "Requirement Type" and "Verified By." The first row of the 

table displays the different types of requirements, including the sub-types for the "Non-

Functional Requirement" type and the "Interface Requirement" type. A grouped radio 



114 

button is used to select the type of requirement and the drop down list box is used to 

select the proper sub-types. The second row of the table displays the different types of 

verification methods available. Once again, a grouped radio button is used to select the 

verification method. The two buttons on the bottom of the form are used to either enter 

the requirement into the database or to clear the HTML form. 

The details of the above attributes differ from one source to another. For example, 

in the area of requirement categorization, several different possibilities are listed: 

"Program Requirement" versus "Product Requirement" and "Primary Requirement" 

versus "Derived Requirement" [KAR 96] and [HARWELL 93]. A Requirement 

application attribute identifies the object of a requirement with several different types of 

parameters [HARWELL 93]. The "Product Parameter" of a requirement can be 

subdivided into "Qualitative" and "Quantitative" parameters. The "Program Parameter" 

of a requirement can be subdivided into "Task," "Compliance Evaluation," and 

"Regulatory" parameters. For a requirement's compliance level, [HARWELL 93] uses 

the three values "Mandatory," "Guidance," and "Information," while [KAR 96] uses the 

two values "Mandatory" and "Goal or Objective." A given requirement can have several 

other attributes that are not included in this demo version of the REPI web site. Some of 

these attributes, described in [KAR 96], are "Allocated to," "Source," "Verification 

documents," and "Change notices." The "Allocated to" attribute allocates each 

requirement to a lower level component of the product to be built. "Verification 

documents" are documents which describe verification plans and procedures, such as a 

test plan document. "Change notices" refer to information recording the history of the 



115 

requirement as it evolves. These attributes could be added to the prototype version and 

the support for existing attributes can be improved upon. 

3.2.4.2 Developer's Tasks 

3.2.4.2.1 Classify Requirements: This task allows developers to properly categorize the 

requirements entered by the users. The purpose of this task is to produce a detailed 

requirements hierarchy. While the requirements can be categorized as they are added, a 

separate task is created for this purpose because full information about the requirements 

are not available at once, and also because most end users are not properly qualified to 

classify requirements based on their type such as, "Functional," "Non-Functional," or 

"Interface." Most end users are also not qualified to judge a requirement as a "Design 

Constraint" or as an actual requirement. Developers might need to consult with users if 

they need to change a requirement's category as they are producing a requirements 

hierarchy. A requirements might also go through several versions and slowly evolve from 

an undefined stage, with just the title given, to a fully defined and categorized stage; such 

an evolution might prevent the requirement from being properly classified at the 

beginning. Another usefulness of this task is that it presents information in a manner 

which makes it easy to properly categorize the requirements. All available information 

about each requirement can easily be viewed by selecting the requirements from the drop 

down box. So developers are assisted in categorizing requirements because they can view 

already categorized requirements as an example to categorize new requirements. This 



116 

helpful feature is not provided in the "Add Requirement" task, described above, because 

that task's web page had a different design goal. 

The REPI web site demo presents this task's web page in three different parts 

separated by a horizontal line across the right side of the screen. The top part displays a 

drop down box containing a list of all available requirements. Next to it a category name 

is displayed if one has been defined already. The middle part of the display has a list of 

user's description and comments on the selected requirement. This page's display is 

limited to one line for each user; clicking on the button labeled "Full Info" should display 

the full comment as entered by that user. The bottom part of the screen displays the 

different attributes of a requirement as discussed above in Section 3.2.4.1.2. 

3.2.4.2.2 List Requirements: The Developer's task "List Requirements" is exactly the 

same as the User's task "List Requirements." Since the "List Requirements" task and the 

REPI implementation of this task is described above, in Section 3.2.4.1.1, it will not be 

described here again. 

3.2.4.2.3 Add Requirements: The "Add Requirements" for the Developer's side of the 

REPI web site is the same task described in the User's side of the REPI web site. So 

please see Section 3.2.4.1.2 for this task's description and information about the REPI 

implementation. 



117 

3.2.5 Evaluation and Rationalization Phase 

The Evaluation and Rationalization phase of the SEI Requirements Elicitation process 

model is responsible for exposing inconsistencies in the gathered information and it is 

also responsible for "determining why the information has been expressed as a 

requirement" [MILLER 93]. Table 6 lists the mapping between the SEI tasks for the 

Evaluation and Rationalization phase, as described in [CHRISTEL 92], and the REPI web 

site tasks for the Evaluation and Rationalization phase. The user oriented or client side 

tasks are listed first and then the development side tasks are listed. 

Table 6: SEI Compared with REPI for the Evaluation and Rationalization Phase 

Side 
SEI's Tasks REPI's Tasks 

Client 
Side 

Tasks 

Perform abstraction to answer questions of 
the form "Why do you need X?"; this in 
effect moves from statements of "how" to 

statements of "what." 
Capture rationale to support future 
requirements evolution. 

Perform 
Abstraction 

Capture Rationale 

Development 
Side 

Tasks 

Perform risk assessment. Risk Assessment  
Feasibility 
Analysis 
Cost/Benefit 
Analysis 

3.2.5.1 User's Tasks 

3.2.5.1.1 Perform Abstraction: This tasks allows users to describe their requirements 

in more detail. The main purpose of this task is to answer the question: "Why do you 



118 

need this requirement?" To fulfill this purpose the web page allows the users to display 

each requirement, along with its description, and answer this question. The form for this 

task is displayed in three frames on the right side of the web page. The left frame lists the 

short titles for the requirements, using a list box. The top frame displays the full title, 

category and the description for the selected requirement. The bottom frame provides a 

text area for the user to answer the question about the displayed requirement. 

3.2.5.1.2 Capture Rationale: This tasks is similar to the previous task, in the sense that 

this task also requires the user to enter more information about each requirement. In this 

task, the user is asked to rationalize about the given requirement. The rationale for a 

requirement provides data which support the requirement. "The supporting data may 

include the reason or reasons a requirement is needed; any assumptions made at the time 

the requirement was formulated . . ." [KAR 96]. The web page for this task is very 

similar to that of the previous task. But this task's web page has an import button and its 

associated text box displayed along with the text area. A requirements rationalization can 

come in any form including a graph or other multimedia item describing the rationale for 

a given requirement. The JavaScript file import button, labeled "Browse" and its 

associated text box can be used to import external items as the source for a given 

requirement's rationale. Clicking on the "Browse" button brings up a standard file dialog 

box for the given graphical user interface. This dialog box can be used to locate the 

source document to describe the given requirement's rationale. Figure 35 shows this file 



119 

dialog box as seen on the Netscape Navigator browser Ver. 4.03, running on the 

Microsoft Windows 95 platform. 

Figure 35: Task 2, "Capture Rationale," of the Evaluation and Rationalization Phase 

3.2.5.2 Developer's Tasks 

3.2.5.2.1 Risk Assessment: This task allows developers to keep track of the risks 

associated with each requirement. Using the example of Internet banking, the 

requirement might state the need for the web application to be compatible with older 

browsers. But if these older browsers do not support SSL or any other form of secure 



120 

transactions a certain amount of risk is associated with the requirement of using older 

browsers. Risks associated with such requirements can be described in this task. 

The REPI web site displays the requirements list using a list box. The selected 

requirement's description is displayed right next to it using the <TEXTAREA> tag. The 

developers can enter the risk information for this requirement into a text area data field on 

the bottom of the form. A search button and a file import button is provided for searching 

and importing the risk information. The button labeled "Add this Assessment" is used to 

enter the risk assessment into the database. 

3.2.5.2.2 Feasibility Analysis: Feasibility Analysis is used to enter information about a 

requirement's feasibility. Any requirement could possibly be met by the developers. But 

many of these requirements might not be able to be met within the constraints set up by 

the users. The development time needed to meet a requirement might be longer than the 

time allowed for the project completion. This task can be used to record information such 

as these, stating that a certain requirement can not be met. Or this task could be used to 

record information that states the conditions under which a given requirement can be met. 

The REPI implementation for this task is very similar to that of the previous task, 

described above in Section 3.2.5.2.1. 

3.2.5.2.3 Cost/Benefit Analysis: Costs associated with a requirement and the benefits 

derived from the requirement can be described in this task. The REPI implementation for 



121 

this task is very similar to that of "Risk Assessment" task described above, in Section 

3.2.5.2.1. 

3.2.6 Prioritization and Planning Phase 

The Prioritization and Planning phase of the SEI Requirements Elicitation process model 

determines "the relative importance of each requirement and the relative order the 

requirements should be addressed in" [MILLER 93]. Table 7 lists the mapping between 

the SEI tasks for the Prioritization and Planning phase, as described in [CHRISTEL 92], 

and the REPI web site tasks for the Prioritization and Planning phase. The user oriented 

or client side tasks are listed first and then the development side tasks are listed. 

Table 7: SEI Compared with REPI for the Prioritization and Planning Phase 

Side 
SEI's Tasks REPI's Tasks 

Client 
Side 

Tasks 
Determine criticality. Prioritize the 

Requirements list 

Development 
Side 

Tasks 

Prioritize requirements based on cost and 
dependency. 

Prioritize Requirements 

Plan incremental 
development stages 
Identify architectural 
models 



122 

3.2.6.1 User's Tasks 

3.2.6.1.1 Prioritize Requirements: This task is used to prioritize the requirements by 

considering which requirements are important or which requirements are more difficult 

and thus have to be dealt with more thoroughly. The users are required to set a priority 

level for each of the requirement listed, indicating its importance for the project from 

their point of view. The users are also required to judge the level of understanding 

obtained on the given requirement by the development team and by the users themselves. 

This indicator can be used to see which requirements are less understood and thus require 

more study or more detailed explanation. The KEPI web site lists the available 

requirements along with two drop down boxes to set these indicators. The first set of 

drop down boxes are in the column marked "Priority Level," indicating the level of 

importance given to the requirement by the users. The second set of drop down boxes are 

in the column marked "Level of Understanding," and this indicates the understanding 

obtained by the project team on the given requirement. 

3.2.6.2 Developer's Tasks 

3.2.6.2.1 Prioritize Requirements: This task allows developers to prioritize the set of 

requirements and is very similar to the "Prioritize Requirements" task described for the 

User oriented task. The developers prioritize the requirement along two attributes: cost 

level and dependence level. The cost level describes the costs associated with a 

requirement; the assumption being that a more complex requirement costs more in 

development time than the time required for a simpler requirement. The dependence 



123 

level describes the number of related requirement associated with a given requirement. If 

a change in any requirements affects other requirements than these other requirements 

refers to the requirement. If a change in other requirements affects this requirement then 

this requirement is referred to by these other requirements. As the dependence level 

increases the cost of meeting and the cost of not meeting that requirement increases. 

Figure 36: Task 1, "Prioritize Requirements," of the Prioritization and Planning Phase 

Figure 36 shows the implementation from the REPI web site demo. The REPI web 

site's view for this task makes it easy to look at a requirement's dependents. A drop 

down list box is displayed in the center, listing the full set of requirements in the 



124 

database. To the left of this full requirements list, another list box displays the subset of 

requirements that refers to the selected requirement from the center list box. To the right 

of the full requirements list, another list box displays the subset of requirements that is 

referred to by the selected requirement from the center list box. The semantics for 

"Refers To" and "Referred By" are described above. So in effect these two list boxes 

provide the full influence the selected requirement has on the product. Based on this 

display, developers can easily set both the cost level and the dependence level by looking 

at a requirement's traceability information. 

3.2.6.2.2 Plan Incremental Development Stages: This tasks allows developers to sort 

the full set of requirements into subsets based on its attributes as judged by the users and 

the developers. The input for this task comes from the "Prioritize Requirements" task 

from the user's side and from the developer's side. The users contribute the level of 

importance and the level of understanding. The developers contribute the cost level and 

the dependency level. Based on these values the KEPI web site should sort the full set of 

requirements based on some combined value. The demo version displays a static table 

that sorts the requirements in descending order based on the average of all the values. 

Additional support for sorting and filtering the requirements should be provided in the 

prototype version. Figure 37 shows this sorted view into the requirements database. 



125 

Figure 37: Task 2, "Plan development stages," of the Prioritization and Planning phase 

3.2.6.2.3 Identify Architectural Models: This task requires developers to identify 

architectural models that support the incremental development stages identified in the 

previous task. The REPI web site demo's implementation is very similar to Section 

3.2.3.2.2's description for the "Identify domain models" page. 

3.2.7 Integration and Validation Phase 

The Integration and Validation phase of the SEI Requirements Elicitation process model 

is responsible for determining the validity of the gathered information and it is also 

responsible for obtaining missing information. Table 8 lists the mapping between the SEI 



126 

tasks for the Integration and Validation phase, as described in [CHRISTEL 92], and the 

REPI tasks for the Integration and Validation phase. The user oriented or client side tasks 

are listed first and then the development side tasks are listed. 

Table 8: SEI Compared with REPI for the Integration and Validation Phase 

Side 
SEI's Tasks REPI's Tasks 

Client 
Side 

Tasks 

Address completeness issue 

Check that requirements are in agreement 

with the original goals Obtain authorization to move to the next 
step of development 

	  Completeness 

Address 

Validate 

Requirements 

Obtain Authorization 

Development 

Side 

Tasks 

Resolve conflicts Resolve conflicts 

3.2.7.1 User's Tasks 

3.2.7.1.1 Address Completeness: This task is needed to address any requirements that 

might not have been completely defined in the earlier phases of the Requirements 

Elicitation process. For example unknown or less understood requirements can be 

created and marked, during the "Gathering and Classification Phase," as "To Be 

Determined." These "TBD" requirements, as it is commonly listed, have to be eventually 

defined before the requirements stage of the development process is finished. The 

"Address Completeness" task of the "Integration and Validation Phase" is used for this 

purpose. The REPI web page for this tasks divides the right side of the screen into two 



127 

frames. The top frame lists the requirements that have been marked as "To Be 

Determined" and clicking on these requirements will activate the bottom frame displaying 

the "Add Requirements" form as described above in Section 3.2.4.1.2. 

3.2.7.1.2 Validate Requirements: Before a set of requirements becomes useable, they 

have to be verified and validated. This task is used for the purpose of validating 

requirements and verifying that they are in agreement with the originally stated goals for 

the project. The REPI web site's view into this task is a form divided into three parts 

using the HTML table tag. The top part uses a list box to list all the available 

requirements and next to it, more information about the selected requirement is displayed. 

The bottom part uses another list box to list all the available goals of the project and next 

to it, more information about the selected goal is displayed. The user is required to select 

a requirement from the top part and view all the listed goals on the bottom part. If the 

selected requirement is in agreement with the listed goals, this requirement is considered 

to be valid as far as the goals are concerned. The JavaScript button on the middle part of 

the form can be clicked on to indicate the selected requirements' validity. 

3.2.7.1.3 Obtain Authorization: This task is a simple step used to indicate the finished 

status of the Requirements Elicitation process. By "signing" this form the client side 

users indicate that the requirements have been properly elicited from them and that they 

authorize the developers to proceed to the next step of the development process. The 

REPI web site displays a text box for the users to enter their name used as an indication 



128 

of their "signing" the form. A JavaScript file import button is also provided on this form. 

This can be used to import a digital signature that can provide more security than a simple 

text box. The two buttons on the bottom of the form are used for either authorizing the 

developers to proceed or to deny their approval. If the users deny their approval then one 

more iteration through the Requirements Elicitation process is needed. 

3.2.7.2 Developer's Tasks 

3.2.7.2.1 Resolve Conflicts: In this task, the developers validate requirements and 

resolve any conflicts found in them. The REPI web site displays all the comments made 

by different users about the selected requirement. Based on these comments the 

developers are required to assess the validity of the requirement and resolve any conflicts 

that might arise from the different viewpoints presented by the users. 

The REPI web site demo uses a drop down list box to present a list of requirements 

tagged as unverified or unresolved. Next to this the requirement's category is displayed 

and its description is displayed below that. A table is used to display the list of users who 

commented on this requirement. The left column of the table displays the user id, the 

next column displays the date and time the comment was made. The last column displays 

the actual comment made by that user. Below this table, a text area is provided where the 

developer can resolve any conflicts found. 



129 

3.2.8 Information Pages of the REPI Web Site 

This section of the chapter describes the web pages of the REPI web site that provides 

detailed information for a given object. 	The first sub-section describes the 

"Requirements Information page" which displays all available information about a given 

requirement. The second sub-section describes the "Category Information page" which 

displays all available information about a given category. The third sub-section describes 

the "User Information page" which displays all available information about a given user. 

These pages are not directly related to the different phases of the SEI's Requirements 

Elicitation process model; rather they provide detailed information about the objects that 

are relevant in these phases. 

3.2.8.1 Requirements Information Page 

This page displays all available information about a given requirement. Both the client 

side people and the developer side people are presented with the same information, 

regardless of the information's origins. The REPI web site demo page is divided into 

four sections after the requirement's title is displayed on top of the frame. The first part 

uses a table to display the basic attributes about the given requirement. The first column 

displays the requirement's category, the next column displays the type of requirement, 

and the next one displays the verification method to be used on this requirement. The last 

but one column displays the compliance level for this requirement and the last column 

displays the requirement's current status. Whenever any information is not yet available, 

a blank space is displayed in that data cell. Clicking on the requirement's category should 



130 

display more information about that category as described below, in Section 3.2.8.2. The 

second part of the page uses another table to display the various priority levels for the 

requirement: importance, understanding, user priority, cost, dependency, and the 

developer priority. The next part of the page displays the four types of additional 

information entered for each requirement. The top left cell of this table displays the 

rationalization information about the requirement; this information is entered by the users 

in the second task of the "Evaluation and Rationalization Phase" of the SEI Requirements 

Elicitation process model. The top right cell of this table displays the risk assessment 

information for the requirement; this information is entered by the developers in the first 

task of the "Evaluation and Rationalization Phase." The bottom left cell displays the 

feasibility analysis, from the second task of the "Evaluation and Rationalization Phase." 

The bottom right cell displays the cost and benefits analysis, from the third task of the 

"Evaluation and Rationalization Phase." This part of the page is shown in the first part of 

the Figure 38. 



131 

Figure 38: "Requirements Information" Page of the REPI Web Site. 

The second part of Figure 38, shows the list of comments made by different users 

about this requirement. The left hand column displays the user id, the middle column 

displays the date and time the comment was made, and the last column displays the actual 

comments made by a given user. Clicking on the user id for a given project member 

should display all available information about that user, as described below in Section 

3.2.8.3. The last part of Figure 38, shows a text area provided for users to enter 

comments about this requirement. 



132 

3.2.8.2 Category Information Page 

This page displays all available information about a given category. The displayed 

information includes: the category name, its description, and all the requirements that fall 

into this category. First the category name is displayed on top of the frame. Below that 

the <TEXTAREA> tag is used to display the category's description. Next a table is used 

to display the set of the requirement that belong to this category. Each row of the table 

contains the requirement title on the left column, its description in the middle column and 

the date and time the requirement was created on the last column. Clicking on the 

requirement title displays the full information available about that requirement as 

described in above, in Section 3.2.8.1. Below this table, a text area is provided for the 

users to enter more comments about this category. 

3.2.8.3 User Information Page 

This page displays all the contributions made by a given project member. The page starts 

with the basic information about the person, such as the name and the email address. As 

described below and mentioned above, full information about a given project member can 

be accessed from the "Project Members" menu item from the "Todo Tasks" screen of the 

REPI web site. Following the basic information about the person, a list of requirements 

added by this person is displayed. For this requirements list, a table is used where the 

first column holds the requirement title, the second column holds the description and the 

last column holds the date and time of the requirement's creation. Clicking on the 

requirement title should display the full information available on that requirement, as 



133 

described above in Section 3.2.8.1. Below this table, all the comments added by this 

person, to the various requirements, are listed. This table also displays the requirement 

title on the first column; but the second displays the user's comments instead of the 

requirement's description. The last column displays the date and time the comment was 

entered into the database. Below this table, terms added by this person are displayed. In 

this table the first column refers to the term name, the second column refers to the term's 

definition and the last column refers to the date and time the team' was created. Clicking 

on the term name should display the "List Terms" page of the "Todo Tasks," as described 

below in Section 3.2.9.3.1. 

3.2.9 Other Components of the REPI Web Site 

These items are not part of the SEI Requirements Elicitation process model or the 

framework; rather they are helpful and useful items that are needed for an easier and a 

more productive use of the REPI web site. These items are also not divided between 

client side user and development side users, unlike the tasks from the Requirements 

Elicitation process model's different phases. These are common items assessable and 

helpful for members of both the client side environment and the development side 

environment. Many web based applications and standard client server applications do 

provide these services and are implemented far better than it is shown in this demo web 

site. In a fully implemented prototype, the users of the web site will be better served by 

replacing these components with web based applications that are specifically designed for 

these functions. For the sake of completeness these components are included as part of 



134 

the REPI web site demo. These components will be briefly described below for the 

purpose of mentioning their usefulness to the Requirements Elicitation process. 

3.2.9.1 Read and Send Messages 

Studies such as [AL-RAWAS 96] have shown that unregulated, informal, and 

interpersonal communication channels are as necessary as regulated, formal and group 

communication channels. Information sharing and exchange in a group is based on these 

informal channels as well as formal channels such as written documents or formal 

meetings. For this purpose an email type messaging facilities is provided as part of the 

REPI web site. This part of the REPI web site is presented as two menu items and thus 

two sets of web pages. The "Read Messages" page is used to retrieve and read messages 

sent to the individual users or to their groups. The "Send Messages" page is used to send 

these messages to the individual members of the project team or to whole groups of 

people involved in the project. 

The "Read messages" page lists the current messages for the given user on the top 

frame. Clicking on the message's subject line displays the actual message on the bottom 

frame. The bottom frame also provides three buttons for different types of actions that 

might be taken regarding this message. The "Send messages" page provides a form for 

the user to enter the message contents and select the various attributes associated with a 

given message. 



135 

Figure 39: "Send Messages" Page of the REPI Web Site 

As seen in Figure 39, a message has several attributes that might be of help in the 

context of the REPI web site usage as a group "meeting" place for the purpose of eliciting 

requirements. First the "To:" list box and the "cc:" list box are displayed to select the 

message's destination. Then a file import button and its associated text box is provided 

to attach items to the message. Then a set of attributes is provided that details the 

purpose and type of message to be sent. The first attribute, labeled "Requested 

Response," indicates the type of response requested by the sender of the message from the 

receiver of the message. The "Info Only" option indicates that no response is requested, 

the "Respond" option indicates that a response message is requested and the "Update 



136 

Web page" option indicates that the response should be in the form of updating the 

specified web page with new information. The second attribute is a generic priority level 

indicator. The exact semantics for its usage is not described; it is assumed that some type 

of social understanding will be arrived at for its proper usage. Several pre-defined subject 

types are listed using the drop down list box and a text box is provided either for 

additional subject information or for generic subject lines. The pre-defined subject types 

could be of some help for use within the context of Requirements Elicitation work. The 

"Define Term" subject type can be used to request a new definition for a term, used by a 

subset of project members, which is misunderstood by another subset of project members. 

The "Request Term Info" subject type can be used to request updated or additional 

information for a given term used within the project. The "Requirement" subject type can 

be used to discuss information about a specific requirement. The "Project Member" 

subject type can be used to discuss information provided by a specific project member. 

The "Project Status/Progress" subject type can be used to discuss the current status or 

current progress level of the project or any of its phases. The generic subject type 

"Project" can be used to discuss something related to the project itself, perhaps the 

process/work/data flow or the management aspects of the project. The generic subject 

type "Web Site" can be used to discuss information about the REPI web site itself, 

perhaps suggestions for improvements or request of help on its usage. The subject type of 

"(Other)" is used to indicate that additional subject information is to be used as the main 

subject heading in the message list. 



137 

3.2.9.2 What's New Screen 

The "What's New" page displays a list of objects that have changed recently. In a long 

term project or in a project with many members it becomes difficult to keep track of all 

the changes made to the requirements database or all the changes happening during the 

project. This page can be used to automatically list the objects that have changed since 

the user's last login. This should provide a user with a ready reference point to see which 

items he or she has to look through and respond to. This should help users manage 

"information overload" that might happen in a given long term project. It also helps users 

keep track of items, if they are working on multiple projects. 

The first item on this page displays the newly arrived or unread messages sent to a 

given user. Clicking on this number should provide the user with a list of these messages. 

Similarly the second item displays the newly arrived or unread messages sent to a given 

user's group. Groups can be anything the project managers decide it to be. In the REPI 

web site, it is represented just as a user name would be; instead of referring to an 

individual user, a group name refers to a set of users. Groups can be created along 

functional areas of the product to be built or across functional areas based on the type of 

user's expertise. For example a "User Interface" group can be created for people 

responsible for defining user interface requirements. This group of people might consist 

of user interface design experts from the development side and it might consist of end 

users whose input in this area is considered to be valuable. The next item on this page 

displays the set of newly created or modified requirements. If the number of 

requirements is large, than a constant notification of changed requirement will be of use 



138 

to users who are infrequent visitors to the web site. Similarly the next item on the page 

displays the newly created or modified terms and their definitions. The next item is 

displayed whenever updated schedule information is made available by project managers. 

The last item on the page displays a list of project related reports, such as progress reports 

or summary reports, as they are created by project members and made available on the 

web site. 

3.2.9.3 Todo Tasks 

3.2.9.3.1 Define and List Terms: Project members from different disciplines and 

backgrounds will bring in different types of knowledge with various levels of expertise. 

In any such multi-disciplinary project a subset of project members will use teams and 

definitions that might not be commonly understood by all members of the project. Terms 

used by one project member might be misunderstood by people with different 

backgrounds. Even people from the same background might understand it in a different 

manner. This set of "Todo tasks" are useful in such situations. The "Define Terms" and 

"List Terms" pages of the REPI web site, respectively, allows project members to define 

and view terms used in a project. Using these "tasks," project members across disciplines 

and backgrounds can come to a common understanding on the various terms to be used in 

the project. 

The REPI web site's page for the "List Terms" task uses a table to list the term 

names on the left hand column and its definition on the right hand column. The "Define 

Terms" page provides a text box for the term name to be entered and a text area for the 



139 

term's definition to be entered. The "Enter Term" button is to be used to update the terms 

database with a newly created or a modified term definition. 

3.2.9.3.2 Project Schedule and Status Reports: In any project, even in a distributed 

Requirements Elicitation effort, the need for project scheduling and planning exists. The 

REPI web site demo page "Project Schedule" displays a static image of a chart depicting 

the planned schedule for the different phases of the SEI's Requirements Elicitation 

process model. In an actual prototype web site, this page should display a dynamic image 

that is updated as the scheduling and planning information is made available. An 

imagemap can be imposed on these charts where clicking on an allocated time unit 

displays more detailed information for the activities of that time unit. Perhaps different 

charts can be displayed based on user id or group id. Web based applications that are 

specifically designed for scheduling and planning activities can also be linked for this part 

of the REPI web site. 

The "Status Reports" page of the REPI web site provides a common location for all 

the reports and other documents produced in a project. The demo web page uses a table 

to display a set of links that refer to a Microsoft Word document file called 

"STATUS.DOC." The demo page provides a link for one status report and one 

documentation report for each of the five phases of the Requirements Elicitation process 

model. Within each phase the reports are sorted by date. The behavior produced by 

clicking on these links is entirely dependent on the browser's configuration settings and 

Internet Media Type associated with the file extension "DOC." 



140 

3.2.9.3.3 Project Members: Figure 40 displays the "Project Members" page of the 

REPI web site. In this page, available information about each project member is 

displayed. This provides the opportunity for all members of the project to get to know 

each other. A page such as this is necessary because in a distributed environment such 

this, all project members might not necessarily meet each other. Knowing basic 

information such as their job title and description should make working with these people 

easier. 

Figure 40: "Project Members" Page of the REPI Web Site 



141 

The REPI web site demo uses three frames to divide this page into meaningful and 

useful parts. The left frame provides an alphabetical listing of all project members, sorted 

by their last name. Clicking on people's last name should provide available information 

about that person on the top right hand side frame. This frame displays basic information 

such as the project member's name, job title, organization and contact information such 

as work phone number and email address. Within the context of the Requirements 

Elicitation effort, the project member's category is also displayed. In the demo version, 

the available categories are: "End User," "Customer," "Developer," and "Analyst." For 

the purposes of providing a sense of presence in a distributed environment, the project 

member's current status is also provided. In balancing the needs of the individual's 

privacy and the needs of the project, the only information displayed is "Online and 

active," "Online and inactive," or "Not logged in." The bottom frame of the page 

displays quick jump links for each section of the alphabetical listing. Clicking on these 

links will display that part of the alphabetical listing on the left frame. This frame also 

provides a text box for searching people by their name. 

In a fully implemented prototype version of the REPI web site, additional 

information about each project member should be provided. Displaying the person's 

picture along with the name allows people to link the name with a face and makes 

working with people easier. A link into the project member's home page might also be 

provided for project members to get to know each other more. The options for providing 

a sense of presence should be expanded; perhaps with the individual's permissions more 

real time information about the person's on-line activities can be displayed. 



142 

3.2.9.4 User's and Developer's Help Screens 

For each phase of the SEI Requirements Elicitation process model, a different help page 

is displayed on the REPI web site. This allows users to easily and quickly get an 

overview of the whole process model from the SEI framework. An on-line reference 

point such as this eliminates the need for users to memorize the whole process model and 

all the tasks for each of the phases. A simple table, containing the specific user oriented 

tasks and developer oriented tasks, is displayed for each of the five phases. A brief 

overview of the phase is also displayed above the tables in all the help screen pages. Help 

screen information is based on [CHRISTEL 92] and [MILLER 93]. The demo version of 

the web site displays a common set of screens for both client side users and development 

side users. More detailed and specific type of help should be provided for the users of the 

prototype version of the REPI web site. 

Besides these help screens, additional help is provided on all menu items in all the 

pages of the REPI web site. As the mouse cursor moves over a menu item's link, either a 

text based link or a image-mapped link, the onmouseover and onmouseout events of the 

JavaScript event model is used to display a one line help message on the status bar of the 

web browser. The "ALT" attribute of the <IMG> tag and the <AREA> tag is also used 

to provide the same help message which is displayed near the given link. These one line 

help messages provide a small description of the link's destination. 



143 

3.3 	REPI Web Site Evaluation 

This part of the chapter evaluates the REPI web site from the perspective of its design and 

from the perspective of its usefulness. For the evaluation of the design, the objective is to 

see how easy it is for people to understand the web site. For the evaluation of its 

usefulness, the objective is to see how it improves on the problems of communication 

between developers and users. Another objective in this evaluation is to describe the 

advantages and disadvantages of using the web technology for Requirements Elicitation. 

3.3.1 Web Site Design 

This section of the thesis evaluates the design of the REPI web site. The set of criteria 

used here has been specifically defined for the evaluation of web sites and web based 

applications. The comprehension of the web pages and the overall web site is the key 

issue that affects the success or the failure of a web site or a web based application. Hong 

and Moriai have identified three areas of importance for evaluating web site design, based 

on the issues that affects the web site's comprehension: web structure and layout issues, 

navigation issues, and orientation issues [HONG 97]. 

3.3.1.1 Web Structure and Layout Issues 

Web structure and layout issues are about the organization of information in a given web 

site. This area of evaluation is divided into three groups: web site structure, readability, 

and essential information. 



144 

Web site structure is further sub-divided into three issues: balance of web site 

structure, support of multiple views, and organizational metaphors. The REPI web site is 

judged to be well balanced; it is neither too shallow nor too deep. In fact, as shown in 

Figure 44, the width and the depth are almost equal for the structure of the REPI web site. 

The width is measured as the average number of branches or hyperlinks per page and the 

depth is measured as the biggest number of links from the "top" of the structure to the 

"bottom." This issue deals with the semantic relations among the different pages of the 

web site. Multiple views refer to the different ways a given web site can be explored. 

Organizational metaphors refer to the style used to present the overall structure of the web 

site. These two issues are related to the effort necessary for a visitor to construct a mental 

model of the web site. The REPI web site doesn't support multiple views for its pages 

and its choice of metaphor is not based on commonly used items. The view presented 

and the metaphor used is directly based on the Requirements Elicitation framework, as 

defined by Christel and Kang [CHRISTEL 92]. The menu pages of the web site are 

organized around the phases of the process model and the leaf pages of the structure are 

directly related to the different tasks involved in each of the five phases. The main 

purpose of the REPI web site is to elicit requirements using the process model defined in 

[CHRISTEL 92]. Any other organizational method would seem unnatural within the 

context of the Requirements Elicitation process model; thus providing multiple views or 

using a different metaphor would not increase the degree of comprehension for the web 

site's users. 



145 

The readability group is sub-divided into issues of document size, visual settings, 

and predictability. The readability of the demo version of the REPI web site can and 

should be improved on when the prototype version is designed. The issue of document 

size refers to the scrolling required to view the full information presented in a given web 

page. While most pages of the REPI web site do not require any scrolling, some of the 

most important and most used pages do require scrolling before the end of the document 

is reached. Some of the information presented in these "big" documents can not easily be 

reduced into a one screen page. Reducing the information into one screen requires 

breaking the full set of information into smaller chunks; thus requiring deeper level of 

hyperlinks before the full information can be viewed. The visual settings refers to 

typographical items such as background images, text color and fonts, spacing of elements, 

etc. These issues refer to the amount of attention demanded in a single screenful of 

information. Some of the forms in the REPI web site are too crowded and thus it takes an 

increased effort to grasp the overall information required to be entered in a given form. 

Some of these forms were designed to fit in one screen to reduce the scrolling needed as 

the users are filling out the information. This design choice should increase the usability 

of the forms while possibly requiring increased effort to grasp the overall "picture." As 

the visual settings items are partially dependent on personal preferences and matters of 

taste, an objective evaluation is difficult for other elements of this issue. Predictability 

issue refers to the labeling and annotations of hyperlinks. The contents linked by a 

predictable hyperlink should be directly related to the information presented by the 

hyperlink itself. The REPI hyperlinks are very predictable if the SEI framework is 



146 

understood by the users. The hyperlinks into the different phases are labeled with the 

same terms used in the framework. The hyperlinks into the different tasks are labeled 

with a term that is directly related to the given task's purpose. In addition to this, helpful 

messages are displayed on the status line and in the general area of the hyperlink itself. 

JavaScript is used to display the one line help message as the mouse cursor moves over 

the hyperlink. The "ALT" attribute of the HTML anchor tag (<A>) and the image map 

area tag (<AREA>) is used to provide the floating help message as the mouse cursor 

moves over the hyperlink. This feature of the REPI web site requires Netscape Navigator 

Ver. 4.0 or above. 

Essential Information refers to author's identification elements and the last update 

date for the web page. Author's identification and other information is displayed on the 

"Login screen" and the "Logout screen." The last update date for the pages of the REPI 

doesn't apply because the fully implemented version of the web site will always display 

the latest information available in the requirement database. The demo version is 

identified as such and the latest version date is also given. 

3.3.1.2 Navigation Issues 

"Navigation is defined as the means by which visitors travel in the hyperspace created by 

a web site" [HONG 97]. Design issues in this area relate to the effort needed to fully 

traverse the hyperlinks of the web site. It also relates to the effort needed by the user to 

find the relevant information or the proper web page. This area of evaluation is divided 

into three groups: navigation richness, reachability, and navigation quality. 





148 

as a menu structure alternative to the currently implemented multilevel menu structure. 

But this fully expanded table of contents would need to hold as many as 45 hyperlinks to 

completely replace the three level menu structure currently used. 

Navigation types refer to the different types of navigational support such as guided 

tour, indexing, navigation bars, etc.. The REPI web site provides two types of navigation 

types: textbased list of hyperlinks and image mapped hyperlinks. The left frame of all 

REPI web pages is used to list menu items that provide hyperlinks to different levels of 

the web site. Menu items for individual tasks provide downward links into more detailed 

levels of the web site. The "Main Menu" hyperlink provides upward links into the top 

level of the web site after a given user has logged on to the system. Phase level and task 

level hyperlinks provide links across the same level of the web site. The "Logout" 

hyperlink provides an upward link into the home page of the REPI web site, the "Login 

screen." The "Main Menu" screens and the phase level menu screens uses image-mapped 

hyperlinks to provide downward and cross sectional links, respectively. 

The reachability group has issues of dead-end documents and return hyperlinks. 

Dead-end documents are documents that provides no hyperlink branching to any other 

web page within the web site. None of the web pages of the REPI web site are dead-end 

documents. Return hyperlinks provide history and context information. The REPI web 

site contains two types of return hyperlinks. The "Main Menu" hyperlink provides a link 

upward into the main menu for a given user. The "Logout" hyperlink provides a link 

back to the home page of the REPI web site, the "Login screen." Besides these two types 

of return links, the browser's back button can be used to traverse up the history chain. 



149 

Many cross-sectional and "same level" hyperlinks provided by the REPI web site are 

thought to be the most common types of links needed for users involved in the process of 

Requirements Elicitation. The prototype version of the REPI web site should consider 

providing more one level upward links, as they are lacking in the demo version of the 

web site. But as mentioned above, the expected usage pattern for the REPI web site 

would make these "Up" hyperlinks less important. 

The navigation quality refers to consistency and presentation issues. Consistency 

issue is about the location, presentation and usage of navigational guides across the 

different pages of the web site. A consistent web site should provide similar types of 

hyperlinks at similar locations using similar presentation styles. The REPI web site's 

hyperlinks are always located in a consistent location. From page to page the different 

types of hyperlinks are consistently displayed in the exact same location. Tasks level 

menu links are always displayed in the top part of the left frame. "Utility" type links into 

the useful features of the web site are always displayed in the middle part of the left 

frame. Hyperlinks into different parts of the web site, such as "Logout" link and the 

"Help" link are always displayed in the bottom part of the left frame. Presentation issues 

are about the usage of images and usage of text styles when displaying hyperlinks. 

Consistency issue relate to the effort needed to recognize navigational patterns across the 

web site. A consistent user interface and consistent navigational guides help users to 

understand the web site easily. When hyperlinks are displayed on the right frame of the 

menu type pages, a similar looking image map is used consistently across all the different 

pages of the web site. All text-based hyperlinks consistently use the blue color to display 



150 

the hyperlink text. The left frame hyperlinks consistently use one set of fonts and font 

size. The right frame hyperlinks consistently use one set of fonts and font size when 

displayed along with an image-mapped menu. 

3.3.1.3 Orientation Issues 

Orientation information should address issues such as: the current location of the user 

within the overall structure of the web site; the navigational path used to arrive at the 

current location and the possible jump points from the current location into the most 

likely destination. Orientation information helps users "construct a mental model of the 

web site and map the current position to the position in the mental model" [HONG 97]. 

Issues involved in providing orientation information are: context, navigation history and 

"where to go next" information. 

Orientation information should provide a context and should present the context in 

an easily understandable manner. The more detailed the context, the more easily it 

becomes to understand the web site; but detailed context information might take up 

valuable screen space. The REPI web site provides contextual information using many 

different methods. The most visible of these is the title frame used through out the REPI 

web site. The title frame displays the current phase of the Requirements Elicitation 

process model when working on one of the tasks or when one of the phase level menu is 

displayed. At the main menu level, the title frame clearly indicates if the web site is 

logged currently in the client side mode or in the development side mode. In the "utility" 

pages and help screens, the title frame displays the current utility function or the phase 



151 

title for the help information displayed. Besides this, the web browser's title bar displays 

similar contextual information. Each task page displays the current task number and the 

task title; other tasks in the same phase are displayed in the left frame to provide further 

contextual information about the current task within the given phase of the process 

model. 

"Navigation history evaluates the extensiveness of history information built into 

web documents" [HONG 97]. This information should provide the user with the ability 

to trace backwards and to judge the current location within the overall structure of the 

web site. The REPI web site does not specifically provide history information in each 

and every page of the web site; but as described above the contextual information 

provided should be enough to gather the navigational history. 

The "Where to go next" issue is closely linked to the type of navigational guides 

provided in a given page. [HONG 97] lists three different dimensions of "where to go 

next." The three dimensions of navigation, "move to a lower level," "move to an upper 

level," and "move to a page at the same level," are similar to the upward, downward, and 

cross sectional links described above. The REPI web site has been evaluated along these 

dimensions when the issues of navigational richness and reachability were discussed 

above, in Section 3.3.1.2. 



CHAPTER 4 

CONCLUSION AND FUTURE WORK 

This thesis presented ideas for applying technologies of the Internet for the purposes of 

Requirements Elicitation. Chapter 1 of this thesis surveyed the current and near future 

technologies of the Internet that might be of use for Requirements Elicitation. Chapter 2 

described the Software Engineering Institute's Requirements Elicitation framework and 

the process model. Chapter 3 of this thesis described the Requirements Elicitation 

Process through Internet (REPI) web site. Using the technologies described in Chapter 1 

and the process model described in Chapter 2, a prototype web site was designed and 

implemented to explore the idea of using the Internet for the purpose of eliciting 

requirements. After describing the REPI web site, Chapter 3, evaluated the web site's 

design. 

4.1 	Benefits of the REPI Web Site 

The process of eliciting requirements for a product to be built requires different people 

from different areas of expertise to work together in a group. Communication between 

the various members of the project is the key factor during the Requirements Elicitation 

part of a project because group members have to work together as a unit. Communication 

is necessary for information sharing which is necessary to arrive at a common 

understanding. Easing communications between stakeholders and developers should 

make the process of eliciting requirement easier, which should lead to better requirements 

specification and eventually a better product. 

152 



153 

The communications between the stakeholders and the developers include both a 

channel, the medium for communication, and a technique, the method for 

communication. REPI provides assistance for both aspects of communication. The 

medium of communication is the World Wide Web connected via the Internet. The 

technique used is based on the Software Engineering Institute's framework for the 

Requirements Elicitation process. 

Using the web as the platform, "facilitates the distribution of the application and its 

data to geographically-separated users on diverse computing platforms" [GIRGENSOHN 

96]. One of the major benefits of REPI is that it allows people and organizations 

separated in space or time to exchange information and come to consensus on the needs 

of the people. The REPI web site provides a distributed asynchronous environment for 

eliciting requirements; such an environment provides several advantages as well as some 

limitations. Project members using the REPI web site "meet" or communicate with one 

another at different times, from different places. The advantages of such meetings is that 

"group members do not have to be physically in the same place to meet, nor must they 

communicate with one another at the same time" [OCKER 95]. These two characteristics 

of distributed asynchronous communication extend the definition of a meeting; this 

expanded definition of a meeting loosens the constraints in an organization and thus 

increases the means by which groups can accomplish their work [OCKER 95]. 

"Organizational and social issues have great influence on the effectiveness of 

communication activities" and therefore on the overall success or failure of a given 

project [AL-RAWAS 96]. If the communication channel is expensive between the client 



154 

side people and the development side people, limitations are placed on the number and 

type of communications between these two groups of people. The number and type of 

people selected as representatives for each side might also be limited. Sometimes 

surrogates or intermediaries are used as a representative to communicate with the 

development side people or the client side people instead of the actual clients or 

developers communicating with the other party; such forms of communications are 

labeled as indirect links. [KEIL 95] reports that direct links are better than indirect links 

because intermediaries might filter or distort messages between the two groups and they 

might not have a complete understanding of customer needs. [KEIL 95] also reports that 

up to a certain point the more links between customers and developers, the better it is for 

the development process. Another possible limitation of the expensive communication 

channel is that it might be restricted to one way communication [AL-RAWAS 96]. The 

development side people might produce documents based on their understanding and 

send these voluminous documents for the client side people. They might not take the 

time to properly validate the requirements, even if they understand the notations used in 

the specification document. All these limitations of the expensive communication 

channel reduce the accuracy of the information obtained during the Requirements 

Elicitation process. 

The REPI web site decreases the problems associated with the above issues. Using 

REPI is inexpensive compared to other forms of communication channels such as 

meetings or passing documents. Written documents are also non-interactive 

communication channels. REPI provides faster turnaround time when compared with 



155 

written documents that need to be sent from one location to another. This translates into 

an easier form of communication because the delay is reduced between the responses. 

Any number of people from any location can be part of the team when using REPI for 

Requirements Elicitation. This should remove the limitations placed on the project team 

member selection. So projects can reduce or eliminate the need for intermediaries and 

instead use the actual stakeholders of the product regardless of their location or their 

number. 

Another advantage of using the web is that many users are already familiar with 

web clients, such as Netscape Navigator or Microsoft Internet Explorer, due to the 

expanding growth of the Internet and the World Wide Web. As the user interface for 

REPI is nothing more than a series of web pages, using REPI should be as easy as 

browsing through the web. 

Another benefit of REPI is that it imposes a structure for eliciting requirements 

based on the SEI's Requirements Elicitation process model. Using the REPI web site 

allows people involved in the process to communicate with each other more conveniently 

than it has been possible before. 

4.2 	Limitations of the REPI Web Site 

The distributed asynchronous environment nature of the REPI web site creates some 

disadvantages, as well as the advantages mentioned above. The disadvantage of this is 

that many advantages of face-to-face meetings are lost in these distributed group 

meetings: "points of reference for indexing communication by time, place, and talk 



156 

sequence are all missing" [OCKER 95]. Video streaming technologies and other video-

conferencing technologies can be used to improve on these aspects of the face-to-face 

meetings. Currently the "Project Members" page of the REPI web site displays the 

current login status of project members. This feature can be improved upon. Client side 

pull or server side push can be used to display the current picture of a project member's 

face or perhaps the current display as seen by this project member. This should provide 

information such as what this member is doing right now, a sense of presence that is 

available in a face-to-face meeting. As each contribution by any member of the project is 

time stamped and this information is displayed on the web pages, sequencing information 

is available in the demo version of the REPI web site. As the meeting takes place in a 

distributed environment, sequencing events by place might not apply to this type of 

meetings. A threaded display of contributions by subject or by person might provide 

better information about the talk sequence. Currently the REPI web site displays all 

contribution in a given category linearly sorted by time stamp. 

The distributed nature of the meeting also provides greater freedom in "attending" 

meetings. Some members of the project might contribute their input much later than 

others, such that communication in these "meetings" might seem disjointed. Some level 

of discipline and social control needs to be created to require project members to 

regularly login and contribute via the REPI web site. 

The disadvantages of using the web is that current generation of web browsers and 

the current version of the HTML are not as feature rich when compared with full blown 

graphical user interface platforms such as Microsoft Windows 95. So web based 



157 

applications look rather primitive compared to applications on these GUIs. Another 

disadvantage is that, despite the claims for cross platform portability of the web pages, 

the user interface looks different depending on factors such as client software and its 

platform, screen and color resolutions, and monitor size. Full use of the available 

features in the current version of the HTML is not possible if the web pages are to look as 

consistent as possible across web browsers and across platforms. The use of form data 

controls and widgets are the most visible source of inconsistent behavior. A given 

browser on a given GUI will always use the native data controls and widgets to display 

the HTML form controls; so naturally none of the HTML forms can be designed to 

provide the exact same "look and feel" across browsers and platforms. 

The REPI web site developed for this thesis is a demo; at best it is a non-functional 

proof of concept prototype. In this version, JavaScript is used to enhance only some 

aspects of the user interface; it could be used to improve the user interface much more 

than it is currently done. The current version of the web site provides no error checking 

on user input; JavaScript can also be used for this purpose. None of the back end 

processes have been implemented in this demo version. Server side Java and JavaScript 

programming can be used along with CGI to implement a back end database used to store 

all the requirements information generated by the users. When certain pages of the REPI 

web site are loaded, the requirements database on the server needs to be queried and the 

proper contents of the page generated dynamically using JavaScript. The demo version 

only displays static web pages throughout the REPI web site. Client side Java 

programming, Java applets, can be used to provide a more feature rich user interface and 



158 

more front-end intelligence for many tasks of the SEI's Requirements Elicitation process 

model. 

4.3 Future Work 

The REPI web site developed for this thesis is a demo, future work on it will 

improve its usefulness. This section describes the three major areas in which the REPI 

web site can be improved upon: full implementation, user interface improvements, 

support for the SEI's Requirements Elicitation framework. 

As mentioned before, the REPI web site is not yet fully developed. None of the 

back end has been implemented. For the REPI web site, a database has to be designed to 

store the requirements and other information generated as the project members use the 

web site during Requirements Elicitation. The database on the server has to be connected 

to the front end. Server side JavaScript or CGI programming can be used to connect the 

front end to the back end. 

The front end for the web site has been developed using HTML and JavaScripts. 

The use of Java applets would allow for more front end intelligence and also provide for a 

richer user interface. The current user interface is designed to work consistently on many 

platforms and web browsers. For the next version of the REPI web site, the choice of one 

browser would significantly increase the possibilities for improving the user interface. 

Even if the current choice of cross-browser compatibility is maintained, the user interface 

can be improved upon by using the more recent versions of JavaScript and Dynamic 

HTML implementation. 



159 

Software Engineering Institute's Requirements Elicitation framework is designed to 

be flexible. The framework recommends using different methods and techniques based 

on the characteristics of the project. The process model itself can be followed in a 

different manner based on the project needs and the current understanding of the project 

goals and requirements. The type of product being developed and its history also affects 

the choice of techniques during the Requirements Elicitation process. The limitation with 

the REPI web site is that it imposes one type process model with one set of tasks 

implemented in one way. The REPI web site's support for Requirements Elicitation can 

be thought of as one instance of the SEI's process model. SEI's process model can be 

implemented along different lines using different methods and different path through the 

process model. Although the path through the process model is left up to the project 

members, the flexibility provided by the REPI web site doesn't match that of the 

Requirements Elicitation framework. This aspect of the REPI web site could be 

improved upon by providing alternative tasks, methods or techniques at each phase of the 

process model. 

To summarize, the REPI web site can be improved upon by implementing the back 

end database connections. The user interface can be improved by either using Java 

applets or aggressively using Dynamic HTML, Style Sheets and JavaScripts. Increased 

support for the SEI's framework can be provided with alternative tasks, methods or 

techniques at each phase of the process model. 



APPENDICES 	CGI EXAMPLE 

<html> 
<head> 
<title>CGI SSI commands example</title> 
</head> 
<body> 
<P> 

Current Date and Time is <!--#config timefmt="%c" --> 
<!--#echo var="DATE_LOCAL" --> 

</P> 
<P> 

This page was last modified on 
<!--#flastmod file="cgi_ssi.html" --> and its current 
size is <!--#fsize file="cgi_ssi.html" --> 

</P> 
<!-- Include the standard signature file, below. --> 
<!--#include file="signature.html" --> 
</body> 
</html> 

<!-- This is the standard signature file, to be included in 
all other pages. --> 

<P> 
Web page created by 
<A href="mailto:dnp3128@megahertz.njit.edu"> 

<!--#exec cmd="graphic_signature" --> 
</A> 

<center>Copyright (c) 1997</center> 
</p> 

Figure 41: CGI Example 

B.1: HTML LISTS EXAMPLE 

<html> 
<head><title>HTML 3.2 <EM>Lists</EM> Example</title></head> 
<body> 
<ol type=I> 
<lh><strong>Numbered Lists</strong> 

<li>First Item 
<ul type=disc> 

<li>Unordered list item 1 
<li>Unordered list item 2 
<li type=square>Unordered list item 3 

(Starts using squares) 
<li>Unordered list item 4 

160 



161 

</ul> 
<li>Second Item 

<ol type=a> 
<li>Item number 1 

<dl> 
<dt>Defination List 
<dd>A type of list which allows the 

creation of definition 
paragraph for the items in the 
list. The definition paragraph 
is indented and displayed on 
the next line. 

<dt>Glossary List 
<dd>Another name for the 

"Definition List." This type 
of list can be used to list 
dictionary entries, catalog 
items or any other type of item 
which requires an extensive 
description to accompany the 
list item. 

</dl> 
<li>Item number 2 

</ol> 
<li>Third Item 

<ol type=1> 
<li>Item A 
<li value3>Item B (Skips an item number) 
<li>Item C 

</ol> 
</ol> 
</body> 
</html> 

Figure 42: HTML Lists Example 

B.2: HTML TABLE EXAMPLE 

<html> 
<head><table>HTML 3.2 Table Example</table></head> 
<body> 
<table align=center border=10 width=100% height=100% 

cellpadding=5 cellspacing=2> 
<caption align=top>Tags and Attributes for the HTML 3.2 

Table</caption> 
<tr align=center valign=middle 

bordercolor=blue bgcolor=white> 
<th align=center>&ltTABLE&rt Tags</th> 
<th align=center>&ltTABLE&rt Attributes</th> 



162 

<th align=center>&1tTR&rt &amp &ltTD&rt 
Attributes</th> 

</tr> 
<tr align=center valign=baseline> 

<td>TR</td><td>ALIGN</td><td>ALIGN</td> 
</tr> 
<tr align=center valign=baseline> 

<td>TD</td><td>BORDER</td><td>VALIGN</td> 
</tr> 
<tr align=center valign=baseline> 

<td>TH</td><td>BORDERCOLOR</td><td>COLSPAN</td> 
</tr> 
<tr align=center valign=baseline> 

<td>CAPTION</td><td>BGCOLOR</td><td>ROWSPAN</td> 
</tr> 
<tr align=center valign=baseline> 

<td>&nbsp</td><td>CELLPADDING</td><td>BORDERCOLOR</td> 
</tr> 
<tr align=center valign=baseline> 

<td>&nbsp</td><td>CELLSPACING</td><td>BGCOLOR</td> 
</tr> 
<tr align=center valign=baseline> 

<td>&nbsp</td><td>WIDTH</td> 
</tr> 
<tr align=center valign=baseline> 

<td>&nbsp</td><td>HEIGHT </td> 
</tr> 
<tr align=center valign=baseline> 
<td colspan=3>An example of a column spanning and row 

spanning attributes</td> 
</tr> 

</table> 
</body> 
</html> 

Figure 43: HTML Table Example 

B.3: NETSCAPE FRAME EXAMPLE 

<-- Netscape Frame Example page: frames.htm --> 
<html> 
<head><title>Netscape Frame Example</title></head> 
<frameset cols="1*, 4*" frameborder=yes border=5 

bordercolor=red> 
<frameset rows="10%, *" frameborder=no framespacing=10> 

<frame src="logo.htm" name="LOGO" scrolling=no 
noresize marginwidth=0 marginheight=0> 



163 

<frame src="nav_bar.htm name="NAV_BAR" 
scrolling=auto marginwidth=2 
marginheight=2> 

</frameset> 
<frameset rows="10%, *" frameborder=no framespacing=10> 

<frame src="header.htm" name="HEADER" 
scrolling=no noresize 
marginwidth=0 marginheight=0> 

<frame src="main.htm name="MAIN" scrolling=auto 
marginwidth=5 marginheight=5> 

</frameset> 
</frameset> 
<noframes> 
<body> 
<P><center>This browser can not display frames.</center></P> 
<ul> 
<lh>Load these files to display individual frames.</lh> 

<li> 
<a href="logo.htm> 

Logo from the top left frame. 
</a> 

<li> 
<a href="header.htm> 

Header from the top right frame. 
</a> 

<li> 
<a href="nav_bar.htm> 

Navigation Bar from the bottom left frame. 
</a> 

<li> 
<a href="main.htm> 

Main contents from the bottom right frame. 
</a> 

</ul> 
</body> 
</noframes> 
</html> 

Figure 44: Netscape Frame Example Part 1 of 3 

<-- Netscape Frame Example page: logo.htm --> 
<html> 
<head><title>Logo Frame</title></head > 
<body> 
<img src="logo.gif"› 
</body> 
</html> 

<-- Netscape Frame Example page: header.htm --> 
<html> 
<head><title>Header Frame</title></head> 



164 

<body> 
<center><strong>Netscape Frames Example</strong></center> 
</body> 
</html> 

<-- Netscape Frame Example page: nav_bar.htm --> 
<html> 
<head><title>Navigation Bar Frame</title></head> 
<body> 
<ul> 

<li><a href="logo.htm target="_top">Logo Frame.</a> 
<li><a href="header.htm target="_parent">Header 

Frame.</a> 
<li><a href="nav_bar.htm target="MAIN">Navigation Bar 

Frame.</a> 
<li><a href="main.htm target="_blank">Main Frame.</a> 

</ul> 
</body> 
</html> 

Figure 45: Netscape Frame Example Part 2 of 3 

<-- Netscape Frame Example page: main.htm --> 
<html> 
<head><title>Main Frame</title></head> 
<body><center>This web page contains four frames</center> 
<dl> 

<dt>Logo Frame 
<dd>Contains a logo for this web <em>site</em>. 
<dt>Header Frame 
<dd>Contains a title for this web <em>page</em>. 
<dt>Navigation Bar Frame 
<dd>Contains the navigational links for this web 

<em>site</em>. 
<ul> 

<li>Click on the "Logo" link to see the 
effect of clearing all frames. 

<li>Click on the "Header" link to see the 
effects of frame creation and destruction 

<li>Click on the "Navigation Bar" link to see 
the effects of targeted frame load. 

<li>Click on the "Main" link to see the 
effect of opening a new browser window. 

</ul> 
<dt>Main Frame 
<dd>Contains the main contents for this web 

<em>page</em>. 
</dl> 
</body> 
</html> 

Figure 46: Netscape Frame Example Part 3 of 3 



B.4: HTML FORM EXAMPLE 

<html> 
<head><title>HTML Form Example</title></head> 
<body> 
<center>An example form with a text area, a select scroll 

box, a drop down box, and various types of data 
controls in it.</center> 

<form method="post" action="form.cgi"> 
<P> 

Userld: <input type="text" name="userid" 
size=10><br> 

Password: <input type="password" name="password" 
size=10> 

</P> 
<P> 

First Name: <input type="text" name="first_name" 
size=25><br> 

Last Name: <input type="text" name="last_name" 
size=25> 

</P> 
<P>Email Address: <input type="text" name="email" 

size=50></P> 
<P> 

<input type="checkbox" name="checkbox_1" 
value="Checkbox Checked" checked>Checkbox 

Checked 
<input type="checkbox" name="checkbox_2" 

value="Checkbox Cleared">Checkbox Cleared 
</F> 
<P> 

<input type="radio" name="radio" value="Radio 1"> 
Radio 1 
<input type="radio" name="radio" value="Radio 2" 

checked>Radio 2 
<input type="radio" name="radio" value="Radio 3"> 
Radio 3 

</P> 
<select name="tags" multiple> 

<option value="TextArea">Text Area 
<option selected value="Select">Select 
<option value="Input">Input 

</select> 
<select name="controls" size=4 multiple> 

<option value="Text">Text 
<option selected value="Password">Password 
<option value="Checkbox">Checkbox 
<option selected value="Radio">Radio 

</select> 
Text Area: <textarea name="textarea" rows=5 

cols=40></textarea> 
<br> 

165 



166 

<input type="submit" value="Submit Form"> 
<input type="reset" value="Reset Form"> 

</form> 
</body> 
</html> 

Figure 47: HTML Form Example 

C.1: ESMTP EXAMPLE 

Server> 	220 megahertz.njit.edu  ESMTP Sendmail 8.8.5/8.6.9 
ready at Sat, 23 Aug 1997 18:46:55 -0400 (EDT) 

Client> 	EHLO njit.edu  
Server> 	250-megahertz.njit.edu  Hello megahertz.njit.edu  

[128.235.251.100], pleased to meet you 
Server> 	250-EXPN 
Server> 	250-VERB 
Server> 	250-8BITMIME 
Server> 	250-SIZE 
Server> 	250-DSN 
Server> 	250-ONEX 
Server> 	250-ETRN 
Server> 	250-XUSR 
Server> 	250 HELP 
Client> HELP 
Server> 	214-This is Sendmail version 8.8.5 
Server> 	214-Topics: 
Server> 214- HELO EHLO MAIL RCPT DATA 
Server> 214- RSET NOOP QUIT HELP VRFY 
Server> 214- EXPN VERB ETRN DSN 
Server> 	214-For more info use "HELP <topic>". 
Server> 	214-To report bugs in the implementation send 

email to 
Server> 	214- sendmail-bugs@sendmail.org. 
Server> 	214-For local information send email to Postmaster 

at your site. 
Server> 	214 End of HELP info 
Client> QUIT 
Server> 	221 megahertz.njit.edu  closing connection 

Figure 48: ESMTP Example 



Notes: 

(1) Connection without pre-authentication (OK greeting) 
(2) Pre-Authenticated connection (PREAUTH greeting) 
(3) Rejected connection (BYE greeting) 
(4) Sucessful LOGIN or AUTHENTICATE command 
(5) Successful SELECT or EXAMINE command 
(6) CLOSE command, or failed SELECT or EXAMINE command 
(7) LOGOUT command, server shutdown, or connection closed 

D.1: IMAP4 STATES EXAMPLE 

167 

Figure 49: IMAP4 States Example. Source: Crispin, M. "Internet Message Access 
Protocol - Version 4rev 1." Request for Comment (RFC) 2060. 
http://www.internic.net/rfc/rfc2060.txt. December 1996. 

D.2: IMAP4rev1 EXAMPLE 

Client> A001 CAPABILITY 
Server> * CAPABILITY IMAP4revl AUTH=KERBEROS_V4 
Server> A001 OK CAPABILITY completed 
Client> 	A002 LOGIN dnp3128 ****** 
Server> A002 OK LOGIN completed 
Client> A003 SELECT INBOX 
Server> 	* 172 EXISTS 
Server> 	* 1 RECENT 
Server> 	* OK [UNSEEN 12] Message 12 is first unseen 
Server> 	* OK [UIDVALIDITY 3857529045] UIDs valid 
Server> 	* FLAGS (\Answered \Flagged \Deleted \Seen \Draft) 
Server> 	* OK [PERMANENTFLAGS (\Deleted \Seen \*)] Limited 
Server> A003 OK [READ-WRITE] SELECT completed 
Client> A004 SEARCH RECENT 
Server> 	* SEARCH 2 84 882 



168 

Server> A004 OK SEARCH completed 
Client> A005 FETCH 2:4 (FLAGS BODY[HEADER.FIELDS (DATE 

FROM)]) 
Server> 	* 2 FETCH . . . . 
Server> 	* 3 FETCH . . . . 
Server> 	* 4 FETCH . . . . 
Server> A005 OK FETCH completed 
Client> 	A006 STORE 2:4 +FLAGS (\Deleted) 
Server> 	* 2 FETCH FLAGS (\Deleted \Seen) 
Server> 	* 3 FETCH FLAGS (\Deleted \Seen) 
Server> 	* 4 FETCH FLAGS (\Deleted \Flagged \Seen) 
Server> A006 OK STORE completed 
Client> A007 EXPUNGE 
Server> 	* 2 EXPUNGE 
Server> 	* 3 EXPUNGE 
Server> 	* 4 EXPUNGE 
Server> A007 OK EXPUNGE completed 
Client> A008 COPY 1 JUNK 
Server> A008 OK COPY completed 
Client> A004 LOGOUT 
Server> 	* BYE IMAP4revl Server logging out 
Server> A004 OK LOGOUT completed 

Figure 50: IMAP4revl Example. Source: Crispin, M. "Internet Message Access 
Protocol - Version 4rev1." Request for Comment (RFC) 2060. 
http://www.intemic.net/rfc/rfc2060.txt. December 1996. 

E.1: JAVA INHERITANCE EXAMPLE 

import java.awt.*; 
import java.applet.*; 

interface Shapes 
{ 
abstract double getArea(); 
abstract double getPerimeter(); 
/* Shapes */ 

class Coordinates 
{ 
int x,y; 

public Coordinates (int x, int y) 
{ 
this.x = x; 
this.y = y; 

} /* Coordinates */ 
) /* Coordinates */ 

class Square extends Coordinates implements Shapes 
{ 



169 

public int width, height; 

public double getArea() 
{ return (width * height); } /* getArea */ 

public double getPerimeter() 
{ return (2 * width + 2 * height); } /* getPerimeter */ 

public Square (int x, int y, int width, int height) 
{ 
super (x,y); 
this.width = width; 
this.height = height; 

} /* Square */ 
} /* Square */ 

class Circle extends Coordinates implements Shapes 
{ 
public int width, height; 
public double radius; 

public double getArea() 
{ return (radius * radius * Math.PI); 	/* getArea */ 
public double getPerimeter() 
{ return (2 * Math.PI * radius); 	/* getPerimeter */ 

public Circle (int x, int y, int width, int height) 
{ 
super (x,y); 
this.width = width; 
this.height = height; 
radius = (double) width / 2.0; 
} /* Circle */ 

} /* Circle */ 

public class InheritanceApplet extends Applet 
{ Square box = new Square (5, 15, 25, 25); 

Circle Oval = new Circle (5, 50, 25, 25); 

public void paint (Graphics g) 
( g.drawRect (Box.x, Box.y, Box.width, Box.height); 

g.drawString ("Area: " + Box.getArea(), 50, 35); 
g.drawString ("Area: " + Box.getPerimeter(), 50, 40); 
g.drawOval (Oval.x, Oval.y, Oval.width, Oval.height); 
g.drawString ("Area: " + Oval.getArea(), 50, 70); 
g.drawString ("Area: " + Oval.getPerimeter(), 50, 75); 

} /* paint */ 
} /* InheritanceApplet */ 

Figure 51: Java Inheritance Example. Source: Jamsa, Kris. Java Now! Jamsa Press. 
1996. 



170 

E.2: JAVA THREAD EXAMPLE 

import java.awt.*; 
import java.applet.*; 

public class Counter_1 extends Thread 

public int value; 

public void Counter_1 () 
{ value = 0; } /* Counter_1 *1 

public void count () 
{ ++value; } /* count */ 

public void run () 

while (true) 
{ count () } /* while */ 

} /* run */ 
} /* Counter_1 */ 

public class Counter_2 extends Thread 

public int value; 

public void Counter_2 () 
{ value = 0; } /* Counter_2 */ 

public void count () 
{ ++value; } /* count */ 

public void run () 

while (true} 
{ count () } /* while */ 

} /* run */ 
} /* Counter_2 */ 

public class ThreadApplet extends Applet implements Runnable 

Font msg_one_font = new Font("TimesRoman", Font.BOLD, 18}; 
FontMetrics msg_one_fontMetrics; 
String DateTime; 
Date CurrentDateTime; 
int msg_width; 

public void start () 

System.out.println ("Starting Counter 1 at " + 
CurrentDateTime.toString()); 

new Counter_1().start(); 
System.out.println ("Starting Counter 1 at " + 

CurrentDateTime.toString()); 
new Counter_2() .start() ; 



171 

/* start */ 

public void run() 

while (true) 
{ 
repaint (); 
try { Counter_l.sleep (500); 	/* try */ 
catch (InterruptedException e) { } /* catch */ 
try { Counter_2.sleep (500); 	/* try */ 
catch (InterruptedException e} { 	/* catch */ 
} /* while */ 
/* run */ 

public void paint (Graphics g) 

g.setFont (msg_one_font}; 
msg_one_fontMetrics = g.getFontMetrics(); 
DateTime = CurrentDateTime.toString(); 
msg_width = (size().width - 

msg_one_fontMetrics.stringWidth(DateTime)) 
/ 2; 

g.drawString ("Counter 1:" + DateTime,msg_width,10); 
DateTime = CurrentDateTime.toString(); 
msg_width = (size().width - 

msg_one_fontMetrics.stringWidth(DateTime)) 
/ 2; 

g.drawString ("Counter 2:" + DateTime,msg_width,20); 
} /* paint */ 

} /* ThreadApplet */ 

Figure 52: Java Thread Example 



172 

E.3: VIEW OF THE JAVA ENVIRONMENT 

Figure 53: View of the Java Environment, Part 1 of 2. Source: Gosling, James and 
McGilton, Henry. "The Java Language Environment" A White Paper. 	Sun 
Microsystems, Inc. 1995. and Kramer, Douglas. The Java Platform: A White Paper. 
Sun Microsystems, Inc. 1996. 



173 

Applets and Applications 

Java Base 	 Java Standard Extension 
Classes and API 	 Classes and API 

Java Virtual Machine 

Porting Interface 

Adapter 	 Adapter Adapter 

Browser 	 JavaOS 
OS 

OS 	 OS 

Hardware 	Hardware 	Hardware 	Hardware 

The 
Java 
Base 

Platform 

Network 

Java on a 	Java on a 	Java on a 	Java on a 
Browser 	Desktop OS 	Smaller OS 	JavaOS 

Figure 54: View of the Java Environment, Part 2 of 2. Source: Kramer, Douglas. The 
Java Platform: A White Paper. Sun Microsystems, Inc. 1996. 



F
.1

: 
"L

og
in

 S
cr

ee
n"

 O
F

 T
H

E
 K

E
P

I 
W

E
B

 S
IT

E
 

F
ig

ur
e 

55
: "

L
og

in
 S

cr
ee

n"
 o

n 
V

ar
io

us
 P

la
tf

or
m

s 
U

si
ng

 D
if

fe
re

nt
 B

ro
w

se
rs

 

174 



175 

Figure 56: "Login Screen" of the REPI Web Site 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> 

<!-- REPI Web Site 	 --> 
<!-- Demo Version - November 24, 1997 	 --> 
<!-- Copyright (c) 1997 	 --> 
<!-- 	 --> 
<!-- Author: Deepak Pandit 	 --> 
<!-- Email: dpandit@hotmail.com  or 

dnp3128@megahertz.njit.edu 	 --> 

<HTML> 
<HEAD> 

<META NAME="Author" CONTENT="Deepak Pandit"> 
<META HTTP-EQUIV="Content-Type" 

CONTENT="text/html;CHARSET=iso-8859-1"> 

<SCRIPT LANGUAGE="JavaScript" SRC="REPI.JS"></SCRIPT> 

<TITLE> 



176 

REPI: Requirements Elicitation Process through 
Internet 

</TITLE> 
</HEAD> 

<BODY LINK="BLUE" VLINK="BLUE" ALINK="White" 
BACKGROUND="REPI_BK1.GIF"> 

<FORM NAME="Login_form"> 
<TABLE WIDTH="100%" BORDER="0"> 
<TR> 

<TD ALIGN=" Center" WIDTH="235"> 
<TABLE WIDTH="100%" BORDER="0"> 
<TR> 

<TD ALIGN="Center" WIDTH="235" COLSPAN="2"> 
<IMG SRC="REPI_ANI.GIF" WIDTH="240" 

HEIGHT="100"><BR> 
</TD> 

</TR> 
<TR> 

<TD COLSPAN="2">&nbsp;</TD> 
</TR> 
<TR> 

<TD COLSPAN="2">&nbsp;</TD> 
</TR> 
<TR> 

<TD WIDTH="10">&nbsp;</TD> 
<TD> 

<STRONG><H2> 
<FONT COLOR="Blue"><BIG>R</BIG></FONT> 
<FONT COLOR="Red">equirement</FONT><BR> 
<FONT COLOR="Blue"><BIG>E</BIG></FONT> 
<FONT COLOR="Red">licitation</FONT><BR> 
<FONT COLOR="Blue"><BIG>P</BIG></FONT> 
<FONT COLOR="Red">rocess</FONT><BR> 
<FONT COLOR="Red"> 

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
through 

</FONT><BR> 
<FONT COLOR="Blue"><BIG>I</BIG></FONT> 
<FONT COLOR="Red">nternet</FONT><BR> 

</STRONG></H2> 
</TD> 

</TR> 
<TR> 

<TD COLSPAN="2">&nbsp;</TD> 
</TR> 
<TR> 

<TD COLSPAN="2">&nbsp;</TD> 
</TR> 
<TR> 

<TD COLSPAN="2"> 
<ADDRESS> 

Demo Version<BR> 



November 24, 1997<BR> 
Copyright (c) 1997<BR> 
<BR> 
<STRONG>Deepak Pandit</STRONG><BR> 
dpandit@hotmail.com  
&nbsp;&nbsp;&nbsp;&nbsp;or<BR> 
dnp3128@megahertz.njit.edu 

</ADDRESS> 
</TD> 

</TR> 
</TABLE> 
</TD> 
<TD WIDTH="10">&nbsp;</TD> 
<TD VALIGN="TOP"> 
<TABLE WIDTH="100%" BORDER="0" VALIGN="TOP"> 
<TR VALIGN="Top"> 

<TD ALIGN="Center" COLSPAN="2"> 
<CENTER><H3><STRONG> 

<BR> 
<FONT COLOR="Aqua"><BIG>R</BIG></FONT> 
<FONT COLOR="Red">equirement</FONT> 
&nbsp; 
<FONT COLOR="Aqua"><BIG>E</BIG></FONT> 
<FONT COLOR="Red">licitation</FONT> 
&nbsp; 
<FONT COLOR="Aqua"><BIG>P</BIG></FONT> 
<FONT COLOR="Red">rocess</FONT> 
&nbsp; 
<FONT COLOR="Red">through</FONT> 
&nbsp; 
<FONT COLOR="Aqua"><BIG>I</BIG></FONT> 
<FONT COLOR="Red">nternet</FONT> 
<BR><BR><BR><BR><BR> 

</STRONG></H3></CENTER> 
</TD> 

</TR> 
<TR> 

<TD COLSPAN="2"><BR><BR></TD> 
</TR> 
<TR VALIGN="Middle"> 

<TD ALIGN="RIGHT" VALIGN="BOTTOM"> 
<H2><STRONG> 

<FONT COLOR="White"> 
Enter your Login Id Here:&nbsp; 

</FONT> 
</STRONG></H2> 

</TD> 
<TD><INPUT TYPE="text" NAME="Login_Id" 

SIZE="15"></TD> 
</TR> 
<TR VALIGN="Middle"> 

<TD ALIGN="RIGHT" VALIGN="BOTTOM"> 
<H2><STRONG> 

<FONT COLOR="White"> 

177 



Enter your Password here:&nbsp; 
</FONT> 

</STRONG></H2> 
</TD> 
<TD><INPUT TYPE="password" NAME=" Password" 

SIZE="15"></TD> 
</TR> 
<TR> 

<TD COLSPAN="2"><BR><BR><BR></TD> 
</TR> 
<TR> 

<TD COLSPAN="2" ALIGN="Center"> 
<A HREF="ERROR.HTM" 

ONMOUSEOVER="display_status(iLOGIN'); 
return true;" 
ONMOUSEOUT="default_status(); 
return true;" 
ONFOCUS="display_status('LOGIN'); 
return true;" 
ONBLUR="default_status(); return true;"> 
<IMG SRC="REPI BT.GIF" BORDER="0" 

WIDTH="150" HEIGHT="50"> 
</A> 

</TD> 
</TR> 
<TR><TD COLSPAN="2">&nbsp;</TD></TR> 
</TABLE> 
<TABLE WIDTH="100%" BORDER="0"> 
<TR> 

<TD WIDTH="50%" ALIGN=" CENTER"> 
<A HREF="U_MAIN.HTM" TARGET="_top"> 

<SMALL><FONT COLOR="White"> 
User Main Menu 

</FONT></SMALL> 
</A> 

</TD> 
<TD WIDTH="50%" ALIGN="CENTER"> 

<A HREF="D MAIN.HTM" TARGET="_top"> 
<SMALL><FONT COLOR="White"> 

Developer Main Menu 
</FONT></SMALL> 

</A> 
</TD> 

</TR> 
</TABLE> 
</TD> 
<TD WIDTH="10">&nbsp;</TD> 

</TR></TABLE> 
</FORM> 
</BODY> 
</HTML> 

Figure 57: HTML Source Code for "Login Screen" 

178 



179 

G.1: MENU PAGES OF THE REPI WEB SITE 

Figure 58: User's Main Menu Screen and Developer's Main Menu Screen 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> 

<!-- REPI Web Site 	 --> 
<!-- Demo Version - November 24, 1997 	 --> 
<!-- Copyright (c) 1997 	 --> 
<!-- 
<!-- Author: Deepak Pandit 	 --> 
<!-- Email: dpandit@hotmail.com  or 

dnp3128@megahertz.njit.edu 	 --> 

<HTML> 

<HEAD> 
<META NAME="Author" CONTENT="Deepak Pandit"> 
<META HTTP-EQUIV="Content-Type" 

CONTENT="text/html;CHARSET=iso-8859-1"> 

<TITLE>User's Main Menu</TITLE> 
</HEAD> 

<FRAMESET ROWS="10%,90%"> 
<FRAMESET COLS="15%,85%"> 

<FRAME SRC="LOGO.HTM" NAME="Logo" SCROLLING="No" 
MARGINWIDTH="0" MARGINHEIGHT="0" NORESIZE> 

<FRAME SRC="U_MAIN_T.HTM" NAME="Title" 
SCROLLING="No" MARGINWIDTH="0" 
MARGINHEIGHT="0" NORESIZE> 



180 

</FRAMESET> 
<FRAMESET COLS="15%,85%"> 

<FRAME SRC="U_MAINL.HTM" NAME="Left" 
SCROLLING="No" MARGINWIDTH="0" 
MARGINHEIGHT="0" NORESIZE> 

<FRAME SRC="U MAIN R.HTM" NAME="Right" 
SCROLLYNG="No" MARGINWIDTH="5" 

MARGINHEIGHT="5" NORESIZE> 
</FRAMESET> 

</FRAMESET> 

<NOFRAMES> 
<BODY LINK="BLUE" VLINK="BLUE" ALINK="White"> 
<CENTER> 

<BIG><STRONG> 
Frames support is needed for all REPI web pages. 

</STRONG></BIG> 
</CENTER> 
</BODY> 
</NOFRAMES> 

</HTML> 

Figure 59: HTML Source Code for "User's Main Menu" 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> 

<!-- REPI Web Site 	 --> 
<!-- Demo Version - November 24, 1997 	 --> 
<!-- Copyright (c} 1997 	 --> 
<!-- 	 --> 
<!-- Author: Deepak Pandit 	 --> 
<!-- Email: dpandit@hotmail.com  or 

dnp3128@megahertz.njit.edu 	 --> 

<HTML> 

<HEAD> 
<META NAME="Author" CONTENT="Deepak Pandit"> 
<META HTTP-EQUIV="Content-Type" 

CONTENT="text/html;CHARSET=iso-8859-1"> 

<SCRIPT LANGUAGE="JavaScript" SRC="REPI.JS"></SCRIPT> 

<TITLE>User's Main Menu Left Frame</TITLE> 

</HEAD> 



181 

<BODY LINK="BLUE" VLINK="BLUE" ALINK="White" 
BACKGROUND="REPI_BK1.JPG"> 

<SMALL> 
<TABLE BORDER="1" WIDTH="100%" BORDER="0" ALIGN="Center"> 
<TR VALIGN="Middle"> 

<TD> 
<A HREF="U_FF.HTM" TARGET="_top" 

ALT="Examine the organization, into which, the 
target system will be placed" 

ONMOUSEOVER="display_status ('U_FF'); 
return true;" 
ONMOUSEOUT="default_status(); return true;"> 

Fact-<BR>Finding</A><BR> 
<BR> 
<A HREF="U_GC.HTM" TARGET="_top" 

ALT="Capture and organize the information that 
determines what is to be built" 

ONMOUSEOVER="display_status('U_GC 1 ); 
return true;" 
ONMOUSEOUT="default_status(); return true;"> 

Gathering &amp;<BR>Classification</A><BR> 
<BR> 
<A HREF="U_ER.HTM" TARGET="_top" 

ALT="Expose inconsistencies in the gathered 
requirements and determining why the 
information has been expressed as a 
requirement" 

ONMOUSEOVER="display_status('U_ER'); 
return true;" 
ONMOUSEOUT="default_status(}; return true;"> 

Evaluation &amp;<BR>Rationalization</A><BR> 
<BR> 
<A HREF="U_PP.HTM" TARGET="_top" 

ALT="Determine the relative importance of each 
requirement" 

ONMOUSEOVER="display_status('U_PP'); 
return true;" 
ONMOUSEOUT="default_status(); return true;"> 

Prioritization<BR>&amp; Planning</A><BR> 
<BR> 
<A HREF="U_IV.HTM" TARGET="_top" 

ALT="Identify missing requirements and verify 
they meet the goals" 

ONMOUSEOVER="display_status('U_IV"); 
return true;" 
ONMOUSEOUT="default_status(); return true;"> 

Integration<BR>&amp; Validation</A><BR> 
</TD> 

</TR> 
<TR VALIGN="Middle"> 

<TD> 
<BR> 
<A HREF="U_READ.HTM" TARGET="_top" 

ALT="Read your new Messages" 



ONMOUSEOVER="display_status('U_READ'}; 
return true;" 
ONMOUSEOUT="default_status(); return true;"> 

Read<BR>Messages</A><Bi> 
<A HREF="U_SEND.HTM" TARGET="_top" 

ALT="Send Messages to any member of this 
project" 

ONMOUSEOVER="display_status('U_SEND'); 
return true;" 
ONMOUSEOUT="default_status (); return true;"> 

Send<BR>Messages</A><Bi> 
<A HREF="U_NEW.HTM" TARGET="_top" 

ALT="What's New since your last login" 
ONMOUSEOVER="display_status('U_NEW 1 ); 
return true;" 
ONMOUSEOUT="default_status(); return true;"> 

What's New</A><BR> 
<A HREF="U_TODO.HTM" TARGET="_top" 

ALT="Misc items that can be useful during a 
project" 

ONMOUSEOVER="display_status('U_TODO'); 
return true;" 
ONMOUSEOUT="default_status(}; return true;"> 

Todo</A><BR> 
</TD> 

</TR> 
<TR VALIGN="Middle"> 

<TD> 
<A HREF="U_HELP.HTM" TARGET="_top" 

ALT="User's Help Screen" 
ONMOUSEOVER="display_status('U_HELP'); 
return true;" 
ONMOUSEOUT="default_status(); return true;"> 

Help</A><BR> 
<A HREF="LOGOUT.HTM" TARGET="_top" 

ALT="Log out of the REPI Web Site" 
ONMOUSEOVER="display_status('LOGOUT'}; 
return true;" 
ONMOUSEOUT="default_status(}; return true;"> 

Logout</A><BR> 
</TD> 

</TR> 
</TABLE> 
</SMALL> 
</BODY> 

</HTML> 

182 

Figure 60: HTML Source Code for "User's Main Menu" Left Frame 



183 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> 

<!-- REPI Web Site 	 --> 
<!-- Demo Version - November 24, 1997 	 --> 
<!-- Copyright (c) 1997 	 --> 
<!-- 	 --> 
<!-- Author: Deepak Pandit 	 --> 
<!-- Email: dpandit@hotmail.com  or 

dnp3128@megahertz.njit.edu 	 --> 

<HTML> 

<HEAD> 
<META NAME='" Author"" CONTENT="Deepak Pandit"> 
<META HTTP-EQUIV="Content-Type" 

CONTENT="text/html;CHARSET=iso-8859-1"> 

<LINK REL=STYLESHEET TYPE="text/javascript" 
HREF="REPI.CSS" TITLE="Style Sheet"> 

<TITLE>User's Main Menu Title Frame</TITLE> 
</HEAD> 

<BODY LINK="Blue" VLINK="Blue" ALINK="White" 
BACKGROUND="REPI_T.GIF"> 

<CENTER><H1> 
<FONT COLOR="Red" CLASS="ScreenTitleFormat"> 

User's Main Menu 
</FONT> 

</Hl></CENTER> 
</BODY> 

</HTML> 

Figure 61: HTML Source Code for "User's Main Menu" Title Frame 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> 

<!-- REPI Web Site 	 --> 
<!-- Demo Version - November 24, 1997 	 --> 
<!-- Copyright (c) 1997 	 --> 
<!-- 	 --> 
<!-- Author: Deepak Pandit 	 --> 
<!-- Email: dpandit@hotmail.com  or 

dnp3128@megahertz.njit.edu 	 --> 

<HTML> 
<HEAD> 

<META NAME="Author" CONTENT="Deepak Pandit"> 



184 

<META HTTP-EQUIV="Content-Type" 
CONTENT="text/htm1;CHARSET=iso-8859-1"> 

<SCRIPT LANGUAGE="JavaScript" SRC="REPI.JS"></SCRIPT> 

<TITLE>User's Main Menu Right Frame</TITLE> 
</HEAD> 

<BODY LINK="BLUE" VLINK="BLUE" ALINK="White" 
BACKGROUND="REPI_BK2.GIF"> 

<BR><BR><BR> 
<CENTER> 

<IMG SRC="REPI SEI.GIF" WIDTH=652 HEIGHT=426 
ALIGN="Middle" 

BORDER="0" USEMAP="#U SEI MainMenu_MAP" 
ALT="SEI's Requirements Elicitation Process 

Model"> 
<MAP NAME="U SEI_MainMenu_MAP"> 

<AREA SHAPE="Poly" HREF="U_IV.HTM" TARGET=" top" 
COORDS="104,324 242,331 250,316 260,313--  

260,307 278,305 288,304 301,313 
318,323 323,331 331,329 339,336 
344,343 344,352 324,373 315,378 
311,392 319,398 326,399 325,405 
320,408 291,413 236,411 197,405 
145,387 103,362 112,357 98,332 
104,324" 

ALT="Identify missing requirements and 
verify they meet the goals" 

ONMOUSEOVER="display_status('U_IV'); 
return true;" 
ONMOUSEOUT="default_status(); 
return true;"> 

<AREA SHAPE="Poly" HREF="U_PP.HTM" TARGET=" top" 
COORDS="625,276 622,293 586,335 543,367 

524,369 482,385 462,382 449,365 
422,359 411,349 410,326 421,302 
452,293 467,284 481,259 505,240 
524,240 544,253 563,252 582,247 
587,240 598,236 611,249 616,274 
626,276 625,276" 

ALT="Determine the relative importance of 
each requirement" 

ONMOUSEOVER="display_status('U_PP'); 
return true;" 
ONMOUSEOUT="default_status(); 
return true;"> 

<AREA SHAPE="Poly" HREF="U ER.HTM" TARGET=" top" 
COORDS="541,66 550,66--  601,108 598,121 

615,161 615,169 602,173 590,185 
540,186 525,197 507,199 490,190 
439,179 423,160 384,141 377,132 
381,122 389,118 397,116 410,111 



185 

411,95 408,81 408,71 422,63 
491,69 494,65 537,73 541,66" 

ALT="Expose inconsistencies in the gathered 
requirements and determining why the 
information has been expressed as a 
requirement" 

ONMOUSEOVER="display_status('U_ER'); 
return true;" 
ONMOUSEOUT="default_status(); 
return true;"> 

<AREA SHAPE="Poly" HREF="U_GC.HTM" TARGET="_top" 
COORDS="85,92 97,68 125,49 165,31 

199,20 247,14 282,9 309,23 
339,30 347,49 335,76 302,84 
273,114 251,128 234,128 214,118 
164,120 140,133 129,132 109,112 
108,102 85,92" 

ALT="Capture and organize the information 
that determines what is to be built" 

ONMOUSEOVER="display_status('U_GC'}; 
return true;" 
ONMOUSEOUT="default_status(); 
return true;"> 

<AREA SHAPE="Poly" HREF="U FF.HTM" TARGET="_top" 
COORDS="81,179 117,171 157,187 195,187 

221,217 217,237 222,252 207,261 
187,275 151,279 132,295 110,292 
100,282 54,277 24,259 18,227 
14,223 14,217 22,212 26,195 
30,189 75,186 81,179" 

ALT="Examine the organization, into which, 
the target system will be placed" 

ONMOUSEOVER="display_status('U_FF'); 
return true;" 
ONMOUSEOUT="default_status(); 
return true;"> 

<AREA SHAPE="DEFAULT" NOREF> 
</MAP> 

</CENTER> 
</BODY> 
</HTML> 

Figure 62: HTML Source Code for "User's Main Menu" Right Frame 



186 

H.1: USER'S FACT FINDING PAGES 

Figure 63: User's Fact Finding Menu Screen 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> 

<!-- REPI Web Site 	 --> 
<!-- Demo Version - November 24, 1997 	 --> 
<!-- Copyright {c) 1997 	 --> 
<!-- 	 --> 
<!-- Author: Deepak Pandit 	 --> 
<!-- Email: dpandit@hotmail.com  or 

dnp3128@megahertz.njit.edu 	 --> 

<HTML> 

<HEAD> 
<META NAME="Author" CONTENT="Deepak Pandit"> 



187 

<META HTTP-EQUIV="Content-Type" 
CONTENT="text/html;CHARSET=iso-8859-1"> 

<SCRIPT LANGUAGE="JavaScript" SRC="REPI.JS"></SCRIPT> 

<TITLE>User's Fact Finding Right Frame</TITLE> 
</HEAD> 

<BODY LINK="BLUE" VLINK="BLUE" ALINK="White" 
BACKGROUND="REPI_BK1.JPG"> 
<BR><BR><BR><BR> 
<TABLE ALIGN="Center" WIDTH="100%" BORDER="0"> 
<TR> 

<TD ROWSPAN="2" ALIGN="CENTER" VALIGN="MIDDLE"> 
<IMG SRC="R_SEI FF.GIF" WIDTH=451 HEIGHT=340 

ALIGN="Middle" 

BORDER="0" USEMAP="#U SEI FF_MAP" 
ALT="SEI's Requirements Elicitation Process 

Model"> 
<MAP NAME="U SEI_FF_MAP"> 

<AREA SHAPE="POLY" HREF="U FF.HTM" TARGET="_top" 
COORDS="21,147 57,143 67,133 94,133 

111,143 129,141 152,150 163,172 
169,195 155,210 135,220 106,227 
68,225 33,218 15,201 10,183 
11,161 21,147" 

ALT="Examine the organization, into which, 
the target system will be placed" 

ONMOUSEOVER="display_status('U_FF'); 
return true;" 
ONMOUSEOUT="default_status(); 
return true;"> 

<AREA SHAPE="POLY" HREF="U_GC.HTM" TARGET="_top" 
COORDS="57,63 89,38 139,14 206,6 

238,23 242,40 242,55 215,71 
198,99 177,109 134,97 103,107 
75,107 48,76 57,63" 

ALT="Capture and organize the information 
that determines what is to be built" 

ONMOUSEOVER="display_status('U_GC1); 
return true;" 
ONMOUSEOUT="default_status(); 
return true;"> 

<AREA SHAPE="POLY" HREF="U ER.HTM" TARGET="_top" 
COORDS="289,50 373,57 379,50 418,88 

415,99 428,128 420,139 408,149 
375,149 358,161 338,149 303,141 
293,127 263,110 265,94 286,90 
280,55 290,50 289,50" 

ALT="Expose inconsistencies in the gathered 
requirements and determining why the 
information has been expressed as a 
requirement" 



ONMOUSEOVER="display_status('U_ER'); 
return true;" 
ONMOUSEOUT="default_status(}; 
return true;"> 

<AREA SHAPE="POLY" HREF="U_PP.HTM" TARGET=" top" 
COORDS="435,219 421,249 398,276 369,299 

329,309 295,290 285,283 288,237 
319,224 335,195 362,190 397,193 
408,180 422,181 435,217 436,218 
435,219" 

ALT="Determine the relative importance of 
each requirement" 

ONMOUSEOVER="display_status('U_PP'); 
return true;" 
ONMOUSEOUT="default_status(); 
return true;"> 

<AREA SHAPE="POLY" HREF="U_IV.HTM" TARGET=" top" 
COORDS="234,325 224,331 149,328 91,304 

67,286 77,281 68,265 69,255 
150,258 174,240 222,244 237,264 
245,291 230,298 224,308 232,317 
243,316 249,322 234,325" 

ALT="Identify missing requirements and 
verify they meet the goals" 

ONMOUSEOVER="display_status('U_IV'}; 
return true;" 
ONMOUSEOUT="default_status(); 
return true;"> 

<AREA SHAPE="DEFAULT" NOREF> 
</MAP> 
</TD> 
<TD WIDTH="5%">&nbsp;</TD> 
<TD ALIGN="LEFT" VALIGN="MIDDLE"> 

<H4> 
<A HREF="U_FF_1.HTM" TARGET="Right" 

ALT="Identify potential stakeholders of 
this project" 

ONMOUSEOVER="display_status('U_FF_1'}; 
return true;" 
ONMOUSEOUT="default_status(}; 
return true;"> 

Identify relevant people</A><BR><BR> 
</H4> 
<H4> 

<A HREF="U_FF 2.HTM" TARGET="Right" 
ALT="Describe the problem that is to be 

solved by this project" 
ONMOUSEOVER="display_status('U_FF_2'); 
return true;" 
ONMOUSEOUT="default_status(); 
return true;"> 

Describe the Problem</A><BR><BR> 
</H4> 
<H4> 

188 



189 

<A HREF="U_FF_3.HTM" TARGET= Right" 
ALT="List the goals to be reached by this 

project" 
ONMOUSEOVER="display_status('U_FF_3'}; 
return true;" 
ONMOUSEOUT="default_status(}; 
return true;"> 

Define Goals</A><BR><BR> 
</H4> 
<H4> 

<A HREF="U_FF_4.HTM" TARGET=' Right" 
ALT="List the general scenarios for this 

project" 
ONMOUSEOVER="display_status('U_FF_4'); 
return true;" 
ONMOUSEOUT="default_status(); 
return true;"> 

List Mission Scenarios</A><BR><BR> 
</H4> 
<H4> 

<A HREF="U_FF_5.HTM" TARGET="Right" 
ALT="Identify other systems that are 

similar to the system to be built" 
ONMOUSEOVER="display_status('U_FF_5'); 
return true;" 
ONMOUSEOUT="default_status(); 
return true;"> 

Identify Similar Systems</A><BR><BR> 
</H4> 

</TD> 
</TR> 
</TABLE> 
</BODY> 

</HTML> 

Figure 64: HTML Source Code for "User's Fact Finding Menu" Right Frame 



Fi
gu

re
 6

5:
 F

iv
e 

T
as

ks
 o

f 
th

e 
U

se
r's

 F
ac

t F
in

di
ng

 P
ha

se
 

190  



191 

H.2: USER'S GATHERING and CLASSIFICATION PAGES 

Figure 66: Task 1 of the User's Gathering and Classification Phase 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> 

<!-- REPI Web Site 	 --> 
<!-- Demo Version - November 24, 1997 	 --> 
<!-- Copyright (c) 1997 	 --> 
<!-- 	 --> 
<!-- Author: Deepak Pandit 	 --> 
<!-- Email: dpandit@hotmail.com  or 

dnp3128@megahertz.njit.edu 	 --> 

<HTML> 

<HEAD> 
<META NAME="Author" CONTENT="Deepak Pandit"> 



192 

<META HTTP-EQUIV="Content-Type" 
CONTENT="text/html;CHARSET=iso-8859-1"> 

<LINK REL=STYLESHEET TYPE="text/javascript" 
HREF="REPI.CSS" TITLE="Style Sheet"> 

<SCRIPT LANGUAGE="JavaScript" SRC="REPI.JS"></SCRIPT> 

<TITLE> 
User's Gathering &amp; Classification Task 1: 
RequirementsList 

</TITLE> 
</HEAD> 

<BODY LINK="BLUE" VLINK="BLUE" ALINK="White" 
BACKGROUND="REPI_BK2.JPG"> 

<BIG><CENTER><STRONG> 
<FONT COLOR="Black" CLASS="TaskTitleFormat"> 

Task 1: Requirements List 
</FONT> 

</STRONG></CENTER></BIG> 
<CENTER><IMG SRC="REPI_LN1.GIF" WIDTH="800" 
HEIGHT="5"></CENTER> 
<BR> 
<CENTER> 
<FORM METHOD="GET" ACTION="ERROR.HTM"> 
<TABLE BORDER="0" WIDTH="100%"> 
<TR> 

<TH ALIGN="RIGHT" COLSPAN="2"> 
<BIG><FONT COLOR="Red">Detail Level:</FONT></BIG> 

</TH> 
<TD COLSPAN="3"> 

<TABLE BORDER="0" WIDTH="100%"> 
<TR> 

<TD ALIGN="Center"> 
<BIG> 

<INPUT TYPE="Button" 
NAME="Req_Leve1_1" 
VALUE=" 1 " 
onClick="open_error()"> 

</BIG> 
</TD> 
<TD ALIGN="Center"> 

<BIG> 
<INPUT TYPE="Button" 

NAME="Req_Level_2" 
VALUE=" 2 " 
onClick="open_error()"> 

</BIG> 
</TD> 
<TD ALIGN="Center"> 

<BIG> 
<INPUT TYPE="Button" 

MAMP="Peg_ Leveled" 



VALUE=" 3 " 
onClick="open_error()"> 

</BIG> 
</TD> 
<TD ALIGN="Center"> 

<BIG> 
<INPUT TYPE="Button" 

NAME="Req  Level_4" 
VALUE=" 4 " 
onClick="open_error(}"> 

</BIG> 
</TD> 
<TD ALIGN="Center"> 

<BIG> 
<INPUT TYPE="Button" 

NAME="Req_Level_5" 
VALUE=" 5 " 
onClick="open_error()"> 

<✓BIG> 
</TD> 
<TD ALIGN="Center"> 

<BIG> 
<INPUT TYPE="Button" 

NAME="Req  Level_6" 
VALUE=" 6 " 
onClick="open_error()"> 

</BIG> 
</TD> 
<TD ALIGN="Center"> 

<BIG> 
<INPUT TYPE="Button" 

NAME="Req_Level_7" 
VALUE=" 7 " 
onClick="open_error()"> 

</BIG> 
</TD> 
<TD ALIGN="Centern> 

<BIG> 
<INPUT TYPE="Button" 

NAME="Req_Level_8" 
VALUE=" 8 " 
onClick="open_error{}"> 

</BIG> 
</TD> 
<TD ALIGN="Center"> 

<BIG> 
<INPUT TYPE= ""Button"" 

NAME="Req_Level_9" 
VALUE=" 9 " 
onClick="open_error()"> 

</BIG> 
</TD> 
<TD ALIGN="Center"> 

<BIG> 

193 



<INPUT TYPE="Button" 
NAME="Req_Level_*" 
VALUE=" * " 
onClick="open_error(}"> 

</BIG> 
</TD> 

</TR> 
</TABLE> 

</TD> 
<TD>&nbsp;</TD> 

</TR> 
<TR> 

<TH ALIGN="RIGHT" COLSPAN="2"> 
<BIG><FONT COLOR="Red">Custom Views:</FONT><BIC 

</TH> 
<TD COLSPAN="2"> 

<SELECT NAME="Req_Views" SIZE="1"> 
<OPTION>All Requirements</OPTION> 
<OPTION>Undefined Requirements</OPTION> 
<OPTION>Deleted Requirements</OPTION> 
<OPTION>User Priority Ordered</OPTION> 
<OPTION>Funcational Requirements</OPTION> 

</SELECT> 
</TD> 
<TD ALIGN="CENTER"> 

<INPUT TYPE="Text" NAME="Add_View" SIZE="15"> 
</TD> 
<TD ALIGN="LEFT"> 

<INPUT TYPE="Button" NAME="Add_View" 
VALUE="Add View"> 

</TD> 
</TR> 
<TR><TD COLSPAN="6"><HR></TD></TR> 
<TR> 

<TH ALIGN="Center" VALIGN="Middle"> 
<BIG><FONT COLOR="Red">Req Id</FONT></BIG> 

</TH> 
<TH ALIGN="Center" VALIGN="Middle"> 

<BIG><FONT COLOR="Red"> 
Requirement Title 

</FONT></BIG> 
</TH> 
<TH ALIGN="Center" VALIGN="Middle"> 

<SELECT NAME="List Col 3" SIZE="1"> 
<OPTION SELECTED>-Category</OPTION> 
<OPTION>Compliance</OPTION> 
<OPTION>Cost</OPTION> 
<OPTION>Dependancy</OPTION> 
<OPTION>D Priority</OPTION> 
<OPTION>Importance</OPTION> 
<OPTION>Req Type</OPTION> 
<OPTION>Status</OPTION> 
<OPTION>Understanding</OPTION> 
<OPTION>User Priority</OPTION> 

194 



<OPTION>Verified By</OPTION> 
</SELECT> 

</TH> 
<TH ALIGN="Center" VALIGN="Middle"> 

<SELECT NAME="List_Col_4" SIZE="1"> 
<OPTION>Category</OPTION> 
<OPTION>Compliance</OPTION> 
<OPTION>Cost</OPTION> 
<OPTION>Dependancy</OPTION> 
<OPTION>D Priority</OPTION> 
<OPTION>Importance</OPTION> 
<OPTION>Req Type</OPTION> 
<OPTION>Status</OPTION> 
<OPTION>Understanding</OPTION> 
<OPTION SELECTED>User Priority</OPTION> 
<OPTION>Verified By</OPTION> 

</SELECT> 
</TH> 
<TH ALIGN="Center" VALIGN="Middle"> 

<SELECT NAME="List_Col_5" SIZE="1"> 
<OPTION>Category</OPTION> 
<OPTION>Compliance</OPTION> 
<OPTION>Cost</OPTION> 
<OPTION>Dependancy</OPTION> 
<OPTION>D Priority</OPTION> 
<OPTION SELECTED>Importance</OPTION> 
<OPTION>Req Type</OPTION> 
<OPTION>Status</OPTION> 
<OPTION>Understanding</OPTION> 
<OPTION>User Priority</OPTION> 
<OPTION>Verified By</OPTION> 

</SELECT> 
</TH> 
<TH ALIGN="Center" VALIGN="Middle"> 

<BIG><FONT COLOR="Red">Status</FONT></BIG> 
</TH> 

</TR> 
<TR> 

<TD COLSPAN="6"><HR ALIGN="Center" SIZE="5" NOSHADE> 

</TD>  </TR> 
<TR> 

<TD ALIGN="Left"><H4>UR l</H4></TD> 
<TD ALIGN="Left"> 

<H4><A HREF="RINFO_1.HTM">Increasing Accuracy 
</A></H4> 

</TD> 
<TD ALIGN="Center"> 

<H4><A HREF="CINFO_1.HTM">Accuracy 
</A></H4></TD> 

<TD ALIGN="Center">4</TD> 
<TD ALIGN="Center">2</TD> 
<TD ALIGN="Center">Defined</TD> 

</TR> 

195 



196 

<TR> 
<TD ALIGN="Left"><H4>UR 2</H4></TD> 
<TD ALIGN="Left"><H4>Next Level</H4></TD> 
<TD ALIGN="Center">Accuracy</TD> 
<TD ALIGN="Center">3</TD> 
<TD ALIGN="Center">1</TD> 
<TD ALIGN="Center">TBD</TD> 

</TR> 
<TR> 

<TD ALIGN="Left"><H4>UR 3</H4></TD> 
<TD ALIGN="Left"><H4>Classical Process</H4></TD> 
<TD ALIGN="Center">Development Process</TD> 
<TD ALIGN="Center">5</TD> 
<TD ALIGN="Center">1</TD> 
<TD ALIGN="Center">Approved</TD> 

</TR> 
<TR> 

<TD ALIGN="Center"><H5>UR 3.1</H5></TD> 
<TD ALIGN="Center"> 

<H5>Environmental Characterization</H5> 
</TD> 
<TD ALIGN="Center">Critical Info</TD> 
<TD ALIGN="Center">1</TD> 
<TD ALIGN="Center">1</TD> 
<TD ALIGN="Center">TBR</TD> 

</TR> 
<TR> 

<TD ALIGN="RIGHT"><H6>UR 3.1.1</H6></TD> 
<TD ALIGN="RIGHT"><H5>Damage potential</H5></TD> 
<TD ALIGN="Center">Liability</TD> 
<TD ALIGN="Center">1</TD> 
<TD ALIGN="Center">1</TD> 
<TD ALIGN="Center">Deleted</TD> 

</TR> 
<TR> 

<TD ALIGN="Center"><H5>UR 3.2</H5></TD> 
<TD ALIGN="Center"><H5>Remediation decision</H5></TD> 
<TD ALIGN="Center">Decision milestones</TD> 
<TD ALIGN="Center">1</TD> 
<TD ALIGN="Center">1</TD> 
<TD ALIGN="Center">Deleted</TD> 

</TR> 
<TR> 

<TD ALIGN="Left"><H4>UR 4</H4></TD> 
<TD ALIGN="Left"><H4>Next Step</H4></TD> 
<TD ALIGN="Center">Decision milestones</TD> 
<TD ALIGN="Center">1</TD> 
<TD ALIGN="Center">1</TD> 
<TD ALIGN="Center">Verified</TD> 

</TR> 
<TR> 

<TD ALIGN="Center"><H5>UR 4.1</H5></TD> 
<TD ALIGN="Center"><H5>Possible Steps</H5></TD> 
<TD ALIGN="Center">Decision milestones</TD> 



197 

<TD ALIGN="Center">1</TD> 
<TD ALIGN="Center">1</TD> 
<TD ALIGN="Center">Deleted</TD> 

</TR> 
</TABLE> 
</FORM> 
</CENTER> 
</BODY> 

</HTML> 

Figure 67: HTML Source Code for Task 1 of User's Gathering and Classification Phase 

Figure 68: Task 2 of the User's Gathering and Classification Phase 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> 

<!-- REPI Web Site 	 --> 
<!-- Demo Version - November 24, 1997 	 --> 
<!-- Copyright (c) 1997 	 --> 



198 

<!-- 	 --> 
<!-- Author: Deepak Pandit 	 --> 
<!-- Email: dpandit@hotmail.com  or 

dnp3128@megahertz.njit.edu 	 --> 

<HTML> 

<HEAD> 
<META NAME="Author" CONTENT="Deepak Pandit"> 
<META HTTP-EQUIV="Content-Type" 

CONTENT="text/html;CHARSET=iso-8859-1"> 

<LINK REL=STYLESHEET TYPE="text/javascript" 
HREF="REPI.CSS" TITLE="Style Sheet"> 

<TITLE> 
User's Gathering & Classification Task 2: Add 
Requirements 

</TITLE> 
</HEAD> 

<BODY LINK="BLUE" VLINK="BLUE" ALINK="White" 
BACKGROUND="REPI_BK2.JPG"> 

<BIG><CENTER><STRONG> 
<FONT COLOR="Black" CLASS="TaskTitleFormat"> 

Task 2: Add Requirements 
</FONT> 

</STRONG></CENTER></BIG> 
<CENTER><IMG SRC="REPI_LN1.GIF" WIDTH="800" 
HEIGHT="5"></CENTER> 

<CENTER> 
<FORM METHOD="GET" ACTION="ERROR.HTM"> 
<TABLE BORDER="0" WIDTH="100%"> 
<TR> 

<TH> 
<BIG>Req Id</BIG><BR> 
<SELECT NAME="Req_Id" SIZE="1"> 

<OPTION VALUE="UR1">UR1</OPTION> 
<OPTION VALUE="UR2">UR2</OPTION> 
<OPTION VALUE="UR3">UR3</OPTION> 
<OPTION VALUE="UR4">UR4</OPTION> 
<OPTION SELECTED VALUE="UR5">UR5</OPTION> 
<OPTION VALUE="UR6">UR6</OPTION> 
<OPTION VALUE="UR7">UR7</OPTION> 

</SELECT> 
</TH> 
<TH> 

<BIG>Requirement Title</BIG><BR> 
<INPUT TYPE="Text" NAME="Req_Title" SIZE="25" 

VALUE="Confidence Level"> 
</TH> 
<TD> 



199 

<TABLE BORDER="0" WIDTH="100%"> 
<TR> 

<TH><BIG>Category:&nbsp;</BIG></TH> 
<TD ALIGN="Center">Pick one</TD> 
<TD ALIGN="Center">OR</TD> 
<TD ALIGN="Center">Type One</TD> 

</TR> 
<TR> 

<TH>&nbsp;</TH> 
<TH> 

<SELECT NAME="Req_Category" SIZE="1"> 
<OPTION SELECTED>Accuracy</OPTION> 
<OPTION>Development process 
</OPTION> 
<OPTION>Decision milestones 
</OPTION> 
<OPTION>Critical info needs 
</OPTION> 
<OPTION>Liability issues</OPTION> 

</SELECT> 
</TH> 
<TH>&nbsp;</TH> 
<TH> 

<INPUT TYPE="Text" 
NAME="Req_CategoryTitle" SIZE="10"> 

</TH> 
</TR> 
</TABLE> 

</TD> 
</TR> 
</TABLE> 
<TABLE BORDER="0" WIDTH="100%"> 
<TR> 

<TH> 
<BIG>Compliance Level</BIG> 
<SELECT NAME="Req_ComplianceLevel" SIZE="1"> 

<OPTION VALUE="Mandatory">Mandatory</OPTION> 
<OPTION SELECTED VALUE="Goal">Goal</OPTION> 
<OPTION VALUE="Objective">Objective</OPTION> 
<OPTION VALUE="Optional">Optional</OPTION> 

</SELECT> 
</TH> 
<TH> 

<BIG>Current Status</BIG> 
<SELECT NAME="Req_CurrentStatus" SIZE=""'> 

<OPTION VALUE="TBD">To Be Determined</OPTION> 
<OPTION SELECTED VALUE="TBR">To Be Reviewed 
</OPTION> 
<OPTION VALUE="Defined">Defined</OPTION> 
<OPTION VALUE="Approved">Approved</OPTION> 
<OPTION VALUE="Verified">Verified</OPTION> 
<OPTION VALUE="Deleted">Deleted</OPTION> 

</SELECT> 
</TH> 



200 

</TR> 
</TABLE> 
<BR> 
<A NAME="Input"></A> 
<TABLE BORDER="0" WIDTH="100%"> 
<TR> 

<TH VALIGN="Top"> 
<BIG>Describe the Requirement below:</BIG> 

</TH> 
<TH VALIGN="Top">OR</TH> 
<TH> 

Import the Requirement's Description<BR> 
<INPUT TYPE="File" NAME="Req  Descriptionlmport" 

SIZE="15"> 
</TH> 

</TR> 
<TR> 

<TH COLSPAN="3"> 
<TEXTAREA NAME="Req_Description" COLS="70" 

ROWS="3"> 
The ESDM shall also indicate to the user the level of 
confidence attainable with the available information. 

</TEXTAREA> 
</TH> 

</TR> 
</TABLE> 
<BR> 
<TABLE BORDER="1" WIDTH="100%"> 
<TR> 

<TH ALIGN="right" VALIGN="Top"> 
<BIG>Requirement Type:</BIG> 

</TH> 
<TD ALIGN="Center" VALIGN="Top"> 

<INPUT TYPE="Radio" NAME="Req  Type" 
VALUE=" Functional" ALIGN="Middle" CHECKED> 

Functional 
</TD> 
<TD ALIGN="Center"> 

<INPUT TYPE="Radio" NAME="Req_  Type" 
VALUE="NonFunctional" ALIGN="Middle"> 

Non-Functional<BR> 
<SELECT NAME="Req_NonFunType" SIZE="1"> 

<OPTION>&nbsp;</OPTION> 
<OPTION VALUE="Performance">Performance 
</OPTION> 
<OPTION VALUE="Security">Security</OPTION> 
<OPTION VALUE="Maintainability"> 

Maintainability 
</OPTION> 
<OPTION VALUE="Portability">Portability 
</OPTION> 
<OPTION VALUE="Extensiblity">Extensiblity 
</OPTION> 

</SELECT> 



201 

</TD> 
<TD ALIGN="Center" COLSPAN="2"> 

<INPUT TYPE="Radio" NAME="Req_Type" 
VALUE="Interface" ALIGN="Middle"> 

Interface<BR> 
<SELECT NAME="Req_InterfaceType" SIZE="1"> 

<OPTION>&nbsp;</OPTION> 
<OPTION VALUE="User">User</OPTION> 
<OPTION VALUE="Software">Software</OPTION> 
<OPTION VALUE="Communications">Communications 
</OPTION> 
<OPTION VALUE="Hardware">Hardware</OPTION> 
<OPTION VALUE="External">External</OPTION> 

</SELECT> 
</TD> 
<TD ALIGN="Center" VALIGN="Top"› 

<INPUT TYPE="Radio" NAME="Req_Type" 
VALUE="Design_Constraint" ALIGN="Middle"> 

Design Constraint 
</TD> 

</TR> 
<TR> 

<TH ALIGN="right"><BIG>Verified By:</BIG></TH> 
<TD ALIGN="Center"> 

<INPUT TYPE="Radio" NAME="Req_VerifyType" 
VALUE="Inspection" ALIGN="Middle"> 

Inspection 
</TD> 
<TD ALIGN="Center"> 

<INPUT TYPE="Radio" NAME="Req_VerifyType" 
VALUE="Analysis" ALIGN="Middle" CHECKED> 

Analysis 
</TD> 
<TD ALIGN="Center"> 

<INPUT TYPE="Radio" NAME="Req_VerifyType" 
VALUE="Demonstration" ALIGN="Middle"> 

Demonstration 
</TD> 
<TD ALIGN="Center" COLSPAN="2"› 

<INPUT TYPE="Radio" NAME="Req_VerifyType" 
VALUE="Test" ALIGN="Middle"> 

Test 
</TD> 

</TR> 
</TABLE> 
<BR> 
<TABLE BORDER="0" WIDTH="100%"> 
<TR> 

<TD ALIGN="Center" WIDTH="50%"> 
<INPUT TYPE="Button" NAME="U_GC_2 Enter" 

VALUE="Add this requirement" 
onClick="open_error()"> 

</TD> 
<TD ALIGN="Center" WIDTH="50%"> 



202 

<INPUT TYPE="Reset" VALUE="Clear Form"> 
</TD> 

</TR> 
</TABLE> 
</FORM> 
</CENTER> 
</BODY> 

</HTML> 

Figure 69: HTML Source Code for Task 2 of User's Gathering and Classification Phase 

H.3: USER'S EVALUATION and RATIONALIZATION PAGES 

Figure 70: Two Tasks of the User's Evaluation and Rationalization Phase 



203 

H.4: USER'S PRIORITIZATION and PLANNING PAGES 

Figure 71: Task 1 of the User's Prioritization and Planning Phase 



H.5: USER'S INTEGRATION and VALIDATION PAGES 

Figure 72: Three Tasks of the User's Integration and Validation Phase 

204 



A
P

P
E

N
D

IX
 I

.1
: 

D
E

V
E

L
O

P
E

R
'S

 F
A

C
T

 F
IN

D
IN

G
 P

A
G

E
S

 

F
ig

u
re

 7
3:

 F
o

u
r 

T
as

k
s 

o
f 

th
e 

D
ev

el
o

p
er

's
 F

ac
t 

F
in

d
in

g
 P

h
as

e 

205 



206 

1.2: DEVELOPER'S GATHERING and CLASSIFICATION PAGES 

Figure 74: Task 1 of the Developer's Gathering and Classification Phase 



1.3: DEVELOPER'S EVALUATION and RATIONALIZATION PAGES 

Figure 75: Three Tasks of the Developer's Evaluation and Rationalization Phase 

207 



208 

1.4: DEVELOPER'S PRIORITIZATION and PLANNING PAGES 

Figure 76: Task 1 of the Developer's Prioritization and Planning Phase 



209 

Figure 77: Task 2 of the Developer's Prioritization and Planning Phase 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> 

<!-- REPI Web Site 	 --> 
<!-- Demo Version - November 24, 1997 	 --> 
<!-- Copyright (c) 1997 	 --> 
<!-- 	 --> 
<!-- Author: Deepak Pandit 	 --> 
<!-- Email: dpandit@hotmail.com  or 

dnp3128@megahertz.njit.edu 	 --> 

<HTML> 

<HEAD> 
<META NAME="Author" CONTENT="Deepak Pandit"> 
<META HTTP-EQUIV="Content-Type" 

CONTENT="text/html;CHARSET=iso-8859-1"> 



210 

<LINK REL=STYLESHEET TYPE="text/javascript" 
HREF="REPI.CSS" TITLE="Style Sheet"> 

<TITLE> 
Developer's Prioritization & Planning Task 2: Sort 
the Requirements 

</TITLE> 
</HEAD> 

<BODY LINK="BLUE" VLINK="BLUE" ALINK="White" 
BACKGROUND="REPI_BK2.JPG"> 

<BIG><CENTER><STRONG> 
<FONT COLOR="Black" CLASS="TaskTitleFormat"> 

Task 2: Plan incremental development stages 
</FONT> 

</STRONG></CENTER></BIG> 
<CENTER> 

<IMG SRC="REPI_LN1.GIF" WIDTH="800" HEIGHT="5"> 
</CENTER> 
<BR> 

<FORM METHOD="GET" ACTION="ERROR.HTM"> 
<CENTER> 
<TABLE BORDER="1" WIDTH="100%" CELLPADDING="5" 

CELLSPACING="0"> 
<CAPTION>&nbsp;</CAPTION> 
<TR> 
<TH WIDTH="128%" ALIGN="Center" COLSPAN="8"> 

<FONT SIZE="+2" COLOR="Red"> 
Values for Sorting Matrix 

</FONT> 
</TH> 

</TR> 
<TR> 

<TH WIDTH="14%" ALIGN="Center" ROWSPAN="2"> 
<FONT COLOR="Red">Requirements List</FONT> 

</TH> 
<TH WIDTH="42%" ALIGN="Center" COLSPAN="3"> 

<FONT COLOR="Red">User</FONT> 
</TH> 
<TH WIDTH="44%" ALIGN="Center" COLSPAN="3"> 

<FONT COLOR="Red">Developer</FONT> 
</TH> 
<TH WIDTH="15%" ALIGN="Center" ROWSPAN="2"> 

<FONT COLOR="Red">Combined Averages</FONT> 
</TH> 

</TR> 
<TR> 

<TH WIDTH="14%" ALIGN="Center">Importance</TH> 
<TH WIDTH="14%" ALIGN="Center">Understanding</TH> 
<TH WIDTH="14%" ALIGN="Center">Priority</TH> 
<TH WIDTH="15%" ALIGN="Center">Cost</TH> 
<TH WIDTH="15%" ALIGN="Center">Dependency</TH> 
<TH WIDTH="14%" ALIGN="Center">PrioritY</TH> 



211 

</TR> 
<TR> 

<TD WIDTH="14%" ALIGN="Center"> 
<A HREF="RINF0_1.HTM">Increasing Accuracy</A> 

</TD> 
<TD WIDTH="14%" ALIGN="Center">4.9</TD> 
<TD WIDTH="14%" ALIGN="Center">2</TD> 
<TD WIDTH="14%" ALIGN="Center">4.5</TD> 
<TD WIDTH="15%" ALIGN="Center">4</TD> 
<TD WIDTH="15%" ALIGN="Center">4</TD> 
<TD WIDTH="14%" ALIGN="Center">4</TD> 
<TD WIDTH="14%" ALIGN="Center">3.9</TD> 

</TR> 
<TR> 

<TD WIDTH="14%" ALIGN="Center">Next Level</TD> 
<TD WIDTH="14%" ALIGN="Center">3.5</TD> 
<TD WIDTH="14%" ALIGN="Center">3</TD> 
<TD WIDTH="14%" ALIGN="Center">4</TD> 
<TD WIDTH="15%" ALIGN="Center">3</TD> 
<TD WIDTH="15%" ALIGN="Center">3</TD> 
<TD WIDTH="14%" ALIGN="Center">4.5</TD> 
<TD WIDTH="14%" ALIGN="Center">3.5</TD> 

</TR> 
<TR> 

<TD WIDTH="14%" ALIGN="Center">Classical Process</TD> 
<TD WIDTH="14%" ALIGN="Center">3</TD> 
<TD WIDTH="14%" ALIGN="Center">4</TD> 
<TD WIDTH="14%" ALIGN="Center">3.9</TD› 
<TD WIDTH="15%" ALIGN="Center">2.3</TD> 
<TD WIDTH="15%" ALIGN="Center">2</TD> 
<TD WIDTH="14%" ALIGN="Center">3.5</TD> 
<TD WIDTH="14%" ALIGN="Center">3.1</TD> 

</TR> 
<TR> 

<TD WIDTH="14%" ALIGN="Center">Next Step</TD> 
<TD WIDTH="14%" ALIGN="Center">2.9</TD> 
<TD WIDTH="14%" ALIGN="Center">5</TD> 
<TD WIDTH="14%" ALIGN="Center">3.7</TD> 
<TD WIDTH="15%" ALIGN="Center">2</TD> 
<TD WIDTH="15%" ALIGN="Center">1.5</TD> 
<TD WIDTH="14%" ALIGN="Center">3</TD> 
<TD WIDTH="14%" ALIGN="Center">3</TD> 

</TR> 
<TR> 

<TD WIDTH="14%" ALIGN="Center">Confidence Level</TD> 
<TD WIDTH="14%" ALIGN="Center">1</TD> 
<TD WIDTH="14%" ALIGN="Center">5</TD> 
<TD WIDTH="15%" ALIGN="Center">2</TD> 
<TD ALIGN="Center">1</TD> 
<TD ALIGN="Center">1</TD> 
<TD ALIGN="Center">2</TD> 
<TD WIDTH="14%" ALIGN="Center">2</TD> 

</TR> 
</TABLE> 



212 

</FORM> 
</BODY> 

</HTML> 

Figure 78: HTML Source Code for Task 2 of Developer's Prioritization and Planning 
Phase 

Figure 79: Task 3 of the Developer's Prioritization and Planning Phase 



1.5: DEVELOPER'S INTEGRATION and VALIDATION PAGES 

213 

Figure 80: Task 1 of the Developer's Integration and Validation Phase 



214 

J.1: REPI WEB SITE'S INFORMATION PAGES 

Figure 81: "Requirements Information" Page of the REPI Web Site Part 1 of 2 



215 

Figure 82: "Requirements Information" Page of the REPI Web Site Part 2 of 2 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> 

<!-- REPI Web Site 	 --> 
<!-- Demo Version - November 24, 1997 	 --> 
<!-- Copyright (c) 1997 	 --> 
<!-- 	 --> 
<!-- Author: Deepak Pandit 	 --> 
<!-- Email: dpandit@hotmail.com  or 

dnp3128@megahertz.njit.edu 	 --> 

<HTML> 

<HEAD> 
<META NAME="Author" CONTENT="Deepak Pandit"> 
<META HTTP-EQUIV="Content-Type" 

CONTENT="text/html;CHARSET=iso-8859-1"> 

<LINK REL=STYLESHEET TYPE="text/javascript" 
HREF="REPI.CSS" TITLE="Style Sheet"> 



216 

<SCRIPT LANGUAGE="JavaScript" SRC="REPI.JS"></SCRIPT> 

<TITLE>Increasing Accuracy's Information Screen</TITLE> 
</HEAD> 

<BODY LINK="BLUE" VLINK="BLUE" ALINK="White" 
BACKGROUND="REPI_BK2.JPG"> 

<BIG><CENTER><STRONG> 
<FONT COLOR="Black" CLASS="TaskTitleFormat"> 

Requirement Title: 
<STRONG>Increasing Accuracy</STRONG> 

</FONT> 
</STRONG></CENTER></BIG> 
<CENTER> 

<IMG SRC="REPI_LN1.GIF" WIDTH="800" HEIGHT="5"> 
</CENTER> 

<CENTER> 
<TABLE WIDTH="100%" BORDER="1"› 

<TR> 
<TH ALIGN="Center">Category</TH> 
<TH ALIGN="Center">Req Type</TH> 
<TH ALIGN="Center">Verified By</TH> 
<TH ALIGN="Center">Compliance Level</TH> 
<TH COLSPAN="2" ALIGN="Center">Status</TH> 

</TR> 
<TR> 

<TD ALIGN="Center"> 
<A HREF="CINFO 1.HTM" 

" TARGET=Riga-t">Accuracy</A> 
</TD> 
<TD ALIGN="Center">Functional</TD> 
<TD ALIGN="Center">Demonstration</TD> 
<TD ALIGN="Center">Mandatory</TD> 
<TD COLSPAN="2" ALIGN="Center">Defined</TD> 

</TR> 
</TABLE> 
<BR> 
<TABLE WIDTH="100%" BORDER="1"> 

<TR> 
<TH ALIGN="Center">Importance</TH> 
<TH ALIGN="Center">Understanding</TH> 
<TH ALIGN="Center">User Priority</TH> 
<TH ALIGN="Center">Cost</TH> 
<TH ALIGN="Center">Dependency</TH> 
<TH ALIGN="Center">Developer Priority</TH> 

</TR> 
<TR> 

<TD ALIGN="Center">4.9</TD> 
<TD ALIGN="Center">2</TD> 
<TD ALIGN="Center">4.5</TD> 
<TD ALIGN="Center">4</TD> 
<TD ALIGN="Center">4</TD> 



217 

<TD ALIGN="Center">4</TD> 
</TR> 

</TABLE> 
<BR> 
<FORM METHOD="GET" ACTION="ERROR.HTM"> 
<TABLE ALIGN="Center" WIDTH="100%" BORDER="1"> 
<TR> 

<TH ALIGN="Center"> 
Rationalization<BR> 
<TEXTAREA NAME="Rationalization" COLS="35" 

ROWS="5"> 
As more information becomes avaiable, more accurate results 
should become avaiable. 

</TEXTAREA> 
</TH> 
<TH ALIGN="Center"> 

Risk Assessment<BR> 
<TEXTAREA NAME="Risks" COLS="35" ROWS="5"> 

If increasing accuracy is not obtained then users will stop 
entering more information beyond a certain point. 

</TEXTAREA> 
</TH> 

</TR> 
<TR> 

<TH ALIGN="Center"> 
Feasibility Analysis<BR> 
<TEXTAREA NAME="Feasibility" COLS="35" ROWS="5"> 

If the proper information is available then the next level 
of accuracy can be reached. 

</TEXTAREA> 
</TH> 
<TH ALIGN="Center"> 

Cost/Benefits Analysis<BR> 
<TEXTAREA NAME="Cost_Benefit" COLS="35" ROWS="5"> 

Cost: More information becomes meaning less if more accurate 
results are not obtained 

Benefit: The more accurate the results the better decision 
can be made about the redevelopment options. 
</TEXTAREA> 

</TH> 
</TR> 
</TABLE> 
<BR> 
<H3>Comments (Sorted by Date):</H3> 
<A HREF="#Additional Comments"> 

Click here to add Comments for this requirement 
</A> 

<TABLE WIDTH="100%" BORDER="1"> 
<TR> 

<TD ALIGN="Center"> 
<A HREF="UINFO_1.HTM#Rl_U1_1">User 1</A> 

</TD> 
<TD ALIGN="Center"> 



9/15/97<BR>03:45 PM<BR>(GMT -05:00) 
</TD> 
<TD ALIGN="Center"> 

<TEXTAREA NAME="User_1_Comment_1" ROWS="3" 
COLS="50"> 

As time goes by the system should give more and more 
accurate results. 

</TEXTAREA> 
</TD> 

</TR> 
<TR> 

<TD ALIGN="Center">User 5</TD> 
<TD ALIGN=" Center"> 

9/19/97<BR>05:35 PM<BR>(GMT -05:00) 
</TD> 
<TD ALIGN="Center"> 

<TEXTAREA NAME="User_5_Comment_1" ROWS="3" 
COLS="50"> 

More information should give more accurate results 
</TEXTAREA> 

</TD> 
</TR> 
<TR> 

<TD ALIGN="Center">User 3</TD> 
<TD ALIGN="Center"> 

9/21/97<BR>01:15 PM<BR>(GMT -05:00) 
</TD> 
<TD ALIGN="Center"> 

<TEXTAREA NAME="User_3_Comment_1" ROWS="3" 
COLS="50"> 

As the given information increases the accuracy should 
increase 

</TEXTAREA> 
</TD> 

</TR> 
<TR> 

<TD ALIGN="Center"> 
<A HREF="UINFO_1.HTM#R1_U1_2">User 1</A> 

</TD> 
<TD ALIGN="Center"> 

9/22/97<BR>07:05 AM<BR>(GMT -05:00) 
</TD> 
<TD ALIGN="Center"> 

<TEXTAREA NAME="User_1_Comment_1" ROWS="3" 
COLS="50"> 

The ESDM shall be able to provide estimates of increasing 
accuracy depending on the level of information available. 

</TEXTAREA> 
</TD> 

</TR> 
</TABLE> 
<BR><BR> 
<A NAME="Additional Comments"></A> 
<H3>Additional Comments about this Reauirement:</H3> 

218 



<TEXTAREA NAME="Comments" ROWS="3" COLS="60"></TEXTAREA> 
<BR><BR> 
<INPUT TYPE="Button" NAME="RInfo_1_Enter" 

VALUE="Enter Comments" onClick="open_error()"> 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
<INPUT TYPE="Reset" VALUE="Clear Form"> 
</FORM> 
</CENTER> 
</BODY> 

</HTML> 

Figure 83: HTML Source Code for the "Requirements Information" Page 

219 

Figure 84: "Category Information" Page of the REPI Web Site 



Figure 85: "User Information" Page of the REPI Web Site 

220 



K.1: READ AND SEND MESSAGES PAGES 

221 

Figure 86: "Read Messages" Page of the REPI Web Site 



222 

Figure 87: "Send Messages" Page of the REPI Web Site 



223 

K.2: WHAT'S NEW PAGE 

Figure 88: "What's New" Page of the KEPI Web Site 



F
ig

ur
e 

89
: 

F
iv

e 
T

O
D

O
 T

as
ks

 o
f 

th
e 

R
E

P
I 

W
eb

 S
 s

it
e 

224 

K
.3

: 
T

O
D

O
 T

A
S

K
S

 P
A

G
E

S
 



K
.4

: 
H

E
L

P
 P

A
G

E
S

 

F
ig

ur
e 

90
: 

H
el

p 
P

ag
es

 f
or

 th
e 

R
E

P
I 

W
eb

 S
it

e 

225 



226 

K.5: LOGOUT AND ERROR MESSAGE PAGES 

Figure 91: Error Message for the REPI Web Site 



227 

Figure 92: "Logout Screen" of the REPI Web Site 

L.1: REPI WEB SITE'S STYLE SHEET AND JAVASCRIPT CODE 

<!-- REPI Web Site 	 --> 
<!-- Demo Version - November 24, 1997 	 --> 
<!-- Copyright (c) 1997 	 --> 
<!-- 	 --> 
<!-- Author: Deepak Pandit 	 --> 
<!-- Email: dpandit@hotmail.com  or 

dnp3128@megahertz.njit.edu 	 --> 

<!-- Style Sheet for the Thesis REPI Web Site --> 
<!-- Created by Deepak Pandit 	 --> 

// ScreenTitleFormat used in the title frame of all REPI web 
pages 

classes.ScreenTitleFormat.FONT.align = "Center" 
classes.ScreenTitleFormat.FONT.color = "Red" 
classes.ScreenTitleFormat.FONT.font = "TimesRoman" 



228 

classes.ScreenTitleFoLmat.FONT.fontstyle = "Bold" 
classes.ScreenTitleFormat.FONT.fontpointsize = "12" 

// TaskTitleFormat used in the right frame for some of the 
REPI web pages 
classes.TaskTitleFormat.FONT.align = "Center" 

classes.TaskTitleFormat.FONT.color = "Black" 
classes.TaskTitleFormat.FONT.fontstyle = "Bold" 
classes.TaskTitleFormat.FONT.fontpointsize = "14" 

// AlphaListingFoLmat used in some of the REPI web pages 
classes.AlphaListingFormat.FONT.align = "Center" 
classes.AlphaListingFormat.FONT.color = "Red" 
classes.AlphaListingFormat.FONT.fontstyle = "Bold" 
classes.AlphaListingFoLmat.FONT.fontpointsize = "12" 

Figure 93: Style Sheet for the REPI Web Site 

<!-- REPI Web Site 	 --> 
<!-- Demo Version - November 24, 1997 	 --> 
<!-- Copyright (c) 1997 	 --> 
<!-- 	 --> 
<!-- Author: Deepak Pandit 	 --> 
<!-- Email: dpandit@hotmail.com  or 

dnp3128@megahertz.njit.edu 	 --> 

<1-- *************************************************** 

// 	JavaScript functions used in Thesis's REPI Web Site 
// Created by Deepak Pandit 

▪ *************************************************** --> 

<!--     --> 
// 

	

	Functions used in menu type web pages of the REPI's Web 
Site 

<!--    --> 

function display_status (status_code) 
// Displays a status message based on the status_code 

parameter 
// Codes used in the HTML pages when calling this function 

are 
// U_MAIN, U_READ, U_SEND, U_NEW, U_TODO, and U_HELP 
// U_FF, U_GC, U_ER, U_PP, and U_IV 
// U_FF_1 to U_FF_5, U_GC_1 and U_GC_2, U_ER_1 and U_ER_2, 

U_IV_1 to U_IV_3 
// D_MAIN, D_READ, D_SEND, D_NEW, D_TODO, and D_HELP 
// D_FF, D_GC, D_ER, D_PP, and D_IV 



229 

// D_FF_1 to D_FF_4, D_GC_1 to D_GC_3, D_ER_1 to D_ER_3, 
D_PP_1 to D_PP_3 

// TODO_1 to TODO_5, HELP_F, HELP_G, HELP_E, HELP_P, and 
HELP_I 

// User web pages 

if (status_code == 'U_FF') 
window.status = "Examine the organization, into which, 

the target system will be placed"; 
if (status_code == 'U_FF_1') 

window.status = "Identify potential stakeholders of this 
project"; 

if (status_code == 'U_FF_2') 
window.status = "Describe the problem that is to be 

solved by this project"; 
if (status_code == 'U_FF_3') 

window.status = "List the goals to be reached by this 
project"; 

if (status_code == 'U_FF_4') 
window.status = "List the general scenarios for this 

project"; 
if (status_code == 'U_FF_5') 

window.status = "Identify other systems that are similar 
to the system to be built"; 

if (status_code == 'U_GC') 
window.status = "Capture and organize the information 

that determines what is to be built"; 
if (status_code == 'U_GC_1') 

window.status = "List of available requirements"; 
if (status_code == 'U_GC_2') 

window.status = "Add a new requirement"; 

if (status_code == 'U_ER') 
window.status = "Expose inconsistencies in the gathered 

requirements and determining why the 
information has been expressed as a 
requirement"; 

if (status_code == 'U_ER_1') 
window.status = "Answer why you need these 

requirements"; 
if (status_code == 'U_ER_2') 

window.status = "Describe the reasons for these 
requirements"; 

if (status_code == 'U_PP') 
window.status = "Determine the relative importance of 

each requirement"; 

if (status_code == 'U_IV') 



230 

window.status = "Identify missing requirements and 
verify they meet the goals"; 

if (status_code == 'U_IV_1') 
window.status = "Define 'To Be Determined' 

Requirements"; 
if (status_code == 'U_IV_2') 
window.status = "Verify that requirements are in 

agreement with the goals"; 
if (status_code == 'U_IV_3') 

window.status = "Authorize the developers to move to the 
next step"; 

if (status_code == 'U_READ') 
window.status = "User's Read Messages Screen"; 

if (status_code == 'U_SEND') 
window.status = "User's Send Messages Screen"; 

if (status_code == 'U_NEW') 
window.status = "User's What's New Screen"; 

if (status_code == 'U_TODO') 
window.status = "User's TODO Screen"; 

if (status_code == 'U_MAIN') 
window.status = "User's Main Menu Screen"; 

if (status_code == 'U_HELP') 
window.status = "User's Help Menu Screen"; 

// Developer web pages 

if (status_code == 'D_FF') 
window.status = "Examine the technological and 

developmental issues of the target 
system"; 

if (status_code == 'D_FF_1') 
window.status = "Identify the domain experts for this 

project"; 
if (status_code == 'D_FF_2') 

window.status = "Identify the domain models for this 
project"; 

if (status_code == 'D_FF_3') 
window.status = "Enter the technological survey 

information"; 
if (status_code == 'D_FF_4') 
window.status = "Provide reasons for the given 

constraints"; 

if (status_code == 'D_GC') 
window.status = "Classify the available information and 

add new information"; 
if (status_code == 'D_GC_1') 
window.status = "Categorize the requirements"; 

if (status_code == 'D_GC_2') 
window.status = "List of available requirements"; 

if (status_code == 'D_GC_3') 
window.status = "Add a new requirement"; 



231 

if (status_code == 'D_ER') 
window.status = "Evaluate the various risks associated 

with each requirement"; 
if (status_code == 'D_ER_1') 

window.status = "Assess the risk for the given 
requirements"; 

if (status_code == 'D_ER_2') 
window.status = "Analyze the feasibility for the given 

requirements"; 
if (status_code == 'D_ER_3') 

window.status = "Analyze the Costs and Benefits for the 
given requirements"; 

if (status_code == 'D_PP') 
window.status = "Determine the relative order the 

requirements should be addressed in"; 
if (status_code == 'D_PP_1') 
window.status = "Prioritize requirements by Cost and 

Dependency"; 
if (status_code == 'D_PP_2') 
window.status = "Sort requirements for developing harder 

requirements first"; 
if (status_code == 'D_PP_3') 

window.status = "Identify the models for incremental 
development"; 

if (status_code == 'D_IV') 
window.status = "Identify and resolve the conflicts 

between existing requirements"; 

if (status_code == 'D_READ') 
window.status = "Developer's Read Messages Screen"; 

if (status_code == 'D_SEND') 
window.status = "Developer's Send Messages Screen"; 

if (status_code == 'D_NEW') 
window.status = "Developer's What's New Screen"; 

if (status_code == 'D_TODO') 
window.status = "Developer's TODO Screen"; 

if (status_code == 'D_MAIN') 
window.status = "Developer's Main Menu Screen"; 

if (status_code == 'D_HELP') 
window.status = "Developer's Help Menu Screen"; 

// Common web pages 

if (status_code == 'TODO_1') 
window.status = "List all the terms defined for this 

project"; 
if (status_code == 'TODO_2') 

window.status = "Define new terms for this project"; 
if (status_code == 'TODO_3') , 

window.status = "Current schedule for this project"; 
if (status_code == 'TODO_4') 



232 

window.status = "Status reports available for this 
project"; 

if (status_code == 'TODO_5') 
window.status = "List of all the current members for 

this project"; 

if (status_code == 'HELP_F') 
window.status = "Help for the Fact Finding phase"; 

if (status_code == 'HELP_G') 
window.status = "Help for the Gathering and 

Classification phase"; 
if (status_code == 'HELP_E') 
window.status = "Help for the Evaluation and 

Rationalization phase"; 
if (status_code == 'HELP_P') 

window.status = "Help for the Prioritization and 
Planning phase"; 

if (status_code == 'HELP_I') 
window.status = "Help for the Integration and Validation 

phase"; 

if (status_code == 'LOGIN') 	// Login Screen 
window.status = "Login to REPI's Web Site"; 

if (status_code == 'LOGOUT') 	// Logout screen 
window.status = "Logout Screen"; 

return true; 
) // display_status 

<!-- 	  --> 

function default_status 
// Restore the status line message to the default message 

window.status = "; 
return true; 
} // default_status 

	

<!--    --> 
// Function used in MINFO_1.HTM web page of the REPI's Web 

Site 

	

<!--    --> 

function open_send_msg() 
// Opens the Developer's Send Message page 

window.top.location.href = "D_SEND.HTM"; 
return true; 
} // open_send_msg 

<!-- 
// Function used in form type web pages of the REPI's Web 

Site 
<!-- 	  --> 



233 

function open_error() 
// Opens the REPI Web Site's Error message page. 

window.top.Right.location.href = "ERROR.HTM"; 
return true; 
} // open_error 

*************************************************** --> 

Figure 94: JavaScript Source Code for the REPI Web Site 



REFERENCES 

[AL-RAWAS 96] 	Al-Rawas, Amer and Easterbrook, Steve. "Communication 
Problems in Requirements Engineering: A Field Study." 
Proceedings of the First Westminster Conference on Professional 
Awareness in Software Engineering. 1996. 

[BLUNDON 96] 	Blundon, William. "The Truth About Java." Internet World. 
Vol. 7, No. 12. December 1996. 

[BRACKETT 90] 	Bracken, John W. Software Requirements. SEI Curriculum 
Module SEI-CM-19-1.2. Software Engineering Institute, Carnegie 
Mellon University, Pittsburgh, PA. January 1990. 

[BUTTERWORTH] Butterworth, Paul. "Web Access to the Core Business 
Infrastructure."    Report MCS-0260-1. Forte Software Inc. 
September 1996. 

[CGI] 	 Common Gateway Interface: Introduction. 
http://hoohoo.ncsa.uiuc.edu/cgi/intro.html.  

[CHRISTEL 92] 	Christel, Michael G. And Kang, Kyo C. Issues in Requirement 
Elicitation. Technical Report CMU/SEI-02-TR-12 or ESC-TR-92-
012. Software Engineering Institute, Carnegie Mellon University, 
Pittsburgh, PA. September 1992. 

[CLUTS 97] 	Cluts, Nancy Winnick. The Dynamic HTML Object Model. 
http://www.microsoft.com/intdev/ie4/omdoc-fhtm. Microsoft 
Corporation. April 1997. 

[CONNECTED 97] "Mail Format." Connected: An Internet Encyclopedia. Editor 
Baccala, Brent. http://www.freesoft.org/Connected/Topics/05-
Functions/MailFormat/index.html. 1997. 

[DAVIS 93] 	Davis, Alan M. Software Requirements: Objects, Functions and 
States. P T R Prentice Hall, Englewood Cliffs, NJ. 1993 

[ECKEL 97] 	Eckel, Bruce. Thinking in Java. http://www.EckelObjects.com. 
MindView Inc. 1997. 

[GIRGENSOHN 96] Girgensohn, Andreas. "Experiences in Developing Collaborative 
Applications Using the World Wide Web `Shell'." Hypertext 96: 
The Seventh ACM Conference on Hypertext. 1996. 

234 



235 

[GRAY 95a] 	Gray, Terry. "Message Access Paradigms and Protocols." 
http://www.imap.org/imap.vs.pop.html. University of Washington, 
Seattle, WA. 1995. 

[GRAY 95b] 	Gray, Terry. "Comparing Two Approaches to Remote Mailbox 
Access: IMAP vs. POP." http://www.imap.vs.pop.brief.html. 
University of Washington, Seattle, WA. 1995. 

[GOSLING 95] 	Gosling, James and McGilton, Henry. "The Java Language 
Environment" A White Paper. Sun Microsystems, Inc. 1995. 

[HARWELL 93] 	Harwell, Richard, et al. "What is a Requirement?" Published in 
the Proceedings of the Third International Symposium of the 
INCOSE. 

http://internet-plaza.net/incose/workgrps/rwg/what_is.html. 1993. 

[HERRMANN 96] Herrmann, Eric. Teach Yourself CGI Programming with Perl in a 
Week. Sams. net, Indianapolis, Indiana. 1996. 

[HONEYCUTT 97] Honeycutt, Jerry, Brown, Mark R., et al. HTML 3.2 Starter Kit. 
Que Corporation, Indianapolis, Indinana. 1997. 

[HONG 97] 	Hong, Shuguang and Moriai, Mineo. "Evaluation Criteria for the 
Design of Commercial Web Sites." 
http://hsb.baylor.edu/ramsower/ais.ac.97/papers/hong.htm. 1997. 

[IMAP4revl] 	Crispin, M. "Internet Message Access Protocol - Version 4revl." 
Request for Comment (RFC) 2060. 
http://www.internic.net/rfc/rfc2060.txt. December 1996. 

[JAMSA 96] 	Jamsa, Kris. Java Now! Jamsa Press. 1996. 

[KAR 96] 	Kar, Pradip and Bailey, Michelle. "Characteristics of Good 
Requirements." Paper given at the 6th  INCOSE Symposium. 

http://gatel.tlmworks.com/cai/incose.html. 1996. 

[KEIL 95] 	Keil, Mark and Carmel, Erran. "Customer-Developer Links in 
Software Development." Communications of the ACM. Volume 
38, Number 5. Pages 38-44. May 1995. 

[KRAMER 96] 	Kramer, Douglas. The Java Platform: A White Paper. Sun 
Microsystems, Inc. 1996. 

[LEINER 97] 	Leiner, Barry M., Cerf, Vinton G., et al. A Brief History of the 
Internet. http://info-isoc.org/internet-history/. Feburary 1997. 



236 

[LINDEN 96] 	Linden, Peter van der. just Java. Sun Microsystems Inc. 1996. 

[MICROSOFT 97a] Dynamic HTML: The Next Generation of User Interface Design 
using HTML. White Paper. 
http://premium.microsoft.com/msdn/library/bkgmd/dynhtml.htm. 
Microsoft Corporation. February 1997. 

[MICROSON 97b] Technology Comparison. 
http://www.microsoft.com/xxxxxxx.html. Microsoft Corporation. 

May 1997. 

[MILLER 93] 	Miller, M. Greg and Tanik, Murat M. Multimedia Applications in 
Software Engineering. Technical Report 93-CSE-50. Southern 
Methodist University, Dallas, Texas. November 1993. 

[NCSA 97] 	A Beginner's Guide to HTML. 

http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimerAl 
l.html. The National Center for Supercomputing Applications. 
University of Illinois, Urbana-Champaign, Illinois. 1997. 

[NETSCAPE 96] 	The Netscape ONE Development: Environment Vision and 
Product. White Paper. 
http://home.netscape.com/comprod/one/white_paper.html. 
Netscape Communications Corporation. 1996. 

[NETSCAPE 97] 	Persistent Client State: HTTP Cookies. 
http://search.netscape.com/newsref/std/coookie_spec.html.  

Netscape Communications Corporation. 1997. 

[NIELSEN 97] 	Nielsen, Henrik Frystyk and Gettys, Jim. HTTP - Hypertext 
Transport Protocol. HTTP Position Statement. W3C Architecture 
Domain. http://www.w3.org/Protocols/Activity.html. World Wide 
Web Consortium. 1997. 

[OCKER 95] 	Ocker, Rosalie, Hiltz, Starr Roxanne, et al. "The effects of 
distributed group support and process structuring on software 
requirements." Journal of Management Information Systems. 
Winter 95/96, Volume 12, Issue 3. 1995. 

[ORACLE 96] 	Oracle Intranet Strategy. An Oracle White Paper. 
http://www.oracle.com/promotions/intranet/html/intranet_wp.html. 
Oracle Corporation, Redwood Shores, CA. July 1996. 



237 

[PLAYLE 96] 	Playle, Greg and Schroeder, Charles. "Software Requirements 
Elicitation: Problems, Tools, and Techniques." 

http://www.stsc.hill.af.mil/crosstalk/1996/dec/xt96d12e.html. 
1996. 

[POHL 93] 	Pohl, Klaus. The Three Dimensions of Requirement Engineering. 
Technical Report NATURE-92-11. 5th International Conference 
on Advanced Information Systems Engineering, Paris, France. 
June 1993. 

[RAGHAVAN 94] Raghavan, Sridhar, Zelesnik, Gregory, and Ford, Gary. Lecture 
Notes on Requirements Elicitation. Report CMU/SEI-94-EM-10. 
Software Engineering Institute, Carnegie Mellon University, 
Pittsburgh, PA. 1994. 

[REIN 97] 	Rein, Lisa. "Making sense out of the latest HTML: HTML 4.0 and 
beyond!" http://www.netscapeworld.com/common/nw.tags.html. 
NetscapeWorld. 1997. 

[RFC821] 	Pastel, Jonathan B. "Simple Mail Transfer Protocol." Request for 
Comment (RFC) 821. http://ds.internic.net/rfc/rfc821.txt. 1982. 

[RFC822] 	Crocker, David H. "Standard for the format of ARPA Internet text 
messages." Request for Comment (RFC) 822. 
http://ds.internic.net/rfc/rfc822.txt. 1982. 

[RFC1869] 	Klensin, J., Freed, N., Rose, M., Stefferud, E., and Crocker, D. 
"SMTP Service Extensions." Request for Comment (RFC) 1869. 
http://www.internic.net/rfc/rfc1869.txt. 1995. 

[RFC1939] 	Myers, J. and Rose, M. "Post Office Protocol - Version 3." 
Request for Comment (RFC) 1939. 
http://www.internic.net/rfarfc1939.txt. 1996. 

[RFC2045] 	Freed, N. and Borenstein, N. "Multipurpose Internet Mail 
Extensions (MIME) Part One: Format of Internet Message 
Bodies." Request for Comment (RFC) 2045. 
http://www.internic.net/rfc/rfc2045.txt. 1996. 

[RFC2046] 	Freed, N. and Borenstein, N. "Multipurpose Internet Mail 
Extensions (MIME) Part Two: Media Types." Request for 
Comment (RFC) 2046. http://www.internic.net/rfc/rfc2046.txt. 
1996. 



238 

[RICHMOND 97] 	Richmond, Alan and Richmond, Lucy. "HyperText Transfer 
Protocol." 

http://WWW.Stars.com/Internet/Protocols/HTTP/article.html. The 
Web Developer's Virtual Library. 1997. 

[SHAH 96] 	Shah, Rawn. "Beginner's JavaScript." 
http://www.javaworld.com/javaworld/jw-03-1996/jw-03-
javascript.intro.html. JavaWorld. 1996. 

[SHIFFMAN 97] 	Shiffman, Hank. "Making Sense of Java." 
http://reality.sgi.com/employees/shiffman_engr/Java-QA.html. 

Silicon Graphics, Inc. 1997. 

[SPELMAN 97] 	Spelman, Jennifer and Rein, Lisa. "CSS or JSS: Which will better 
suit your needs?" 

http://www.netscapeworld.com/netscapeworld/nw-07-1997/nw-07-css.html. NetscapeWorld. 1997. 

[SUN] 	 The Java™  Language: An Overview. 
http://java.sun.com:80/docs/Overviews/javaijava-overview-l.html. 
Sun Microsystems, Inc. 

[VONDRAK 97] 	Vondrak, Cory. "Java." Software Technology Review. 
http://www.sei.cmu.edu/technology/str/descriptions/java_body.htm  
Software Engineering Institute, Carnegie Mellon University, 
Pittsburgh, PA. 1997. 

[WIUM LIE 96] 	Wium Lie, Håkon and Bos, Bert. Cascading Style Sheets, level 1. 
W3C Recommendation REC-CSS1-961217. 
http://www.w3.org/pub/WWW/TR/REC-CSS1. World Wide Web 
Consortium. 1996. 

[ZGODZINSKI 97] Zgodzinski, David. "Will the Market or the W3C decide?" 
Internet World. Vol. 8, Num 6. Pg. 52. June 1997. 


	Applications of internet technology for requirements elicitation
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Info Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Internet Technologies
	Chapter 2: Requirements Elicitation
	Chapter 3: Requirements Elicitation with Internet Technologies
	Chapter 4: Conclusion and Future Work
	Appendix A.1:CGI Example
	Appendix B.1:HTML Lists Example
	Appendix B.2:HTML Table Example
	Appendix B.3:Netscape Frame Example
	Appendix B.4:HTML Form Example
	Appendix C.1: ESMTP Example
	Appendix D.1: IMAP4 States Example
	Appendix D.2: IMAP4rev1 Example
	Appendix E.1: JAVA Inheritance Example
	Appendix E.2: Java Thread Example
	Appendix E.3: View of the Java Environment
	Appendix F.1: "Login Screen" of the REPI Web Site
	Appendix H.1: User's Fact Finding Pages
	Appendix H.2: User's Gathering and Classification Pages
	Appendix H.3: User's Evaluation and Rationalization Pages
	Appendix H.4: User's Prioritization and Planning Pages
	Appendix H.5: User's Integration and Validation Pages
	Appendix I.1: Developer's fact Finding Pages
	Appendix I.2: Developer's Gathering and Classification Pages
	Appendix I.3: Developer's Evaluation and Rationalization Pages
	Appendix I.4: Developer's Prioritization and Planning Pages
	Appendix I.5: Developer's Integration and Validation Pages
	Appendix J.1: REPI Web Site's Information Pages
	Appendix K.1: Read and Send Messages Pages
	Appendix K.2: What's New Page
	Appendix K.3: TODO Tasks Pages
	Appendix K.4: Help Pages
	Appendix K.5: Logout and Error Messages Pages
	Appendix L.1: REPI Web Site's Style Sheet and Javascript Code
	References

	List of Tables
	List of Figures (1 of 5)
	List of Figures (2 of 5)
	List of Figures (3 of 5)
	List of Figures (4 of 5)
	List of Figures (5 of 5)


