Spring 1999

In situ aortic root in vitro testing of the stented and stenless porcine aortic heart valves

Sean Parker
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation
Parker, Sean, "In situ aortic root in vitro testing of the stented and stenless porcine aortic heart valves" (1999). Theses. 871.
https://digitalcommons.njit.edu/theses/871

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen
The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.
ABSTRACT

IN SITU AORTIC ROOT IN VITRO TESTING OF
The STENTED AND STENTLESS
PORCINE AORTIC HEART VALVES

by
Sean Parker

Background - The stent, Delrin® support frame, for porcine heart valves has been blamed for reduced durability of these valves due to the additional stress caused by the relative stiffness of the stent. There is a tendency among surgeons to do away with the stent in the aortic position and use porcine stentless valves which are sewn directly in the aortic position after removing diseased valve. These stentless valves are extremely difficult to test and no appropriate holder has been designed for this purpose. New approach for in vitro testing of these valves has been developed at Shellhigh, Inc., Millburn, NJ. The stentless valves are sewn in real porcine heart; the aortic root is dissected out and the aortic root is connected to a holder then inserted in the Pulse Duplicator System.

This aortic root is kept fresh with antiseptic solutions but not fixed with glutaraldehyde since it can become stiffer than the natural aorta.

Method - In vitro hemodynamics, blood flow performance, of porcine bioprostheses were tested under physiological conditions using the pulse duplicator system. The system is comprised of a test chamber in which the porcine bioprosthesis is inserted, a pressure transducer, a flow probe, an amplifier pair, and real time software to analyze the fluid dynamics of stented and unstented porcine bioprostheses.
Thirteen Shelhigh Porcine valves were tested in the Pulse Duplicator System for this study which include 7 - 25mm valve, 4 stented and 3 stentless, and 6 - 23mm valves, 3 stented and 3 stentless.

Results - Preliminary results from testing three of each stented and stentless 23mm valves at a rate of approximately 90 Beats Per Minute (BPM) showed an average of a 6% increase in the Effective Orifice Area (EOA) of the Stentless bioprosthesis over the standard Stented bioprosthesis. The EOA ranged from a high of 2.41cm2 for the 25mm stentless to a low of 2.18cm2 for the 25mm stented bioprosthesis. The mean EOA for the stented bioprostheses was 1.94cm2 and 2.06cm2 for the stentless bioprostheses.

Conclusion - The series of tests which were performed using aortic roots and sizers to size the aortic root to implant the valve into the proper size root revealed that sizing the root is critical when trying to achieve a maximum Effective Orifice Area. Sizing of the stented valve implanted is not as critical due to the stent providing a predefined area for the valve, but then there is no means for the valve to distend at high flow rates. The stentless bioprosthesis is superior to the standard bioprosthesis in the sense there is no stress on the valve comparable to the stented bioprosthesis. At high flow rates the EOA of the stentless valve is not limited to the inside diameter of the valve because it is allowed to distend outward at times of high flow rates. Using stentless valves is of importance at times of high flow rates in order to eliminate the stenosis, the abnormal narrowing of the orifice, opening, in a heart valve, which is produced in stented valves.
IN SITU AORTIC ROOT IN VITRO TESTING OF
THE STENTED AND STENTLESS
PORCINE AORTIC HEART VALVES

by
Sean Parker

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Biomedical Engineering

Biomedical Engineering Committee

May 1999
IN SITU AORTIC ROOT IN VITRO TESTING OF
THE STENTED AND STENTLESS
PORCINE AORTIC HEART VALVES

Sean Parker

Dr. David Kristol
Professor of Chemistry,
Department of Chemical Engineering and Chemistry, NJIT

Dr. Louis Barash
Adjunct Professor of Chemistry,
Department of Chemical Engineering and Chemistry, NJIT

Dr. Peter Engler
Associate Professor of Electrical Engineering,
Department of Electrical and Computer Engineering, NJIT
BIOGRAPHICAL SKETCH

Author: Sean Parker

Degree: Masters of Science in Biomedical Engineering

Date: May 1999

Undergraduate and Graduate Education:

- Master of Science in Biomedical Engineering,
 New Jersey Institute of Technology, Newark, NJ, 1999

- Bachelor of Science in Engineering Science,
 New Jersey Institute of Technology, Newark, NJ, 1995

Major: Biomedical Engineering
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background Information</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objective</td>
<td>2</td>
</tr>
<tr>
<td>2 DESIGN</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Stented Bioprosthesis</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Stentless Bioprosthesis</td>
<td>3</td>
</tr>
<tr>
<td>3 FLUID DYNAMICS</td>
<td>5</td>
</tr>
<tr>
<td>3.1 Theoretical Analysis of The Flow Through Prosthetic Heart Valves</td>
<td>5</td>
</tr>
<tr>
<td>4 IN VITRO HYDRODYNAMIC CHARACTERISTICS</td>
<td>11</td>
</tr>
<tr>
<td>4.1 The Goals</td>
<td>11</td>
</tr>
<tr>
<td>4.2 Materials and Methods</td>
<td>12</td>
</tr>
<tr>
<td>4.2.1 Pulse Duplicator</td>
<td>12</td>
</tr>
<tr>
<td>4.2.1.1 Flow and Pressure Measurements</td>
<td>13</td>
</tr>
<tr>
<td>4.2.1.2 Computer Software and Calibration</td>
<td>15</td>
</tr>
<tr>
<td>4.2.2 Bioprostheses Tested</td>
<td>17</td>
</tr>
<tr>
<td>4.2.3 Data Collection and Statistical Analysis</td>
<td>17</td>
</tr>
<tr>
<td>4.3 Protocol</td>
<td>19</td>
</tr>
<tr>
<td>4.4 Results</td>
<td>20</td>
</tr>
<tr>
<td>4.4.1 Pulse Duplicator Testing</td>
<td>20</td>
</tr>
<tr>
<td>4.4.2 Effective Orifice Areas</td>
<td>21</td>
</tr>
<tr>
<td>5 CLINICAL DATA</td>
<td>33</td>
</tr>
<tr>
<td>6 DISCUSSION</td>
<td>34</td>
</tr>
<tr>
<td>7 CONCLUSION</td>
<td>38</td>
</tr>
<tr>
<td>APPENDIX A TEST DATA SHEETS</td>
<td>39</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>138</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Two-sample student's t-test for 23 and 25mm stented and stentless bioprostheses</td>
</tr>
<tr>
<td>2</td>
<td>Overall Effective Orifice Area (EOA) and p-value using a one-tail Student's t-test of 23 and 25 mm stented and stentless valves</td>
</tr>
<tr>
<td>3</td>
<td>Hemodynamic Performance of 23 and 25mm stented and stentless valves at a rate 60 BPM</td>
</tr>
<tr>
<td>4</td>
<td>Hemodynamic Performance of 23 and 25mm stented and stentless valves at a rate 70 BPM</td>
</tr>
<tr>
<td>5</td>
<td>Hemodynamic Performance of 23 and 25mm stented and stentless valves at a rate 80 BPM</td>
</tr>
<tr>
<td>6</td>
<td>Hemodynamic Performance of 23 and 25mm stented and stentless valves at a rate 90 BPM</td>
</tr>
<tr>
<td>7</td>
<td>Hemodynamic Performance of 23 and 25mm stented and stentless valves at a rate 100 BPM</td>
</tr>
<tr>
<td>8</td>
<td>Hemodynamic Performance of 23 and 25mm stented and stentless valves at a rate 110 BPM</td>
</tr>
<tr>
<td>9</td>
<td>Hemodynamic Performance of 23 and 25mm stented and stentless valves at a rate 120 BPM</td>
</tr>
<tr>
<td>10</td>
<td>Clinical Data from Virgen-Macarena Hospital-Seville Spain</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
</tbody>
</table>

1. Drawing of Shelhigh Stented Porcine Bioprosthesis
2. Drawing of Shelhigh Stentless Porcine Bioprosthesis
3. Diagram of the Pulse Duplicator
4. Effective Orifice Area vs Cardiac Output of 23mm Stented and Stentless Bioprostheses
5. Effective Orifice Area vs Cardiac Output of 25mm Stented and Stentless Bioprostheses
CHAPTER 1
INTRODUCTION

1.1 Background Information

The stent, Delrin® support frame, for porcine heart valves has been blamed for reduced durability of these valves due to the additional stress caused by the relative stiffness of the stent. There is a tendency among surgeons to do away with the stent in the aortic position and to use instead porcine stentless valves which are sewn directly in the aortic position after removing the diseased valve. Because these valves have no stent they are extremely difficult to test in bench testing and no appropriate holder has been designed for this purpose. A new approach for in vitro testing of these valves has been developed at Shelhigh, Inc., Millburn, NJ. The stentless valves are sewn into a real porcine heart; then the aortic root is dissected out and the aortic root is connected to a holder which is then inserted in the Pulse Duplicator System (see section 4.2.1 for a description).

The purpose of this study was to compare the hemodynamic performance of 23mm diameter and 25mm diameter stented and stentless Shelhigh Porcine Bioprostheses implanted in an aortic root. These valves were evaluated for hydrodynamic performance during forward flow, at relatively large flow rates, and low and high pulse rates in a Pulse Duplicator System. In addition, this study was intended to determine sizing of the aortic annulus for implantation of the Shelhigh No-React® Unstented Porcine Aortic Xenograft in order to achieve an optimum Effective Orifice Area and at the same time to have a competent valve.
1.2 Objective

The specific objectives of the study were:

1. To obtain useful hydrodynamic information (transvalvular volumetric flow rate and pressure difference relations) from Shelhigh stented and stentless bioprostheses which were tested under conditions that simulate the dynamic flow behavior of the normal heart, using a pulse duplicator.

2. To compare the hydrodynamic performance of the stented bioprostheses to the stentless bioprostheses.

3. To evaluate whether undersizing or oversizing of the stentless valve by one or two sizes has any hemodynamic consequences.

The test instruments provide for excellent in-vitro testing. The Pulse Duplicator System provides a study of hydrodynamic performance and the functional performance of valves under simulated conditions of a natural heart.
CHAPTER 2
DESIGN

2.1 Stented Bioprosthesis
The Shelhigh stented porcine bioprosthesis, shown in figure 1, is an evolutionary third generation porcine heart valve prosthesis. This xenograft, tissue graft that is made from one animal species to another, is designed to provide improved hemodynamic function and increased durability and functional life when used in valve replacement surgery.

The aldehyde-stabilized tissue is fixed under "low pressure" to maintain natural collagen structure. The pericardial bias strip, a strip of pericardium sewn around the contour of the valve where the tissue is sutured to the Dacron® cloth, prevents possible valve leaflet abrasion which would result in a decrease in the functional life of the valve. A Dacron® covered acetal homopolymer stent, anatomically shaped for optimum fit in the host annulus, exhibits no sign of flexion fatigue or stent post deformation after complete in-vitro testing. Aortic valve models contain a sewing ring, implantation flange, that is positioned for supra-annular placement of the valve. Intraventricular profile, height of valve exposed in ventricle, of the mitral valve is minimized by the placement of the implantation flange.

2.2 Stentless Bioprosthesis
The Shelhigh stentless porcine bioprosthesis, shown in figure 2, is of revolutionary design. It has been constructed to resist distortion and to facilitate implantation. The stentless valve undergoes the same fixation process as the stented valve.

The Shelhigh stentless aortic valve can resist significant distortion. The two-suture-
lines implantation technique facilitates implantation. The valve is constructed from three separate porcine non-coronary cusps which are the smallest cusps of a porcine valve. They are joined together with a unique technique and then covered with pericardium. For implantation, all the sutures are threaded through the pericardial tissue flanges. The pericardial tissue flange is a strip of pericardium around the base of the valve used to facilitate implantation.

The valve is also designed to coapt (the coming together of the cusps) within certain limits even when the aorta dilates after coming off bypass (or when the pressure in the aorta rises).

Figure 1. Drawing of Shelhigh stented porcine bioprosthesis.

Figure 2. Drawing of Shelhigh stentless porcine bioprosthesis.
3.1 Theoretical Analysis of the Flow through Prosthetic Heart Valves

The fluid dynamics of a prosthetic heart valve can be treated analogously to the dynamics of flow through an area reduction, and hence should be analyzed using the equations of motion of flow across an orifice².

An orifice is an aperture through which fluid passes and its thickness (in the direction of flow) is very small in comparison with its other dimensions³. In a sharp caged (rounded) orifice there is minimum contact with the fluid and consequently minimum “frictional” effects.

For steady, incompressible flow through an orifice (prosthetic valve) of cross-sectional area A_o, the pressure drop (mm Hg) between spatial points i and j is related to the volumetric flow rate $Q(L/m)$ by the expression:

$$Q(L/m) = C_d A_o \sqrt{\frac{2(p_i - p_j)}{\rho}}$$

where C_d is the discharge coefficient (ratio of the actual discharge to the ideal discharge) and ρ is the density of the fluid.

Rearrangement of eq. (1) gives:

$$p_i - p_j = \frac{\rho Q^2}{2C_d A_o^2}$$

or
where $P_i - P_j = C_o Q^2$ \hspace{1cm} (3)

where

$$C_o = \frac{\rho}{2 C_d A_o^2}$$ \hspace{1cm} (4)

where C_o is the overall valve drag coefficient.

For steady flow through an orifice (prosthetic valve) of area $A_o \text{ (cm}^2\text{)},$

$$\text{Orifice Area} = \frac{Q}{C_d K \sqrt{\Delta p}}$$ \hspace{1cm} (5)

where $\Delta p \text{ (mm Hg)} = p_i - p_j$, and K is a scale or a conversion factor. This expression constitutes the basis of Gorlin’s Hydraulic formula\(^4\).

An “Effective Orifice Area” (EOA) can be defined by:

$$EOA(cm^2) = C_d A_o$$ \hspace{1cm} (5)

or

$$EOA = \frac{Q}{K \sqrt{\Delta p}}$$ \hspace{1cm} (6)

For time dependent flow across an orifice (prosthetic valve), the Bernoulli equation along a streamline between any two points i and j gives\(^5\):

$$\ddot{p}_i(t) + 0.5 v_i^2 = \ddot{p}_j(t) + 0.5 v_j^2 + p \int_i^j da$$ \hspace{1cm} (7)
where \(p' \) is the time dependent pressure and prime denotes an ideal quantity, since friction is neglected; and \(v \) is the velocity of flow. The last term in eq. (7) \(v/t \) represents the unsteady nature of the flow, and \(da \) is a length element along the streamline.

For one dimensional flow,

\[
v = \frac{Q}{A}
\]

(8)

where \(A \) is the cross-sectional area.

Therefore rearranging eq. (7) gives:

\[
\bar{p}_i - \bar{p}_j = 0.5(v^2_i - v^2_j) + \rho \frac{dQ}{dt} \int \frac{dx}{A}
\]

(9)

In a real flow the actual pressure drop is larger than ideal due to frictional effects, therefore:

\[
\bar{p}_i(t) - \bar{p}_j(t) = 0.5\rho \left(\frac{Q}{A_o C_d}\right)^2 + \rho \frac{dQ}{dt} \int \frac{dx}{A}
\]

(10)

where \(p(t) \) is the real time dependent pressure.

It is assumed that the values of \(C_d \) obtained from steady flow experiments are applicable to pulsatile flow at corresponding flow rates.

If \(L \) is the distance between the two pressure sampling points, then:

\[
\int \frac{dx}{A} = \frac{L}{A}
\]

(11)
where A is the average cross-sectional area between i and j.

Therefore:

$$\bar{p}_i(t) - \bar{p}_f(t) = C^2 Q^2 + \rho \frac{dQ}{dt} \frac{L}{A} \quad (12)$$

or

$$\bar{p}_i(t) - \bar{p}_f(t) = R Q^2 + I \frac{dQ}{dt} \quad (13)$$

In eq. (13) the first term ($R Q^2$) on the right-hand-side is the resistive (dissipative) term and the second (I) is the inductive (inertial) term due to the acceleration of the fluid. Another term can be added to account for the frictional (viscous) losses ($F Q$).

$$\bar{p}_i(t) - \bar{p}_f(t) = R Q^2 + I \frac{dQ}{dt} + F Q \quad (14)$$

As can be seen in eq. (14), the pressure drop across a prosthetic valve is solely dependent upon valve flow characteristics and independent of the cardiovascular parameters. All three terms on the right-hand-side contribute to the pressure gradient in the natural valve. However the sum of all three terms in the normal valve is small. The majority of authors neglect this frictional term claiming that experience shows it to be small in comparison to the resistive term, for fluids with relatively minimal viscosity such as water or blood. The analysis which follows neglects this term. The temporal mean value of eq. (12) is:

$$\Delta \bar{p}_0(t) = \bar{p}_i - \bar{p}_f = \frac{1}{T} \int_{t_0}^{t} (\bar{p}_i(t) - \bar{p}_f(t)) dt \quad (15)$$
Where T is the period of integration (systolic, period of cardiac cycle during which the heart contracts, ejection for aortic valve substitute or diastolic, period between two contractions of the heart, when the muscle of the heart relaxes and allows the chambers to fill with blood, filling period for mitral valve substitute), i.e. the interval of forward flow from $Q=0$ to $Q=0$. From eq. (15) and eq. (12) in which the time average of the last term is zero, and where Q^2 is the mean of the square of flow, then:

$$\overline{P_i - P_j} = C_o \overline{Q^2}$$

(16)

and

$$C_o = \frac{\overline{P_i - P_j}}{\overline{Q^2}}$$

(17)

The Gorlin formula tends to introduce large errors if the flow is not uniform in time (Equation 2), because it does not consider the following:

$$\overline{Q^2} \neq \overline{Q^2}$$

Where, $Q_{RMS} = \sqrt{\overline{Q^2}}$

and, $Q_{MEAN} = \sqrt{\overline{Q^2}}$

also,

$$\overline{P_i - P_j} = (P_i - P_j)_{MEAN}$$
If the dissipative frictional term were not to be neglected, eq. (16) should be written:

\[(p_i - p_f)_{MEAN} = RQ_{rms}^2 + FQ_{RMS} \quad (18) \]

In the event that the orifice area is incorrectly computed using eq. (6) then:

\[
\text{Incorrect } EOA = \frac{Q_{MEAN}}{K\sqrt{(p_i - p_f)_{MEAN}}}
\]

While the correct computation is:

\[
\text{Correct } EOA = \frac{Q_{RMS}}{K\sqrt{(p_i - p_f)_{MEAN}}}
\]

The incorrectly computed area will differ from the correct area by the factor:

\[\frac{EOA_i}{EOA_c} = \frac{Q_{MEAN}}{Q_{RMS}} \]

This factor is not constant but depends on the flow waveform, but the computed orifice area will always be erroneously small.
CHAPTER 4
IN VITRO HYDRODYNAMIC CHARACTERISTICS

4.1 The Goals

By using a pulse duplicator that simulates the left side of the heart and circulatory system, the present study intends to compare and contrast the fluid dynamics of stented and stentless heart valves under various flow rates.

The goal of this work is three fold:

1) To obtain useful hydrodynamic information from valves tested under conditions that simulate the dynamic flow behavior of the normal heart, using a pulse duplicator.

2) To evaluate the relative hydrodynamic performance of each of the bioprostheses used in this work.

3) To set up a standard hydrodynamic performance of the stentless bioprostheses.
4.2 Materials and Methods

4.2.1 The Pulse Duplicator

The pulse duplicator used in this study is shown schematically in figure 3. The Pulse Duplicator System simulates the left side of the heart. The test chamber ("left atrium" and "left ventricle") consists of a rigid Plexiglas box, permitting an unobstructed view of the prosthesis from all aspects. The prosthesis is mounted in a rigid plate that separates atrium from ventricle via a retaining ring system permitting quick changes of test valves. Fluid leaves the ventricular chamber along a length of rigid Plexiglas tubing with an adjustable resistance and a parallel compliant chamber permitting adjustment of the load on the ventricle. Pulsatile flow is created by a positive displacement piston pump connected to the ventricular outflow by flexible bellows. Steady flow can be achieved through the test valve, with a pump and a series of reservoirs, as shown in figure 1. The stroke volume, volume pumped, is determined by the cylindrical piston of the pump being caused to move back and forth within the chamber. This stroke volume was set to approximately 75 milliliters and was held constant for the duration of the testing. All tests were performed using a 0.35% glutaraldehyde solution (formulated using physiological saline). The glutaraldehyde saline solution is used to maintain cleanliness of the system, as glutaraldehyde is an excellent sterilant, and the saline to allow for the electromagnetic flow probe to measure flow rates.

The fact that the ventricular outflow tract is rigid up to the flow probe ensures that the flow passing through the probe and the prosthesis are identical. Atrial and ventricular pressures were measured by a differential pressure transducer (Validyne DP-45) connected to the test chambers via stiff tubing. The pressure transducer was connected to a carrier amplifier and the flow meter was connected to a DC amplifier.
4.2.1.1 Flow and Pressure Measurement: The flow meter used in this experiment was a square wave electromagnetic type (Carolina Medical Electronics, Inc., model FM501D, Winston Salem, NC). The flow probe associated with it contains an electromagnet which produces a magnetic field across the vessel. The probe operates on the principle of electromagnetic induction, by measuring the potential difference generated across the flow channel when a conducting fluid passes through a magnetic field. In general this technique provides an instrument of high sensitivity and adequate frequency response. The frequency used with the pulse duplicator was 30 Hz. The signal obtained by the induced voltage is preamplified and processed by the flowmeter. The transducers give accurate readings within a range of 5 milliliters/min to 19.99 liters/min.

The flow signal and pressure difference signal were then interfaced to a DC amplifier and a carrier amplifier. The two amplified signals were then routed from the amplifiers to a 16 channel analog-to-digital (A/D) convertor (Keithley Metrabyte) plugged into an expansion slot in the computer. The amplifier outputs in the range of -5 volts to +5 volts allow for maximum resolution in the analog-to-digital signal conversion. In addition, a pulse trigger in the form of a simple electrical circuit built in the pulse duplicator, was connected to a digital input channel of the A/D convertor. This trigger allowed for the data collection to begin at the correct time and also estimate the pulse rate.
Figure 3. Diagram of the pulse duplicator. PTP = pressure transducer port; MFLPRB = mitral flow probe; MV = mitral valve; RES = reservoir; LT = left; AOV aortic valve; AOFLPRB = aortic flow probe.
4.2.1.2 **Computer Software and Calibration:** The software designed for these experiments made use of a visual programming language, HP VEE. A Keithley Metrabyte A/D convertor converts the analog signal to a digital signal to be processed by the software and computer. The above-described system constituted a flexible real-time data-acquisition set-up, where pulsatile flow and pressure-difference information could be immediately processed and graphically displayed on the high-resolution screen of the computer.

Using the software as indicated produces reliable and reproducible results. Calibration of the pressure transducer and flow meter is performed through the icon marked "Calibration". Information on calibration of the system is instructed to the user on the screen as they progress through the calibration cycle. Calibration of the system is performed once initially on start up and then on a periodic basis. Calibration of the pressure transducer is performed by opening both sides of the transducer to atmosphere and raising the "+" side of the transducer to a reference pressure of 1 cm of water; this value is then captured on the screen. The second step is to raise the manometer to a second reference pressure of 14 cm of water applied again to the "+" side and capture this value. The final step is to return the transducer to the pulse duplicator, the "+" side to the "atrium" side and the "-" side to the "ventricle" side of the pulse duplicator. This zero value is then captured on the screen. These three value are used as a reference for the software in calculating the measured pressures across the valves.

The flow meter was calibrated at the same frequency as the pressure transducer. A toggle switch in the flowmeter provided a 1-V signal on mean and pulsatile outputs to calibrate the external amplifier range (1V corresponded to a flow rate of 10 L/min). As with the pressure, the flow was calibrated for 0.1V, 1V and zero flow where these three values

were captured and used as a reference to determine the flow rates. Each analog signal was
digitized at a rate of 1500 samples per second using the A/D convertor.

The pulse rate was calculated through a subroutine devised for this purpose, by using
an on-board high resolution counter, by processing binary data coming from the digital input
channel to which the pulse trigger was routed.

With flow rate, pressure difference, and pulse rate-data available, all other pertinent
parameters (stroke or positive volume, negative or backflow volume, regurgitation fraction,
cardiac output, effective orifice area, discharge coefficient, and performance index) were
immediately calculated within the program. These parameters are defined in Section 4.2.3
Data Calculation and Statistical Analysis. These values, together with the corresponding flow
and pressure waveform curve at every run, were automatically stored in specific files,
displayed on the screen and, if desired, printed. It was possible to recall runs at a later date
for analysis and/or printing.
4.2.2 Bioprostheses Tested

Thirteen Shelhigh Porcine valves were tested in the pulse duplicator system for this study which include 7 -25mm valves, 4 stented and 3 stentless , and 6 -23mm, 3 stented and 3 stentless. At least three complete runs of each size and each type (stented or stentless) valve were performed.

4.2.3 Data Calculation and Statistical Analysis

The hydrodynamic characteristics of the bioprostheses were analyzed by mean pressure drop as a function of root mean square (rms) pulsatile flow rate. Value: of 1) mean pressure difference in millimeters of mercury, and 2) root mean square pulsatile flow rate in liters/min were internally calculated by the data-acquisition software for every run in the pulse duplicator system. In addition, the following parameters were also internally calculated for each run: 3) rate (beats/min) in BPM, 4) stroke (positive forward) volume in milliliters, 5) negative (back flow) volume in milliliters, 6) regurgitation fraction calculated as the percent regurgitation flow (percent ratio of the negative volume to the positive volume), 7) Effective Orifice Area (EOA) in square centimeters, 8) Discharge Coefficient (C_d), and 9) Performance Index (PI).

An effective orifice area (EOA), in square centimeters, based on a modification of the Gorlin formula was calculated ignoring the discharge coefficient ($C_d = 1$).

Two different estimates of EOA were calculated as:

\[
EOA_{RMS}(cm^2) = \frac{Q_{RMS}(L/m)}{51.6 \Delta p_{MEAN} (mm Hg)} \quad \text{and} \quad EOA_{MEAN} = \frac{Q_{MEAN}}{51.6 \Delta p_{MEAN}}
\]
where 51.6 is a constant conversion factor, which includes the gravitational constant and the conversion of pressure units (millimeters of mercury to centimeters of water).

A discharge coefficient (C_d) was calculated using the formula:

$$C_d = \frac{\text{EOA}}{\text{Measured Internal Orifice Area}}$$

A performance index (PI) was calculated according to the formula:

$$\text{PI} = \frac{\text{EOA}}{\text{Measured External Mounting Area}}$$

All data were statistically treated as being drawn from a normally distributed population, with p less than 0.05 being considered significant. Difference between EOA of Stented and Stentless valves of the same size were identified using Student’s t-test.
4.3 Protocol

Every bioprosthesis to be tested was evaluated according to the following protocol, using 0.35% glutaraldehyde solution at room temperature as the testing fluid. Viscous effects were assumed to be negligible.

Pulse Duplicator

In-vitro hemodynamic tests were performed on each valve with a constant stroke volume and pulse rates of 60, 70, 80, 90, 100, 110, 120 beats per minute, with a range of error of ± 5 beats per minute.
4.4 Results

4.4.1 Pulse Duplicator Testing

Figure 4 shows EOA vs Cardiac Output for Shelhigh Porcine Stented and Stentless Bioprostheses, 23mm mounting size, tested on the Pulse Duplicator system at the pulse rates indicated in the protocol.

Figure 5 shows EOA vs Cardiac Output for Shelhigh Porcine Stented and Stentless Bioprostheses, 25mm mounting size, tested on the Pulse Duplicator system at the pulse rates indicated in the protocol.

Figure 4 shows EOA vs Cardiac Output for Shelhigh Porcine Stented and Stentless Bioprostheses, 25mm mounting size, tested on the Pulse Duplicator system at the pulse rates indicated in the protocol.

Table 1 shows a statistical analysis using a two sample Student t-test of the EOA for 23 and 25mm stented and stentless bioprostheses.

Table 2 shows the Effective Orifice Area of the Shelhigh Porcine Stented and Stentless Bioprostheses, 23mm, and 25mm mounting size, tested on the Pulse Duplicator system at the pulse rates indicated in the protocol.

Tables 3 - 9 present the cardiac output (heart rate x stroke volume), flow rates (measured flow during diastole), pressure (not representative of physiologic system) and EOA and leakage volume percentage* for each valves tested at rates specified in the protocol (‘23’ and ‘25’ represent 23 and 25mm stented valves respectively and ‘S23’ and ‘S25’ represent 23 and 25 mm stentless valves respectively).

*This is not factual, there is no leakage during valve closure.
4.4.2 Effective Orifice Areas

In this study, effective orifice area (EOA) has been computed for each bioprosthesis using essentially the Gorlin formula with a discharge coefficient of 1\(^2\). Table 1 shows the statistical analyses (t-test) of the differences in the EOA for stented and stentless valves of the same size. The stented and stentless valves of the same size provide significantly different EOAs. For all rates tested as specified in the protocol, the 25mm stentless valve provided an average EOA of 2.41 cm\(^2\) while the 25mm stented valve provided an EOA of 2.18 cm\(^2\). The 23mm stentless valve provided an average EOA of 2.13 cm\(^2\) while the 25mm stented valve provided an EOA of 1.91 cm\(^2\). There is an obvious and statistically significant tendency of EOA to increase as with the stentless bioprostheses as shown in figure 4 and 5. The significance was based on the calculation of the p value for the size 23 and 25mm stented and stentless bioprostheses. A p-value of 0.039 and 0.037 was calculated for the 23 and 25mm bioprostheses respectively.

Test data sheets for each test run of each valve which include pertinent information such as stroke volume, cardiac output, flow rates, pressure gradients, regurgitant fraction, EOA, performance index and additional information are listed in appendix I.
Table 1. Two-sample student’s t-test for 23 and 25mm stented and stentless bioprostheses. P value < 0.05 for a one tail t-test is considered significant.

<table>
<thead>
<tr>
<th></th>
<th>23mm Bioprostheses</th>
<th>25mm Bioprostheses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stented</td>
<td>Stentless</td>
</tr>
<tr>
<td>Mean EOA (cm2)</td>
<td>1.91</td>
<td>2.13</td>
</tr>
<tr>
<td>Variance</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>Observations</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Hypothesized Mean Difference</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>df</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>t Stat</td>
<td>-1.9376</td>
<td></td>
</tr>
<tr>
<td>P(T<=t) one-tail</td>
<td>0.039</td>
<td></td>
</tr>
<tr>
<td>t Critical one-tail</td>
<td>1.80</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Overall Effective Orifice Area (EOA) and p-value using a one-tail Student’s t-test of 23 and 25 mm stented (model 100) and stentless (model 2000) aortic valves mounted in aortic root and tested using the Pulse duplicator system at rates of 60, 70, 80, 90, 100, 110, and 120 BPM.

<table>
<thead>
<tr>
<th>Size</th>
<th>Effective Orifice Area (EOA) (sq. cm)</th>
<th>p-value one-tail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stented</td>
<td>Unstented</td>
</tr>
<tr>
<td>23</td>
<td>1.91</td>
<td>2.13</td>
</tr>
<tr>
<td>25</td>
<td>2.18</td>
<td>2.41</td>
</tr>
</tbody>
</table>

A statistical analysis was performed using a one-tail Student’s t-test to determine the p-value in which a p-value of less than .05 is considered statistically significant. A p-value of 0.039 and 0.037 was obtained for the 23 and 25 mm valves respectively showing the EOA between stented and stentless valve are statistically significant.
<table>
<thead>
<tr>
<th>Run #</th>
<th>CO (L/m)</th>
<th>Flow RMS (L/m)</th>
<th>Flow mean (L/m)</th>
<th>Pressure mean (mm Hg)</th>
<th>EOA (sq. cm)</th>
<th>Leakage Volume (percent)*</th>
<th>Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.65</td>
<td>11.41</td>
<td>7.67</td>
<td>7.07</td>
<td>1.39</td>
<td>5.31</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>4.87</td>
<td>11.94</td>
<td>8.06</td>
<td>5.68</td>
<td>1.62</td>
<td>4.31</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.47</td>
<td>10.49</td>
<td>7.21</td>
<td>4.63</td>
<td>1.57</td>
<td>2.93</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>23</td>
</tr>
<tr>
<td>mean</td>
<td>4.66</td>
<td>11.28</td>
<td>7.65</td>
<td>5.79</td>
<td>1.53</td>
<td>4.18</td>
<td></td>
</tr>
<tr>
<td>σx</td>
<td>0.16</td>
<td>0.60</td>
<td>0.35</td>
<td>1.00</td>
<td>0.10</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.03</td>
<td>11.09</td>
<td>7.64</td>
<td>3.18</td>
<td>2.01</td>
<td>2.43</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.76</td>
<td>11.16</td>
<td>7.60</td>
<td>7.16</td>
<td>1.35</td>
<td>2.48</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>4.75</td>
<td>11.55</td>
<td>7.77</td>
<td>3.90</td>
<td>1.89</td>
<td>4.04</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.26</td>
<td>10.79</td>
<td>7.17</td>
<td>2.94</td>
<td>2.03</td>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>4.70</td>
<td>11.15</td>
<td>7.55</td>
<td>4.30</td>
<td>1.82</td>
<td>3.51</td>
<td></td>
</tr>
<tr>
<td>σx</td>
<td>0.28</td>
<td>0.27</td>
<td>0.23</td>
<td>1.69</td>
<td>0.28</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.60</td>
<td>10.56</td>
<td>7.44</td>
<td>3.15</td>
<td>1.92</td>
<td>5.72</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.78</td>
<td>10.11</td>
<td>7.09</td>
<td>2.90</td>
<td>1.92</td>
<td>4.88</td>
<td>S23</td>
</tr>
<tr>
<td>11</td>
<td>4.71</td>
<td>10.74</td>
<td>7.41</td>
<td>3.44</td>
<td>1.87</td>
<td>2.73</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>mean</td>
<td>4.70</td>
<td>10.47</td>
<td>7.31</td>
<td>3.16</td>
<td>1.90</td>
<td>4.44</td>
<td></td>
</tr>
<tr>
<td>σx</td>
<td>0.07</td>
<td>0.27</td>
<td>0.16</td>
<td>0.22</td>
<td>0.02</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.22</td>
<td>10.60</td>
<td>7.11</td>
<td>2.84</td>
<td>2.03</td>
<td>7.57</td>
<td>S25</td>
</tr>
<tr>
<td>14</td>
<td>5.27</td>
<td>12.14</td>
<td>8.44</td>
<td>3.68</td>
<td>2.04</td>
<td>3.09</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4.40</td>
<td>10.58</td>
<td>7.23</td>
<td>2.67</td>
<td>2.09</td>
<td>6.82</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>4.63</td>
<td>11.11</td>
<td>7.59</td>
<td>3.06</td>
<td>2.05</td>
<td>5.83</td>
<td></td>
</tr>
<tr>
<td>σx</td>
<td>0.46</td>
<td>0.73</td>
<td>0.60</td>
<td>0.44</td>
<td>0.03</td>
<td>1.96</td>
<td></td>
</tr>
<tr>
<td>Run #</td>
<td>CO (L/m)</td>
<td>Flow RMS (L/m)</td>
<td>Flow mean (L/m)</td>
<td>Pressure mean (mm Hg)</td>
<td>EOA (sq. cm)</td>
<td>Leakage Volume (percent)*</td>
<td>Size (mm)</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>5.28</td>
<td>13.00</td>
<td>8.69</td>
<td>7.08</td>
<td>1.58</td>
<td>5.02</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>5.41</td>
<td>12.97</td>
<td>8.76</td>
<td>5.60</td>
<td>1.77</td>
<td>3.87</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>5.55</td>
<td>12.36</td>
<td>8.63</td>
<td>5.79</td>
<td>1.66</td>
<td>2.58</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>25</td>
</tr>
<tr>
<td>mean</td>
<td>5.41</td>
<td>12.78</td>
<td>8.69</td>
<td>6.16</td>
<td>1.67</td>
<td>3.82</td>
<td>23</td>
</tr>
<tr>
<td>σx</td>
<td>0.11</td>
<td>0.29</td>
<td>0.05</td>
<td>0.66</td>
<td>0.08</td>
<td>1.00</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>5.50</td>
<td>13.01</td>
<td>8.74</td>
<td>5.18</td>
<td>1.85</td>
<td>2.08</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>5.72</td>
<td>13.94</td>
<td>9.26</td>
<td>5.37</td>
<td>1.94</td>
<td>2.31</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>5.88</td>
<td>13.83</td>
<td>9.26</td>
<td>4.48</td>
<td>2.11</td>
<td>4.80</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>5.50</td>
<td>13.69</td>
<td>9.08</td>
<td>4.24</td>
<td>2.15</td>
<td>6.93</td>
<td>25</td>
</tr>
<tr>
<td>mean</td>
<td>5.65</td>
<td>13.62</td>
<td>9.09</td>
<td>4.82</td>
<td>2.01</td>
<td>4.03</td>
<td>23</td>
</tr>
<tr>
<td>σx</td>
<td>0.16</td>
<td>0.36</td>
<td>0.21</td>
<td>0.47</td>
<td>0.12</td>
<td>1.99</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>5.52</td>
<td>13.14</td>
<td>9.00</td>
<td>4.71</td>
<td>1.96</td>
<td>3.90</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>4.90</td>
<td>12.12</td>
<td>8.11</td>
<td>3.86</td>
<td>1.99</td>
<td>4.08</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>5.43</td>
<td>12.25</td>
<td>8.36</td>
<td>4.30</td>
<td>1.91</td>
<td>2.39</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>25</td>
</tr>
<tr>
<td>mean</td>
<td>5.28</td>
<td>12.50</td>
<td>8.49</td>
<td>4.29</td>
<td>1.95</td>
<td>3.46</td>
<td>23</td>
</tr>
<tr>
<td>σx</td>
<td>0.27</td>
<td>0.45</td>
<td>0.37</td>
<td>0.35</td>
<td>0.03</td>
<td>0.76</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>5.34</td>
<td>13.65</td>
<td>9.08</td>
<td>4.08</td>
<td>2.18</td>
<td>10.57</td>
<td>23</td>
</tr>
<tr>
<td>14</td>
<td>5.85</td>
<td>13.83</td>
<td>9.35</td>
<td>4.32</td>
<td>2.15</td>
<td>4.56</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>5.10</td>
<td>12.62</td>
<td>8.42</td>
<td>3.54</td>
<td>2.17</td>
<td>5.56</td>
<td>23</td>
</tr>
<tr>
<td>16</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>25</td>
</tr>
<tr>
<td>mean</td>
<td>5.43</td>
<td>13.37</td>
<td>8.95</td>
<td>3.98</td>
<td>2.17</td>
<td>6.90</td>
<td>23</td>
</tr>
<tr>
<td>σx</td>
<td>0.31</td>
<td>0.53</td>
<td>0.39</td>
<td>0.33</td>
<td>0.01</td>
<td>2.63</td>
<td>25</td>
</tr>
</tbody>
</table>
Table 5
Pulse Rate: 80 BPM

<table>
<thead>
<tr>
<th>Run #</th>
<th>CO (L/m)</th>
<th>Flow RMS (L/m)</th>
<th>Flow mean (L/m)</th>
<th>Pressure mean (mm Hg)</th>
<th>EOA (sq. cm)</th>
<th>Leakage Volume (percent)*</th>
<th>Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.01</td>
<td>14.40</td>
<td>9.65</td>
<td>6.61</td>
<td>1.81</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6.49</td>
<td>15.42</td>
<td>10.37</td>
<td>6.85</td>
<td>1.90</td>
<td>3.72</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.56</td>
<td>14.96</td>
<td>10.27</td>
<td>6.51</td>
<td>1.89</td>
<td>1.74</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>23</td>
</tr>
<tr>
<td>mean</td>
<td>6.35</td>
<td>14.93</td>
<td>10.10</td>
<td>6.66</td>
<td>1.87</td>
<td>1.83</td>
<td></td>
</tr>
<tr>
<td>σx</td>
<td>0.24</td>
<td>0.42</td>
<td>0.32</td>
<td>0.14</td>
<td>0.04</td>
<td>1.51</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6.17</td>
<td>14.86</td>
<td>9.86</td>
<td>4.58</td>
<td>2.24</td>
<td>4.18</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.07</td>
<td>14.82</td>
<td>9.85</td>
<td>8.25</td>
<td>1.67</td>
<td>2.59</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>6.27</td>
<td>15.57</td>
<td>10.29</td>
<td>5.25</td>
<td>2.19</td>
<td>5.55</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6.41</td>
<td>16.56</td>
<td>10.91</td>
<td>5.35</td>
<td>2.31</td>
<td>1.82</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>6.23</td>
<td>15.45</td>
<td>10.23</td>
<td>5.86</td>
<td>2.10</td>
<td>3.54</td>
<td></td>
</tr>
<tr>
<td>σx</td>
<td>0.13</td>
<td>0.71</td>
<td>0.43</td>
<td>1.41</td>
<td>0.25</td>
<td>1.44</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6.74</td>
<td>15.24</td>
<td>10.71</td>
<td>5.59</td>
<td>2.08</td>
<td>0.01</td>
<td>S23</td>
</tr>
<tr>
<td>10</td>
<td>5.96</td>
<td>14.40</td>
<td>9.64</td>
<td>4.89</td>
<td>2.10</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6.38</td>
<td>14.13</td>
<td>9.68</td>
<td>5.16</td>
<td>2.01</td>
<td>2.35</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>S25</td>
</tr>
<tr>
<td>mean</td>
<td>6.36</td>
<td>14.59</td>
<td>10.01</td>
<td>5.21</td>
<td>2.06</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>σx</td>
<td>0.32</td>
<td>0.47</td>
<td>0.50</td>
<td>0.29</td>
<td>0.04</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6.16</td>
<td>16.32</td>
<td>10.65</td>
<td>4.78</td>
<td>2.41</td>
<td>13.03</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6.82</td>
<td>17.25</td>
<td>11.44</td>
<td>5.32</td>
<td>2.42</td>
<td>6.55</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6.17</td>
<td>15.92</td>
<td>10.48</td>
<td>4.64</td>
<td>2.39</td>
<td>4.39</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>6.38</td>
<td>16.50</td>
<td>10.86</td>
<td>4.91</td>
<td>2.41</td>
<td>7.99</td>
<td></td>
</tr>
<tr>
<td>σx</td>
<td>0.31</td>
<td>0.56</td>
<td>0.42</td>
<td>0.29</td>
<td>0.01</td>
<td>3.67</td>
<td></td>
</tr>
</tbody>
</table>
Table 6
Pulse Rate: 90 BPM

<table>
<thead>
<tr>
<th>Run #</th>
<th>CO (L/m)</th>
<th>Flow RMS (L/m)</th>
<th>Flow mean (L/m)</th>
<th>Pressure mean (mm Hg)</th>
<th>EOA (sq. cm)</th>
<th>Leakage Volume (percent)*</th>
<th>Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.46</td>
<td>15.46</td>
<td>10.35</td>
<td>6.93</td>
<td>1.90</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7.15</td>
<td>16.32</td>
<td>11.12</td>
<td>6.88</td>
<td>2.01</td>
<td>3.22</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7.64</td>
<td>16.48</td>
<td>11.51</td>
<td>7.75</td>
<td>1.91</td>
<td>2.39</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>mean</td>
<td>7.08</td>
<td>16.09</td>
<td>10.99</td>
<td>7.19</td>
<td>1.94</td>
<td>1.87</td>
<td>23</td>
</tr>
<tr>
<td>σx</td>
<td>0.48</td>
<td>0.45</td>
<td>0.48</td>
<td>0.40</td>
<td>0.05</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7.79</td>
<td>16.83</td>
<td>11.65</td>
<td>5.13</td>
<td>2.40</td>
<td>4.20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.86</td>
<td>15.99</td>
<td>10.76</td>
<td>5.97</td>
<td>2.11</td>
<td>5.39</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7.11</td>
<td>16.61</td>
<td>11.29</td>
<td>5.23</td>
<td>2.35</td>
<td>6.03</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>7.13</td>
<td>17.19</td>
<td>11.65</td>
<td>5.56</td>
<td>2.36</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>7.22</td>
<td>16.66</td>
<td>11.34</td>
<td>5.47</td>
<td>2.31</td>
<td>3.91</td>
<td>25</td>
</tr>
<tr>
<td>σx</td>
<td>0.34</td>
<td>0.44</td>
<td>0.36</td>
<td>0.33</td>
<td>0.11</td>
<td>2.34</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7.37</td>
<td>15.72</td>
<td>11.14</td>
<td>5.80</td>
<td>2.11</td>
<td>1.76</td>
<td>S23</td>
</tr>
<tr>
<td>10</td>
<td>6.72</td>
<td>15.44</td>
<td>10.53</td>
<td>5.28</td>
<td>2.17</td>
<td>3.21</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7.33</td>
<td>16.05</td>
<td>10.89</td>
<td>5.59</td>
<td>2.19</td>
<td>2.17</td>
<td>S23</td>
</tr>
<tr>
<td>12</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>mean</td>
<td>7.14</td>
<td>15.74</td>
<td>10.85</td>
<td>5.56</td>
<td>2.16</td>
<td>2.38</td>
<td>S25</td>
</tr>
<tr>
<td>σx</td>
<td>0.30</td>
<td>0.25</td>
<td>0.25</td>
<td>0.21</td>
<td>0.03</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6.96</td>
<td>17.97</td>
<td>11.91</td>
<td>5.48</td>
<td>2.48</td>
<td>12.63</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8.05</td>
<td>17.82</td>
<td>12.32</td>
<td>5.48</td>
<td>2.46</td>
<td>6.19</td>
<td>S25</td>
</tr>
<tr>
<td>15</td>
<td>6.48</td>
<td>16.78</td>
<td>11.11</td>
<td>4.89</td>
<td>2.45</td>
<td>8.78</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>mean</td>
<td>7.16</td>
<td>17.52</td>
<td>11.78</td>
<td>5.28</td>
<td>2.46</td>
<td>9.20</td>
<td></td>
</tr>
<tr>
<td>σx</td>
<td>0.66</td>
<td>0.53</td>
<td>0.50</td>
<td>0.28</td>
<td>0.01</td>
<td>2.65</td>
<td></td>
</tr>
</tbody>
</table>
Table 7
Pulse Rate: 100 BPM

<table>
<thead>
<tr>
<th>Run #</th>
<th>CO (L/m)</th>
<th>Flow RMS (L/m)</th>
<th>Flow mean (L/m)</th>
<th>Pressure mean (mm Hg)</th>
<th>EOA (sq. cm)</th>
<th>Leakage Volume (percent)*</th>
<th>Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.36</td>
<td>16.19</td>
<td>11.01</td>
<td>6.73</td>
<td>2.02</td>
<td>0.01</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>7.82</td>
<td>16.66</td>
<td>11.50</td>
<td>6.42</td>
<td>2.12</td>
<td>4.00</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>8.40</td>
<td>17.56</td>
<td>12.20</td>
<td>7.90</td>
<td>2.02</td>
<td>2.10</td>
<td>S23</td>
</tr>
<tr>
<td>4</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>S25</td>
</tr>
<tr>
<td>mean</td>
<td>7.86</td>
<td>16.80</td>
<td>11.57</td>
<td>7.02</td>
<td>2.05</td>
<td>2.04</td>
<td></td>
</tr>
<tr>
<td>σx</td>
<td>0.43</td>
<td>0.57</td>
<td>0.49</td>
<td>0.64</td>
<td>0.05</td>
<td>1.63</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7.98</td>
<td>16.84</td>
<td>11.73</td>
<td>6.74</td>
<td>2.10</td>
<td>4.95</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7.95</td>
<td>16.95</td>
<td>11.77</td>
<td>6.24</td>
<td>2.19</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.02</td>
<td>16.98</td>
<td>11.83</td>
<td>5.50</td>
<td>2.34</td>
<td>4.81</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7.75</td>
<td>17.90</td>
<td>12.24</td>
<td>5.72</td>
<td>2.42</td>
<td>6.91</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>7.93</td>
<td>17.17</td>
<td>11.89</td>
<td>6.05</td>
<td>2.26</td>
<td>4.84</td>
<td></td>
</tr>
<tr>
<td>σx</td>
<td>0.10</td>
<td>0.43</td>
<td>0.20</td>
<td>0.48</td>
<td>0.13</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8.12</td>
<td>16.86</td>
<td>11.94</td>
<td>6.07</td>
<td>2.21</td>
<td>4.56</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7.78</td>
<td>16.40</td>
<td>11.44</td>
<td>5.57</td>
<td>2.24</td>
<td>4.19</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8.01</td>
<td>17.37</td>
<td>11.85</td>
<td>6.04</td>
<td>2.28</td>
<td>2.75</td>
<td>S23</td>
</tr>
<tr>
<td>12</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>S25</td>
</tr>
<tr>
<td>mean</td>
<td>7.97</td>
<td>16.88</td>
<td>11.74</td>
<td>5.89</td>
<td>2.24</td>
<td>3.83</td>
<td></td>
</tr>
<tr>
<td>σx</td>
<td>0.14</td>
<td>0.40</td>
<td>0.22</td>
<td>0.23</td>
<td>0.03</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7.70</td>
<td>18.75</td>
<td>12.58</td>
<td>5.71</td>
<td>2.53</td>
<td>9.47</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8.80</td>
<td>18.68</td>
<td>13.02</td>
<td>5.66</td>
<td>2.54</td>
<td>5.30</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7.83</td>
<td>18.43</td>
<td>12.39</td>
<td>5.29</td>
<td>2.59</td>
<td>7.32</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>8.11</td>
<td>18.62</td>
<td>12.66</td>
<td>5.55</td>
<td>2.55</td>
<td>7.36</td>
<td></td>
</tr>
<tr>
<td>σx</td>
<td>0.49</td>
<td>0.14</td>
<td>0.26</td>
<td>0.19</td>
<td>0.03</td>
<td>1.70</td>
<td></td>
</tr>
</tbody>
</table>
Table 8
Pulse Rate: 110 BPM

<table>
<thead>
<tr>
<th>Run #</th>
<th>CO (L/m)</th>
<th>Flow RMS (L/m)</th>
<th>Flow mean (L/m)</th>
<th>Pressure mean (mm Hg)</th>
<th>EOA (sq. cm)</th>
<th>Leakage Volume (percent)*</th>
<th>Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.96</td>
<td>17.36</td>
<td>7.14</td>
<td>7.14</td>
<td>2.10</td>
<td>0.03</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>8.74</td>
<td>18.19</td>
<td>12.53</td>
<td>6.76</td>
<td>2.26</td>
<td>1.41</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>8.83</td>
<td>18.03</td>
<td>12.62</td>
<td>7.72</td>
<td>2.10</td>
<td>1.21</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>23</td>
</tr>
<tr>
<td>mean</td>
<td>8.51</td>
<td>17.86</td>
<td>10.76</td>
<td>7.21</td>
<td>2.15</td>
<td>0.88</td>
<td>23</td>
</tr>
<tr>
<td>σx</td>
<td>0.39</td>
<td>0.36</td>
<td>2.56</td>
<td>0.39</td>
<td>0.08</td>
<td>0.61</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>8.98</td>
<td>18.74</td>
<td>12.98</td>
<td>5.85</td>
<td>2.50</td>
<td>2.88</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>8.54</td>
<td>18.08</td>
<td>12.45</td>
<td>6.34</td>
<td>2.32</td>
<td>3.85</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>8.75</td>
<td>18.11</td>
<td>12.61</td>
<td>5.88</td>
<td>2.41</td>
<td>4.57</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>8.54</td>
<td>19.35</td>
<td>13.16</td>
<td>6.54</td>
<td>2.44</td>
<td>0.02</td>
<td>23</td>
</tr>
<tr>
<td>mean</td>
<td>8.70</td>
<td>18.57</td>
<td>12.80</td>
<td>6.15</td>
<td>2.42</td>
<td>2.83</td>
<td>23</td>
</tr>
<tr>
<td>σx</td>
<td>0.18</td>
<td>0.52</td>
<td>0.28</td>
<td>0.30</td>
<td>0.07</td>
<td>1.73</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>8.56</td>
<td>17.89</td>
<td>12.52</td>
<td>6.56</td>
<td>2.26</td>
<td>2.51</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>8.04</td>
<td>17.46</td>
<td>11.98</td>
<td>5.93</td>
<td>2.31</td>
<td>3.17</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>8.31</td>
<td>17.18</td>
<td>11.95</td>
<td>6.04</td>
<td>2.26</td>
<td>3.16</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>23</td>
</tr>
<tr>
<td>mean</td>
<td>8.30</td>
<td>17.51</td>
<td>12.15</td>
<td>6.18</td>
<td>2.28</td>
<td>2.95</td>
<td>23</td>
</tr>
<tr>
<td>σx</td>
<td>0.21</td>
<td>0.29</td>
<td>0.26</td>
<td>0.27</td>
<td>0.02</td>
<td>0.31</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>8.33</td>
<td>19.86</td>
<td>13.27</td>
<td>6.07</td>
<td>2.60</td>
<td>7.50</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>9.43</td>
<td>20.05</td>
<td>13.88</td>
<td>6.39</td>
<td>2.56</td>
<td>4.60</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>8.79</td>
<td>19.83</td>
<td>13.44</td>
<td>5.99</td>
<td>2.62</td>
<td>4.23</td>
<td>23</td>
</tr>
<tr>
<td>16</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>23</td>
</tr>
<tr>
<td>mean</td>
<td>8.85</td>
<td>19.91</td>
<td>13.53</td>
<td>6.15</td>
<td>2.59</td>
<td>5.44</td>
<td>23</td>
</tr>
<tr>
<td>σx</td>
<td>0.45</td>
<td>0.10</td>
<td>0.26</td>
<td>0.17</td>
<td>0.02</td>
<td>1.46</td>
<td>23</td>
</tr>
<tr>
<td>Run #</td>
<td>CO (L/m)</td>
<td>Flow RMS (L/m)</td>
<td>Flow mean (L/m)</td>
<td>Pressure mean (mm Hg)</td>
<td>EOA (sq. cm)</td>
<td>Leakage Volume (percent)*</td>
<td>Size (mm)</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>8.85</td>
<td>19.50</td>
<td>13.23</td>
<td>8.49</td>
<td>2.16</td>
<td>0.00</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>9.81</td>
<td>19.88</td>
<td>13.95</td>
<td>8.05</td>
<td>2.26</td>
<td>2.82</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>9.47</td>
<td>19.15</td>
<td>13.44</td>
<td>8.14</td>
<td>2.17</td>
<td>2.78</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>25</td>
</tr>
<tr>
<td>mean</td>
<td>9.38</td>
<td>19.51</td>
<td>13.54</td>
<td>8.23</td>
<td>2.20</td>
<td>1.87</td>
<td>23</td>
</tr>
<tr>
<td>σx</td>
<td>0.40</td>
<td>0.30</td>
<td>0.30</td>
<td>0.19</td>
<td>0.05</td>
<td>1.32</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>9.38</td>
<td>19.44</td>
<td>13.48</td>
<td>6.38</td>
<td>2.49</td>
<td>3.59</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>9.40</td>
<td>19.39</td>
<td>13.45</td>
<td>6.91</td>
<td>2.38</td>
<td>3.02</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>9.67</td>
<td>19.80</td>
<td>13.81</td>
<td>6.66</td>
<td>2.48</td>
<td>3.98</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>9.35</td>
<td>20.56</td>
<td>14.09</td>
<td>9.65</td>
<td>2.14</td>
<td>4.30</td>
<td>25</td>
</tr>
<tr>
<td>mean</td>
<td>9.45</td>
<td>19.80</td>
<td>13.71</td>
<td>7.40</td>
<td>2.37</td>
<td>3.72</td>
<td>23</td>
</tr>
<tr>
<td>σx</td>
<td>0.13</td>
<td>0.47</td>
<td>0.26</td>
<td>1.31</td>
<td>0.14</td>
<td>0.48</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>9.09</td>
<td>18.94</td>
<td>13.22</td>
<td>6.97</td>
<td>2.32</td>
<td>4.95</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>8.98</td>
<td>19.05</td>
<td>13.06</td>
<td>6.59</td>
<td>2.40</td>
<td>4.05</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>9.51</td>
<td>19.33</td>
<td>13.44</td>
<td>6.80</td>
<td>2.39</td>
<td>2.40</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>25</td>
</tr>
<tr>
<td>mean</td>
<td>9.19</td>
<td>19.11</td>
<td>13.24</td>
<td>6.79</td>
<td>2.37</td>
<td>3.80</td>
<td>23</td>
</tr>
<tr>
<td>σx</td>
<td>0.23</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.04</td>
<td>1.06</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>9.37</td>
<td>22.04</td>
<td>14.78</td>
<td>7.04</td>
<td>2.68</td>
<td>8.76</td>
<td>23</td>
</tr>
<tr>
<td>14</td>
<td>10.11</td>
<td>21.32</td>
<td>14.80</td>
<td>6.99</td>
<td>2.61</td>
<td>4.44</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>9.49</td>
<td>21.81</td>
<td>14.73</td>
<td>6.74</td>
<td>2.71</td>
<td>3.98</td>
<td>23</td>
</tr>
<tr>
<td>16</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>25</td>
</tr>
<tr>
<td>mean</td>
<td>9.66</td>
<td>21.72</td>
<td>14.77</td>
<td>6.92</td>
<td>2.67</td>
<td>5.73</td>
<td>23</td>
</tr>
<tr>
<td>σx</td>
<td>0.32</td>
<td>0.30</td>
<td>0.03</td>
<td>0.13</td>
<td>0.04</td>
<td>2.15</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 9
Pulse Rate: 120 BPM
This leakage volume is an artifact; it is due to the fact that the disks which were used to mount the aortic root in the pulse duplicator were not sealing completely because no glue was used. This “leakage” is due to fluid leaking around the annulus of the aortic root, but not due to leakage of the valves themselves. There was no real variation in leakage percent among the valves which were mounted in different size roots. This “leakage” is therefore not due to coaption, the coming together of the cusps, of the valve and thus it is not regurgitation. Regurgitation of a valve is the backflow of blood through the valve while the valve is in the closed position. To confirm the nature of the leakage, a test was performed using a dye to actually see the leakage of fluid around the annulus due to the imperfect connection of the disks used to hold the aortic root that were not sealing fully.
Figure 4. Effective Orifice Area vs Cardiac Output of 23mm Stented and Stentless Bioprostheses

Graph of EOA vs Cardiac Output for the 23mm stented and stentless bioprostheses shows a somewhat parallel trend of a statistically significant higher EOA for the stentless bioprostheses for all cardiac outputs than the stented bioprostheses.
Graph of EOA vs Cardiac Output for the 25mm stented and stentless bioprosthesis shows a somewhat parallel trend of a statistically significant higher EOA for the stentless bioprosthesis for all cardiac outputs than the stented bioprosthesis.
CHAPTER 5

CLINICAL DATA

Data of the She'high Stentless Porcine Bioprosthesis implanted clinically shows that smaller size valves can have a better Effective Orifice Area than larger valves. The Effective Orifice Area was calculated using 2-D Echo on a total of 97 implanted valves, 52 stentless valves and 45 stented valves implanted by Prof. Infantes at Virgen Macarena Hospital - Seville Spain. Data shows that the stentless valve had an overall higher EOA than the Stented valve. The Effective Orifice Area ranged from 1.20 to 2.32cm^2 with stentless valves and 1.06 to 2.28cm^2 with stented valves, sizes 21 and 29 mm respectively. This clinical data agrees with the data obtained from in vitro testing of stented and stentless valves. In vitro testing showed a higher EOA in the stentless valve than in the stented valve. Table 10 shows number of stentless and stented valves of different sizes implanted as well as the average EOA for each size.

Table 10. Clinical Data from Virgen-Macarena Hospital-Seville Spain. Comparative Effective Orifice Area calculated by 2-D Echo.

<table>
<thead>
<tr>
<th>Size</th>
<th>Stentless Valves (O’Brien-Angell)</th>
<th>Stented Valves (Angell-Duran)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of implants</td>
<td>EOA (sq. cm)</td>
</tr>
<tr>
<td>21mm</td>
<td>2</td>
<td>1.20</td>
</tr>
<tr>
<td>23mm</td>
<td>18</td>
<td>2.07</td>
</tr>
<tr>
<td>25mm</td>
<td>11</td>
<td>1.45</td>
</tr>
<tr>
<td>27mm</td>
<td>11</td>
<td>2.41</td>
</tr>
<tr>
<td>29mm</td>
<td>10</td>
<td>2.32</td>
</tr>
</tbody>
</table>
CHAPTER 6
DISCUSSION

The Effective Orifice Area of the Shelhigh Porcine Stented and Stentless Bioprosthesis determined by the pulse duplicator averaged for all rates and valves tested for each of the two sizes, demonstrates the Shelhigh stentless valve has a statistically significant higher EOA than the stented bioprostheses. The Shelhigh stentless 23mm valve with an average EOA of 2.13 cm2 at an average Cardiac Output of 6.7 L/M is 11% higher than Shelhigh stented valves, a value which is statistically significant. A P value of 0.039 was obtained using a one tailed t-test, where a P value less than 0.05 is considered to be statistically significant. Also statistically significant are the Shelhigh 25mm stentless valves with an average EOA of 2.41 cm2 as compared to the Shelhigh 25 mm stented valves with an EOA of 2.18 cm2. The 25mm Shelhigh stentless valve has a 10% higher EOA than the stented Shelhigh valve. A P value of 0.037 was obtained using a one tailed t-test which is considered significant.

Comparison of clinical data of 97 clinically implanted valves, stented and stentless, using 2-D echocardiogram revealed that the average Effective Orifice Area of the stentless valve is higher than stented valves. It was found that the average Effective Orifice Area of the stentless valve was higher in all but one size valve, the 25mm stentless valve. The average EOA for the 25mm valves implanted was 1.45 cm2 and 1.48 cm2, stentless and stented valves respectively. The cause of the 0.03 cm2 lower EOA in the stentless valve than the stented valve may be contributed to the sizing of the stentless valves during implantation. Due to the lack of a fixed orifice in the stentless valve, oversizing of the valve during implantation can cause relative stenosis and the EOA to be reduced to that of stented valves or less.
This study in general demonstrates that the Shelhigh stentless bioprosthesis has a much higher EOA throughout the entire spectrum of flow rates tested than the stented bioprosthesis. This shows stented bioprostheses produce some degree of obstruction to flow due to the semi-rigid stent, thus not allowing for the valve to distend fully at times of high flow rates. The stentless valve, since there is no stent the valve is prone to distend at high flow rates.

The design of the stented bioprosthesis has some limiting factors, mainly the fixed orifice. Thus the area available for flow has certain limits. Furthermore, the muscle shelf on the right cusp causes additional potential for stenosis. The Shelhigh unstented porcine aortic xenograft composite will not only increase the hemodynamic efficiency to an optimum level, but it will reduce the stress on the commissures. This "mechanical" advantage is known to increase the durability of porcine valves. The flow of a composite valve is optimized due to the design of the valve. This valve, the Shelhigh No-React® unstented aortic xenograft is a composite of three porcine aortic valves which have been preserved by a low pressure aldehyde fixation process. The non coronary leaflets from each of three aldehyde fixed porcine aortic heart valves are dissected, matched and sutured together with cardiovascular suture, then covered with pericardium. The resulting composite unstented valve has an optimum orifice area due to the absence of the septal shelf found on the right coronary leaflet of the natural porcine aortic valve.

The regurgitant fraction of the valves in some instances appeared higher than others due to the manner in which the discs that are placed around the aortic annulus are used in the mounting of the aortic root in the PDS. This process results in imperfect sealing because no glue is used. These discs may also not have been the proper size, thereby allowing fluid to
leak back through the discs giving results of high regurgitation. Most of the “leakage” is recorded as a closing volume. This volume is recorded as “regurgitant” because of the volume needed to close the valve and even after the valve is closed the soft cusps continue to move backward. The real regurgitation fraction after the valve is closed is practically zero. A small amount of fluid might leak around the mounting ring, since it is very difficult to prevent this leak in a pulse duplicator.

Sizing of the stentless valves became an important factor during this study. The 23mm valve was implanted and tested in different size roots which include, 23, 25 and 27mm roots. The 25mm valve was implanted and tested in size 25, and 29mm root. This was performed to compare the results of implanting the same size stentless valve in different size aorta. The reason for this type of testing is to examine the effects of surgeons oversizing or undersizing valves during implantation and the effects of remodeling which takes place after surgery. During surgery, sizing of the aortic root while the patient is on bypass may be slightly smaller than it would be after the patient is taken off bypass due to the systolic pressure expanding the aorta. The following was the approach used to undersize the valve by one size, an aortic root sized to be 25mm using selected sizers with an outer diameter equivalent to the stated valve size was used for the implantation of a 23mm stentless valve. Hemodynamics improved slightly; however the valve still appeared to have less than perfect hemodynamics based on the data obtained and visual inspection of the valve in the aortic root. Additional testing was done in which a stentless valve was implanted into a root two sizes larger than the valve. Previously it had been thought that implanting a valve in a larger root would cause serious regurgitation and inflict a substantial amount of stress on the valve; however there was no sign of stress on the valve. All three cusps were symmetrical and
during testing the valve opened and closed very well. Results of testing showed no significant regurgitation and an EOA higher than a stented valve of the same size. Results indicate that even with the dilatation of the aorta after surgery, implanting a stentless valve in an aortic root one size larger, hemodynamics will be improved over the stented valve. It is apparent from this study that the Shelhigh stentless valve model 2000, can resist dilatation up to 2 sizes higher. It is probably better to undersize the valve during implantation as the EOA will be higher when compared to an oversized valve still no significant regurgitation could be measured. This is due to the relatively higher coaptation area of the cusps, as well as the maintenance of the physical integrity of the valve due to the pericardial tissue covering the valve.
The Shelhigh No-React® Unstented Porcine Aortic Xenograft found to have an excellent hemodynamic properties superior to the stented valves. A statistical analysis showed stentless valves have a significantly higher EOA than stented valves of the same size. The valve can be undersized and still produce excellent hemodynamic properties better than that of a stented.

The in-vitro hemodynamic studies were confirmed by clinical comparative findings that hemodynamic advantages of the stentless valve is not always evident; smaller size valves can have better hemodynamics than larger valves.

One of the most significant problems of the stentless valve is its propensity for less than ideal coaption of the cusps leading to high incidence of aortic regurgitation murmur. Regurgitation murmur can be a sign of reduced durability. This study shows that the Shelhigh No-React® stentless valve covered with pericardium, even if implanted in larger aortic root can resist distention or distortion and continue to be competent. Oversizing appears to cause relative stenosis and the EOA can be reduced significantly. We conclude that the pericardial cuff gives the valve certain design integrity and more resistance to distortion and dilatation. Oversizing is not necessary to assure a good coaption. Undersizing can be desirable and might achieve higher effective orifice areas. This ability to adapt to different size aortic roots is important when the aorta distends with changes in systolic pressure. Based on the research of stentless valves it is recommended that surgeons use one size smaller than measured.
SHELHIGH Inc. Millburn, NJ 07041

* * SHELHIGH Pulse Duplicator System * *

Test No. 159 **Valve Type:** SHELHIGH **Serial No.:** S1069 **Valve size:** 23 mm Mitral Position

Operator: E. Sean Parker

System Parameters:
- **Heart Rate:** 61.22 bpm
- **Stroke Volume:** 75.21 ml
- **Cardiac Output:** 4.60 L/min
- **Duration of valve cycle:** 0.98 sec.
- **Forward Flow Phase:** 0.60 sec. 61.44%

Measured Flow (L/min):
- **RMS:** 10.56 L/min
- **Mean:** 7.44 L/min
- **Peak:** 12.43 L/min

Measured Pressures (mm Hg):
- **Mean:** 3.15 mm Hg
- **Peak Pressure:** 11.80 mm Hg
- **Pressure at max flow:** 11.62 mm Hg

Valve Parameters
- **Closing Volume:** 8.71 ml, 11.59%
- **Leakage Volume:** 4.30 ml, 5.72%
- **Regurgitant Fraction:** 17.30%

Effective Orifice Area (sq cm.):
- **Peak:** 2.26
- **Mean:** 1.35
- **RMS:** 1.92

Discharge Coefficient: 0.612
Performance Index: 0.453
Efficiency Index: 0.383

![Pressure and Flow](image1)

![Flow Rate](image2)

![Pressure Gradient](image3)
Test No. 160 Valve Type: SHELHIGH Serial No. S1069 Valve size: 23 mm Mitral Position

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 75.38 bpm
- Stroke Volume: 73.23 ml
- Cardiac Output: 5.52 L/m
- Duration of valve cycle: 0.80 sec.
- Forward Flow Phase: 0.48 sec. 60.71%

Measured Flow (L/m):
- RMS: 13.14 L/m
- Mean: 9.00 L/m
- Peak: 16.13 L/m

Measured Pressures (mm Hg):
- Mean: 4.71 mm Hg
- Peak Pressure: 14.17 mm Hg
- Pressure at max flow: 14.00 mm Hg

Valve Parameters
- Closing Volume: 11.40 ml, 15.57%
- Leakage Volume: 2.86 ml, 3.90%
- Regurgitant Fraction: 19.48%

Effective Orifice Area (sq cm.):
- Peak: 2.40
- Mean: 1.34
- RMS: 1.96

Discharge Coefficient: 0.622
Performance Index: 0.471
Efficiency Index: 0.379
SHELHIGH Inc. Millburn, NJ 07041

** SHELHIGH Pulse Duplicator System **

Test No. 161 Valve Type: SHELHIGH Serial No. S1069 Valve size: 23 mm Mitral Position:

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 84.75 bpm
- Stroke Volume: 79.54 ml
- Cardiac Output: 6.74 L/m
- Duration of valve cycle: 0.71 sec.
- Forward Flow Phase: 0.44 sec. 62.21 %

Measured Flow (L/m):
- RMS: 15.24 L/m
- Mean: 10.71 L/m
- Peak: 18.39 L/m

Measured Pressures (mm Hg):
- Mean: 5.59 mm Hg
- Peak Pressure: 15.37 mm Hg
- Pressure at max flow: 13.67 mm Hg

Valve Parameters
- Closing Volume: 11.11 ml, 13.96 %
- Leakage Volume: 0.01 ml, 0.01 %
- Regurgitant Fraction: 13.98 %

Effective Orifice Area (sq cm.):
- Peak: 2.51
- Mean: 1.46
- RMS: 2.08

Discharge Coefficient: 0.663
Performance Index: 0.501
Efficiency Index: 0.431
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>162</th>
<th>Valve Type: SHELHIGH</th>
<th>Serial No.</th>
<th>S1069</th>
<th>Valve size: 23 mm</th>
<th>Operator: E. Sean Parker</th>
</tr>
</thead>
</table>

System Parameters:
- Heart Rate: 92.59 bpm
- Stroke Volume: 79.64 ml
- Cardiac Output: 7.37 l/min
- Duration of valve cycle: 0.65 sec.
- Forward Flow Phase: 0.42 sec., 65.41%

Measured Flow (L/m):
- RMS: 15.72 L/m
- Mean: 11.14 L/m
- Peak: 20.22 L/m

Measured Pressures (mm Hg):
- Mean: 5.80 mm Hg
- Peak Pressure: 16.07 mm Hg
- Pressure at max flow: 11.45 mm Hg

Valve Parameters
- Closing Volume: 9.56 ml, 12.01%
- Leakage Volume: 1.40 ml, 1.76%
- Regurgitant Fraction: 13.77%

Effective Orifice Area (sq cm.):
- Peak: 2.71
- Mean: 1.49
- RMS: 2.11

- **Discharge Coefficient:** 0.671
- **Performance Index:** 0.507
- **Efficiency Index:** 0.438
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

Test No. 163 Valve Type: SHELHIGH Serial No. S1069 Valve size: 23 mm Mitral Positiv

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 102.04 bpm
- Stroke Volume: 79.61 ml
- Cardiac Output: 8.12 L/min
- Duration of valve cycle: 0.59 sec.
- Forward Flow Phase: 0.39 sec. 67.12%

Measured Flow (L/min):
- RMS: 16.86 L/min
- Mean: 11.94 L/min
- Peak: 22.65 L/min

Measured Pressures (mm Hg):
- Mean: 6.07 mm Hg
- Peak Pressure: 16.25 mm Hg
- Pressure at max flow: 10.25 mm Hg

Valve Parameters
- Closing Volume: 7.55 ml, 9.48%
- Leakage Volume: 3.63 ml, 4.56%
- Regurgitant Fraction: 14.04%

Effective Orifice Area (sq cm.):
- Peak: 2.97
- Mean: 1.57
- RMS: 2.21

- Pressure and Flow
- Flow Rate
- Pressure Gradient

- Discharge Coefficient: 0.703
- Performance Index: 0.532
- Efficiency Index: 0.457
Test No. 164
Valve Type: SHELHIGH
Operator: E. Sean Parker

Valve Parameters:
- Closing Volume: 9.11 ml, 11.83 %
- Leakage Volume: 1.94 ml, 2.51 %
- Regurgitant Fraction: 14.34 %

Effective Orifice Area (sq cm.):
- Peak: 3.08
- Mean: 1.58
- RMS: 2.26

System Parameters:
- Heart Rate: 111.11 bpm
- Stroke Volume: 77.06 ml
- Cardiac Output: 8.56 L/m
- Duration of valve cycle: 0.54 sec.
- Forward Flow Phase: 0.36 sec, 67.41 %

Measured Flow (L/m):
- RMS: 17.89 L/m
- Mean: 12.52 L/m
- Peak: 24.42 L/m

Measured Pressures (mm Hg):
- Mean: 6.56 mm Hg
- Peak Pressure: 16.55 mm Hg
- Pressure at max flow: 10.22 mm Hg

Discharge Coefficient: 0.718
Performance Index: 0.543
Efficiency Index: 0.465
Test No. 165 Valve Type: SHELHIGH Serial No. S1069 Valve size: 23 mm Mitral Position

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 118.11 bpm
- Stroke Volume: 76.96 ml
- Cardiac Output: 9.09 L/min
- Duration of valve cycle: 0.51 sec.
- Forward Flow Phase: 0.34 sec. 67.72%

Measured Flow (L/min):
- RMS: 18.94 L/min
- Mean: 13.22 L/min
- Peak: 25.93 L/min

Measured Pressures (mm Hg):
- Mean: 6.97 mm Hg
- Peak Pressure: 16.80 mm Hg
- Pressure at max flow: 10.65 mm Hg

Valve Parameters
- Closing Volume: 6.50 ml, 8.44%
- Leakage Volume: 3.81 ml, 4.95%
- Regurgitant Fraction: 13.38%

Effective Orifice Area (sq cm.):
- Peak: 3.17
- Mean: 1.62
- RMS: 2.32

Discharge Coefficient: 0.737
Performance Index: 0.557
Efficiency Index: 0.483
SHELHIGH Inc. Millburn, NJ 07041
** SHELHIGH Pulse Duplicator System **

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Valve Type:</th>
<th>Serial No.</th>
<th>Valve size:</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>360</td>
<td>SHELHIGH</td>
<td>S1106</td>
<td>23 mm</td>
<td></td>
</tr>
</tbody>
</table>

Operator: E. Sean Parker

System Parameters:
- **Heart Rate:** 61.73 bpm
- **Stroke Volume:** 77.44 ml
- **Cardiac Output:** 4.78 L/m
- **Duration of valve cycle:** 0.97 sec.
- **Forward Flow Phase:** 0.65 sec. 66.82%

Measured Flow (L/m):
- **RMS:** 10.11 L/m
- **Mean:** 7.09 L/m
- **Peak:** 12.65 L/m

Measured Pressures (mm Hg):
- **Mean:** 2.90 mm Hg
- **Peak Pressure:** 11.37 mm Hg
- **Pressure at max flow:** 11.37 mm Hg

Valve Parameters
- **Closing Volume:** 2.71 ml, 3.50%
- **Leakage Volume:** 3.78 ml, 4.88%
- **Regurgitant Fraction:** 8.38%

Effective Orifice Area (sq cm.):
- **Peak:** 2.40
- **Mean:** 1.35
- **RMS:** 1.92

Discharge Coefficient: 0.611
Performance Index: 0.462
Efficiency Index: 0.423
SHELHIGH Inc. Millburn, NJ 07041
SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Valve Type:</th>
<th>Serial No.</th>
<th>Valve size:</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>361</td>
<td>SHELHIGH</td>
<td>S1106</td>
<td>23 mm</td>
<td></td>
</tr>
</tbody>
</table>

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 69.44 bpm
- Stroke Volume: 70.61 ml
- Cardiac Output: 4.90 L/m
- Duration of valve cycle: 0.86 sec.
- Forward Flow Phase: 0.52 sec. 59.91%

Measured Flow (L/m):
- RMS: 12.12 L/m
- Mean: 8.11 L/m
- Peak: 15.27 L/m

Measured Pressures (mm Hg):
- Mean: 3.86 mm Hg
- Peak Pressure: 13.02 mm Hg
- Pressure at max flow: 13.02 mm Hg

Valve Parameters
- Closing Volume: 4.65 ml, 6.59%
- Leakage Volume: 2.86 ml, 4.08%
- Regurgitant Fraction: 10.67%

Effective Orifice Area (sq cm.):
- Peak: 2.51
- Mean: 1.33
- RMS: 1.99

Discharge Coefficient: 0.633
Performance Index: 0.479
Efficiency Index: 0.428

![Pressure and Flow](image1)

![Flow Rate](image2)

![Pressure Gradient](image3)
SHELHIGH Pulse Duplicator System

Test No. 362
Valve Type: SHELHIGH
Serial No.: S1106
Valve size: 23 mm
Mitral Position:

System Parameters:
- **Heart Rate:** 81.52 bpm
- **Stroke Volume:** 73.08 ml
- **Cardiac Output:** 5.96 L/min
- **Duration of valve cycle:** 0.74 sec.
- **Forward Flow Phase:** 0.45 sec. 61.11%

Measured Flow (L/min):
- **RMS:** 14.40 L/min
- **Mean:** 9.64 L/min
- **Peak:** 18.72 L/min

Measured Pressures (mm Hg):
- **Mean:** 4.89 mm Hg
- **Peak Pressure:** 14.60 mm Hg
- **Pressure at max flow:** 14.30 mm Hg

Valve Parameters
- **Closing Volume:** 6.83 ml, 9.35%
- **Leakage Volume:** 0.85 ml, 1.17%
- **Regurgitant Fraction:** 10.52%

Effective Orifice Area (sq cm):
- **Peak:** 2.73
- **Mean:** 1.41
- **RMS:** 2.10

Discharge Coefficient: 0.669
Performance Index: 0.506
Efficiency Index: 0.453
Test No. 363 Valve Type: SHELHIGH Serial No. S1106 Valve size: 23 mm Mitral Position
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 88.24 bpm
- Stroke Volume: 76.16 ml
- Cardiac Output: 6.72 L/m
- Duration of valve cycle: 0.68 sec
- Forward Flow Phase: 0.43 sec 63.03%

Measured Flow (L/m):
- RMS: 15.44 L/m
- Mean: 10.53 L/m
- Peak: 20.07 L/m

Measured Pressures (mm Hg):
- Mean: 5.28 mm Hg
- Peak Pressure: 14.87 mm Hg
- Pressure at max flow: 14.17 mm Hg

Valve Parameters
- Closing Volume: 5.76 ml 7.57%
- Leakage Volume: 2.45 ml 3.21%
- Regurgitant Fraction: 10.78%

Effective Orifice Area (sq cm.):
- Peak: 2.82
- Mean: 1.48
- RMS: 2.17

Discharge Coefficient: 0.690
Performance Index: 0.522
Efficiency Index: 0.466
SHELHIGH Inc. Millburn, NJ 07041

* * SHELHIGH Pulse Duplicator System * *

<table>
<thead>
<tr>
<th>Test No.</th>
<th>364</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>S1106</th>
<th>Valve size:</th>
<th>23 mm</th>
<th>Mitral</th>
<th>Position:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:

- **Heart Rate:** 96.77 bpm
- **Stroke Volume:** 80.40 ml
- **Cardiac Output:** 7.78 L/m
- **Duration of valve cycle:** 0.62 sec.
- **Forward Flow Phase:** 0.42 sec. 67.11%

Measured Flow (L/m):

- **RMS:** 16.40 L/m
- **Mean:** 11.44 L/m
- **Peak:** 21.86 L/m

Measured Pressures (mm Hg):

- **Mean:** 5.57 mm Hg
- **Peak Pressure:** 15.50 mm Hg
- **Pressure at max flow:** 7.62 mm Hg

Valve Parameters

- **Closing Volume:** 4.52 ml, 5.62%
- **Leakage Volume:** 3.37 ml, 4.19%
- **Regurgitant Fraction:** 9.81%

Effective Orifice Area (sq cm.):

- **Peak:** 2.99
- **Mean:** 1.57
- **RMS:** 2.24

- **Discharge Coefficient:** 0.714
- **Performance Index:** 0.540
- **Efficiency Index:** 0.487

Graphs:

- Pressure and Flow
- Flow Rate
- Pressure Gradient
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>365</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Type:</td>
<td>SHELHIGH</td>
</tr>
<tr>
<td>Serial No.</td>
<td>S1106</td>
</tr>
<tr>
<td>Valve size:</td>
<td>23 mm Mitral Position</td>
</tr>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
</tr>
</tbody>
</table>

System Parameters:
- **Heart Rate:** 104.90 bpm
- **Stroke Volume:** 76.67 ml
- **Cardiac Output:** 8.04 L/m
- **Duration of valve cycle:** 0.57 sec.
- **Forward Flow Phase:** 0.38 sec. 66.20%

Measured Flow (L/m):
- **RMS:** 17.46 L/m
- **Mean:** 11.98 L/m
- **Peak:** 23.64 L/m

Measured Pressures (mm Hg):
- **Mean:** 5.93 mm Hg
- **Peak Pressure:** 15.90 mm Hg
- **Pressure at max flow:** 9.62 mm Hg

Valve Parameters
- **Closing Volume:** 4.88 ml, 6.36%
- **Leakage Volume:** 2.43 ml, 3.17%
- **Regurgitant Fraction:** 9.53%

Effective Orifice Area (sq cm.):
- **Peak:** 3.16
- **Mean:** 1.59
- **RMS:** 2.31

<table>
<thead>
<tr>
<th></th>
<th>Discharge Coefficient: 0.736</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Performance Index: 0.557</td>
</tr>
<tr>
<td></td>
<td>Efficiency Index: 0.504</td>
</tr>
</tbody>
</table>

Pressure and Flow

Flow Rate

Pressure Gradient
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>366</th>
<th>Valve Type: SHELHIGH</th>
<th>Serial No.</th>
<th>S1106</th>
<th>Valve size: 23 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 115.38 bpm
- Stroke Volume: 77.86 ml
- Cardiac Output: 8.98 L/m
- Duration of valve cycle: 0.52 sec.
- Forward Flow Phase: 0.35 sec. 67.72%

Measured Flow (L/m):
- RMS: 19.05 L/m
- Mean: 13.06 L/m
- Peak: 25.95 L/m

Measured Pressures (mm Hg):
- Mean: 6.59 mm Hg
- Peak Pressure: 16.45 mm Hg
- Pressure at max flow: 5.52 mm Hg

Valve Parameters
- Closing Volume: 3.56 ml, 4.57%
- Leakage Volume: 3.15 ml, 4.05%
- Regurgitant Fraction: 8.62%

Effective Orifice Area (sq cm.):
- Peak: 3.27
- Mean: 1.64
- RMS: 2.40

Graphs:
- Pressure and Flow
- Flow Rate
- Pressure Gradient
SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Valve Type:</th>
<th>Serial No.</th>
<th>Valve size:</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>351</td>
<td>SHELHIGH</td>
<td>S1108</td>
<td>23 mm</td>
<td>Mitral</td>
</tr>
</tbody>
</table>

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 63.56 bpm
- Stroke Volume: 74.14 ml
- Cardiac Output: 4.71 L/m
- Duration of valve cycle: 0.94 sec.
- Forward Flow Phase: 0.60 sec. 63.06%

Measured Flow (L/m):
- RMS: 10.74 L/m
- Mean: 7.41 L/m
- Peak: 13.17 L/m

Measured Pressures (mm Hg):
- Mean: 3.44 mm Hg
- Peak Pressure: 12.02 mm Hg
- Pressure at max flow: 11.95 mm Hg

Valve Parameters
- Closing Volume: 2.35 ml, 3.17%
- Leakage Volume: 2.02 ml, 2.73%
- Regurgitant Fraction: 5.90%

Effective Orifice Area (sq cm.):
- Peak: 2.29
- Mean: 1.29
- RMS: 1.87

Discharge Coefficient: 0.595
Performance Index: 0.450
Efficiency Index: 0.423
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>352</th>
<th>Valve Type: SHELHIGH</th>
<th>Serial No.</th>
<th>S1108</th>
<th>Valve size: 23 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:
- **Heart Rate:** 71.77 bpm
- **Stroke Volume:** 75.62 ml
- **Cardiac Output:** 5.43 L/m
- **Duration of valve cycle:** 0.84 sec.
- **Forward Flow Phase:** 0.54 sec. 64.29%

Measured Flow (L/m):
- RMS: 12.25 L/m
- Mean: 8.36 L/m
- Peak: 16.56 L/m

Measured Pressures (mm Hg):
- Mean: 4.30 mm Hg
- Peak Pressure: 14.05 mm Hg
- Pressure at max flow: 13.80 mm Hg

Valve Parameters:
- **Closing Volume:** 2.41 ml, 3.18%
- **Leakage Volume:** 1.81 ml, 2.39%
- **Regurgitant Fraction:** 5.58%

Effective Orifice Area (sq cm.):
- Peak: 2.58
- Mean: 1.30
- RMS: 1.91

Graphs:
- Pressure and Flow
- Flow Rate
- Pressure Gradient
Test No. 353 Valve Type: **SHELHIGH** Serial No. **S1108** Valve size: **23 mm** Mitral Position:

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 81.97 bpm
- Stroke Volume: 77.79 ml
- Cardiac Output: 6.38 L/m
- Duration of valve cycle: 0.73 sec.
- Forward Flow Phase: 0.48 sec. 65.12%

Measured Flow (L/m):
- RMS: 14.13 L/m
- Mean: 9.68 L/m
- Peak: 18.87 L/m

Measured Pressures (mm Hg):
- Mean: 5.16 mm Hg
- Peak Pressure: 15.15 mm Hg
- Pressure at max flow: 14.32 mm Hg

Valve Parameters
- Closing Volume: 1.75 ml, 2.25%
- Leakage Volume: 1.83 ml, 2.35%
- Regurgitant Fraction: 4.60%

Effective Orifice Area (sq cm.):
- Peak: 2.68
- Mean: 1.38
- RMS: 2.01

Discharge Coefficient: 0.639
Performance Index: 0.483
Efficiency Index: 0.461
** SHELHIGH Pulse Duplicator System **

Test No. 354 Valve Type: SHELHIGH Serial No. S1108 Valve size: 23 mm Mitral Position

Operator: E. Sean Parker

<table>
<thead>
<tr>
<th>System Parameters:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate:</td>
<td>96.15 bpm</td>
</tr>
<tr>
<td>Stroke Volume:</td>
<td>76.19 ml</td>
</tr>
<tr>
<td>Cardiac Output:</td>
<td>7.33 L/m</td>
</tr>
<tr>
<td>Duration of valve cycle:</td>
<td>0.62 sec.</td>
</tr>
<tr>
<td>Forward Flow Phase:</td>
<td>0.41 sec. 66.46 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measured Flow (L/m):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS:</td>
<td>16.05 L/m</td>
</tr>
<tr>
<td>Mean:</td>
<td>10.89 L/m</td>
</tr>
<tr>
<td>Peak:</td>
<td>21.18 L/m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measured Pressures (mm Hg):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean:</td>
<td>5.59 mm Hg</td>
</tr>
<tr>
<td>Peak Pressure:</td>
<td>15.90 mm Hg</td>
</tr>
<tr>
<td>Pressure at max flow:</td>
<td>14.15 mm Hg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Closing Volume:</td>
<td>2.38 ml 3.12 %</td>
</tr>
<tr>
<td>Leakage Volume:</td>
<td>1.65 ml 2.17 %</td>
</tr>
<tr>
<td>Regurgitant Fraction:</td>
<td>5.29 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effective Orifice Area (sq cm.):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak:</td>
<td>2.89</td>
</tr>
<tr>
<td>Mean:</td>
<td>1.49</td>
</tr>
<tr>
<td>RMS:</td>
<td>2.19</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge Coefficient:</td>
<td>0.698</td>
</tr>
<tr>
<td>Performance Index:</td>
<td>0.527</td>
</tr>
<tr>
<td>Efficiency Index:</td>
<td>0.500</td>
</tr>
</tbody>
</table>
Test No. 355 Valve Type: SHELHIGH Serial No. S1108 Valve size: 23 mm Mitral Position
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 102.74 bpm
- Stroke Volume: 77.99 ml
- Cardiac Output: 8.01 L/m
- Duration of valve cycle: 0.58 sec.
- Forward Flow Phase: 0.39 sec. 66.67%

Measured Flow (L/m):
- RMS: 17.37 L/m
- Mean: 11.85 L/m
- Peak: 23.05 L/m

Measured Pressures (mm Hg):
- Mean: 6.04 mm Hg
- Peak Pressure: 16.22 mm Hg
- Pressure at max flow: 9.90 mm Hg

Valve Parameters
- Closing Volume: 2.97 ml, 3.81%
- Leakage Volume: 2.15 ml, 2.75%
- Regurgitant Fraction: 6.57%

Effective Orifice Area (sq cm.):
- Peak: 3.03
- Mean: 1.55
- RMS: 2.28

Discharge Coefficient: 0.726
Performance Index: 0.549
Efficiency Index: 0.513

Pressure and Flow
Flow Rate
Pressure Gradient
SHELHIGH Pulse Duplicator System

Test No. 356 Valve Type: SHELHIGH Serial No. S1108 Valve size: 23 mm Mitral Position

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 104.17 bpm
- Stroke Volume: 79.79 ml
- Cardiac Output: 8.31 L/m
- Duration of valve cycle: 0.58 sec.
- Forward Flow Phase: 0.39 sec. 68.57%

Measured Flow (L/m):
- RMS: 17.18 L/m
- Mean: 11.95 L/m
- Peak: 23.59 L/m

Measured Pressures (mm Hg):
- Mean: 6.04 mm Hg
- Peak Pressure: 16.25 mm Hg
- Pressure at max flow: 9.82 mm Hg

Valve Parameters
- Closing Volume: 2.66 ml, 3.34%
- Leakage Volume: 2.52 ml, 3.16%
- Regurgitant Fraction: 6.49%

Effective Orifice Area (sq cm.):
- Peak: 3.10
- Mean: 1.57
- RMS: 2.26

Discharge Coefficient: 0.718
Performance Index: 0.543
Efficiency Index: 0.508
SHELHIGH Pulse Duplicator System

Test No. 358
Valve Type: SHELHIGH
Serial No. S1108
Valve size: 23 mm
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 118.11 bpm
- Stroke Volume: 80.55 ml
- Cardiac Output: 9.51 L/m
- Duration of valve cycle: 0.51 sec.
- Forward Flow Phase: 0.35 sec. 69.67%

Measured Flow (L/m):
- RMS: 19.33 L/m
- Mean: 13.44 L/m
- Peak: 26.30 L/m

Measured Pressures (mm Hg):
- Mean: 6.80 mm Hg
- Peak Pressure: 16.62 mm Hg
- Pressure at max flow: 7.05 mm Hg

Valve Parameters
- Closing Volume: 2.49 ml, 3.10%
- Leakage Volume: 1.93 ml, 2.40%
- Regurgitant Fraction: 5.50%

Effective Orifice Area (sq cm.):
- Peak: 3.26
- Mean: 1.66
- RMS: 2.39

Discharge Coefficient: 0.762
Performance Index: 0.576
Efficiency Index: 0.544
SHELHIGH Inc. Millburn, NJ 07041

* * SHELHIGH Pulse Duplicator System * *

<table>
<thead>
<tr>
<th>Test No.</th>
<th>367</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>S1109</th>
<th>Valve size:</th>
<th>25 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 61.48 bpm
- Stroke Volume: 68.71 ml
- Cardiac Output: 4.22 L/m
- Duration of valve cycle: 0.98 sec.
- Forward Flow Phase: 0.58 sec. 58.94 %

Measured Flow (L/m):
- RMS: 10.60 L/m
- Mean: 7.11 L/m
- Peak: 12.51 L/m

Measured Pressures (mm Hg):
- Mean: 2.84 mm Hg
- Peak Pressure: 10.80 mm Hg
- Pressure at max flow: 10.77 mm Hg

Valve Parameters
- Closing Volume: 7.36 ml, 10.71 %
- Leakage Volume: 5.20 ml, 7.57 %
- Regurgitant Fraction: 18.28 %

Effective Orifice Area (sq cm.):
- Peak: 2.40
- Mean: 1.36
- RMS: 2.03

Discharge Coefficient:	0.534
Performance Index:	0.414
Efficiency Index:	0.338

![Pressure and Flow](image)
![Flow Rate](image)
![Pressure Gradient](image)
Test No. 368 Valve Type: SHELHIGH Serial No. S1109 Valve size: 25 mm Mitral Position
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 75.38 bpm
- Stroke Volume: 70.88 ml
- Cardiac Output: 5.34 L/m
- Duration of valve cycle: 0.80 sec.
- Forward Flow Phase: 0.46 sec. 58.25%

Measured Flow (L/m):
- RMS: 13.65 L/m
- Mean: 9.08 L/m
- Peak: 17.35 L/m

Measured Pressures (mm Hg):
- Mean: 4.08 mm Hg
- Peak Pressure: 13.60 mm Hg
- Pressure at max flow: 13.55 mm Hg

Valve Parameters
- Closing Volume: 7.57 ml, 10.68%
- Leakage Volume: 7.49 ml, 10.57%
- Regurgitant Fraction: 21.25%

Effective Orifice Area (sq cm.):
- Peak: 2.77
- Mean: 1.45
- RMS: 2.18

Discharge Coefficient: 0.574
Performance Index: 0.444
Efficiency Index: 0.350
** Test No. 370, Valve Type: SHELHIGH, Serial No. S1109, Valve size: 25 mm, Mitral Position. **

** Operator: E. Sean Parker **

- **System Parameters:**
 - Heart Rate: 80.21 bpm
 - Stroke Volume: 76.76 ml
 - Cardiac Output: 6.16 L/m
 - Duration of valve cycle: 0.75 sec.
 - Forward Flow Phase: 0.43 sec, 57.22%

- **Measured Flow (L/m):**
 - RMS: 16.32 L/m
 - Mean: 10.65 L/m
 - Peak: 20.15 L/m

- **Measured Pressures (mm Hg):**
 - Mean: 4.78 mm Hg
 - Peak Pressure: 14.17 mm Hg
 - Pressure at max flow: 13.72 mm Hg

- **Valve Parameters:**
 - Closing Volume: 7.90 ml, 10.29%
 - Leakage Volume: 10.00 ml, 13.03%
 - Regurgitant Fraction: 23.32%

- **Effective Orifice Area (sq cm.):**
 - Peak: 2.98
 - Mean: 1.57
 - RMS: 2.41

- **Performance Index:**
 - Discharge Coefficient: 0.634
 - Efficiency Index: 0.377
Test No. 371 Valve Type: SHELHIGH Serial No. S1109 Valve size: 25 mm Mitral Position:
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 92.02 bpm
- Stroke Volume: 75.59 ml
- Cardiac Output: 6.96 L/m
- Duration of valve cycle: 0.65 sec.
- Forward Flow Phase: 0.38 sec. 57.67%

Measured Flow (L/m):
- RMS: 17.97 L/m
- Mean: 11.91 L/m
- Peak: 20.97 L/m

Measured Pressures (mm Hg):
- Mean: 5.48 mm Hg
- Peak Pressure: 14.50 mm Hg
- Pressure at max flow: 11.07 mm Hg

Valve Parameters
- Closing Volume: 6.96 ml, 9.21%
- Leakage Volume: 9.54 ml, 12.63%
- Regurgitant Fraction: 21.84%

Effective Orifice Area (sq cm.):
- Peak: 2.89
- Mean: 1.64
- RMS: 2.48

Discharge Coefficient: 0.652
Performance Index: 0.505
Efficiency Index: 0.395
Test No. 373 Valve Type: SHELHIGH Serial No. S1109 Valve size: 25 mm Mitral Position
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 108.70 bpm
- Stroke Volume: 76.63 ml
- Cardiac Output: 8.33 L/m
- Duration of valve cycle: 0.55 sec.
- Forward Flow Phase: 0.34 sec. 61.87 %

Measured Flow (L/m):
- RMS: 19.86 L/m
- Mean: 13.27 L/m
- Peak: 24.94 L/m

Measured Pressures (mm Hg):
- Mean: 6.07 mm Hg
- Peak Pressure: 15.10 mm Hg
- Pressure at max flow: 7.85 mm Hg

Valve Parameters
- Closing Volume: 8.64 ml, 11.28 %
- Leakage Volume: 5.75 ml, 7.50 %
- Regurgitant Fraction: 18.78 %

Effective Orifice Area (sq cm.):
- Peak: 3.27
- Mean: 1.74
- RMS: 2.60

Discharge Coefficient: 0.685
Performance Index: 0.530
Efficiency Index: 0.431
SHELHIGH Pulse Duplicator System

Test No. 372
Valve Type: SHELHIGH
Serial No. S1109
Valve size: 25 mm
Mitral Position:
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 102.04 bpm
- Stroke Volume: 75.48 ml
- Cardiac Output: 7.70 L/m
- Duration of valve cycle: 0.59 sec.
- Forward Flow Phase: 0.36 sec. 60.40%

Measured Flow (L/m):
- RMS: 18.75 L/m
- Mean: 12.58 L/m
- Peak: 22.74 L/m

Measured Pressures (mm Hg):
- Mean: 5.71 mm Hg
- Peak Pressure: 14.77 mm Hg
- Pressure at max flow: 9.05 mm Hg

Valve Parameters:
- Closing Volume: 6.21 ml, 10.88%
- Leakage Volume: 7.15 ml, 9.47%
- Regurgitant Fraction: 20.35%

Effective Orifice Area (sq cm.):
- Peak: 3.07
- Mean: 1.70
- RMS: 2.53

Discharge Coefficient: 0.666
Performance Index: 0.516
Efficiency Index: 0.411
** SHELHIGH Pulse Duplicator System **

Test No. 374
Valve Type: SHELHIGH
Serial No. S1109
Valve size: 25 mm
Position: Mitral

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 120.00 bpm
- Stroke Volume: 78.09 ml
- Cardiac Output: 9.37 L/min
- Duration of valve cycle: 0.50 sec.
- Forward Flow Phase: 0.31 sec. 62.40 %

Measured Flow (L/m):
- RMS: 22.04 L/m
- Mean: 14.78 L/m
- Peak: 28.33 L/m

Measured Pressures (mm Hg):
- Mean: 7.04 mm Hg
- Peak Pressure: 16.12 mm Hg
- Pressure at max flow: 9.92 mm Hg

Valve Parameters:
- Closing Volume: 6.32 ml, 8.09 %
- Leakage Volume: 6.84 ml, 8.76 %
- Regurgitant Fraction: 16.84 %

Effective Orifice Area (sq cm.):
- Peak: 3.45
- Mean: 1.80
- RMS: 2.68

Discharge Coefficient: 0.706
Performance Index: 0.546
Efficiency Index: 0.454
Test No. 234 Valve Type: SHELHIGH Serial No. S4043 Valve size: 25 mm Mitral Position
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 66.67 bpm
- Stroke Volume: 79.07 ml
- Cardiac Output: 5.27 L/min
- Duration of valve cycle: 0.90 sec
- Forward Flow Phase: 0.56 sec 61.93 %

Measured Flow (L/m):
- RMS: 12.14 L/m
- Mean: 8.44 L/m
- Peak: 15.27 L/m

Measured Pressures (mm Hg):
- Mean: 3.68 mm Hg
- Peak Pressure: 13.22 mm Hg
- Pressure at max flow: 13.15 mm Hg

Valve Parameters
- Closing Volume: 4.02 ml, 5.08 %
- Leakage Volume: 2.44 ml, 3.09 %
- Regurgitant Fraction: 8.17 %

Effective Orifice Area (sq cm.):
- Peak: 2.57
- Mean: 1.42
- RMS: 2.04

Discharge Coefficient: 0.537
Performance Index: 0.416
Efficiency Index: 0.382
SHELHIGH Pulse Duplicator System

Test No. 238
Valve Type: SHELHIGH
Serial No. S4043
Valve size: 25 mm
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 72.46 bpm
- Stroke Volume: 80.73 ml
- Cardiac Output: 5.85 L/m
- Duration of valve cycle: 0.83 sec.
- Forward Flow Phase: 0.51 sec. 62.00%

Measured Flow (L/m):
- RMS: 13.83 L/m
- Mean: 9.35 L/m
- Peak: 17.62 L/m

Measured Pressures (mm Hg):
- Mean: 4.32 mm Hg
- Peak Pressure: 14.02 mm Hg
- Pressure at max flow: 13.95 mm Hg

Valve Parameters:
- Closing Volume: 4.09 ml, 5.07%
- Leakage Volume: 3.68 ml, 4.56%
- Regurgitant Fraction: 9.62%
- Effective Orifice Area (sq cm.):
 - Peak: 2.74
 - Mean: 1.45
 - RMS: 2.15

- Discharge Coefficient: 0.565
- Performance Index: 0.438
- Efficiency Index: 0.395

![Pressure and Flow Diagram](chart1)
![Flow Rate Diagram](chart2)
![Pressure Gradient Diagram](chart3)
SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>242</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Type:</td>
<td>SHELHIGH</td>
</tr>
<tr>
<td>Serial No.</td>
<td>S4043</td>
</tr>
<tr>
<td>Valve size:</td>
<td>25 mm</td>
</tr>
<tr>
<td>Position</td>
<td>Mitral</td>
</tr>
<tr>
<td>Operator</td>
<td>E. Sean Parker</td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 83.80 bpm
- Stroke Volume: 81.40 ml
- Cardiac Output: 6.82 L/m
- Duration of valve cycle: 0.72 sec.
- Forward Flow Phase: 0.42 sec. 58.99 %

Measured Flow (L/m):
- RMS: 17.25 L/m
- Mean: 11.44 L/m
- Peak: 21.49 L/m

Measured Pressures (mm Hg):
- Mean: 5.32 mm Hg
- Peak Pressure: 15.02 mm Hg
- Pressure at max flow: 14.80 mm Hg

Valve Parameters
- Closing Volume: 2.87 ml, 3.53 %
- Leakage Volume: 5.33 ml, 6.55 %
- Regurgitant Fraction: 10.08 %

Effective Orifice Area (sq cm.):
- Peak: 3.01
- Mean: 1.60
- RMS: 2.42

Performance Index:
- Discharge Coefficient: 0.635
- Efficiency Index: 0.442
SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Valve Type</th>
<th>Serial No.</th>
<th>Valve size</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>246</td>
<td>SHELHIGH</td>
<td>S4043</td>
<td>25 mm</td>
<td></td>
</tr>
</tbody>
</table>

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 96.77 bpm
- Stroke Volume: 83.19 ml
- Cardiac Output: 8.05 L/m
- Duration of valve cycle: 0.62 sec
- Forward Flow Phase: 0.40 sec (64.52%)

Measured Flow (L/m):
- RMS: 17.82 L/m
- Mean: 12.32 L/m
- Peak: 23.31 L/m

Measured Pressures (mm Hg):
- Mean: 5.48 mm Hg
- Peak Pressure: 15.25 mm Hg
- Pressure at max flow: 14.02 mm Hg

Valve Parameters
- Closing Volume: 3.76 ml (4.53%)
- Leakage Volume: 5.15 ml (6.19%)
- Regurgitant Fraction: 10.72%

Effective Orifice Area (sq cm.):
- Peak: 3.22
- Mean: 1.70
- RMS: 2.46

Discharge Coefficient: 0.647
Performance Index: 0.501
Efficiency Index: 0.447
SHELHIGH Inc. Millburn, NJ 07041
SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>250</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>S4043</th>
<th>Valve size: 25 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 103.45 bpm
- Stroke Volume: 85.05 ml
- Cardiac Output: 8.80 L/min
- Duration of valve cycle: 0.58 sec.
- Forward Flow Phase: 0.39 sec. 66.67 %

Measured Flow (L/min):
- RMS: 18.68 L/min
- Mean: 13.02 L/min
- Peak: 24.83 L/min

Measured Pressures (mm Hg):
- Mean: 5.66 mm Hg
- Peak Pressure: 15.47 mm Hg
- Pressure at max flow: 9.07 mm Hg

Valve Parameters
- Closing Volume: 3.84 ml, 4.51 %
- Leakage Volume: 4.51 ml, 5.30 %
- Regurgitant Fraction: 9.81 %

Effective Orifice Area (sq cm.):
- Peak: 3.37
- Mean: 1.77
- RMS: 2.54

Discharge Coefficient: 0.667
Performance Index: 0.517
Efficiency Index: 0.466
SHELHIGH Inc. Millburn, NJ 07041

* * SHELHIGH Pulse Duplicator System * *

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Valve Type</th>
<th>Serial No.</th>
<th>Valve size</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>254</td>
<td>SHELHIGH</td>
<td>S4043</td>
<td>25 mm</td>
<td>E. Sean Parker</td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 111.94 bpm
- Stroke Volume: 84.22 ml
- Cardiac Output: 9.43 L/m
- Duration of valve cycle: 0.54 sec.
- Forward Flow Phase: 0.36 sec. 66.92%

Measured Flow (L/m):
- RMS: 20.05 L/m
- Mean: 13.88 L/m
- Peak: 26.99 L/m

Measured Pressures (mm Hg):
- Mean: 6.39 mm Hg
- Peak Pressure: 16.17 mm Hg
- Pressure at max flow: 10.05 mm Hg

Valve Parameters
- Closing Volume: 3.34 ml, 3.97%
- Leakage Volume: 3.88 ml, 4.60%
- Regurgitant Fraction: 8.57%

Effective Orifice Area (sq cm.):
- Peak: 3.45
- Mean: 1.77
- RMS: 2.56

Performance Index:
- Discharge Coefficient: 0.674
- Performance Index: 0.522
- Efficiency Index: 0.477
SHELHIGH Inc. Millburn, NJ 07041
SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Valve Type: SHELHIGH</th>
<th>Serial No.</th>
<th>Valve size: 25 mm</th>
<th>Operator: E. Sean Parker</th>
</tr>
</thead>
</table>

System Parameters:
- Heart Rate: 123.97 bpm
- Stroke Volume: 81.58 ml
- Cardiac Output: 10.11 L/m
- Duration of valve cycle: 0.48 sec.
- Forward Flow Phase: 0.33 sec. 67.21%

Measured Flow (L/m):
- RMS: 21.32 L/m
- Mean: 14.80 L/m
- Peak: 27.23 L/m

Measured Pressures (mm Hg):
- Mean: 6.99 mm Hg
- Peak Pressure: 16.62 mm Hg
- Pressure at max flow: 6.50 mm Hg

Valve Parameters
- Closing Volume: 3.38 ml, 4.15%
- Leakage Volume: 3.62 ml, 4.44%
- Regurgitant Fraction: 8.59%

Effective Orifice Area (sq cm.):
- Peak: 3.33
- Mean: 1.81
- RMS: 2.61

- Discharge Coefficient: 0.685
- Performance Index: 0.531
- Efficiency Index: 0.485

Diagrams:
- Pressure and Flow
- Flow Rate
- Pressure Gradient
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Valve Type</th>
<th>Serial No.</th>
<th>Valve size</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>375</td>
<td>SHELHIGH</td>
<td>S1107</td>
<td>25 mm</td>
<td></td>
</tr>
</tbody>
</table>

Operator: E. Sean Parker

System Parameters:

- **Heart Rate:** 62.24 bpm
- **Stroke Volume:** 70.74 ml
- **Cardiac Output:** 4.40 L/m
- **Duration of valve cycle:** 0.96 sec.
- **Forward Flow Phase:** 0.58 sec. 60.43%

Measured Flow (L/m):

- **RMS:** 10.58 L/m
- **Mean:** 7.23 L/m
- **Peak:** 13.44 L/m

Measured Pressures (mm Hg):

- **Mean:** 2.67 mm Hg
- **Peak Pressure:** 10.62 mm Hg
- **Pressure at max flow:** 10.60 mm Hg

Valve Parameters

- **Closing Volume:** 7.05 ml, 9.96%
- **Leakage Volume:** 4.83 ml, 6.82%
- **Regurgitant Fraction:** 16.78%

Effective Orifice Area (sq cm.):

- **Peak:** 2.66
- **Mean:** 1.43
- **RMS:** 2.09

Discharge Coefficient: 0.550

Performance Index: 0.426

Efficiency Index: 0.354

[Graphs showing Pressure and Flow, Flow Rate, Pressure Gradient]
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

Test No. 376

Valve Type: SHELHIGH
Serial No.: S1107
Valve size: 25 mm
Mitral Position

Operator: E. Sean Parker

System Parameters:

- **Heart Rate:** 72.46 bpm
- **Stroke Volume:** 70.40 ml
- **Cardiac Output:** 5.10 L/m
- **Duration of valve cycle:** 0.83 sec.
- **Forward Flow Phase:** 0.50 sec. 60.00 %

Measured Flow (L/m):

- **RMS:** 12.62 L/m
- **Mean:** 8.42 L/m
- **Peak:** 16.42 L/m

Measured Pressures (mm Hg):

- **Mean:** 3.54 mm Hg
- **Peak Pressure:** 12.42 mm Hg
- **Pressure at max flow:** 12.37 mm Hg

Valve Parameters

- **Closing Volume:** 10.03 ml, 14.24 %
- **Leakage Volume:** 3.92 ml, 5.56 %
- **Regurgitant Fraction:** 19.81 %

Effective Orifice Area (sq cm.):

- **Peak:** 2.82
- **Mean:** 1.45
- **RMS:** 2.17

Performance Index:

- **Discharge Coefficient:** 0.569
- **Performance Index:** 0.441
- **Efficiency Index:** 0.354

Pressure and Flow
Flow Rate
Pressure Gradient
SHELHIGH Inc. Millburn, NJ 07041
** SHELHIGH Pulse Duplicator System **

<table>
<thead>
<tr>
<th>Test No.</th>
<th>376</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>S1107</th>
<th>Valve size:</th>
<th>25 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 85.23 bpm
- Stroke Volume: 72.38 ml
- Cardiac Output: 6.17 L/min
- Duration of valve cycle: 0.70 sec.
- Forward Flow Phase: 0.41 sec. 58.19%

Measured Flow (L/min):
- RMS: 15.92 L/min
- Mean: 10.48 L/min
- Peak: 19.94 L/min

Measured Pressures (mm Hg):
- Mean: 4.64 mm Hg
- Peak Pressure: 13.75 mm Hg
- Pressure at max flow: 12.82 mm Hg

Valve Parameters
- Closing Volume: 10.78 ml, 14.90%
- Leakage Volume: 3.16 ml, 4.39%
- Regurgitant Fraction: 19.29%

Effective Orifice Area (sq cm.):
- Peak: 2.99
- Mean: 1.57
- RMS: 2.39

Discharge Coefficient: 0.628
Performance Index: 0.486
Efficiency Index: 0.392
SHELHIGH Pulse Duplicator System

Test No. 377 Valve Type: SHELHIGH Serial No. S1107 Valve size: 25 mm Mitral Position

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 88.76 bpm
- Stroke Volume: 73.00 ml
- Cardiac Output: 6.48 L/m
- Duration of valve cycle: 0.68 sec.
- Forward Flow Phase: 0.39 sec. 57.65%

Measured Flow (L/m):
- RMS: 16.78 L/m
- Mean: 11.11 L/m
- Peak: 20.06 L/m

Measured Pressures (mm Hg):
- Mean: 4.89 mm Hg
- Peak Pressure: 13.82 mm Hg
- Pressure at max flow: 12.25 mm Hg

Valve Parameters
- Closing Volume: 7.75 ml, 10.62%
- Leakage Volume: 6.41 ml, 8.78%
- Regurgitant Fraction: 19.40%

Effective Orifice Area (sq cm.):
- Peak: 2.93
- Mean: 1.62
- RMS: 2.45

Discharge Coefficient: 0.645
Performance Index: 0.499
Efficiency Index: 0.402
SHELHIGH Inc. Millburn, NJ 07041

** SHELHIGH Pulse Duplicator System **

Test No. 378 Valve Type: SHELHIGH Serial No. S1107 Valve size: 25 mm Mitral Position

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 102.04 bpm
- Stroke Volume: 76.70 ml
- Cardiac Output: 7.83 L/m
- Duration of valve cycle: 0.59 sec.
- Forward Flow Phase: 0.37 sec. 62.33 %

Measured Flow (L/m):
- RMS: 18.43 L/m
- Mean: 12.39 L/m
- Peak: 23.61 L/m

Measured Pressures (mm Hg):
- Mean: 5.29 mm Hg
- Peak Pressure: 14.17 mm Hg
- Pressure at max flow: 5.80 mm Hg

Valve Parameters
- Closing Volume: 8.21 ml, 10.70 %
- Leakage Volume: 5.62 ml, 7.32 %
- Regurgitant Fraction: 18.02 %

Effective Orifice Area (sq cm.):
- Peak: 3.31
- Mean: 1.74
- RMS: 2.59

Discharge Coefficient: 0.680
Performance Index: 0.527
Efficiency Index: 0.432

--- Pressure and Flow ---

--- Flow Rate ---

--- Pressure Gradient ---
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

Test No. 379
Valve Type: SHELHIGH
Serial No. S1107
Valve size: 25 mm
Mitral Position
Operator: E. Sean Parker

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate</td>
<td>112.78 bpm</td>
</tr>
<tr>
<td>Stroke Volume</td>
<td>77.92 ml</td>
</tr>
<tr>
<td>Cardiac Output</td>
<td>8.79 L/m</td>
</tr>
<tr>
<td>Duration of valve cycle</td>
<td>0.53 sec.</td>
</tr>
<tr>
<td>Forward Flow Phase</td>
<td>0.34 sec. 64.39 %</td>
</tr>
</tbody>
</table>

System Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured Flow (L/m):</td>
<td></td>
</tr>
<tr>
<td>RMS</td>
<td>19.83 L/m</td>
</tr>
<tr>
<td>Mean</td>
<td>13.44 L/m</td>
</tr>
<tr>
<td>Peak</td>
<td>26.19 L/m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured Pressures (mm Hg):</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>5.99 mm Hg</td>
</tr>
<tr>
<td>Peak Pressure</td>
<td>14.92 mm Hg</td>
</tr>
<tr>
<td>Pressure at max flow</td>
<td>7.72 mm Hg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Parameters</td>
<td></td>
</tr>
<tr>
<td>Closing Volume</td>
<td>8.74 ml, 11.21 %</td>
</tr>
<tr>
<td>Leakage Volume</td>
<td>3.29 ml, 4.23 %</td>
</tr>
<tr>
<td>Regurgitant Fraction</td>
<td>15.44 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Orifice Area (sq cm.):</td>
<td></td>
</tr>
<tr>
<td>Peak</td>
<td>3.46</td>
</tr>
<tr>
<td>Mean</td>
<td>1.77</td>
</tr>
<tr>
<td>RMS</td>
<td>2.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge Coefficient</td>
<td>0.688</td>
</tr>
<tr>
<td>Performance Index</td>
<td>0.533</td>
</tr>
<tr>
<td>Efficiency Index</td>
<td>0.451</td>
</tr>
</tbody>
</table>

![Pressure and Flow Graph](image1)

![Flow Rate Graph](image2)

![Pressure Gradient Graph](image3)
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>380</th>
<th>Valve Type: SHELHIGH</th>
<th>Serial No.</th>
<th>S1107</th>
<th>Valve size: 25 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 120.97 bpm
- Stroke Volume: 78.48 ml
- Cardiac Output: 9.49 L/m
- Duration of valve cycle: 0.50 sec.
- Forward Flow Phase: 0.31 sec. 63.41%

Measured Flow (L/m):
- RMS: 21.81 L/m
- Mean: 14.73 L/m
- Peak: 28.52 L/m

Measured Pressures (mm Hg):
- Mean: 6.74 mm Hg
- Peak Pressure: 15.72 mm Hg
- Pressure at max flow: 9.12 mm Hg

Valve Parameters
- Closing Volume: 8.60 ml, 10.96%
- Leakage Volume: 3.12 ml, 3.98%
- Regurgitant Fraction: 14.94%

Effective Orifice Area (sq cm.):
- Peak: 3.55
- Mean: 1.83
- RMS: 2.71

Diagrams:
- Pressure and Flow
- Flow Rate
- Pressure Gradient

Discharge Coefficient: 0.714
Performance Index: 0.553
Efficiency Index: 0.470
Test No. 16 Valve Type: SHELHIGH Serial No. 3946 Valve size: 23 mm Mitral Position

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 61.22 bpm
- Stroke Volume: 74.18 ml
- Cardiac Output: 4.54 L/m
- Duration of valve cycle: 0.98 sec.
- Forward Flow Phase: 0.60 sec. 61.44%

Measured Flow (L/m):
- RMS: 10.78 L/m
- Mean: 7.33 L/m
- Peak: 13.22 L/m

Measured Pressures (mm Hg):
- Mean: 3.76 mm Hg
- Peak Pressure: 12.45 mm Hg
- Pressure at max flow: 12.32 mm Hg

Valve Parameters
- Closing Volume: 3.20 ml, 4.31%
- Leakage Volume: 3.70 ml, 4.99%
- Regurgitant Fraction: 9.30%

Effective Orifice Area (sq cm.):
- Peak: 2.20
- Mean: 1.22
- RMS: 1.80

Discharge Coefficient: 0.705
Performance Index: 0.432
Efficiency Index: 0.392
SHELHIGH Pulse Duplicator System

Test No. 17
Valve Type: SHELHIGH
Serial No.: 3946
Valve size: 23 mm
Mitral Position

Operator: E. Sean Parker

System Parameters:
- **Heart Rate:** 74.26 bpm
- **Stroke Volume:** 72.52 ml
- **Cardiac Output:** 5.39 L/m
- **Duration of valve cycle:** 0.81 sec.
- **Forward Flow Phase:** 0.49 sec. 60.80 %

Measured Flow (L/m):
- **RMS:** 13.09 L/m
- **Mean:** 8.77 L/m
- **Peak:** 16.97 L/m

Measured Pressures (mm Hg):
- **Mean:** 4.97 mm Hg
- **Peak Pressure:** 14.30 mm Hg
- **Pressure at max flow:** 14.00 mm Hg

Valve Parameters
- **Closing Volume:** 4.90 ml, 6.76 %
- **Leakage Volume:** 2.52 ml, 3.48 %
- **Regurgitant Fraction:** 10.24 %

Effective Orifice Area (sq cm.):
- **Peak:** 2.46
- **Mean:** 1.27
- **RMS:** 1.90

![Pressure and Flow](image1)
![Flow Rate](image2)
![Pressure Gradient](image3)
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Type:</td>
<td>SHELHIGH</td>
</tr>
<tr>
<td>Serial No.</td>
<td>3946</td>
</tr>
<tr>
<td>Valve size:</td>
<td>23 mm</td>
</tr>
<tr>
<td>Position</td>
<td>Mitral</td>
</tr>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
</tr>
</tbody>
</table>

System Parameters:
- **Heart Rate:** 86.21 bpm
- **Stroke Volume:** 73.57 ml
- **Cardiac Output:** 6.34 L/m
- **Duration of valve cycle:** 0.70 sec.
- **Forward Flow Phase:** 0.42 sec. 60.23 %

Measured Flow (L/m):
- **RMS:** 15.65 L/m
- **Mean:** 10.41 L/m
- **Peak:** 19.13 L/m

Measured Pressures (mm Hg):
- **Mean:** 5.85 mm Hg
- **Peak Pressure:** 15.10 mm Hg
- **Pressure at max flow:** 13.77 mm Hg

Valve Parameters
- **Closing Volume:** 6.45 ml, 8.77 %
- **Leakage Volume:** 2.38 ml, 3.23 %
- **Regurgitant Fraction:** 12.00 %

Effective Orifice Area (sq cm.):
- **Peak:** 2.55
- **Mean:** 1.39
- **RMS:** 2.09
- **Discharge Coefficient:** 0.821
- **Performance Index:** 0.503
- **Efficiency Index:** 0.443

Pressure and Flow

Flow Rate

Pressure Gradient
SHELHIGH Inc. Millburn, NJ 07041

** SHELHIGH Pulse Duplicator System **

Test No. 19 Valve Type: SHELHIGH Serial No. 3946 Valve size: 23 mm Mitral Position

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 90.36 bpm
- Stroke Volume: 74.83 ml
- Cardiac Output: 6.75 L/m
- Duration of valve cycle: 0.66 sec.
- Forward Flow Phase: 0.41 sec. 61.21 %

Measured Flow (L/m):
- RMS: 16.29 L/m
- Mean: 10.91 L/m
- Peak: 20.14 L/m

Measured Pressures (mm Hg):
- Mean: 6.39 mm Hg
- Peak Pressure: 15.85 mm Hg
- Pressure at max flow: 13.90 mm Hg

Valve Parameters
- Closing Volume: 4.68 ml, 6.25 %
- Leakage Volume: 4.10 ml, 5.48 %
- Regurgitant Fraction: 11.74 %

Effective Orifice Area (sq cm.):
- Peak: 2.57
- Mean: 1.40
- RMS: 2.08

Discharge Coefficient: 0.818
Performance Index: 0.501
Efficiency Index: 0.442
** Test No. 20 **

** Valve Type:** SHELHIGH

** Serial No.** 3946

** Valve size:** 23 mm

** Operator:** E. Sean Parker

System Parameters:

- **Heart Rate:** 101.35 bpm
- **Stroke Volume:** 77.43 ml
- **Cardiac Output:** 7.85 L/min
- **Duration of valve cycle:** 0.59 sec.
- **Forward Flow Phase:** 0.39 sec. 66.21%

Measured Flow (L/min):

- **RMS:** 17.09 L/min
- **Mean:** 11.69 L/min
- **Peak:** 22.48 L/min

Measured Pressures (mm Hg):

- **Mean:** 6.30 mm Hg
- **Peak Pressure:** 15.95 mm Hg
- **Pressure at max flow:** 9.92 mm Hg

Valve Parameters

- **Closing Volume:** 3.55 ml, 4.59%
- **Leakage Volume:** 3.07 ml, 3.96%
- **Regurgitant Fraction:** 8.55%

Effective Orifice Area (sq cm.):

- **Peak:** 2.89
- **Mean:** 1.50
- **RMS:** 2.20

Discharge Coefficient:	0.864
Performance Index:	0.529
Efficiency Index:	0.484

Pressure and Flow

Flow Rate

Pressure Gradient
SHELHIGH Inc., Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Type:</td>
<td>SHELHIGH</td>
</tr>
<tr>
<td>Serial No.</td>
<td>3946</td>
</tr>
<tr>
<td>Valve size:</td>
<td>23 mm</td>
</tr>
<tr>
<td>Mitral Position</td>
<td></td>
</tr>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 110.29 bpm
- Stroke Volume: 76.89 ml
- Cardiac Output: 8.48 L/m
- Duration of valve cycle: 0.54 sec.
- Forward Flow Phase: 0.37 sec. 67.88%

Measured Flow (L/m):
- RMS: 18.02 L/m
- Mean: 12.31 L/m
- Peak: 24.20 L/m

Measured Pressures (mm Hg):
- Mean: 6.78 mm Hg
- Peak Pressure: 16.65 mm Hg
- Pressure at max flow: 13.57 mm Hg

Valve Parameters
- Closing Volume: 4.15 ml, 5.40%
- Leakage Volume: 1.44 ml, 1.87%
- Regurgitant Fraction: 7.27%

Effective Orifice Area (sq cm.):
- Peak: 3.00
- Mean: 1.53
- RMS: 2.23

Discharge Coefficient: 0.878
Performance Index: 0.538
Efficiency Index: 0.499

Image of Pressure and Flow, Flow Rate, and Pressure Gradient graphs.
SHELHIGH Pulse Duplicator System

Test No. 22
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 121.95 bpm
- Stroke Volume: 76.59 ml
- Cardiac Output: 9.34 L/m
- Duration of valve cycle: 0.49 sec.
- Forward Flow Phase: 0.33 sec. 66.94%

Measured Flow (L/m):
- RMS: 20.07 L/m
- Mean: 13.73 L/m
- Peak: 25.96 L/m

Measured Pressures (mm Hg):
- Mean: 6.95 mm Hg
- Peak Pressure: 15.92 mm Hg
- Pressure at max flow: 11.30 mm Hg

Valve Parameters
- Closing Volume: 4.05 ml, 5.29%
- Leakage Volume: 2.13 ml, 2.78%
- Regurgitant Fraction: 8.07%

Effective Orifice Area (sq cm.):
- Peak: 3.18
- Mean: 1.68
- RMS: 2.46

- Discharge Coefficient: 0.966
- Performance Index: 0.592
- Efficiency Index: 0.544
Test No. 37 Valve Type: SHELHIGH Serial No. 4635 Valve size: 23 mm Mitral Position
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 63.29 bpm
- Stroke Volume: 73.45 ml
- Cardiac Output: 4.65 L/m
- Duration of valve cycle: 0.95 sec.
- Forward Flow Phase: 0.57 sec. 60.09%

Measured Flow (L/m):
- RMS: 11.41 L/m
- Mean: 7.67 L/m
- Peak: 13.18 L/m

Measured Pressures (mm Hg):
- Mean: 7.07 mm Hg
- Peak Pressure: 16.05 mm Hg
- Pressure at max flow: 16.05 mm Hg

Valve Parameters
- Closing Volume: 6.36 ml, 8.65%
- Leakage Volume: 3.90 ml, 5.31%
- Regurgitant Fraction: 13.96%

Effective Orifice Area (sq cm.):
- Peak: 1.60
- Mean: 0.93
- RMS: 1.39

Discharge Coefficient: 0.544
Performance Index: 0.333
Efficiency Index: 0.287
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>38</th>
<th>Valve Type: SHELHIGH</th>
<th>Serial No.</th>
<th>4635</th>
<th>Valve size: 23 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 73.53 bpm
- Stroke Volume: 71.81 ml
- Cardiac Output: 5.28 L/m
- Duration of valve cycle: 0.82 sec.
- Forward Flow Phase: 0.49 sec. 60.20%

Measured Flow (L/m):
- RMS: 13.00 L/m
- Mean: 8.69 L/m
- Peak: 15.85 L/m

Measured Pressures (mm Hg):
- Mean: 7.08 mm Hg
- Peak Pressure: 16.85 mm Hg
- Pressure at max flow: 16.35 mm Hg

Valve Parameters
- Closing Volume: 4.59 ml, 6.39%
- Leakage Volume: 3.60 ml, 5.02%
- Regurgitant Fraction: 11.41%

Effective Orifice Area (sq cm.):
- Peak: 1.92
- Mean: 1.05
- RMS: 1.58

- **Discharge Coefficient:** 0.620
- **Performance Index:** 0.380
- **Efficiency Index:** 0.336
Test No. 40 Valve Type: SHELHIGH Serial No. 4635 Valve size: 23 mm Mitral Position
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 83.80 bpm
- Stroke Volume: 71.71 ml
- Cardiac Output: 6.01 L/m
- Duration of valve cycle: 0.72 sec.
- Forward Flow Phase: 0.44 sec. 61.58%

Measured Flow (L/m):
- RMS: 14.40 L/m
- Mean: 9.65 L/m
- Peak: 17.99 L/m

Measured Pressures (mm Hg):
- Mean: 6.61 mm Hg
- Peak Pressure: 16.45 mm Hg
- Pressure at max flow: 15.90 mm Hg

Valve Parameters
- Closing Volume: 7.91 ml, 11.03 %
- Leakage Volume: -0.01 ml, -0.02 %
- Regurgitant Fraction: 11.01 %

Effective Orifice Area (sq cm.):
- Peak: 2.26
- Mean: 1.21
- RMS: 1.81

Discharge Coefficient: 0.711
Performance Index: 0.435
Efficiency Index: 0.388
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>39</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>4635</th>
<th>Valve size:</th>
<th>23 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate</td>
<td>89.29 bpm</td>
</tr>
<tr>
<td>Stroke Volume</td>
<td>72.35 ml</td>
</tr>
<tr>
<td>Cardiac Output</td>
<td>6.46 L/m</td>
</tr>
<tr>
<td>Duration of valve cycle</td>
<td>0.67 sec.</td>
</tr>
<tr>
<td>Forward Flow Phase</td>
<td>0.41 sec.</td>
</tr>
</tbody>
</table>

Measured Flow (L/m):

<table>
<thead>
<tr>
<th>Flow Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS</td>
<td>15.46 L/m</td>
</tr>
<tr>
<td>Mean</td>
<td>10.35 L/m</td>
</tr>
<tr>
<td>Peak</td>
<td>19.03 L/m</td>
</tr>
</tbody>
</table>

Measured Pressures (mm Hg):

<table>
<thead>
<tr>
<th>Pressure Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>6.93 mm Hg</td>
</tr>
<tr>
<td>Peak Pressure</td>
<td>16.77 mm Hg</td>
</tr>
<tr>
<td>Pressure at max flow</td>
<td>15.37 mm Hg</td>
</tr>
</tbody>
</table>

Valve Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closing Volume</td>
<td>7.80 ml</td>
</tr>
<tr>
<td>Leakage Volume</td>
<td>-0.01 ml</td>
</tr>
<tr>
<td>Regurgitant Fraction</td>
<td>10.77 %</td>
</tr>
</tbody>
</table>

Effective Orifice Area (sq cm.):

<table>
<thead>
<tr>
<th>Area Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>2.33</td>
</tr>
<tr>
<td>Mean</td>
<td>1.27</td>
</tr>
<tr>
<td>RMS</td>
<td>1.90</td>
</tr>
</tbody>
</table>

Discharge Coefficient: 0.745

Performance Index: 0.456

Efficiency Index: 0.407

Pressure and Flow Diagram

Flow Rate Diagram

Pressure Gradient Diagram
SHELHIGH Inc. Millburn, NJ 07041
SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>41</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>4635</th>
<th>Valve size:</th>
<th>23 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 99.34 bpm
- Stroke Volume: 74.12 ml
- Cardiac Output: 7.36 L/m
- Duration of valve cycle: 0.60 sec.
- Forward Flow Phase: 0.40 sec. 66.00 %

Measured Flow (L/m):
- RMS: 16.19 L/m
- Mean: 11.01 L/m
- Peak: 21.32 L/m

Measured Pressures (mm Hg):
- Mean: 6.73 mm Hg
- Peak Pressure: 16.82 mm Hg
- Pressure at max flow: 14.47 mm Hg

Valve Parameters
- Closing Volume: 7.08 ml, 9.56 %
- Leakage Volume: -0.00 ml, -0.01 %
- Regurgitant Fraction: 9.55 %

Effective Orifice Area (sq cm.):
- Peak: 2.65
- Mean: 1.37
- RMS: 2.02

- Discharge Coefficient: 0.792
- Performance Index: 0.485
- Efficiency Index: 0.439
SHELHIGH Inc. Millburn, NJ 07041
SHELHIGH Pulse Duplicator System

Test No. 42
Valve Type: SHELHIGH
Serial No.: 4635
Valve Size: 23 mm
Operator: E. Sean Parker

System Parameters:
- **Heart Rate:** 107.91 bpm
- **Stroke Volume:** 73.80 ml
- **Cardiac Output:** 7.96 L/m
- **Duration of valve cycle:** 0.56 sec.
- **Forward Flow Phase:** 0.37 sec. 66.67%

Measured Flow (L/m):
- **RMS:** 17.36 L/m
- **Mean:** 11.78 L/m
- **Peak:** 22.72 L/m

Measured Pressures (mm Hg):
- **Mean:** 7.14 mm Hg
- **Peak Pressure:** 17.00 mm Hg
- **Pressure at max flow:** 14.55 mm Hg

Valve Parameters
- **Closing Volume:** 7.61 ml, 10.32%
- **Leakage Volume:** -0.02 ml, -0.03%
- **Regurgitant Fraction:** 10.29%

Effective Orifice Area (sq cm.):
- **Peak:** 2.75
- **Mean:** 1.42
- **RMS:** 2.10

Discharge Coefficient: 0.824
Performance Index: 0.505
Efficiency Index: 0.453

![Pressure and Flow](image1)
![Flow Rate](image2)
![Pressure Gradient](image3)
SHELHIGH Pulse Duplicator System

Test No. 43 **Valve Type:** SHELHIGH **Serial No.** 4635 **Valve size:** 23 mm **Position:** Mitral

Operator: E. Sean Parker

System Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate</td>
<td>118.11 bpm</td>
</tr>
<tr>
<td>Stroke Volume</td>
<td>74.96 ml</td>
</tr>
<tr>
<td>Cardiac Output</td>
<td>8.85 L/m</td>
</tr>
<tr>
<td>Duration of valve cycle</td>
<td>0.51 sec.</td>
</tr>
<tr>
<td>Forward Flow Phase</td>
<td>0.33 sec. 65.87 %</td>
</tr>
</tbody>
</table>

Measured Flow (Um):

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS</td>
<td>19.50 L/m</td>
</tr>
<tr>
<td>Mean</td>
<td>13.23 L/m</td>
</tr>
<tr>
<td>Peak</td>
<td>25.49 L/m</td>
</tr>
</tbody>
</table>

Measured Pressures (mm Hg):

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>8.49 mm Hg</td>
</tr>
<tr>
<td>Peak Pressure</td>
<td>18.00 mm Hg</td>
</tr>
<tr>
<td>Pressure at max flow</td>
<td>16.35 mm Hg</td>
</tr>
</tbody>
</table>

Valve Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closing Volume</td>
<td>7.55 ml, 10.08 %</td>
</tr>
<tr>
<td>Leakage Volume</td>
<td>-0.00 ml, -0.00 %</td>
</tr>
<tr>
<td>Regurgitant Fraction</td>
<td>10.07 %</td>
</tr>
</tbody>
</table>

Effective Orifice Area (sq cm.):

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>2.83</td>
</tr>
<tr>
<td>Mean</td>
<td>1.47</td>
</tr>
<tr>
<td>RMS</td>
<td>2.16</td>
</tr>
</tbody>
</table>

Performance Index:

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge Coefficient</td>
<td>0.849</td>
</tr>
<tr>
<td>Performance Index</td>
<td>0.520</td>
</tr>
<tr>
<td>Efficiency Index</td>
<td>0.468</td>
</tr>
</tbody>
</table>

Graphs:*

- Pressure and Flow
- Flow Rate
- Pressure Gradient
SHELHIGH Pulse Duplicator System

Test No. 72 **Valve Type:** SHELHIGH **Serial No.** 4026 **Valve size:** 23 mm Mitral Position

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 66.96 bpm
- Stroke Volume: 72.74 ml
- Cardiac Output: 4.87 L/m
- Duration of valve cycle: 0.90 sec.
- Forward Flow Phase: 0.54 sec. 59.91%

Measured Flow (L/m):
- RMS: 11.94 L/m
- Mean: 8.06 L/m
- Peak: 14.37 L/m

Measured Pressures (mm Hg):
- Mean: 5.68 mm Hg
- Peak Pressure: 14.70 mm Hg
- Pressure at max flow: 14.30 mm Hg

Valve Parameters
- Closing Volume: 4.48 ml, 6.16%
- Leakage Volume: 3.13 ml, 4.31%
- Regurgitant Fraction: 10.47%

Effective Orifice Area (sq cm.):
- Peak: 1.95
- Mean: 1.09
- RMS: 1.62

- **Discharge Coefficient:** 0.636
- **Performance Index:** 0.369
- **Efficiency Index:** 0.349

[Graphs showing Pressure and Flow, Flow Rate, and Pressure Gradient]
SHELHIGH Inc. Millburn, NJ 07041
* * SHELHIGH Pulse Duplicator System * *

<table>
<thead>
<tr>
<th>Test No.</th>
<th>73</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>4026</th>
<th>Valve size:</th>
<th>23 mm</th>
<th>Mitral</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Parameters:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart Rate:</td>
<td>74.63</td>
<td>bpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke Volume:</td>
<td>72.46</td>
<td>ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac Output:</td>
<td>5.41</td>
<td>L/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of valve cycle:</td>
<td>0.80</td>
<td>sec.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Flow Phase:</td>
<td>0.49</td>
<td>sec.</td>
<td>61.11%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured Flow (L/m):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS:</td>
<td>12.97</td>
<td>L/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean:</td>
<td>8.76</td>
<td>L/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak:</td>
<td>16.62</td>
<td>L/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured Pressures (mm Hg):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean:</td>
<td>5.60</td>
<td>mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Pressure:</td>
<td>14.97</td>
<td>mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure at max flow:</td>
<td>14.45</td>
<td>mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closing Volume:</td>
<td>4.21</td>
<td>ml, 5.81%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage Volume:</td>
<td>2.80</td>
<td>ml, 3.87%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regurgitant Fraction:</td>
<td>9.68%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective Orifice Area (sq cm.):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak:</td>
<td>2.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean:</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS:</td>
<td>1.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge Coefficient:</td>
<td>0.696</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance Index:</td>
<td>0.426</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency Index:</td>
<td>0.385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SHELHIGH Inc. Millburn, NJ 07041
SHELHIGH Pulse Duplicator System

Test No. 74
Valve Type: SHELHIGH
Serial No. 4026
Valve size: 23 mm
Mitral Position

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 86.71 bpm
- Stroke Volume: 74.90 ml
- Cardiac Output: 6.49 L/m
- Duration of valve cycle: 0.69 sec.
- Forward Flow Phase: 0.43 sec. 61.90%

Measured Flow (L/m):
- RMS: 15.42 L/m
- Mean: 10.37 L/m
- Peak: 18.89 L/m

Measured Pressures (mm Hg):
- Mean: 6.85 mm Hg
- Peak Pressure: 16.62 mm Hg
- Pressure at max flow: 15.27 mm Hg

Valve Parameters
- Closing Volume: 3.22 ml, 4.30%
- Leakage Volume: 2.79 ml, 3.72%
- Regurgitant Fraction: 8.02%

Effective Orifice Area (sq cm.):
- Peak: 2.33
- Mean: 1.28
- RMS: 1.90

- Discharge Coefficient: 0.748
- Performance Index: 0.458
- Efficiency Index: 0.421
<table>
<thead>
<tr>
<th>Test No.</th>
<th>75</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>4025</th>
<th>Valve Size:</th>
<th>23 mm</th>
<th>Mitral Position:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Parameters:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart Rate:</td>
<td>92.59</td>
<td>bpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke Volume:</td>
<td>77.27</td>
<td>ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac Output:</td>
<td>7.15</td>
<td>L/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of valve cycle:</td>
<td>0.65</td>
<td>sec.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Flow Phase:</td>
<td>0.41</td>
<td>sec.</td>
<td>63.52%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured Flow (L/m):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS:</td>
<td>16.32</td>
<td>L/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean:</td>
<td>11.12</td>
<td>L/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak:</td>
<td>20.22</td>
<td>L/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured Pressures (mm Hg):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean:</td>
<td>6.88</td>
<td>mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Pressure:</td>
<td>16.67</td>
<td>mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure at max flow:</td>
<td>14.82</td>
<td>mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve Parameters:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closing Volume:</td>
<td>3.74</td>
<td>ml, 4.84%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage Volume:</td>
<td>2.49</td>
<td>ml, 3.22%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regurgitant Fraction:</td>
<td>8.06</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective Orifice Area (sq cm.):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak:</td>
<td>2.49</td>
<td></td>
<td>Discharge Coefficient:</td>
<td>0.789</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean:</td>
<td>1.37</td>
<td></td>
<td>Performance Index:</td>
<td>0.483</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS:</td>
<td>2.01</td>
<td></td>
<td>Efficiency Index:</td>
<td>0.444</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test No. 76 Valve Type: SHELHIGH Serial No. 4026 Valve size: 23 mm Mitral Position
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 101.35 bpm
- Stroke Volume: 77.16 ml
- Cardiac Output: 7.82 L/m
- Duration of valve cycle: 0.59 sec.
- Forward Flow Phase: 0.40 sec. 67.12%

Measured Flow (L/m):
- RMS: 16.66 L/m
- Mean: 11.50 L/m
- Peak: 22.40 L/m

Measured Pressures (mm Hg):
- Mean: 6.42 mm Hg
- Peak Pressure: 16.02 mm Hg
- Pressure at max flow: 12.62 mm Hg

Valve Parameters
- Closing Volume: 3.14 ml, 4.07%
- Leakage Volume: 3.09 ml, 4.00%
- Regurgitant Fraction: 8.07%

Effective Orifice Area (sq cm.):
- Peak: 2.86
- Mean: 1.47
- RMS: 2.12

Discharge Coefficient: 0.834
Performance Index: 0.511
Efficiency Index: 0.470
Test No. 77 Valve Type: SHELHIGH Serial No. 4026 Valve size: 23 mm Mitral Position

System Parameters:

- Heart Rate: 113.64 bpm
- Stroke Volume: 76.87 ml
- Cardiac Output: 8.74 L/m
- Duration of valve cycle: 0.53 sec.
- Forward Flow Phase: 0.36 sec. 68.70 %

Measured Flow (L/m):

- RMS: 18.19 L/m
- Mean: 12.53 L/m
- Peak: 25.08 L/m

Measured Pressures (mm Hg):

- Mean: 6.76 mm Hg
- Peak Pressure: 16.20 mm Hg
- Pressure at max flow: 11.77 mm Hg

Valve Parameters

- Closing Volume: 3.90 ml, 5.08 %
- Leakage Volume: 1.08 ml, 1.41 %
- Regurgitant Fraction: 6.48 %

Effective Orifice Area (sq cm.):

- Peak: 3.12
- Mean: 1.56
- RMS: 2.26

Discharge Coefficient: 0.888
Performance Index: 0.544
Efficiency Index: 0.509
SHELHIGH Pulse Duplicator System

Test No. 78
Valve Type: SHELHIGH
Serial No. 4026
Valve Size: 23 mm
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 122.95 bpm
- Stroke Volume: 79.82 ml
- Cardiac Output: 9.81 L/m
- Duration of valve cycle: 0.49 sec.
- Forward Flow Phase: 0.34 sec. 69.17%

Measured Flow (L/m):
- RMS: 19.88 L/m
- Mean: 13.95 L/m
- Peak: 25.92 L/m

Measured Pressures (mm Hg):
- Mean: 8.05 mm Hg
- Peak Pressure: 17.55 mm Hg
- Pressure at max flow: 11.10 mm Hg

Valve Parameters:
- Closing Volume: 2.34 ml, 2.93%
- Leakage Volume: 2.25 ml, 2.82%
- Regurgitant Fraction: 5.76%

Effective Orifice Area (sq cm.):
- Peak: 2.95
- Mean: 1.59
- RMS: 2.26

Discharge Coefficient: 0.889
Performance Index: 0.545
Efficiency Index: 0.513

Pressure and Flow

Flow Rate

Pressure Gradient
Test No. 86
Valve Type: SHELHIGH
Serial No. 4022
Valve size: 23 mm
Mitral Position:
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 60.48 bpm
- Stroke Volume: 73.98 ml
- Cardiac Output: 4.47 L/m
- Duration of valve cycle: 0.99 sec.
- Forward Flow Phase: 0.61 sec. 61.60 %

Measured Flow (L/m):
- RMS: 10.49 L/m
- Mean: 7.21 L/m
- Peak: 13.22 L/m

Measured Pressures (mm Hg):
- Mean: 4.63 mm Hg
- Peak Pressure: 13.57 mm Hg
- Pressure at max flow: 13.40 mm Hg

Valve Parameters
- Closing Volume: 3.65 ml, 4.95 %
- Leakage Volume: 2.17 ml, 2.93 %
- Regurgitant Fraction: 7.88 %

Effective Orifice Area (sq cm.):
- Peak: 1.98
- Mean: 1.08
- RMS: 1.57

Discharge Coefficient: 0.618
Performance Index: 0.379
Efficiency Index: 0.349
SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>87</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>4022</th>
<th>Valve size:</th>
<th>23 mm</th>
<th>Operator:</th>
<th>E. Sean Parker</th>
</tr>
</thead>
</table>

System Parameters:
- Heart Rate: 71.43 bpm
- Stroke Volume: 77.75 ml
- Cardiac Output: 5.55 L/m
- Duration of valve cycle: 0.84 sec.
- Forward Flow Phase: 0.54 sec, 63.78%

Measured Flow (L/m):
- RMS: 12.36 L/m
- Mean: 8.63 L/m
- Peak: 16.01 L/m

Measured Pressures (mm Hg):
- Mean: 5.79 mm Hg
- Peak Pressure: 15.30 mm Hg
- Pressure at max flow: 15.02 mm Hg

Valve Parameters
- Closing Volume: 4.32 ml, 5.56%
- Leakage Volume: 2.01 ml, 2.58%
- Regurgitant Fraction: 8.14%

Effective Orifice Area (sq cm.):
- Peak: 2.15
- Mean: 1.16
- RMS: 1.66

Discharge Coefficient: 0.652
Performance Index: 0.399
Efficiency Index: 0.367

Pressure and Flow

Flow Rate

Pressure Gradient
SHELHIGH Inc. Millburn, NJ 07041

** SHELHIGH Pulse Duplicator System **

Test No. 88
Valve Type: SHELHIGH
Serial No. 4022
Valve size: 23 mm
Mitrall Position:
Operator: E. Sean Parker

System Parameters:
Heart Rate: 84.75 bpm
Stroke Volume: 77.41 ml
Cardiac Output: 6.56 L/m
Duration of valve cycle: 0.71 sec.
Forward Flow Phase: 0.45 sec. 63.16%

Measured Flow (L/m):
RMS: 14.96 L/m
Mean: 10.27 L/m
Peak: 19.49 L/m

Measured Pressures (mm Hg):
Mean: 6.51 mm Hg
Peak Pressure: 16.82 mm Hg
Pressure at max flow: 16.00 mm Hg

Valve Parameters
Closing Volume: 4.20 ml, 5.42%
Leakage Volume: 1.35 ml, 1.74%
Regurgitant Fraction: 7.17%
Effective Orifice Area (sq cm.):
Peak: 2.47
Mean: 1.30
RMS: 1.89

Discharge Coefficient: 0.744
Performance Index: 0.455
Efficiency Index: 0.423
SHELHIGH Inc. Millburn, NJ 07041

* * SHELHIGH Pulse Duplicator System * *

Test No. 89
Valve Type: **SHELHIGH**
Serial No. **4022**
Valve size: **23 mm**
Operator: **E. Sean Parker**

System Parameters:

- **Heart Rate:** 95.77 bpm
- **Stroke Volume:** 78.98 ml
- **Cardiac Output:** 7.64 L/m
- **Duration of valve cycle:** 0.62 sec.
- **Forward Flow Phase:** 0.41 sec. 65.56 %

Measured Flow (L/m):

- **RMS:** 16.48 L/m
- **Mean:** 11.51 L/m
- **Peak:** 21.62 L/m

Measured Pressures (mm Hg):

- **Mean:** 7.75 mm Hg
- **Peak Pressure:** 18.12 mm Hg
- **Pressure at max flow:** 14.80 mm Hg

Valve Parameters

- **Closing Volume:** 4.94 ml, 6.25 %
- **Leakage Volume:** 1.89 ml, 2.39 %
- **Regurgitant Fraction:** 8.65 %

Effective Orifice Area (sq cm.):

- **Peak:** 2.51
- **Mean:** 1.34
- **RMS:** 1.91

- **Discharge Coefficient:** 0.751
- **Performance Index:** 0.460
- **Efficiency Index:** 0.420

Graphs:

- **Pressure and Flow**
- **Flow Rate**
- **Pressure Gradient**
SHELHIGH Inc. Millburn, NJ 07041

* * SHELHIGH Pulse Duplicator System * *

<table>
<thead>
<tr>
<th>Test No.</th>
<th>90</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>4022</th>
<th>Valve size:</th>
<th>23 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
</table>

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 107.14 bpm
- Stroke Volume: 78.40 ml
- Cardiac Output: 8.40 L/m
- Duration of valve cycle: 0.56 sec.
- Forward Flow Phase: 0.38 sec. 67.88 %

Measured Flow (L/m):
- RMS: 17.56 L/m
- Mean: 12.20 L/m
- Peak: 23.95 L/m

Measured Pressures (mm Hg):
- Mean: 7.90 mm Hg
- Peak Pressure: 18.15 mm Hg
- Pressure at max flow: 14.05 mm Hg

Valve Parameters:
- Closing Volume: 3.96 ml, 5.05 %
- Leakage Volume: 1.65 ml, 2.10 %
- Regurgitant Fraction: 7.15 %

Effective Orifice Area (sq cm.):
- Peak: 2.75
- Mean: 1.40
- RMS: 2.02

Discharge Coefficient: 0.793
Performance Index: 0.485
Efficiency Index: 0.451

[Pressure and Flow graph]
[Flow Rate graph]
[Pressure Gradient graph]
SHELHIGH Pulse Duplicator System

Test No.: 91
Valve Type: SHELHIGH
Serial No.: 4022
Valve size: 23 mm
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 111.11 bpm
- Stroke Volume: 79.47 ml
- Cardiac Output: 8.83 L/min
- Duration of valve cycle: 0.54 sec.
- Forward Flow Phase: 0.37 sec. 68.94%

Measured Flow (L/min):
- RMS: 18.03 L/min
- Mean: 12.62 L/min
- Peak: 24.90 L/min

Measured Pressures (mm Hg):
- Mean: 7.72 mm Hg
- Peak Pressure: 17.80 mm Hg
- Pressure at max flow: 13.95 mm Hg

Valve Parameters:
- Closing Volume: 4.38 ml, 5.51%
- Leakage Volume: 0.96 ml, 1.21%
- Regurgitant Fraction: 6.73%

Effective Orifice Area (sq cm.):
- Peak: 2.90
- Mean: 1.47
- RMS: 2.10

Discharge Coefficient: 0.823
Performance Index: 0.504
Efficiency Index: 0.470

![Graphs of Pressure and Flow, Flow Rate, and Pressure Gradient](image-url)
SHELHIGH Inc. Millburn, NJ 07041
SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>92</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>4022</th>
<th>Valve size:</th>
<th>23 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:
Heart Rate: 119.05 bpm
Stroke Volume: 79.52 ml
Cardiac Output: 9.47 L/m
Duration of valve cycle: 0.50 sec.
Forward Flow Phase: 0.35 sec. 69.35 %

Measured Flow (L/m):
RMS: 19.15 L/m
Mean: 13.44 L/m
Peak: 25.94 L/m

Measured Pressures (mm Hg):
Mean: 8.14 mm Hg
Peak Pressure: 18.12 mm Hg
Pressure at max flow: 13.62 mm Hg

Valve Parameters
Closing Volume: 2.49 ml, 3.13 %
Leakage Volume: 2.21 ml, 2.78 %
Regurgitant Fraction: 5.92 %

Effective Orifice Area (sq cm.):
Peak: 2.94
Mean: 1.52
RMS: 2.17
Discharge Coefficient: 0.851
Performance Index: 0.521
Efficiency Index: 0.490
SHELHIGH Pulse Duplicator System

Test No. 12
Valve Type: SHELHIGH
Serial No. 3494
Valve size: 25 mm
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 65.50 bpm
- Stroke Volume: 76.83 ml
- Cardiac Output: 5.03 L/m
- Duration of valve cycle: 0.92 sec.
- Forward Flow Phase: 0.60 sec. 65.28 %

Measured Flow (L/m):
- RMS: 11.09 L/m
- Mean: 7.64 L/m
- Peak: 15.66 L/m

Measured Pressures (mm Hg):
- Mean: 3.18 mm Hg
- Peak Pressure: 11.92 mm Hg
- Pressure at max flow: 11.92 mm Hg

Valve Parameters
- Closing Volume: 1.93 ml, 2.51 %
- Leakage Volume: 1.87 ml, 2.43 %
- Regurgitant Fraction: 4.94 %

Effective Orifice Area (sq cm.):
- Peak: 2.84
- Mean: 1.38
- RMS: 2.01

Discharge Coefficient: 0.639
Performance Index: 0.409
Efficiency Index: 0.389
SHELHIGH Pulse Duplicator System

Test No. 11
Valve Type: SHELHIGH
Serial No. 3494
Valve size: 25 mm
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 72.12 bpm
- Stroke Volume: 76.25 ml
- Cardiac Output: 5.50 L/m
- Duration of valve cycle: 0.83 sec.
- Forward Flow Phase: 0.52 sec. 62.31%

Measured Flow (L/m):
- RMS: 13.01 L/m
- Mean: 8.74 L/m
- Peak: 17.36 L/m

Measured Pressures (mm Hg):
- Mean: 5.18 mm Hg
- Peak Pressure: 14.70 mm Hg
- Pressure at max flow: 14.70 mm Hg

Valve Parameters:
- Closing Volume: 3.79 ml, 4.97%
- Leakage Volume: 1.58 ml, 2.08%
- Regurgitant Fraction: 7.05%

Effective Orifice Area (sq cm.):
- Peak: 2.46
- Mean: 1.24
- RMS: 1.85
- Discharge Coefficient: 0.587
- Performance Index: 0.376
- Efficiency Index: 0.349

![Flow and Pressure Diagrams]
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

Test No. 9
Valve Type: SHELHIGH
Serial No. 3494
Valve size: 25 mm
Operator: E. Sean Parker
Position: Mitral

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate</td>
<td>81.08 bpm</td>
</tr>
<tr>
<td>Stroke Volume</td>
<td>76.08 ml</td>
</tr>
<tr>
<td>Cardiac Output</td>
<td>6.17 L/m</td>
</tr>
<tr>
<td>Duration of valve cycle</td>
<td>0.74 sec.</td>
</tr>
<tr>
<td>Forward Flow Phase</td>
<td>0.46 sec. 61.88 %</td>
</tr>
</tbody>
</table>
| Measured Flow (L/m) | RMS: 14.86 L/m
Mean: 9.85 L/m
Peak: 19.36 L/m |
| Measured Pressures (mm Hg) | Mean: 4.58 mm Hg
Peak Pressure: 13.42 mm Hg
Pressure at max flow: 13.35 mm Hg |
| Valve Parameters | Closing Volume: 3.09 ml, 4.06 %
Leakage Volume: 3.18 ml, 4.18 %
Regurgitant Fraction: 8.24 % |
| Effective Orifice Area (sq cm.) | Peak: 2.92
Mean: 1.49
RMS: 2.24
Discharge Coefficient: 0.713
Performance Index: 0.457
Efficiency Index: 0.419 |

![Pressure and Flow](image1)

![Flow Rate](image2)

![Pressure Gradient](image3)
SHELHIGH Inc. Millburn, NJ 07041
**SHELHIGH Pulse Duplicator System **

<table>
<thead>
<tr>
<th>Test No.</th>
<th>10</th>
<th>Valve Type: SHELHIGH</th>
<th>Serial No.</th>
<th>3494</th>
<th>Valve size: 25 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 96.15 bpm
- Stroke Volume: 81.03 ml
- Cardiac Output: 7.79 L/m
- Duration of valve cycle: 0.62 sec.
- Forward Flow Phase: 0.41 sec. 66.01 %

Measured Flow (L/m):
- RMS: 16.83 L/m
- Mean: 11.65 L/m
- Peak: 21.93 L/m

Measured Pressures (mm Hg):
- Mean: 5.13 mm Hg
- Peak Pressure: 14.05 mm Hg
- Pressure at max flow: 11.82 mm Hg

Valve Parameters
- Closing Volume: 2.74 ml, 3.39 %
- Leakage Volume: 3.40 ml, 4.20 %
- Regurgitant Fraction: 7.59 %

Effective Orifice Area (sq cm.):
- Peak: 3.13
- Mean: 1.66
- RMS: 2.40

| Discharge Coefficient: 0.764 |
| Performance Index: 0.489 |
| Efficiency Index: 0.452 |

![Pressure and Flow](image1)
![Flow Rate](image2)
![Pressure Gradient](image3)
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Valve Type: SHELHIGH</th>
<th>Serial No.</th>
<th>Valve size: 25 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>E. Sean Parker</td>
<td>3494</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:

- Heart Rate: 101.35 bpm
- Stroke Volume: 78.73 ml
- Cardiac Output: 7.98 L/m
- Duration of valve cycle: 0.59 sec.
- Forward Flow Phase: 0.40 sec. 67.11%

Measured Flow (L/m):

- RMS: 16.84 L/m
- Mean: 11.73 L/m
- Peak: 22.17 L/m

Measured Pressures (mm Hg):

- Mean: 6.74 mm Hg
- Peak Pressure: 16.80 mm Hg
- Pressure at max flow: 15.27 mm Hg

Valve Parameters

- Closing Volume: 2.54 ml, 3.23%
- Leakage Volume: 3.89 ml, 4.95%
- Regurgitant Fraction: 8.17%

Effective Orifice Area (sq cm.):

- Peak: 2.76
- Mean: 1.46
- RMS: 2.10

- Discharge Coefficient: 0.667
- Performance Index: 0.427
- Efficiency Index: 0.392
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Type:</td>
<td>SHELHIGH</td>
</tr>
<tr>
<td>Serial No.</td>
<td>3494</td>
</tr>
<tr>
<td>Valve size:</td>
<td>25 mm</td>
</tr>
<tr>
<td>Mitral Position:</td>
<td>Mitral</td>
</tr>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
</tr>
<tr>
<td>Heart Rate:</td>
<td>112.78 bpm</td>
</tr>
<tr>
<td>Stroke Volume:</td>
<td>79.66 ml</td>
</tr>
<tr>
<td>Cardiac Output:</td>
<td>8.98 L/min</td>
</tr>
<tr>
<td>Duration of valve cycle:</td>
<td>0.53 sec.</td>
</tr>
<tr>
<td>Forward Flow Phase:</td>
<td>0.36 sec. 68.18%</td>
</tr>
<tr>
<td>RMS:</td>
<td>18.74 L/min</td>
</tr>
<tr>
<td>Mean:</td>
<td>12.98 L/min</td>
</tr>
<tr>
<td>Peak:</td>
<td>25.56 L/min</td>
</tr>
<tr>
<td>Mean:</td>
<td>5.85 mm Hg</td>
</tr>
<tr>
<td>Peak Pressure:</td>
<td>14.97 mm Hg</td>
</tr>
<tr>
<td>Pressure at max flow:</td>
<td>10.52 mm Hg</td>
</tr>
<tr>
<td>Closing Volume:</td>
<td>3.56 ml, 4.47%</td>
</tr>
<tr>
<td>Leakage Volume:</td>
<td>2.29 ml, 2.88%</td>
</tr>
<tr>
<td>Regurgitant Fraction:</td>
<td>7.35%</td>
</tr>
<tr>
<td>Peak:</td>
<td>3.41</td>
</tr>
<tr>
<td>Mean:</td>
<td>1.73</td>
</tr>
<tr>
<td>RMS:</td>
<td>2.50</td>
</tr>
</tbody>
</table>

Discharge Coefficient: 0.796
Performance Index: 0.509
Efficiency Index: 0.472
SHELHIGH Inc. Millburn, NJ 07041
** SHELHIGH Pulse Duplicator System **

Test No. 15 Valve Type: SHELHIGH Serial No. 3494 Valve size: 25 mm Mitral Position
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 118.11 bpm
- Stroke Volume: 79.43 ml
- Cardiac Output: 9.38 L/m
- Duration of valve cycle: 0.51 sec.
- Forward Flow Phase: 0.35 sec. 68.50%

Measured Flow (L/m):
- RMS: 19.44 L/m
- Mean: 13.48 L/m
- Peak: 25.99 L/m

Measured Pressures (mm Hg):
- Mean: 6.38 mm Hg
- Peak Pressure: 15.62 mm Hg
- Pressure at max flow: 9.40 mm Hg

Valve Parameters
- Closing Volume: 2.73 ml, 3.44%
- Leakage Volume: 2.85 ml, 3.59%
- Regurgitant Fraction: 7.02%

Effective Orifice Area (sq cm.):
- Peak: 3.32
- Mean: 1.72
- RMS: 2.49

Discharge Coefficient: 0.791
Performance Index: 0.506
Efficiency Index: 0.471
Test No.: 44
Valve Type: SHELHIGH
Serial No.: 2264
Valve size: 25 mm
Position: Mitral

Operator: E. Sean Parker

System Parameters:
- **Heart Rate:** 64.10 bpm
- **Stroke Volume:** 74.30 ml
- **Cardiac Output:** 4.76 L/m
- **Duration of valve cycle:** 0.94 sec.
- **Forward Flow Phase:** 0.58 sec., 62.11%

Measured Flow (L/m):
- RMS: 11.16 L/m
- Mean: 7.60 L/m
- Peak: 14.03 L/m

Measured Pressures (mm Hg):
- Mean: 7.16 mm Hg
- Peak Pressure: 16.27 mm Hg
- Pressure at max flow: 16.27 mm Hg

Valve Parameters:
- **Closing Volume:** 4.30 ml, 5.79%
- **Leakage Volume:** 1.84 ml, 2.48%
- **Regurgitant Fraction:** 8.27%

Effective Orifice Area (sq cm.):
- Peak: 1.69
- Mean: 0.92
- RMS: 1.35

Performance Index: 0.274
Efficiency Index: 0.252
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Valve Type</th>
<th>Serial No.</th>
<th>Valve size</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>SHELHIGH</td>
<td>2264</td>
<td>25 mm</td>
<td>E. Sean Parker</td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 78.13 bpm
- Stroke Volume: 73.25 ml
- Cardiac Output: 5.72 L/m
- Duration of valve cycle: 0.77 sec.
- Forward Flow Phase: 0.47 sec. 61.17 %

Measured Flow (L/m):
- RMS: 13.94 L/m
- Mean: 9.26 L/m
- Peak: 18.37 L/m

Measured Pressures (mm Hg):
- Mean: 5.37 mm Hg
- Peak Pressure: 15.30 mm Hg
- Pressure at max flow: 15.15 mm Hg

Valve Parameters
- Closing Volume: 5.61 ml, 7.66 %
- Leakage Volume: 1.69 ml, 2.31 %
- Regurgitant Fraction: 9.97 %

Effective Orifice Area (sq cm.):
- Peak: 2.56
- Mean: 1.29
- RMS: 1.94
- Discharge Coefficient: 0.618
- Performance Index: 0.395
- Efficiency Index: 0.356
Test No. 46
Valve Type: SHELHIGH
Serial No.: 2264
Valve size: 25 mm
Operator: E. Sean Parker

System Parameters:
- **Heart Rate:** 82.42 bpm
- **Stroke Volume:** 73.59 ml
- **Cardiac Output:** 6.07 L/min
- **Duration of valve cycle:** 0.73 sec.
- **Forward Flow Phase:** 0.44 sec. 60.89%

Measured Flow (L/min):
- **RMS:** 14.82 L/min
- **Mean:** 9.85 L/min
- **Peak:** 18.96 L/min

Measured Pressures (mm Hg):
- **Mean:** 8.25 mm Hg
- **Peak Pressure:** 19.02 mm Hg
- **Pressure at max flow:** 18.80 mm Hg

Valve Parameters
- **Closing Volume:** 4.76 ml, 6.47%
- **Leakage Volume:** 1.91 ml, 2.59%
- **Regurgitant Fraction:** 9.07%

Effective Orifice Area (sq cm.):
- **Peak:** 2.13
- **Mean:** 1.11
- **RMS:** 1.67

Discharge Coefficient: 0.530
Performance Index: 0.339
Efficiency Index: 0.309

![Pressure and Flow Chart](chart1.png)

![Flow Rate Chart](chart2.png)

![Pressure Gradient Chart](chart3.png)
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

Test No. 45 Valve Type: SHELHIGH Serial No. 2264 Valve size: 25 mm Mitral Position

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 91.46 bpm
- Stroke Volume: 74.98 ml
- Cardiac Output: 6.86 L/m
- Duration of valve cycle: 0.66 sec.
- Forward Flow Phase: 0.41 sec. 62.96%

Measured Flow (L/m):
- RMS: 15.99 L/m
- Mean: 10.76 L/m
- Peak: 20.46 L/m

Measured Pressures (mm Hg):
- Mean: 5.97 mm Hg
- Peak Pressure: 15.75 mm Hg
- Pressure at max flow: 14.70 mm Hg

Valve Parameters
- Closing Volume: 3.05 ml, 4.06%
- Leakage Volume: 4.04 ml, 5.39%
- Regurgitant Fraction: 9.45%

Effective Orifice Area (sq cm.):
- Peak: 2.70
- Mean: 1.42
- RMS: 2.11

Discharge Coefficient: 0.672
Performance Index: 0.430
Efficiency Index: 0.390

Pressure and Flow
Flow Rate
Pressure Gradient
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>48</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>2264</th>
<th>Valve size:</th>
<th>25 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 96.15 bpm
- Stroke Volume: 82.70 ml
- Cardiac Output: 7.95 L/m
- Duration of valve cycle: 0.62 sec.
- Forward Flow Phase: 0.42 sec. 66.67 %

Measured Flow (L/m):
- RMS: 16.95 L/m
- Mean: 11.77 L/m
- Peak: 22.46 L/m

Measured Pressures (mm Hg):
- Mean: 6.24 mm Hg
- Peak Pressure: 16.27 mm Hg
- Pressure at max flow: 11.72 mm Hg

Valve Parameters
- Closing Volume: 3.36 ml, 4.07 %
- Leakage Volume: 2.21 ml, 2.67 %
- Regurgitant Fraction: 6.74 %

Effective Orifice Area (sq cm.):
- Peak: 2.91
- Mean: 1.52
- RMS: 2.19

- Discharge Coefficient: 0.698
- Performance Index: 0.446
- Efficiency Index: 0.416

Pressure and Flow

Flow Rate

Pressure Gradient
SHELHIGH Inc. Millburn, NJ 07041
SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>49</th>
<th>Valve Type: SHELHIGH</th>
<th>Serial No.</th>
<th>2264</th>
<th>Valve size: 25 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 109.49 bpm
- Stroke Volume: 78.02 ml
- Cardiac Output: 8.54 L/m
- Duration of valve cycle: 0.55 sec.
- Forward Flow Phase: 0.37 sec. 67.65 %

Measured Flow (L/m):
- RMS: 18.08 L/m
- Mean: 12.45 L/m
- Peak: 24.79 L/m

Measured Pressures (mm Hg):
- Mean: 6.34 mm Hg
- Peak Pressure: 16.15 mm Hg
- Pressure at max flow: 10.95 mm Hg

Valve Parameters
- Closing Volume: 3.16 ml, 4.05 %
- Leakage Volume: 3.00 ml, 3.85 %
- Regurgitant Fraction: 7.90 %

Effective Orifice Area (sq cm.):
- Peak: 3.18
- Mean: 1.60
- RMS: 2.32

- **Pressure and Flow**
- **Flow Rate**
- **Pressure Gradient**

Discharge Coefficient: 0.738
Performance Index: 0.472
Efficiency Index: 0.435
SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>50</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>2264</th>
<th>Valve size:</th>
<th>25 mm</th>
<th>Position:</th>
<th>Mitral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>E. Sean Parker</td>
<td>System Parameters:</td>
<td>Heart Rate: 119.05 bpm</td>
<td>Stroke Volume: 79.00 ml</td>
<td>Cardiac Output: 9.40 L/m</td>
<td>Duration of valve cycle: 0.50 sec.</td>
<td>Forward Flow Phase: 0.35 sec, 68.80%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured Flow (L/m):</td>
<td>RMS: 19.39 L/m, Mean: 13.45 L/m, Peak: 25.94 L/m</td>
<td>Measured Pressures (mm Hg):</td>
<td>Mean: 6.91 mm Hg, Peak Pressure: 16.55 mm Hg, Pressure at max flow: 9.65 mm Hg</td>
<td>Valve Parameters</td>
<td>Closing Volume: 2.76 ml, 3.50%</td>
<td>Leakage Volume: 2.39 ml, 3.02%</td>
<td>Regurgitant Fraction: 6.52%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective Orifice Area (sq cm.):</td>
<td>Peak: 3.19, Mean: 1.65, RMS: 2.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>65</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>3953</th>
<th>Valve size:</th>
<th>25 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Parameters:</td>
<td></td>
<td>Heart Rate:</td>
<td>64.66 bpm</td>
<td></td>
<td>Stroke Volume:</td>
<td>73.45 ml</td>
<td></td>
<td>Cardiac Output:</td>
</tr>
<tr>
<td>Measured Flow (L/m):</td>
<td>RMS:</td>
<td>11.55 L/m</td>
<td></td>
<td>Mean:</td>
<td>7.77 L/m</td>
<td></td>
<td>Peak:</td>
<td>14.83 L/m</td>
</tr>
<tr>
<td>Measured Pressures (mm Hg):</td>
<td>Mean:</td>
<td>3.90 mm Hg</td>
<td></td>
<td>Peak Pressure:</td>
<td>12.90 mm Hg</td>
<td></td>
<td>Pressure at max flow:</td>
<td>12.87 mm Hg</td>
</tr>
<tr>
<td>Valve Parameters</td>
<td>Closing Volume:</td>
<td>5.19 ml, 7.07%</td>
<td></td>
<td>Leakage Volume:</td>
<td>2.97 ml, 4.04%</td>
<td></td>
<td>Regurgitant Fraction:</td>
<td>11.11%</td>
</tr>
<tr>
<td>Effective Orifice Area (sq cm.):</td>
<td>Peak:</td>
<td>2.43</td>
<td></td>
<td>Discharge Coefficient:</td>
<td>0.601</td>
<td></td>
<td>Mean:</td>
<td>1.27</td>
</tr>
</tbody>
</table>

![Pressure and Flow](image1)

![Flow Rate](image2)

![Pressure Gradient](image3)
Test No.	66	Valve Type: SHELHIGH	Serial No.	3953	Valve size: 25 mm	Mitral Position
Operator: | E. Sean Parker

System Parameters:
- Heart Rate: 76.53 bpm
- Stroke Volume: 76.78 ml
- Cardiac Output: 5.88 L/m
- Duration of valve cycle: 0.78 sec.
- Forward Flow Phase: 0.49 sec. 62.83%

Measured Flow (L/m):
- RMS: 13.83 L/m
- Mean: 9.26 L/m
- Peak: 18.69 L/m

Measured Pressures (mm Hg):
- Mean: 4.48 mm Hg
- Peak Pressure: 13.85 mm Hg
- Pressure at max flow: 13.72 mm Hg

Valve Parameters
- Closing Volume: 4.01 ml, 5.23%
- Leakage Volume: 3.69 ml, 4.80%
- Regurgitant Fraction: 10.03%

Effective Orifice Area (sq cm.):
- Peak: 2.85
- Mean: 1.41
- RMS: 2.11

Pressure and Flow

Flow Rate

Pressure Gradient
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>67</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>3953</th>
<th>Valve size:</th>
<th>25 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 84.27 bpm
- Stroke Volume: 74.38 ml
- Cardiac Output: 6.27 L/m
- Duration of valve cycle: 0.71 sec.
- Forward Flow Phase: 0.43 sec. 60.23%

Measured Flow (L/m):
- RMS: 15.57 L/m
- Mean: 10.29 L/m
- Peak: 19.71 L/m

Measured Pressures (mm Hg):
- Mean: 5.25 mm Hg
- Peak Pressure: 14.47 mm Hg
- Pressure at max flow: 13.97 mm Hg

Valve Parameters
- Closing Volume: 3.10 ml, 4.17%
- Leakage Volume: 4.13 ml, 5.55%
- Regurgitant Fraction: 9.72%

Effective Orifice Area (sq cm.):
- Peak: 2.78
- Mean: 1.45
- RMS: 2.19

Graphs:
- Pressure and Flow
- Flow Rate
- Pressure Gradient
SHELHIGH Pulse Duplicator System

Test No. 68
- **Valve Type:** SHELHIGH
- **Serial No.:** 3953
- **Valve size:** 25 mm
- **Operator:** E. Sean Parker

System Parameters:
- **Heart Rate:** 90.91 bpm
- **Stroke Volume:** 78.16 ml
- **Cardiac Output:** 7.11 l/min
- **Duration of valve cycle:** 0.66 sec.
- **Forward Flow Phase:** 0.41 sec. 62.20%

Measured Flow (L/m):
- **RMS:** 16.61 L/m
- **Mean:** 11.29 L/m
- **Peak:** 20.62 L/m

Measured Pressures (mm Hg):
- **Mean:** 5.23 mm Hg
- **Peak Pressure:** 14.25 mm Hg
- **Pressure at max flow:** 13.32 mm Hg

Valve Parameters
- **Closing Volume:** 3.53 ml, 4.51%
- **Leakage Volume:** 4.72 ml, 6.03%
- **Regurgitant Fraction:** 10.55%

Effective Orifice Area (sq cm.):
- **Peak:** 2.91
- **Mean:** 1.59
- **RMS:** 2.35

Flow and Pressure Diagrams
- **Pressure and Flow**
- **Flow Rate**
- **Pressure Gradient**

Additional Performance Metrics:
- **Discharge Coefficient:** 0.746
- **Performance Index:** 0.478
- **Efficiency Index:** 0.427
SHELHIGH Inc. Millburn, NJ 07041

** SHELHIGH Pulse Duplicator System **

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Valve Type:</th>
<th>Serial No.</th>
<th>Valve size:</th>
<th>Operator:</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>SHELHIGH</td>
<td>3953</td>
<td>25 mm</td>
<td>E. Sean Parker</td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 100.00 bpm
- Stroke Volume: 80.23 ml
- Cardiac Output: 8.02 L/m
- Duration of valve cycle: 0.60 sec.
- Forward Flow Phase: 0.40 sec. 66.89 %

Measured Flow (L/m):
- RMS: 16.98 L/m
- Mean: 11.83 L/m
- Peak: 22.65 L/m

Measured Pressures (mm Hg):
- Mean: 5.50 mm Hg
- Peak Pressure: 14.82 mm Hg
- Pressure at max flow: 11.62 mm Hg

Valve Parameters
- Closing Volume: 3.28 ml, 4.09 %
- Leakage Volume: 3.86 ml, 4.81 %
- Regurgitant Fraction: 8.90 %

Effective Orifice Area (sq cm.):
- Peak: 3.12
- Mean: 1.63
- RMS: 2.34

Discharge Coefficient: 0.745
Performance Index: 0.477
Efficiency Index: 0.434

Pressure and Flow

Flow Rate

Pressure Gradient
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>70</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>3953</th>
<th>Valve size:</th>
<th>25 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:
- Heart Rate: 109.49 bpm
- Stroke Volume: 79.92 ml
- Cardiac Output: 8.75 L/m
- Duration of valve cycle: 0.55 sec.
- Forward Flow Phase: 0.37 sec.

Measured Flow (L/m):
- RMS: 18.11 L/m
- Mean: 12.61 L/m
- Peak: 24.58 L/m

Measured Pressures (mm Hg):
- Mean: 5.88 mm Hg
- Peak Pressure: 15.27 mm Hg
- Pressure at max flow: 8.52 mm Hg

Valve Parameters
- Closing Volume: 3.38 ml, 4.23 %
- Leakage Volume: 3.65 ml, 4.57 %
- Regurgitant Fraction: 8.80 %

Effective Orifice Area (sq cm.):
- Peak: 3.27
- Mean: 1.68
- RMS: 2.41

Graphs:
- Pressure and Flow
- Flow Rate
- Pressure Gradient
SHELHIGH Inc. Millburn, NJ 07041
* * SHELHIGH Pulse Duplicator System * *

<table>
<thead>
<tr>
<th>Test No.</th>
<th>71</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Type:</td>
<td>SHELHIGH</td>
</tr>
<tr>
<td>Serial No.</td>
<td>3953</td>
</tr>
<tr>
<td>Valve size:</td>
<td>25 mm</td>
</tr>
<tr>
<td>Position</td>
<td>Mitral</td>
</tr>
<tr>
<td>Operator:</td>
<td>E. Sean Parker</td>
</tr>
</tbody>
</table>

System Parameters:

- Heart Rate: 121.95 bpm
- Stroke Volume: 79.26 ml
- Cardiac Output: 9.67 L/m
- Duration of valve cycle: 0.49 sec.
- Forward Flow Phase: 0.34 sec. 68.85%

Measured Flow (L/m):

- RMS: 19.80 L/m
- Mean: 13.81 L/m
- Peak: 25.88 L/m

Measured Pressures (mm Hg):

- Mean: 6.66 mm Hg
- Peak Pressure: 15.87 mm Hg
- Pressure at max flow: 8.05 mm Hg

Valve Parameters

- Closing Volume: 3.13 ml, 3.95%
- Leakage Volume: 3.15 ml, 3.98%
- Regurgitant Fraction: 7.93%

Effective Orifice Area (sq cm.):

- Peak: 3.24
- Mean: 1.73
- RMS: 2.48

Graphs:

- Pressure and Flow
- Flow Rate
- Pressure Gradient
SHELHIGH Inc. Millburn, NJ 07041

* * SHELHIGH Pulse Duplicator System * *

<table>
<thead>
<tr>
<th>Test No.</th>
<th>79</th>
<th>Valve Type:</th>
<th>SHELHIGH</th>
<th>Serial No.</th>
<th>3955</th>
<th>Valve size:</th>
<th>25 mm</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator: E. Sean Parker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate</td>
<td>60.24 bpm</td>
</tr>
<tr>
<td>Stroke Volume</td>
<td>70.70 ml</td>
</tr>
<tr>
<td>Cardiac Output</td>
<td>4.26 L/m</td>
</tr>
<tr>
<td>Duration of valve cycle</td>
<td>1.00 sec.</td>
</tr>
<tr>
<td>Forward Flow Phase</td>
<td>0.59 sec. 58.96%</td>
</tr>
</tbody>
</table>

Measured Flow (L/m):

<table>
<thead>
<tr>
<th>Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS</td>
<td>10.79 L/m</td>
</tr>
<tr>
<td>Mean</td>
<td>7.17 L/m</td>
</tr>
<tr>
<td>Peak</td>
<td>13.58 L/m</td>
</tr>
</tbody>
</table>

Measured Pressures (mm Hg):

<table>
<thead>
<tr>
<th>Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.94 mm Hg</td>
</tr>
<tr>
<td>Peak Pressure</td>
<td>11.17 mm Hg</td>
</tr>
<tr>
<td>Pressure at max flow</td>
<td>11.10 mm Hg</td>
</tr>
</tbody>
</table>

Valve Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closing Volume</td>
<td>3.56 ml, 5.04%</td>
</tr>
<tr>
<td>Leakage Volume</td>
<td>3.61 ml, 5.10%</td>
</tr>
<tr>
<td>Regurgitant Fraction</td>
<td>10.14%</td>
</tr>
</tbody>
</table>

Effective Orifice Area (sq cm.):

<table>
<thead>
<tr>
<th>Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>2.56</td>
</tr>
<tr>
<td>Mean</td>
<td>1.35</td>
</tr>
<tr>
<td>RMS</td>
<td>2.03</td>
</tr>
</tbody>
</table>

Discharge Coefficient: 0.647
Performance Index: 0.414
Efficiency Index: 0.372

Pressure and Flow

Flow Rate

Pressure Gradient
SHELHIGH Inc. Millburn, NJ 07041
** SHELHIGH Pulse Duplicator System **

Test No. 80 Valve Type: SHELHIGH Serial No. 3955 Valve size: 25 mm Mitral Posit.
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 74.26 bpm
- Stroke Volume: 74.12 ml
- Cardiac Output: 5.50 L/m
- Duration of valve cycle: 0.81 sec.
- Forward Flow Phase: 0.48 sec. 60.00 %

Measured Flow (L/m):
- RMS: 13.69 L/m
- Mean: 9.08 L/m
- Peak: 17.73 L/m

Measured Pressures (mm Hg):
- Mean: 4.24 mm Hg
- Peak Pressure: 13.15 mm Hg
- Pressure at max flow: 12.87 mm Hg

Valve Parameters
- Closing Volume: 6.73 ml, 9.08 %
- Leakage Volume: 5.14 ml, 6.93 %
- Regurgitant Fraction: 16.02 %

Effective Orifice Area (sq cm.):
- Peak: 2.78
- Mean: 1.42
- RMS: 2.15

Discharge Coefficient: 0.683
Performance Index: 0.437
Efficiency Index: 0.367

Pressure and Flow
Flow Rate
Pressure Gradient
Test No. 81 Valve Type: **SHELHIGH** Serial No. 3955 Valve size: 25 mm Mitral Position

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 86.21 bpm
- Stroke Volume: 74.32 ml
- Cardiac Output: 6.41 L/m
- Duration of valve cycle: 0.70 sec.
- Forward Flow Phase: 0.40 sec. 58.05 %

Measured Flow (L/m):
- RMS: 16.56 L/m
- Mean: 10.91 L/m
- Peak: 20.17 L/m

Measured Pressures (mm Hg):
- Mean: 5.35 mm Hg
- Peak Pressure: 14.17 mm Hg
- Pressure at max flow: 13.57 mm Hg

Valve Parameters
- Closing Volume: 9.82 ml, 13.22 %
- Leakage Volume: 1.35 ml, 1.82 %
- Regurgitant Fraction: 15.03 %

Effective Orifice Area (sq cm.):
- Peak: 2.82
- Mean: 1.52
- RMS: 2.31

Discharge Coefficient: 0.736
Performance Index: 0.471
Efficiency Index: 0.400
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

Test No. 82
Valve Type: SHELHIGH
Serial No. 3955
Valve size: 25 mm
Mitral Position

Operator: E. Sean Parker

System Parameters:
- Heart Rate: 93.17 bpm
- Stroke Volume: 76.56 ml
- Cardiac Output: 7.13 L/m
- Duration of valve cycle: 0.64 sec.
- Forward Flow Phase: 0.39 sec., 60.49 %

Measured Flow (L/m):
- RMS: 17.19 L/m
- Mean: 11.65 L/m
- Peak: 20.93 L/m

Measured Pressures (mm Hg):
- Mean: 5.56 mm Hg
- Peak Pressure: 14.47 mm Hg
- Pressure at max flow: 13.12 mm Hg

Valve Parameters
- Closing Volume: 10.94 ml, 14.29 %
- Leakage Volume: 0.02 ml, 0.03 %
- Regurgitant Fraction: 14.32 %

Effective Orifice Area (sq cm.):
- Peak: 2.87
- Mean: 1.60
- RMS: 2.36

Discharge Coefficient: 0.750
Performance Index: 0.480
Efficiency Index: 0.411
** SHELHIGH Pulse Duplicator System **

Test No. 83 Valve Type: SHELHIGH Serial No. 3955 Valve size: 25 mm Mitral Position:
Operator: E. Sean Parker

System Parameters:
- Heart Rate: 97.40 bpm
- Stroke Volume: 79.60 ml
- Cardiac Output: 7.75 L/m
- Duration of valve cycle: 0.62 sec.
- Forward Flow Phase: 0.38 sec. 62.50 %

Measured Flow (L/m):
- RMS: 17.90 L/m
- Mean: 12.24 L/m
- Peak: 22.16 L/m

Measured Pressures (mm Hg):
- Mean: 5.72 mm Hg
- Peak Pressure: 14.75 mm Hg
- Pressure at max flow: 11.32 mm Hg

Valve Parameters
- Closing Volume: 5.30 ml, 6.66 %
- Leakage Volume: 5.50 ml, 6.91 %
- Regurgitant Fraction: 13.57 %

Effective Orifice Area (sq cm.):
- Peak: 2.99
- Mean: 1.65
- RMS: 2.42
- Discharge Coefficient: 0.769
- Performance Index: 0.492
- Efficiency Index: 0.425

![Pressure and Flow](image1.png)
![Flow Rate](image2.png)
![Pressure Gradient](image3.png)
SHELHIGH Inc. Millburn, NJ 07041

SHELHIGH Pulse Duplicator System

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Valve Type</th>
<th>Serial No.</th>
<th>Valve size</th>
<th>Mitral Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>SHELHIGH</td>
<td>3955</td>
<td>25 mm</td>
<td></td>
</tr>
</tbody>
</table>

Operator: E. Sean Parker

System Parameters:

- Heart Rate: 110.29 bpm
- Stroke Volume: 77.44 ml
- Cardiac Output: 8.54 L/m
- Duration of valve cycle: 0.54 sec.
- Forward Flow Phase: 0.35 sec. 63.97%

Measured Flow (L/m):

- RMS: 19.35 L/m
- Mean: 13.16 L/m
- Peak: 24.98 L/m

Measured Pressures (mm Hg):

- Mean: 6.54 mm Hg
- Peak Pressure: 15.72 mm Hg
- Pressure at max flow: 9.90 mm Hg

Valve Parameters

- Closing Volume: 9.15 ml, 11.82%
- Leakage Volume: 0.01 ml, 0.02%
- Regurgitant Fraction: 11.84%

Effective Orifice Area (sq cm.):

- Peak: 3.16
- Mean: 1.66
- RMS: 2.44

Graphs:

- Pressure and Flow
- Flow Rate
- Pressure Gradient
SHELHIGH Pulse Duplicator System

Test No.: 84
Operator: E. Sean Parker

Valve Type: SHELHIGH
Serial No.: 3955
Valve size: 25 mm
Mitral
Position

System Parameters:
- Heart Rate: 119.05 bpm
- Stroke Volume: 78.56 ml
- Cardiac Output: 9.35 L/m
- Duration of valve cycle: 0.50 sec.
- Forward Flow Phase: 0.33 sec. 65.35%

Measured Flow (L/m):
- RMS: 20.56 L/m
- Mean: 14.09 L/m
- Peak: 25.98 L/m

Measured Pressures (mm Hg):
- Mean: 9.65 mm Hg
- Peak Pressure: 19.87 mm Hg
- Pressure at max flow: 11.32 mm Hg

Valve Parameters
- Closing Volume: 4.82 ml, 6.14%
- Leakage Volume: 3.38 ml, 4.30%
- Regurgitant Fraction: 10.44%

Effective Orifice Area (sq cm.):
- Peak: 2.70
- Mean: 1.46
- RMS: 2.14

- Discharge Coefficient: 0.680
- Performance Index: 0.435
- Efficiency Index: 0.390
REFERENCES

