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ABSTRACT

CHEMICAL VOLATILIZATION OF HEAVY METALS FOR WASTE
SEPARATION AND REAL TIME METALS ANALYSIS

by
Mohammad Nasr Ul-Alam

One of the major challenges in environmental analysis concerns the rapid and sensitive

detection of metals emitted from combustion stacks. An interesting concept for real time

analysis is to convert airborne metal oxide particles in a flow reactor into relatively

volatile compounds of a single class, and then analyze in the gas phase. In this project,

kinetics of chemical volatilization reaction between Sb 203 and HC1 was investigated. To

achieve this a laboratory volatilization flow reactor was built and data was collected for

the volatilization reaction in terms of conversion, inlet and outlet concentrations and flow

rates. A mathematical model was also developed to regress the data to find the kinetic

parameters for this reaction.

It was shown by the experimental results that by varying HC1 rate and keeping dust rate

constant, there was no marked effect on conversion and it almost remained constant. But

the volumetric rate of N2 will definitely effect conversion. Also by increasing reactor set

point temperature from 300C to 400C, a significant increase in conversion was observed

The data and kinetic parameters obtained from this project are important for facilitating

the design of an airborne metal CEM and enhancing metals detection.



CHEMICAL VOLATILIZATION OF HEAVY METALS FOR WASTE
SEPARATION AND REAL TIME METALS ANALYSIS

by
Mohammad Nasr Ul-Alam

A Master's Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Chemical Engineering

Department of Chemical Engineering, Chemistry and Environmental Sciences

August 1999



APPROVAL PAGE

CHEMICAL VOLATILIZATION OF HEAVY METALS FOR WASTE
SEPARATION AND REAL TIME METALS ANALYSIS

Mohammad Nasr Ul-Alam

Dr. Robert Bob Barat, Advisor	 Date
Associate Professor of Chemical Engineering, NJIT

Dr. Robert Pfeffer, Committee Member 	 Date
Distinguished Professor of Chemical Engineering, NJIT

Dr. Dana Knox, Committee Member 	 Date
Associate Professor of Chemical Engineering, NJIT



BIOGRAPHICAL SKETCH

Author:	 Mohammad Nasr Ul-Alam

Degree:	 Master of Science in Chemical Engineering

Date:	 August 1999

Undergraduate and Graduate Education:

• Master of Science in Chemical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1999

• Bachelor of Science in Chemical Engineering,
University of the Punjab, Lahore, Pakistan, 1997

Major:	 Chemical Engineering



To my beloved family



ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Robert Bob Barat, who not only

served as my thesis advisor, providing valuable and countless resources, insight and

intuition, but also constantly gave me support, encouragement, and reassurance. Special

thanks are given to Dr. Robert Pfeffer and Dr. Dana Knox for actively participating in my

committee.

vi



TABLE OF CONTENTS

Chapter	 Page

1	 INTRODUCTION 
	

1

1.1	 Background Information 	

1.2	 Objective  	 4

2	 EXPERIMENTAL 	 6

2.1	 Experimental Setup  	 6

2.2	 Experimental Work and Results  	 8

3	 THE KINETICS OF GAS-SOLID REACTION BETWEEN
Sb2O 3 AND HC1 	  23

3.1	 Shrinking Core Model with no Ash Layer 	 23

3.2	 Mass Transfer Between Single Particle of Sb203 and
Moving HCl Gas Stream 	 24

3.3	 Langmuir Hinshelwood Rate Constant for the Reaction
Between Sb2O 3 and HC1 	 25

4	 REACTOR CHARACTERIZATION 	  29

4.1	 Curve Fit of Experimental Temperature Profile 	 29

4.2	 Profile of Reynolds Number 	 29

4.3	 Key Assumptions  	 33

5	 MATHEMATICAL MODELING TO CALCULATE
THE KINETIC PARAMETERS FOR A REACTION
BETWEEN Sb 2O 3 AND HC1    34

6	 RESULTS AND CONCLUSIONS 	  39

6.1	 Observations and Conclusions  	 42

vii



TABLE OF CONTENTS
(Continued)

Chapter 	 Page

6.2	 Final Thoughts  	 43

APPENDIX SIMULTANEOUS SOLUTION OF EQUATIONS 6.1 AND
6.2 TO FIND UNKNOWN KINETIC PARAMETERS ...... 45

	

REFERENCES   47



LIST OF TABLES

Table
	

Page

1.1	 Heats of formation of Metal Chlorides  
	

2

1.2	 Required Temperatures for corresponding vapor pressures of selected
Metal Oxides and Chlorides  	 2

2.1
	

Concentration of HCl at the inlet and outlet of reactor for runs 1-4  	 12

2.2
	

Titration time and HC1 conversion as a function of HCI rate for runs 1-4 ..... 	 12

2.3
	

Concentration of HC1 at the inlet and outlet of reactor for runs 5-8  	 14

2.4
	

Titration time and HCl conversion as a function of HCl rate for runs 5-8 ..•• 	 14

2.5
	

Concentration of HC1 at the inlet and outlet of reactor for runs 9-12  	 16

2.6
	

Titration time and HCl conversion as a function of HCl rate for runs 9-12 	  16

2.7
	

Titration time and HCl conversion as a function of dust rate for runs 13-15  	 18

2.8
	

Titration time and HCI conversion as a function of dust rate for runs 16-19 	  19

2.9
	

Titration time and HC1 conversion as a function of dust rate for runs 20-22 	  20

2.10 Concentration of HCI at the inlet and outlet of reactor for runs 23-25 	  21

2.11 Titration time and HCI conversion as a function of HC1 rate for runs 9-12 .... 21

4.1
	

Temperature and Reynolds Number profile at furnace set point 300C 	  31

4.2
	

Temperature and Reynolds Number profile at furnace set point 400C 	  32

6.1
	

FAO, CAO, XA and constant C at N2 flow of 0.2 SCFM
and dust rate of 0.43 rpm at 300C   	 40

6.2	 FAO, CAO, XA and constant C at N2 flow of 0.15 SCFM
and dust rate of 0.43rpm AT 300C 	  40

6.3	 FAO, CA0, XA and constant C at N2 flow of 0.15 SCFM
and dust rate of 0.55rpm at 300C   40

6.4	 FAO, CAO, XA and C at N2 flow of 0.15 SCFM
and HC1 flow of 4.62 ml/min at 300C   41

ix



LIST OF TABLES
(Continued)

Table 	 Page

6.5 	 FAO, CAO, XA and C at N2 flow of 0.15 SCFM
and HCl flow of 2.7 ml/min at 300C    41

6.6	 FAO, CAO, XA and C at N2 flow of 0.15 SCFM
and HCl flow of 5.87 ml/min at 300C    41

6.7	 FAO, CAO, XA and C at N2 flow of 0.2 SCFM
and dust rate of 0.4 rpm at 400C 	  41



LIST OF FIGURES

Figure Page

1.1 Proposed Metals CEM Technology   5

2.1 Chemical Volatilization Experimental Apparatus   7

2.2a HCl Rate Versus Titration Time for runs 1-4 	 13

2.2b HCl Rate Versus Conversion for runs 1-4    13

2.3a HC1 Rate Versus Titration Time for runs 5-8 	 15

2.3b HCl Rate Versus Conversion for runs 5-8 	 15

2.4a HCl Rate Versus Titration Time for runs 9-12    17

2.4b HCl Rate Versus Conversion for runs 9-12 	 17

2.6 Dust Rate Versus Conversion for runs 13-15 	 18

2.7 Dust Rate Versus Conversion for runs 16-19   19

2.8 Dust Rate Versus Conversion for runs 20-22 	 20

2.9a HCl Rate Versus Titration Time for runs 23-25 	 22

2.9b HCl Rate Versus Conversion for runs 23-25   22

3.1 Representation of concentration of reactants and products for the reaction
Between a shrinking Sb203 particle with gaseous HCl  24

4.1 Temperature profile at 300 C 	 30

4.2 Temperature profile at 400 C   30

4.3 Reynolds Number Profile at 300 and 400C 	 32

xi



CHAPTER 1

INTRODUCTION

1.1 Background Information

One of the major challenges in environmental analysis concerns the rapid and sensitive

detection of metals emitted from combustion stacks. Metal effluents from incinerators

consist primarily of metal oxide particles, and metal halide particles and vapors. Minor

constituents includes metal hydroxides (solids and vapors), organometallics (generally

vapors), metal carbonates, metal sulfides, and miscellaneous salts and compounds. In

addition to homogeneous particles, metal compounds also appear adsorbed to inorganic

particulates (silicas and aluminas) and soot.

The emission of airborne submicron metal particles of many different forms imposes

severe difficulties on real time analysis, including: matrix effects and interferences,

possibility of incomplete digestion, lack of suitable calibration standards, inability to

preconcentrate the sample, and poor sample transport to the detector.

An interesting concept for real time analysis that solves some of these difficulties has

airborne metal oxide particles (non-volatile) converted in a flow reactor into relatively

volatile compounds of a single class, and then analyzed in the gas phase. A promising

conversion scheme for metals volatilization involve chlorine displacement of oxygen,

sulfur or carbonaceous ligands [4]; e.g.,
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where M= Metal , such as As, Sb, Hg, Cd, and other taxies. These reactions are generally

exothermic (see table 1.1) due principally to the high electronegativity of chlorine, which

results in the very strong M-Cl bond [4].

Table1.1 Heats of formation of metal Chlorides [4]

Compound A11298

Kcal/mol

AsCl3 -80.2

CdCl2 -92.149

HgCl2 -53.4

SbCl3 -91.3

In general , metal chlorides are more volatile than parent metals, oxides, hydroxides, and

sulfides. This makes them ideal candidates for gas phase analysis.

Table 1.2 Required Temperatures for corresponding vapor pressures of selected metal
Oxides and chlorides [8]

Compound For 20mm Hg

C

For 40mm Hg

C

For 60mm Hg

C

For 100mm Hg

C

As20 3 279.2 299.2 310.3 332.5

CdO 1200 1257 1295 1341

Sb2 03 729 812 873 957

AsCI3 36 50 58.7 70.9

CdCl2 695 736 762 797

SbCl 3 100.6 117.8 128.3 143.3



By converting metal species into metal chlorides, one can achieve a far more uniform

chemical environment. This will dramatically ease the calibration burden; the detector

can be calibrated on pure compounds of the elements to be determined without the need

for matrix-matched reference materials. The technique eliminates interferences from both

matrix elements and atomizing media. The improvement in transport of metals to the

detector by using a volatilization unit should result in an enhancement of sensitivity, by

reducing losses from condensation or reaction of complex low volatility species in the

detector feed lines.

The quantitative conversion of airborne metal oxide particles into volatile metal halides

would enhance the functionality of a proposed airborne metals continuous emission

monitor (CEM), such as shown in Figure 1. An extractive probe would feed stack gas

through an inertial filter. Airborne particles are separated and flowed through the

halogenation reactor. Al} metal vapors would then flow into a laser-based analyzer, which

uses photofragment fluorescence [9]. With continuous data on stack metals, feedback

control to the incineration process is possible.

Proof of concept has already been established by performing experiments in a simple

reactor [10]. Metal Oxide particles were placed on a quartz frit in a flow tube suspended

vertically in a one zone tube furnace. Metered dilute HCI gas (in N 2 ) was flowed

downward past the static particles. Volatile metal chloride product was captured in a cold

trap for off-line analysis in a flame atomic absorption analyzer. In testing with Sb2O 3 ,

nearly quantitative oxide conversion and chloride recovery were achieved. Condensed

SbCl3 was collected and analyzed after each run. The total mass of collected Sb was

within 12% of the total starting mass of Sb. This proved that conversion definitely
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occurred at reasonable temperatures, thus suggesting that the volatilization concept is

valid.

1.2 Objective

While the thermodynamics for the halogenation reactions are well established, little is

known concerning the kinetics of such gas/solid reactions. The overall objective of this

project is to identify and optimize a chemical reaction sequence which quantitatively

converts metal compound particulates into volatile metal derivatives in a flow reactor

configuration. To achieve this, data have been collected for the reaction between

Antimony Oxide(Sb203) and gaseous HCI, and mathematical modelling has been done.

These data and the model are used together to estimate the kinetic parameters of reaction.

These technical data will also be valuable in the development of a sample treatment

chamber as the front end of an analytical instrument for real-time stack gas airborne

metals monitoring.
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CHAPTER 2

EXPERIMENTAL

2.1 Experimental Setup

The test apparatus for this project is shown in Figure 2.1. A Wright commercial

laboratory dust feeder model WDF-II [9], packed hard with <5 micron Sb2 O 3 particles, is

used to introduce the metal oxide particulates into a metered, fixed entraining nitrogen

flow(1.5 SCFM). By varying the mechanical dust generation rate, a wide range of

particulate mass concentrations can be produced.

In order to have flexibility in varying reactor residence times, a portion of the dust-laden

flow is vented. The flow to the reactor is monitored with a calibrated venturi meter,

which was constructed on site. Unlike a rotameter, the venturi meter is not subject to

clogging or fouling due to oxide dust.

The flow reactor itself is a quartz tube of 1/4 inch diameter, located inside a three- zone

furnace. The three zones are independently temperature controlled in an attempt to

achieve isothermal conditions throughout much of a reactor. Three thermocouples

provided feed back to the temperature controllers. These thermocouples, however, are

external to and not in contact with the reactor tube. The small tube diameter reduces any

radial temperature dependance.

Two glass bubblers containing standardized NaOH solution and Phenolphthalene

indicator are set at the outlet of the reactor, through which reactor effluent is bubbled and

then passed to the vent. Temperature controlled heating tape is wrapped on the

6
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Figure 2.1 Chemical Volatilization Experimental Apparatus
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outlet line between reactor and bubblers in order to keep the temperature above the dew

point of HCI. A point of interest here lies in the choice of N, instead of air as the carrier

gas. It was observed that bubbling air through the NaOH solutions caused their

neutralization to end point. This was due to the ambient CO2 in the air dissolving in the

basic solutions.

A small, temperature controlled, one zone furnace provides some preheat to the flow

before the main furnace. Axial temperature profiles along the inside of the reactor tube

were obtained by sliding a thin thermocouple down the reactor tube length.

2.2 Experimental Work and Results

The reservoir cup of the dust feeder was filled with a fine dust (<5micron, 99+ %) of

Sb2O 3 , which was then compressed to a hard solid using a hydraulic laboratory press.

Antimony oxide was chosen for several reasons:

• It is the species with which a proof of concept had been established.,

• It is not overly toxic in the event of an accidental leak or contamination as the system

was debugged, and

• Antimony is relevant as a fugitive emission from incinerators and other industries.

Nitrogen is flowed through the dust feeder to entrain the Oxide particles. A calibrated

rotameter is used to control the N2 flow. The Wright dust feeder produces entrained

particles in a gas flow by passing the gas over the hard-pressed solid block as a rotating

mechanical knife edge scrapes the block. By varying the scraper rotation rate, the user

sets the entrained particle concentration since the preferred gas rate is fixed. Since these

flows are greater than desired for the reactor, portion of the dust-laden N2 is bypassed to
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vent after dropping particles in a crude flask separator. Metal Oxide particles entrained in

nitrogen are then passed through the calibrated venturi meter and then introduced to the

Preheater. Reagent HCl gas (95 mole% nitrogen and 5% HCl) is also introduced through

a calibrated rotameter just before the preheater.

The preheater temperature controller is set for 150 C. After the preheater, the flow passes

into the reactor. The furnace controllers were set for 300 C for the initial runs, with later

runs performed at 400C.

Product metal chloride vapors, unreacted metal oxide particles and HCl(with N 2) exit the

reactor and are bubbled through two glass bubblers in series, each containing standard

NaOH solution of known molarity (typically 0.0002M). The unreacted HCl is neutralized

by NaOH until the end point is reached. The time of titration is noted using an electronic

stopwatch.

HCl conversion is calculated using the molarity of NaOH solution, inlet feed flowrate of

HCI to the reactor and titration time.

Different sets of data were collected in the following way:

• Keeping the reactor residence time and dust feeder rate constant and varying the HCl

rate.

• Keeping dust feeder rate and HC1 rate constant and varying the residence time.

• Keeping residence time and HC1 rate constant and varying the rate of the dust feeder.

Tables 2.l, 2.3 and 2.5 give the molar flow rates of HCl at the inlet and outlet based on

flows and titration time respectively.

Experimental uncertainties were present through:
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• Inaccuracies in recording the titration time

• Slight differences in the concentration of standard NaOH solution

• Fluctuations and drops in the flows of HCl and N,

• Loss of HCl in the vent after the bubblers

• Accumulation of dust particles in the reactor tube or outlet line

Although the last four reasons can cause significant variations, the NaOH solutions were

prepared and standardized very carefully. Gas flows were controlled efficiently. The

remaining HCl exiting the reactor is almost totally consumed in the first bubbler as the

end point is never reached in the second bubbler. Finally the N2 flow is high enough that

the accumulation of particles (i.e. settling) does not appear to be significant. The only

significant factor, which gives uncertainty and deviation in the results, is the imprecision

in recording the titration time. As the NaOH solution is very dilute and since the molar

rate of gaseous HCl is low, a difference of a few seconds in measured titration time can

yield considerable uncertainties in the molar rates at the outlet of the reactor. These

uncertainties must be accounted for in the conversion measured as a function of HC} rate.

To take into account this uncertainty, error (uncertainty) bars have been put on the curves

for 8C} conversion versus HCl rate. These error bars show that the conversions are

known to with about ± 4 percentage points.

Figs.2.2a, 2.3a, and 2.4a indicate that there is a clear difference in the titration times with

and without flowing dust particles through the reactor. This shows that there is definite

chemical conversion. The titration time decreases with increasing HCl rate because more

HCl is available to neutralize the NaOH solution.



Figures 2.2b and 2.3b show that there is little, if any, effect on conversion as a function of

molar flow rates of HCl at a constant dust rate. Table 2.6 and Fig.2.4b indicate that

slightly more conversion is achieved at a higher dust rate, keeping all other conditions

same. This is because more HCl is consumed when more dust particles are flowing

through the reactor. In addition, there appears to be an improved trend in Fig. 2.4b.

Tables 2.7, 2.8 and 2.9 gives the HC1 conversion as a function of dust rate for runs 13-22

for three different HCI rates. Figs.2.6, 2.7 and 2.8 show HCl conversion increases by

increasing the particle flow rate through the reactor. This is again because more HC1 is

consumed reacting at the higher dust rate. But the monotonic trend in conversion was

fairly independent of HCl rate as seen earlier.

Runs 23-25 have been performed at a furnace set point 400C. More precision in the

titration times. The conversion increases substantially compared to the comparable runs

at furnace set point 300C (e.g. Fig.2.2b). However as seen earlier, the conversion is

effectively independent of HCl rate.



12

Keeping Residence time and dust rate constant and varying HCl rate at 300C

Molarity of NaOH Solution = 1.8 * 10 -4 M (250 ml solution taken in bubbler)

Flow rate of N2 = 0.2 SCFM

Pre-heater temperature controller set point = 150 C

Reactor temperature controller set point = 300 C

Effluent temperature controller set point = 100 C

Dust rate = 0.0206 g/min (0.43 rpm)

Table 2.1 Concentration of HCI at the inlet and outlet of reactor for runs 1-4

Run # Conc. of HCI at
inlet Based on
Flows(mol/ml)

Conc. of HCI at
outlet Based on

Titration(mol/ml)

A

1 l.8 * 10 -9 1.403 * 10 -9
1.08 * 10-9--

3.97 * 10 -1°	
3.36 * 10 -11)2 1.416 * 10 -9

3 1.063 * 10 -9 8.66 * 10-10 1.97 * 10 -1°
4 7.08 * 10 -1° 5.40 * 10-10 l.68 *

Table 2.2 Titration time and HC1 conversion as a function of HCl rate for runs 1-4

Run # HCI rate
(ml/min)

Titration time
without
particles

Titration time
with particles

(min)

HCI
conversion °A

1 4.62 5.66 7.33 40.4
2 3.61 7.33 8.66 35.55
3 2.7 9.16 12 37.77
4 1.8 14.66 19.50 42.56
Average 39.07
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Figure 2.2a HCl Rate Versus Titration Time for runs 1-4

Figure 2.2b HCl Rate Versus Conversion for runs l-4
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Keeping Residence time and dust rate constant and varying HCl rate at 300C
(At low residence time)

Molarity of NaOH Solution = 1.8 * 104 M (250 ml solution taken in bubbler)

Flow rate of N2 = 0.14 SCFM

Pre-heater temperature controller set point = 150 C

Reactor temperature controller set point = 300 C

Effluent temperature controller set point = 100 C

Dust rate = 0.0206 g/min (0.43 rpm)

Table 2.3 Concentration of HCI at the inlet and outlet of reactor for runs 5-8

Run # Cone. of HCl at
inlet Based on
Flows(mol/m1)

Conc. of HO at
outlet Based on

Titration(mol/ml)

A

5 2.42 * 10 -9 l.7 * 10 -9 7.2 * 10 -10
6 1.888 * 10 -9 1.51 *10 -9 3.7 * 10-10
7 l.42 * 10

-10

1.13 * 10 -9

2.9*10-10

8 9.44 * 10

-10

6.82 * 10

-10

2.62 *

10-10

Table 2.4 Titration time and HCl conversion as a function of HCl rate for runs 5-8

Run 4 HCl rate
(ml/min)

Titration time
without
particles

Titration time
with particles

(min)

HCl
conversion %

5 4.62 6.16 7.66 43.8
6 3.61 7 8.33 32.98
7 2.7 9.33 11.66 36
8 l.8 15.50 19.50 42.56
Average 38.83
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Figure 2.3a HCl Rate Versus Titration Time for runs 5-8

Figure 2.3b HCl Rate Versus Conversion for runs 5-8
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Keeping Residence time and dust rate constant and varying HO rate at 300C
(At high dust rate)

Molarity of NaOH Solution =1.2 * 10 4 M (250 ml solution taken in bubbler)

Flow rate of N2 = 0.14 SCFM

Pre-heater temperature controller set point = 150 C

Reactor temperature controller set point = 300 C

Effluent temperature controller set point = 100 C

Dust rate = 0.026 g/min (0.55 rpm)

Table 2.5 Concentration of HCI at the inlet and outlet of reactor for runs 9-12

Run # Conc. of HCI at
inlet Based on
Flows(mol/m1)

Conc. of HCI at
outlet Based on
Titration(mol/ml)

A

9 3.08 * 10-9 2.49 * 10 -9 5.9 *

10 -10

10 2.42 * 10 -9 1.69 * 10-9 7.3 *

10 -10

11 1.88* 10-9 1.32* 10-9 5.6*

10 -10

12 l.42 * 10-9 1.05 * 10 -9 3.7 *

10 -10

Table 2.6 Titration time and HCl conversion as a function of HCl rate for runs 9-12

Run # HCl rate
(ml/min)

Titration time
without
particles

Titration time
with particles

(min)

HCl
conversion °A

9 5.87 2.833 4.33 47.11
10 4.62 4.16 5.50 47.l
11 3.61 5.33 6.50 42.72
12 2.7 6.66 8 37.78

Average 43.67
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Figure 2.4a HC1 Rate Versus Titration Time for runs 9-12

Figure 2.4b HCl Rate Versus Conversion for runs 9-12
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Keeping HO rate constant and varying Oxide rate at 300C

HCl rate = 4.62 ml/min

Molarity of NaOH solution =2 * 10 4 M

N2 flow rate =0.15 SCFM

Titration time without particles flow = 6 min

Table 2.7 Titration time and HO conversion as a function of dust rate for runs 13-15

Run # Dust rate

(gm/min)

Titration time

(min)

HCI conversion %

13 0.01 (0.20 rpm) 7.33 33.85

14 0.0153 (0.30 rpm) 8.16 40.58

15 0.0256 (0.50 rpm) 8.33 41.79

Figure 2.6 Dust rate versus conversion for runs 13-15
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Keeping HO rate constant and varying Oxide rate

HCI rate =2.7 ml/min

Molarity of NaOH solution =l * 10 4 M

N2 flow rate =0.15 SCFM

Titration time without particles flow = 5.833 min

Table 2.8 Titration time and HCI conversion as a function of dust rate for runs 16-19

Run # Dust rate

(gm/min)

Titration time

(min)

HCI conversion %

16 0.01 (0.20 rpm) 6 30.86

17 0.0153 (0.325 rpm) 6.66 37.70

18 0.021 (0.450 rpm) 8.16 49.17

19 0.0256 (0.55 rpm) 8.33 50.20

Figure 2.7 Dust rate versus conversion for runs 16-19
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Keeping HCI rate constant and varying Oxide rate at 300C

HCl rate =5.87 ml/min

Molarity of NaOH solution =l.2 * 10 4 M

N2 flow rate =0.15 SCFM

Titration time without particles flow =2.833 min

Table 2.9 Titration time and HCl conversion as a function of dust rate for runs 20-22

Run iii Dust rate

(gm/min)

Titration time

(min)

HCI conversion %

20 0.0153 (0.30 rpm) 3.5 34.58

21 0.020 (0.405 rpm) 4 42.76

22 0.0256 (0.55 rpm) 4.33 47.12

Figure 2.8 Dust rate versus conversion for runs 20-22
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Keeping Residence time and dust rate constant and varying HC1 rate at 400C

Molarity of NaOH Solution = 1.5 * 10 4 M (250 ml solution taken in bubbler)

Flow rate of N2 = 0.2 SCFM

Pre-heater temperature controller set point = 150 C

Reactor temperature controller set point = 400 C

Effluent temperature controller set point = 100 C

Dust feeder rate = 0.0206 g/min (0.40 rpm)

Table 2.10 Concentration of HCl at the inlet and outlet of reactor for runs 23-25

Run # Conc. of HCl at
inlet Based on
Flows(mol/ml)

Conc. of HCl at
outlet Based on

Titration(mol/ml)
A

23 2.3 * 10 -9 1.420 * 10 -9 8.8 * 10-10

24 l.80 * 10 -9 l.07 * 10-9 7.3 * 10-10

25 l.42 * 10 -9 7.97 * 10-I° 6.23 * 10 -I°

Table 2.11 Titration time and HCl conversion as a function of HCI rate for runs 23-25

Run # HCl rate
(ml/min)

Titration time
without
particles

Titration time
with particles

(min)

HO
conversion %

_
23 5.86 4.66 6.83 60
24 4.62 6.16 9.30 61.6
25 3.61 8.30 11.16 58.2
Average 59.93
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Figure 2.9a HCI rate versus Titration Time for runs 23-25

Figure 2.9b HCl rate Versus Conversion for runs 23-25



CHAPTER 3

THE KINETICS OF THE GAS-SOLID
REACTION BETWEEN Sb 20 3 AND HCL

The smallest representative unit of a gas-solid reaction system is the interaction of a

single particle with a moving gas stream. The study of single-particle systems can be

generalized to the more complex multiparticle assemblies. The reaction of solid

Antimony oxide with HCl gas is:

3.1 Shrinking Core Model with no Ash Layer

The reaction between Sb203 and gaseous HCl likely follows the shrinking core model [3],

where the particle shrinks during reaction, no ash layer forms, and the particle finally

disappears. This process is illustrated in Figure 3.l. For a reaction of this kind, the

following three steps have been visualized to occur in succession [3].

Step1 Diffusion of reactant A from the main body of the gas through the gas film to the

surface of the solid.

Step2 Adsorption of reactant A onto solid surface

Step3 Surface Reaction between gaseous reactant A and solid.

Step4 Desorption of gaseous products from solid surface

Step5 Diffusion of gaseous products from the surface of the solid through the gas film

into the main body of the gas.
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Figure 3.1 Representation of concentration of reactants and products for the reaction
between a shrinking Sb2O 3 particle and gaseous HCI.

3.2 Mass Transfer between Single Particles of
Sb 20 3 and a moving HCI Gas Stream:

The rate at which gaseous reactants are transferred through the boundary layer from the

bulk gas to the outer surface of the solid or the rate at which gaseous products are

removed from the outer surface to the bulk can play an important role in determining the

overall rate of reaction.

Let A denotes the gaseous transferred reactant HCl, the concentration of which is then

designated by CAS and CA0 at the solid surface and in the bulk of the gas stream,

respectively. Then the rate at which A is being transferred across the boundary layer per

unit solid surface area is given by
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NA = hD  (CAS - CA0 )

where hp is the mass transfer coefficient, which is defined by this equation. The

concentration may be expressed as either moles per unit volume or mass per unit volume

and the flux of the transferred species, NA, is given in the corresponding units. But in this

reaction system the temperature is probably low enough that mass transfer through gas

film is not controlling.

3.3 Langmuir Hinshelwood Rate Constant
for the Reaction between Sb2O 3 and HCl

The reaction between Antimony oxide and HCl is

The reaction process will involve the adsorption of the reactant gas A on the surface of

solid B to form a surface complex X*, which transforms to another surface complex Y*,

which then desorbs to give the gaseous product C.
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Where S designates the bare solid surface site that is available to both A and C, and the

reaction involves complete gasification of solid. The product D is assumed to leave

directly (i.e. without desorption) according to an Eley-Rideal step.

The net rates of adsorption of A and desorption of C may be written as:

Net rate of adsorption of A = Rate of adsorption of A — Rate of desorption of A

Net rate of desorption of C = Rate of desorption of C - Rate of adsorption of C

Over all balance on the sites is:

Surface Reaction Controlling:

If the surface reaction is the slow step and hence controls the overall rate, the adsorption

and desorption steps will be in fast equilibrium; i.e.,



Where k 1/k-1=K 1 and k 3/k-3= K3 are adsorption equilibrium constants.

The net forward rate of surface reaction is then given by:

97

for the fraction of vacant sites:

At steady state , the overall net forward rate will be:
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Where K2 = k2 / k-2 = Equilibrium constant for the reaction step.

The three steps of adsorption, reaction and desorption occur in series; hence, the product

of their equilibrium constants is the K eg for the entire mechanism.

If Keg is large (favorable), then

There is another, implicit assumption here. The oxide particles are shrinking. It is

assumed that the time scale for diffusion (external), adsorption/desorption and surface

reaction are relatively short compared to the time scale for complete particle shrinkage.

This allows us to assume an approximate steady state regarding the size of the particle.

Equation 3.12 becomes the assumed working rate expression for the experiment in this

study.



CHAPTER 4

REACTOR CHARACTERIZATION

4.1. Curve Fit of Experimental Temperature Profile

Axial temperature profile measurements revealed that the reactor is, infect, not isothermal

and temperature is a function of axial position Z. The experimental Temperature Profiles

are the curves fitted as shown in Figure 4.1 and 4.2 in order to obtain a polynomial

expression for T that will be used for mathematical modeling to calculate the kinetic

parameters. The curve fits of Axial Temperature profiles are:

At reactor furnace set point temperature of 300 C:

At reactor furnace set point temperature of 400 C:

Where T has units of Kelvin and Z has units of cm.The reactor length is 66cm, and the

figures 4.1 and 4.2 give the temperatures as a function of distance from the inlet to the

end of the reactor.

4.2. Profile of Reynolds Number

As part of the reactor characterization, the Reynolds number must be determined.

Reynolds number is a dimensionless group that could be used to predict the nature of the

flow (i.e. laminar, turbulent)

29
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Where D is the pipe diameter and G is the mass velocity. 1.t is the fluid viscosity and is a

function of temperature

Figure 4.1 Temperature profile at 300C

Figure 4.2 Temperature profile at 400C
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Flow is considered laminar for Reynolds number below 2100; and for Reynolds number

of more than 4000 the flow is fully turbulent [5].

Tables 4.1 and 4.2, and figure 4.3 illustrate the variation in Reynolds number through the

tube.

Table 4.1 Temperature and Reynolds number profile at furnace set point 300C

Distance from the inlet

(cm)

Temperature K Reynolds Number

0 401 8078.088

5.08 419 7899.961

10.16 445 7404.886

15.24 466 7165.264

20.32 471 7165.264

25.4 492 6709.049

30.48 520 6585.721

35.56 525 6462.762

45.72 544 6236.087

50.8 556 6128.348

55.88 563 6129.396

60.96 567 6024.774

66.04 568 6026.295



Table 4.2 Temperature and Reynolds number profile at 400C

Distance from the inlet

(cm)

Temperature K Reynolds Number

0 434 7729.519

5.08	 — 469 7165.264

10.16 541 6230.665

15.24 571 6026.295

20.32 597 5921.706

25.4 620 5732.211

30.48 642 5554.468

35.56 651 5554.468

40.64 671 5469.667

45.72 678 5469.667

50.8 688 5387.417

55.88 692 5387.417

60.96 671 5469.667

32

Figure 4.3 Reynolds number profile at 300C and 400C
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4.3 Key Assumptions

As the Reynolds number varies between 8000 and 6000 at furnace set point 300C and

from 7729 to 5400 at furnace set point 400C through the reactor length, therefore the

fluid flow is very much turbulent. So this assumption is justified that there is little or no

radial variation in concentration. Hence the reactor is referred to as a Plug-flow reactor

(PFR). The reactants are continually consumed as they flow down the length of the

reactor and the concentration varies continuously in the axial direction through the

reactor [2].

The small diameter of the reactor quartz tube (l/4 inches) facilitates the assumption of a

lack of a significant radial temperature dependence.

The model for a PFR will be developed. It will then be combined with the kinetic rate

expression to establish a performance equation for correlation of the experimental data.



CHAPTER # 5

MATHEMATICAL MODELING TO CALCULATE
THE KINETIC PARAMETERS FOR A

REACTION BETWEEN Sb 203 AND HCl

There is a need to develop a model in order to estimate Kinetic parameters for the gas-

solid reaction between Sb2O 3 and HCl. To develop this model we will do a differential

mole balance in a PFR. We will then use the postulated rate law from chapter 3 and the

measured temperature profile (chapter 4).

The model reaction is:

In the PFR, the reactants are continually consumed as they flow down the length of the

reactor. In modeling the PFR, we assume that the concentration varies continuously in the

axial direction through the reactor. Consequently, the reaction rate, which is a function of

concentration and temperature, will also vary axially. The general plug flow reactor

differential mole balance is given by :

Where FA is the molar flow rate of reactant A. The volume AV is the product of the cross-

sectional area Ac of the reactor and the reactor length AZ.
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Where XA = Conversion of A. This analysis is referenced to the stoichiometry of

equation 3.1. The subscript 0 refers to the feed condition.

Substituting the rate law (equation 3.17) we have already calculated in chapter 3, the

balance becomes:

Where the notation has been modified such that

35

The molar concentration of gaseous species i is Ci given by:



Also for assumed constant pressure, the above equation for C, becomes:

Where Pi= Partial pressure of i.
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Where	 R = 82.1 cm3 atm / mol K

The adsorption equilibrium constants are of the form:

Where	 R'= 1.987 cal / mol K

A', C' are parameters specific to this chemical reaction..

The rate constant for surface reaction can be given by the Arrhenius equation.
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Substituting the values of PA and Pc equation 5.4 becomes.

Since the adsorption is exothermic, the higher the reaction temperature, the smaller the

equilibrium constant. Assuming the temperature is high enough that the concentrations of

adsorbed species are relatively low, the denominator simplifies as:

Hence, the denominator of rate law approaches 1. Equation 5.5 could then be

approximated as

Substituting KA, ks, equation 5.6 becomes

This can be integrated after separation of variables:
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Equation 5.9 is the required mathematical model, which has to be solved in order to get

two unknown variables AF and E'. The other parameters (F A0 , Ac, CA0, T0) are known.

Temperature T is known a function of Z for the integral. Conversions XA are determined

from the titration data. Unfortunately, the parameters E a and A' cannot be separated.



CHAPTER 6

RESULTS AND CONCLUSIONS

In the previous chapter a mathematical model had been developed to fmd the kinetic

parameters for the reaction between Sb20 3 and HCl.

The consistency in the values of constant C for the runs performed at same conditions

suggests validity of the mathematical model developed and the assumptions made. The

fluctuations in the values of C are due to uncertainty in determining conversion as

discussed in chapter 2.

Also as

Where vi= volumetric flow rate of species i.

Therefore
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So this is clear that molar rate of HCl and the initial concentration (F A0 and CA0) should

have little or no effect on the value of constant C.

The constant C has been calculated for every run and the results are tabulated as below:

At reactor set point temperature of 300C

Table 6.1 FAO, CAO, XA and constant C at N2 flow of 0.2 SCFM and dust rate of 0.43 rpm

Table 6.2 FAO, CAO, XA and constant C at N2 flow of 0.15 SCFM and dust rate of 0.43rpm

Table 6.3 FA0 , CA0 , XA and constant C at N2 flow of 0.15 SCFM and dust rate of 0.55rpm
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Table 6.4 FAO, CAO, XA and C at N2 flow of 0.15 SCFM and HCl flow of 4.62 ml/min

RUN # N2 FAO CAO TO XA Temperature Profile Dust C
Flow
rate

(C) rate
rpm

SCFM
13 0.15 1.03 * 10 -5 2.42 * 10' 0.3385 T = -0.0366Z2 +4.973Z+ 402.51 0.20 0.136
14 0.15 1.03 * 10 2.42 * 10 -9 128 0.4058 T = -0.0366Z 2 +4.973Z+ 402.51 0.30 0.172
15 0.15 1.03 * 10-5 2.42 * 10 128 0.4179 T = -0.0366Z 2 +4.973Z+ 402.51 0.50 0.178

Table 6.5 FAO, CAO, XA and Cat N2 flow of 0.15 SCFM and HC1 flow of 2.7 ml/min

RUN # N2 FAO CAO To XA Temperature Profile Dust C
Flow
rate

(C) rate
rpm

SCFM
16 0.15 6.02 * 10 -6 1.42 * 10 -9 128 0.3086 T = -0.0366Z 2 +4.973Z+ 402.51 0.20 0.121
17 0.15 6.02 * 10 -6 1.42* 10 -9 128 0.377 T = -0.0366Z 2 +4.973Z+ 402.51 0.325 0.155
18 0.15 6.02 * 10 -6 1.42 * 10-9 128 0.4917 T = -0.0366Z 2 +4.973Z+ 402.51 0.450 0.222
19 0.15 6.02 * 10 -6 142* 10 -9 128 0.5020 T= -0.0366Z2 +4.973Z+ 402.51 0.55 [ 0.229

Table 6.6 FAO, CAO, XA and C at N2 flow of 0.15 SCFM and HCl flow of 5.87 ml/min

RUN # N2 FAO CAO TO XA Temperature Profile Dust C
Flow
rate

(C) rate
rpm

SCFM
20 0.15 1.31	 * 10 -5 3.08 * 10 -9 128 0.3458 T = -0.0366Z 2 +4.973Z+ 402.51 0.30 0.139
21 0.15 1.31	 * 10 -5 3.08 * 10 -9 128 0.4276 T = -0.0366Z2 +4.973Z+ 402.51 0.405 0.184
22 0.15 1.31	 * 10-5 3.08 * 10 -9 128 0.4712 T= -0.03667_2 +4.973Z+ 402.51 0.55 0.210

Table 6.7 FA0, CAO, XA and C at N2 flow of 0.2 SCFM and dust rate of 0.4 rpm

RUN # N2
Flow
rate
SCFM

FAO CAO To
(C)

Temperature Profile

23 0.20 1.31	 * 10 - 2.3 * 10 - 121 0.60 T= -0.0948Z + 9.699Z + 436.3 0.405
24 0.20 1.03 * 10 - 1.80 * 10- 0.61 T= -0.0366Z- +4.973Z+ 402.51 0.417
25 0.20 8.05 * 10 - 1.42 * 10 121 0.58 = -0.0366Z +4.973Z+ 402.51 0.381
Average 0.60 0.401
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Two differential equations have been established for Tables 6.1 and 6.7 using the average

values of C for run 1-4 and 23-25 respectively. These values were chosen since the only

major difference between the sets of runs is the set point temperature (i.e. actual

temperature profiles). These equations are

After numerical integration, the equations 6.l and 6.2 were solved simultaneously. The

two unknown parameters obtained are:

6.1 Observations and Conclusions

In Table 6.1 for runs 1-4, at a dust rate of 0.43 rpm and N2 rate of 0.2 SCFM, the

calculated value of average C is 0.217. In Table 6.2 for runs 5-8 at same dust and HCl

rates but at reduced N2 rate of 0.15 SCFM, the value of average C has been decreased to

0.163. This is because the drop in v N2 gives a corresponding drop in C for same average

XA as predicted by
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Also, the slight difference in the temperature profile because of drop in N 2 rate is also a

reason for the drop in C.

In Table 6.3 for runs 9-12, where the dust rate is raised from 0.43 rpm to 0.55 rpm

keeping the N2 rate at 0.15 SCFM, the conversion and average C has been increased from

0.39 to 0.44 and from 0.163 to 0.189 respectively. This clearly indicates that, at higher

dust rates the HCl consumption increases.

Table 6.4 for runs 13-15 suggests a monotonic trend that conversion and C increases by

increasing the dust rate. Tables 6.5 and 6.6 also confirm this trend.

Comparison of Tables 6.1 and 6.7 shows that by increasing reactor set point temperature

from 300C to 400C, a significant increase has been observed in conversion and C.

This is clear from the above observations that, in all of the experimental runs where HCl

rate was varied while keeping the dust rate constant, there was no marked effect on

conversion and it almost remained constant. But the volumetric rate of N2 will definitely

effect conversion and eventually the constant C.

6.2 Final Thoughts

The data and the kinetic parameters obtained from this project are important for:

• Facilitating the design of an airborne metals CEM, and

• Enhancing metals detection

The data collected establish whether and under what conditions metal oxides can be

converted quantitatively to vapor metal chlorides on a time scale appropriate for real-time

continuous analysis. Specific conditions can be established, as HCI concentration,

residence time and reaction temperature needed for greater than 99.9% conversion.



Specification will include reactor tube length and diameter, range of HCl concentrations,

and available flow rates.

The chemical volatilization step will improve the sensitivity of trace metals analysis in a

wide variety of environmental samples by providing an efficient means to separate metals

from their matrices and transport them to the actual analyzer. Such enhancement,

therefore, goes far beyond just a metals CEM into the analytical laboratory. Current

methods of metals analysis, such as flame or plasma systems, have high emission

backgrounds, which reduce sensitivity. A chemical volatilization will remove these

problems by quantitatively generating volatile metal chlorides, which are easily amenable

to low temperature, non-plasma, analysis techniques such as photofragment fluorescence.

The volatilization will also enhance transport within the analytical instrument, thus

reducing line losses.



APPENDIX

SIMULTANEOUS SOLUTION OF EQUATIONS 6.1 AND 6.2
TO FIND UNKNOWN KINETIC PARAMETERS

Equations 6.l and 6.2 are:

The integral terms in equations 6.1 and 6.2 are solved by the method of Numerical

Integration using Trapezoidal rule (two point) which is one of the simplest and most

approximate as it uses the integrand evaluated at the limits of integration to evaluate the

integral.
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Simplifying and taking log on both sides

Similarly equation 6.2 will be simplified to:

Solving equations A and B simultaneously:
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