
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-1999

Recasting Cohn's many sorted logic into a constrained logic Recasting Cohn's many sorted logic into a constrained logic

Christopher Brendan Koelbl
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Koelbl, Christopher Brendan, "Recasting Cohn's many sorted logic into a constrained logic" (1999).
Theses. 856.
https://digitalcommons.njit.edu/theses/856

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F856&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F856&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/856?utm_source=digitalcommons.njit.edu%2Ftheses%2F856&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

RECASTING COHN'S MANY SORTED LOGIC INTO A CONSTRAINED LOGIC

by
Christopher Brendan Koelbl

The use of a many sorted logic for theorem proving carries many advantages

over a traditional unsorted logic. By placing restrictions on the search space, a

many sorted logic can significantly reduce the amount steps in the resolution

process. However, as a logic becomes more efficient, it increases in complexity.

One of these efficient logics is Cohn's Many Sorted Logic, LLAMA. It uses

complex data structures such as the sort lattice and sort arrays to maintain

information about the sorts. Recasting LLAMA into Bürckert's constrained logic

will keep the functionality of LLAMA while using a format that reduces the

complexity and maintains a more traditional resolution rule.

RECASTING COHN'S MANY SORTED LOGIC INTO A CONSTRAINED LOGIC

by
Christopher Brendan Koelbl

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

May 1999

APPROVAL PAGE

RECASTING COHN'S MANY SORTED LOGIC INTO A CONSTRAINED LOGIC

Christopher Brendan Koelbl

Dr. Richard B. Sheri, Thesis Advisor 	 Date
Assistant Professor of Computer Science, NJIT

Dr. Thomas Featheringham, Committee Member 	 Dale
Associate Professor of Computer Science, WIT

Dr. James McHugh, Committee Member 	 Date
Full Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Christopher Brendan Koelbl

Degree: 	 Master of Science in Computer Science

Date: 	 May 1999

Undergraduate and Graduate Education:

• Master of Science in Computer Science
New Jersey Institute of Technology, Newark, NJ, 1999

• Bachelor of Science in Computer Science
New Jersey Institute of Technology, Newark, NJ, 1999

Major: 	 Computer Science

For My Mother

TABLE OF CONTENTS

Chapter 	 Page

1.INTRODUCTION 	 1

2.GENERAL FRAMEWORK FOR SORTED DEDUCTION 	 3

2.1 Adaptation Of First Order Predicate Calculus 	 3

2.2 The Substitutional Framework 	 5

2.3 Limitations of the Framework 	 5

3.MORE EXPRESSIVE FORMULATION OF MANY SORTED LOGICS 	 8

3.1 Developing the Sort Lattice 	 8

3.2 Creating Sort Arrays 	 9

3.3 Many Sorted Inference Rules 	 13

3.4 Dealing with Characteristic Literals 	 15

4.RESOLUTION PRINCIPLE FOR CONSTRAINED LOGICS 	 16

4.1 RQ-Clauses 	 16

4.2 Constrained Resolution 	 19

5.RECASTING LLAMA INTO A CONSTRAINED LOGIC 	 22

5.1 Using Bürckert's Notation 	 22

5.2 Example: Schubert's Steamroller 	 22

5.3 Future Work: Optimization 	 31

6.CONCLUSIONS 	 43

7. REFERENCES 44

vi

LIST OF FIGURES

Chapter 	 Page

vii

CHAPTER 1

INTRODUCTION

Automated Reasoning is a field within Artificial Intelligence that develops

methods of proving theorems. Very rarely is this done in a natural language,

such as English. Usually the problem is translated into a specialized language,

referred to as a logic. There is ongoing research into faster, more efficient

methods of problem solving. One step that has made a significant improvement

in the deductive process has been breaking up the universe into smaller subsets,

called sorts. With this one small change, the number of possibilities for

resolution at each steps dramatically decreases over normal, unsorted resolution.

The advantage of sorted resolution doesn't come at much of a cost, as will be

shown in a review of Frisch's Substitutional Framework. With one small change

to the deduction rule, the benefits of a many sorted logic can be gained.

However, further optimization comes at a higher cost with greater complexity,

usually requiring special rules.

The objective of this thesis is to reconstruct Cohn's Many Sorted Logic,

LLAMA [2], utilizing a constrained logic that will provide the same expressiveness

and functionality as LLAMA, but uses a more understandable format.

An overview of Frisch's General Framework for Sorted Deduction [4] is

given as an example of a basic many sorted logic. The use of the word basic

does not imply an inherent lack of functionality or expressiveness but is used to

indicate that it has not been optimized for efficiency beyond its many sorted

1

2

nature. Frisch's substitutional framework provides a good start for understanding

how sorted deduction works.

Second, Cohn's logic, LLAMA, will be covered and compared to Frisch's

approach. The advantages of LLAMA will be discussed as well as the

consequences that come with the increased efficiency.

Next, Bürckert's constrained logic [11 is presented as an alternative to

sorted logics. Constraints, like sorts, provide an intuitive limitation on what a

variable can stand for. However, the algorithm by which clauses are resolved in

Bürckert's resolution principle provides a clearer explanation of why the clauses

can be resolved.

Finally a framework for recasting LLAMA to Bürckert's constrained logic

will be discussed. This system will be demonstrated with a brief example with

proofs in both LLAMA and the constrained logic alternative.

CHAPTER 2

GENERAL FRAMEWORK FOR SORTED DEDUCTION

The most common type of a sorted logic is one in which the sort information only

comes into play during the resolution of clauses. This provides a very distinct

split between the logic and the restrictions on the variables. An example of this

type of sorted logic is Frisch's Substitutional Framework [Frisch, 19911 For this

paper, only a brief overview of the logic will be discussed.

2.1 Adaptation of First Order Predicate Calculus

The name Substitutional Framework comes from the notion that sort information

only comes into play when making substitutions during unification. The language

Frisch uses is a modified version of First Order Predicate Calculus called Sorted

First Order Predicate Calculus (SFOPC). The only syntactic difference between

the two is that in SFOPC the variables are restricted to specified sorts. These

restricted variables lead to having two distinct pieces to SFOPC, which Frisch

calls A-sentences and S-sentences. A-sentences are like ordinary FOPC

sentences except that they can have their variables bounded by sorts. To

specify that a variable is sorted, the variable name is followed by a semicolon

and the sort to which it is bound, as in the case of x: CAT. For readability, Frisch

writes the sorts in capital letters. This notation will be continued throughout the

discussion of the Substitutional Framework. An example of a complete A-

sentence would be:

3

4

Another convention is to refrain from using the same name for two variables

ranging over different sorts. If one variable x is bounded by the sort CAT, there

should be no other variable x bound by anything other than CAT, as in the case

x: DOG. The advantage of this convention is the ability to remove the declaration

of the sorts from within the sentence and placed beside the universal quantifier.

The second piece to SFOPC is S-sentences, which are used for

declaring the relationships between the sorts. Although they are constructed

similarly to A-sentences, S-sentences contain sort symbols as predicates.

Examples of an S-sentence are:

CAT(molly) A BIRD(polly)

As is easily seen, S-sentences allow a definition of a sort hierarchy in which sorts

can be subsorts of another sort as well as defining specific instances in which a

term or terms is declared to be of a specific sort. The complete package of all S-

sentences in a representation is known as the sort module containing the sort

theory.

Therefore, a complete representation will contain both the sort

module and a set of A-sentences. A problem being represented in SFOPC does

not imply that the problem cannot be represented in FOPC. SFOPC is just a

specialized version of FOPC that is capable of using sorted resolution. Any A-

sentence can be converted to a sentence in FOPC.

5

2.2 The Substitutional Framework

The main idea behind the Substitutional Framework is not the language, but the

way in which it handles resolution. In this case, the deductive system is an

extension of unsorted deduction in which substitutions are required to be well-

sorted. The well-sortedness of a substitution is based upon the sort theory.

Frisch calls substitutions that are well-sorted with respect to the sort theory of the

step in the deductive system, the sort module is referenced to determine

in determining the unification of two sentences and is kept separate from the rest

of the deduction. With this approach, it is a simple matter to extend any unsorted

deduction method to work with this sorted deduction. The only thing that needs

to be changed is the unification algorithm so that it utilizes the sort module. This

is the heart of Frisch's Substitution Framework. The goal was to create a simple

sorted logic that could easily be applied to a variety of deduction methods without

the need to create special rules to insure completeness.

2.3 Limitations of the Framework

However, because of the generality of this framework, there are limitations.

These limitations generally cause the proof to require more steps than a more

complex, more specialized logic. Some of these, like the lack of polymorphic

formulae, do not effect the outcome of the proof. However, the restriction that

must entail atomic sentences, even if the information is already implicitly stated in

6

the sort theory, can limit effectiveness. An example given by Frisch is that of the

baby and the dog:

does not have any atomic sentences, making the ground instances of a empty

requires that if the sort theory has a disjunction of atomic formulas, it will also

contain just those atomic formulas. However, this would result in:

But this sort theory is too restrictive. It states that there is a baby with the name

Ralph as well as a dog with the name Ralph. This is just a limitation that will

have to be accepted when using Frisch's Substitutional Framework. Making the

changes required would cause the creation of special rules which is precisely

what Frisch is looking to avoid. If this limitation restricts a problem from being

accurately stated, another type of logic will be required.

Another limitation of the Substitutional Framework is that there isn't

a method for dealing with information on the sorts themselves. The sorts within a

problem must be disjoint and provide a complete cover of the universe. There is

7

no notion of a subsoil or overlapping between sorts. This does not restrict the

Substitutional Framework from being able to solve any type of problem, however,

any information about relationships between sorts must be resolved and cannot

be dealt with in the "black box" of the sort theory.

CHAPTER 3

MORE EXPRESSIVE FORMULATION OF MANY SORTED LOGIC

A more expressive alternative to Frisch's Substitutional Framework is Cohn's

Many Sorted Logic, LLAMA. Cohn did not intend for LLAMA to be a model that is

applicable to other deductive methods, but a highly specialized, efficient logic.

3.1 Developing the Sort Lattice

The basis of a for representation in LLAMA is the sort lattice. This is the

structure that contains information about the sort hierarchy. The sort lattice

contains, for any sort, any associated subsorts or supersorts. The structure of

the sort lattice is a complete Boolean lattice. The size of the sort lattice will be

2S1, with S 1 being the set of base sorts (including both the universal sort and the

empty set), and will contain every possible combination of the base sorts. An

Figure 3.1 Complete Boolean Sort Lattice where

8

9

While the base sorts from the problem description will have names, it is not

necessary for all the combinations to have identifiable, English names. In some

cases, the combinations will never be utilized (such as a possible combinations

of horses and golf balls). In other circumstances,, there will simply be too many

derived sorts to give each one an appropriate name. However, through the

disjunction of subsorts and the use of unification, any sort within the sort lattice

can be expressed as a combination of the base sorts.

3.2 Creating Sort Arrays

The biggest repository of information on the problem comes not from the sort

lattice, but from the sort arrays. A sort array is a list of sort environments (each

environment contains sorts corresponding to each variable). Each clause will

have its own sort array. But before a sort array can be computed, sorting

functions for each function symbol will need to be defined.

A predicate symbol a will have a corresponding sorter . This sort can be

of 4 possible types. The first two types, TT and FF, are almost self explanatory.

These types correspond to TRUE and FALSE respectively. The third type of sort

is UU. This sort corresponds to either TT or FF and requires more inferencing to

determine what the actual sort is. The last type of sort that a predicate symbol

could be is the type EE. This stands for an ill-sorted formula, usually resulting

from the predicate being bound by unusable sorts. These sorts are useful for

deduction and play a key role in the creation of sort arrays. These sorting

functions in LLAMA are defined to be both strict and tight. By strict, Cohn means

that if any part of a formula is ill-sorted, the whole formula is ill-sorted. This can

10

be also be stated to mean that if any part of a proof is ill-sorted, the whole proof

is ill-sorted. The other restriction is that the sorting functions must be tight. This

simply means that the least upper bounds must be preserved. This can also be

referred to as continuity in other logics. These restrictions are part of the reason

that LLAMA is a more efficient many sorted logic. Maintaining strictness allows a

reduction in search space in the deduction process. When even a part of a

formula becomes ill-sorted, the whole formula becomes ill-sorted and is removed,

cutting off a branch of the search structure. Restricting sorting functions to be

tight allows each sorting function to be a unique determinant based upon its

values on the base sorts. This allows a more efficient representation of sortal

information.

These sorting functions serve as the tools for creating the sort array (SA)

for an expression. The method by which the SAs are derived is very important,

because the order in which the steps are performed are not interchangeable.

The reason for this is that LLAMA allows overlapping, the repeating of terms

within a combination. Because of this, there is an interdependence among the

subexpressions containing the same term. The strategy followed in building an

SA is to compute all the SAs for the atoms in a top-down fashion, then work from

the atoms upwards to get an SA for the whole formula. An example of the

computation of an SA for a formula is taken directly from Cohn's paper. The

clause in this example comes from the Schubert's Steamroller problem that will

be examined in depth as an example of a problem reformulated from LLAMA into

a constrained logic representation. The SA is calculated thus:

*Negating the formula only results in changing falses to trues and
trues to falses.*

The next step is to calculate the SA for the second formula,

1 1

12

SA for the first part of the formula is the same as the one we just calculated. The

second SA is just the simple case:

Since the two parts are interrelated, the sort of a 2 must correspond to the

sort the second part, G. This allows the immediate removal of the 2nd, 3rd, and

5th environments. After combining the two SAs and simplifying the results, the

final SA (after negating) is:

Combining these two final SAs results in a final SA for the formula of:

This example provides a brief look at how a sort array is computed from

the base sorting functions. For a closer look at the calculation of SAs, the reader

is referred to Cohn, 1986.

13

3.3 Many Sorted Inference Rules

Now that each formula in the problem can have a sort array calculated for it, the

inference mechanism in LLAMA becomes the focus. Inferencing in LLAMA is

different from most other sorted logics that use resolution. Through the use of

the sort arrays, deriving the empty set is not a requirement for a proof. It is

enough to show that a clause can be derived with a sort environment that is false

(that is, the environment of the derived clause is FF). Compared to Frisch,

LLAMA has a more complex deduction method.. In addition to the normal

inferencing rule, some additional rules (which Frisch intentionally tried to avoid)

are needed.

The most common step in a LLAMA proof is not much different from a

normal resolution step. To resolve two clauses together, there are two

restrictions. The first, like a normal resolution step, requires that one clause has

a positive instance of the predicate and the other clause has a negative instance

of the predicate. The second requirement is that the two clauses have sort

environments that are compatible. By compatible, the sort environments do not

have to be exactly the same, but they must be unifiable. When combining two

sort arrays, the greatest upper bound of the two is retained for the resulting

clause. An example of a resolution step will help clarify the procedure:

14

*note: sorts for variables c and b were not included in the original two

terms because they do not affect the outcome of the resolution step*

Taking the sorts M and P to stand for man and person respectively, and the sorts

C, H, A, and B to stand for car, home, apartment, and boat, we can see that the

two clauses can be resolved together as long as M is a subsort of P and A is a

subsort of H. This information is contained in the sort lattice and can be checked

during resolution. The reason M and A were kept as the resultant sorts is that

these are the greatest lower bounds (largest subsort contained in both sorts).

The sort on y, A in this case, can be removed from the sort array because y has

no more instances in the clause and will not be utilized in any further resolution

steps using this resultant clause.

15

3.4 Characteristic Literals

The specialized rules for inferencing deal with a topic known as characteristic

literals. Including characteristic literals in the logic is a feature relatively unique to

LLAMA [3]. While requiring special rules to ensure completeness, characteristic

literals can make the resolution process vastly more efficient. The reason for this

is that characteristic literals allow reasoning on the sorts themselves. This is an

immensely powerful tool for resolution. An example of resolving characteristic

literals would be resolving American(mike) with African-Descent(mike) to obtain

African-American(mike). American and African-Descent are resolvable because

they both predicate the same term, mike. The resultant predicate, African-

Descent is not "made up" to combine the two, but is a sort already contained

within the sort lattice that is a Boolean combination of the original sorts. The use

of characteristic literals is another result of allowing overlapping (terms appearing

in more than one predicate in a clause). In certain situations, characteristic

literals can be evaluated away immediately. This is allowed when a

characteristic literal is predicating a variable whose sort is the one defined by the

characteristic literal (i.e. P(p) where p is defined by the sort P). Characteristic

literals are one of the features that makes LLAMA a more expressive, more

precise logic for formulating a problem as well as allowing an inference step that

can quickly reduce the amount of clauses that need to be calculated in a proof.

CHAPTER 4

RESOLUTION PRINCIPLE FOR CONSTRAINED LOGICS

An alternative to a many sorted logic is a constrained logic. A constrained logic

can work in a very similar way to sorted logics, but is much more general

allowing a greater degree of flexibility. This flexibility allows a proof to be as

expressive as the complexity of the constraint theory will allow. it also allows

constrained logic to be used for a wider range of problems by making the

constraints a user definable part of the logic. Thus, constraint logic could be

used to mimic (in a certain sense) a sorted logic by making the unification of

sorts to be the constraints or it could be used for a mathematical problem by

defining the constraints to be the unification of equations. Whatever the use,

constrained logic is similar to the Substitutional Framework in that it views a

problem in terms of two parts, the foreground and the background. By breaking

up the problem, constrained logic allows different types of information to be

declared in different languages that are properly suited to the information to be

conveyed.

4.1 The Restricted Quantification System

The structure of importance in this constrained logic is called the restricted

quantification system, or RQS for short. This structure contains all the

information required for the problem, and can even be thought of as the problem

space, with different RQSs representing different problems. The RQS is split into

three different subsections, the constraint formulae, the constraint theory, and the

signature.

16

17

The A signature is the list of statements that resolution will take place

upon. These statements are usually in clause form, although there is no

restriction that they have to be. They could be mathematical formulas. The

advantage of using a clausal form for the A signature is that the Herbrand

universe can be taken as the restriction theory. By taking this restriction, the

derivation of the empty clause is all that is required for a proof. Each statement

in the A signature must have some set of constraints associated with it. in a

problem that will use a clause form for the A signature, the constraints would

restrict the variables within the clauses. These constraints are made up of

predicates from the constraint formulae and are required to be consistent with the

constraint theory. If the clause form is chosen for the A signature, there are no

restrictions as to how many times a variable can appear within a clause.

The constraint formulae, as mentioned before, is the set of all predicates

that can make up the constraints on the A signature. These predicates are

obtained from the original problem. Unlike the Substitutional Framework, the

constraint formulae is not limited to monadic predicates. This allows

relationships between two variables to be considered as part of the constraints

rather than parts of the A signature. The constraint formulae works hand in hand

with the constraint theory. In programming terms, the constraint formulae is the

interface while the constraint theory is the actual functions.

So finally, the constraint theory completes the RQS structure. The

constraint theory is the actual theory that the constraints must adhere to. This

theory will contain information about each predicate in the constraint formulae.

18

The theory is not restricted to definite clauses as is the case in the Substitutional

Framework. If the goal is to mimic a many sorted logic, this can include

information about relationships between different sorts. This is also the place

where any skolern functions are defined. When two statements from the

signature are resolved, the unification of the constraints must not conflict with the

constraint theory, otherwise the resolved clause has no meaning. In LLAMA, this

would be referred to as an ill-sorted clause. One of the topics of interest in

LLAMA was its ability to be able to handle characteristic literals. This type of

information about the restrictions on variables can be handled by this constrained

logic as well. To accomplish this, within the sort theory, add the information

concerning the relationships between the restrictions. Then, when the

constraints are tested for unification during resolution, this information will come

into play and appropriately restrict the constraints on the variables.

An example RQS structure, taken from the Baby and Dog problem in
Chapter 2, is:

Constraint Formulae:

Baby(x) 	 Dog(x)

Constraint Theory:

Baby(Ralph) v Dog(Ralph)

A signature:

Annoys(x, Alan) H Baby(x)

Annoys(x, Alan) II Dog(x)

4.2 Constrained Resolution

With a set of constraint clauses, a resolution rule is required to allow deduction.

The key to resolution within a constrained logic is that, in addition to having two

clauses that have a positive and negative instance of a common element, the

constraints on those two clauses must be unifiable. By unifiable, it means that

the two constraints on the same variable can be made equivalent within the

constraint theory. A simple example, given in Bürckert's paper, of a resolution

step is:

Constraint Theory:

Herbrand Universe

19

This shows that if two clauses have resolvable elements, they can be resolved as

long as the unification of their constraints does not conflict with the constraint

theory. In this example, with the constraint theory given by the Herbrand

Universe, it is enough just to equate the constraints.

If the constraint theory is not given by the Herbrand Universe, it is not

enough to resolve one empty clause to prove that a theorem is universally true.

Resolving one empty clause proves that the theorem is true for one model of the

constraint theory. This is called R-satisfiable. To be universally true (the

20

equivalent of deriving one empty clause with a constraint theory given by the

Herbrand Universe), the empty clause must be derived for every model in the

constraint theory. This is called R-valid. An example of a problem that is R-valid

is the Baby/Dog problem from section 4.1. The RQS for the Baby/Dog problem

was given:

Constraint Formulae:

Baby(x) 	 Dog(x)

Constraint Theory:

Baby(Ralph) v Dog(Ralph)

Annoys(x, Alan) Baby(x)

Annoys(x, Alan) II Dog(x)

This constraint theory has two models, one for Baby(Ralph) and one for

Dog(Ralph). So, for this problem to be R-valid, the A signature must be able to

derive the empty clause for both models. In this problem, that is very simple to

see. To prove that Ralph annoys Alan, Annoys(Ralph, Alan) is added to the A

signature. This can be resolved with Annoys(x, Alan) Baby(x) which complies

with Baby(Ralph) from the constraint theory to derive the empty clause. It could

also be resolved with Annoys(x, Alan) II Dog(x) which complies with Dog(Ralph)

in the constraint theory. This shows how two empty clauses have to be derived

in an RQS that contains a constraint theory with two models for a theorem to be

universally valid.

21

One of the advantages of a constrained logic is that while the derivation of

an empty clause (when the Herbrand universe is part of the constraint theory)

proves a theorem, the constraints on that empty clause justify the solution. In a

problem where the theorem to be proven is "There is a person who drives a

sports car" and the A signature is made up of a lot of clauses restricted by

various people and cars, the derivation of the empty clause will have constraints

that will justify the answer. That means that the constraints on that empty clause

will include a sports car and a person that makes the statement correct.

CHAPTER 5

RECASTING LLAMA INTO A CONSTRAINED LOGIC

Now that all the individual types of logic have been covered, it is possible to

begin to develop a recasting of Cohn's LLAMA into Bürckert's constrained

resolution. A set of guidelines will be developed, followed by an example to help

illustrate the key points. The problem used will be Schubert's Steamroller,

selected because it was the example Cohn used to when discussing LLAMA and

therefore has a complete, correct proof.

5.1 Using Bürckert's Notation

The first step in recasting LLAMA into a constrained logic is to insert the

information into an RQS. This is done from the English description of the

problem. It is important to remember that in creating the constraint theory and

constraint formulae, predicates need not be limited to one term. When

performing a recast of LLAMA, it is important to make sure that all the sorting

functions in LLAMA have an equivalent representation in the constraint theory.

5.2 Example: Schubert's Steamroller

The problem used as the example for this reformulation is a famous challenge to

deduction systems, one given by Schubert back in 1978. The problem,

presented in a natural language, is:

22

23

Wolves, foxes, birds, caterpillars, and snails are animals, and there

are some of each of them. Also there are some grains, and grains

are plants. Every animal either likes to eat all plants or all animals

much smaller than itself that like to eat some plants. Caterpillars

and snails are much smaller than birds, which are much smaller

than foxes, which in turn are much smaller than wolves. Wolves do

not like to eat foxes or grains, while birds like to eat caterpillars but

not snails. Caterpillars and snails like to eat some plants.

Therefore there is an animal that likes to eat a grain-eating animal.

The proof of the Steamroller problem in LLAMA only requires 6 steps, 4 less than

Walther's Axiomatization. This amounts to a 40% savings over Walther's

Axiomatization, which is significant when dealing with problems containing more

clauses and larger sort lattices than the example here. The three clauses from

which Cohn starts are :

24

When arriving at a solution, there are a few rules to remember from the

discussion of LLAMA. For a resolution step to be made, the sort arrays of the

parent clauses must each contain a row that is unifiable. Also, unlike traditional

resolution, Cohn's proof does not end with the empty clause, but instead ends

when the sort array of the clause can be equated to false. Below each step in

the proof, the number of the two clauses used to resolve to the current clause is

given. The predicates within those two clauses used in the resolution is given in

parenthesis next to the number of the clause.

25

There are two things of note in this proof. Going from clause 6 to 6' can be

considered a simplification. The reason why a clause is dropped is that the

dropped clause is always false and will not contribute at any point in the proof.

The other item of note is the final clause. The reason this is the end is that this

clause is the final clause is because the sort environment has been proven to be

false. By creating structures such as the sort array and the sort lattice, LLAMA

becomes a very efficient algorithm.

26

Now, the reformulation of this problem into a constrained logic will be

covered. The first, and most important, step is creating the proper RQS. From

the first sentence of the problem description, "Wolves, foxes, birds, caterpillars,

and snails are animals, and there are some of each of them", gives 6 predicates

to be added to the constraint formulae, and a relationship among them to place in

the constraint formulae. At this point, the RQS looks like:

The second sentence, "Also there are some grains, and grains are plants",

gives two more constraint predicates and one more relationship. The updated

RQS is:

Constraint Formulae:

27

The third sentence in the description gives the first clause to be placed in

the A signature. "Every animal either likes to eat all plants or all animals much

smaller than itself that like to eat some plants." The clause to be added, with

constraints, to the A signature is:

The next sentence, "Caterpillars and snails are much smaller than birds,

which are much smaller than foxes, which in turn are much smaller than wolves",

presents 4 sorting functions. These are part of the sort theory because they deal

with specific instances of one of the constraints, M(a2, al), of the first clause.

The four sorting functions are:

28

The next sentence gives four clauses to be added to the delta signature.

These are clauses instead of sorting functions because they deal with the same

relationship that is the focus of the resolution. "Wolves do not like to eat foxes or

grains, while birds like to eat caterpillars but not snails" states the following four

clauses:

The next sentence gives two more clauses. "Caterpillars and snails like to

eat some plants" equates to:

Finally, the last sentence gives the final clause and an addition to the

constraint theory. This clause is the theorem that is meant to be proven true or

false. "Therefore there is an animal that likes to eat a grain-eating animal" results

in the clause:

The addition to the constraint theory:

29

allows the deductive process to handle the Skolem function. Note, because the

final clause is the clause that has to be proved, it is negated before being added

to the delta signature. So, the final RQS is:

Constraint Formulae:

The proof is obtained by continually resolving clauses until the empty clause is

resolved. This is possible because the constraint theory for this problem only

has one model. The proof for this RQS is as follows:

30

This proof gives the same final result as Cohn's proof in LLAMA, in some

instances even having constraints similar to Cohn's sort arrays. By allowing

constraints like M(x, y) that work on two variables, this reformulation maintains

some of the advantages of LLAMA over an ordinary sorted logic, like Frisch's

Substitutional Framework. This can be seen in our proof, requiring only 8

resolution steps compared to Walther's axiomatization, which takes 9. 8 steps is

still two more than used by Cohn. However, it is important to keep in mind that

this reformulation does not need to calculate sort arrays for every clause. Still, is

it possible to optimize this reformulation to produce a constrained logic that even

more closely resembles LLAMA?

31

Figure 5.1 Complete Boolean Sort Lattice for

5.3 Future Work : Optimization

The first step in creating a constrained resolution proof that will keep the

complete expressiveness of LLAMA intact is to find a way to represent all the

information in the sort lattice. The sort lattice represents two key bodies of

information. First, it acts as a list of every possible sort in the problem, including

both anonymous and eponymous types. And secondly, the sort lattice contains

information about the relationships between the sorts. Unlike Cohn, the

relationships between the sorts will be contained explicitly. The reason for this

has to do with the ability to handle characteristic literals, which will be discussed

later in further detail. By choosing to keep all the information explicitly, the size

of the proof will be larger. However, much of the information will not be utilized in

the actual proof. To help illustrate the procedure for converting a sort array into

32

constraints, a small example will be constructed using the base sorts man,

structure is given in figure 5.1. The method for generating this sort lattice can

also be used to generate the constraint formulae and theory. The sort lattice is

developed by grouping together combinations of the base sorts. At level 1 in the

sort lattice, it is just the base sorts. At level 2, it is a combination of any two of

the base sorts. Level 3 is the trickiest. Each node in level three corresponds to a

combination of three of the base sorts. Links from nodes in level 3 to nodes in

level 2 are inserted so that the node in level 3 is connected to the nodes in level

2 that contain only subsorts of the current sort. So, for example, sort F7 equates

to M or W or C. Then, links from F7 go to those links in level 2 which

So, for every node in the sort lattice, the name of the sort is inserted into the

constraint formulae, and, for every combination of base sorts (the sorts Fl — F10

in the example), the disjunction of its constituent nodes is inserted into the

constraint theory. When applying these rules to the example, the constraint

formulae and constraint theory look like:

33

So, as can be seen from the example, by converting the complete sort lattice into

constraint theory and constraint formulae, a complete coverage of all the possible

sorts will be embedded into the constraints. The reason why the arrows in the

constraint theory go both ways as compared to the one way is that sorts are

closed in LLAMA. All possible sorts are listed, with no belief in any sort outside

those given in the problem. While this most likely will include sorts that aren't

used in the solution of the problem (especially in problems with a large sort

domain that includes different 'types' of sorts such as people and cars), it is more

important to have all sort possibilities rather than save space.

Still, the constraint theory is not complete. Any Skolem functions used

when translating the problem into clausal form will need to be attributed to a sort.

This information will be added in the next step, where the problem is translated

into clausal form.

34

Determining what clauses are to be defined by the problem is the same as

in any many sorted logic. Stickel appropriately points out that great care must be

given to converting a natural language description of the problem into a logical

representation [5]. However, this is a concern that is applicable to any problem

solver. The area of interest when creating the clauses in this type of constraint

logic is to make sure that the information contained in Cohn's sort arrays is

accurately formulated. There are two possible solutions for this concern. The

first, and easiest solution, is to perform a sort array calculation as per Cohn and

then just convert the sort array directly into constraints for the clause. The

second option is to create a method of resolution using the sorting functions to

directly compute constraints for a specific clause. The initial solution of first

computing the sort arrays and then converting those to constraints is the best

choice, and a direct calculation of constraints is left to future work. The reason

for this choice is that by computing the sort arrays first and then calculating the

constraints, the problem is broken up into two distinct steps, similar to the

rationale behind a sorted logic. So, aside from the considerations discussed in

Chapter 3 concerning the calculation of a sort array, there are two other

considerations in the creation of constraints for each clause.

The first point is to make sure that any Skolem functions are appropriately

added to the constraint theory. There are two cases when adding a Skolem

function. The rules for each case are given below:

35

Case 1: The Skolem function predicates one sort.

in this case, the sort S should imply the characteristic predicate W

with the Skolem function h as its term.

Case 2: The Skolem function predicates two (or more) terms of the same

sort.

in this case, the sort R should imply the characteristic predicate Y

with the Skolem function k as its term.

The second consideration is dealing with clauses whose sort arrays

contain more than one sort environment. Again, there are two possible solutions

to this problem. However, in this case, both solutions are equally valid. The

choice is based upon which part of the problem the cost of deduction is to take

place. The two choices are either to have multiple instances of the same clause,

each with a different set of constraints. This option places more of the work in

deduction on the resolution step. When looking for a clause with which to

resolve, multiple instances of one choice will be available as in the case:

The second option is to allow a disjunction of constraints associated with a

clause. With this method, only one instance of each clause will be found when

looking for a possible resolution. However, the process for unifying constraints

becomes more complicated as shown:

In this transformation, the second option will be used to represent multiple sort

environments for a clause. The reason for this choice is that this removes the

burden of resolving constraints from the resolution step and reiterates the

separation of background and foreground information. However, by taking this

route, a new rule during constraint unification is required. This rule is that when

resolving two clauses, one of the constraint sets (denoted by in the constraint

of the clause) in each clause must be unifiable with the other. This will be dealt

with in more detail when resolution within this formulation is discussed.

Resolution in this constrained logic is very similar to resolution in either the

Substitutional Framework or LLAMA. At each resolution step, the constraints on

the variables have to be unifiable. Failure to do this is the same as trying to

resolve clauses with two different sorts in LLAMA or SFOPC. As mentioned

before, this means that one constraint set from each clause must be resolvable.

It is important to note that there won't be a case where two different constraint

sets on the same clause are resolvable with a constraint set on the second

36

37

clause. The reason for this is that the calculation of the sort array will unify the

sort environments as much as possible until only distinct environments exist. In

the resolution, there is one big difference between constrained logic and a many

sorted logic in that the unification is explicitly stated in a constrained logic. Take

the example for the many sorted inference rule in Chapter 3.

is to be resolved with

Unlike LLAMA, where just the result is presented, the unification of variables

must be explicitly stated in the resolved clause as such:

This is the proper method of denoting a resolution step. The further in the proof

you go, which equates to more resolution steps, the list of constraints gets longer

and the constraints themselves get more restrictive, or precise. To deal with this,

a shorthand notation can be implemented. In this notation, if a variable does not

occur anywhere in the clause, the constraints on that variable can be removed

from the constraint list. Thus, the resolved clause from the previous example can

be written:

38

A second piece of shorthand is the ability to remove the constraint x = w in the

next resolved clause. This shorter version is useful in that the constraint list will

only contain those variables to be considered when resolving with another

clause. However, it may be important to go back and obtain a complete list of

constraints after the problem is finished.

A key point to remember in the resolution process is that a proof is

complete only after the empty clause is resolved or there are no more resolvable

clauses left. Since sort arrays are not generated for every resolved clause, there

is no way to check whether or not the sort environment is false. However, it can

be seen by inspection of Cohn's solution to Schubert's Steamroller that an empty

clause with the same sort array can be resolved from his final clause in which the

sort environment is false.

A big consideration in this constrained logic is how to deal with

characteristic literals. In this circumstance, they will be dealt with as an

extension of simplification instead of an offshoot of resolution. After a clause has

been resolved, if there are two predicates who have the same term as an

argument, they can be checked to see if there is a Boolean combination of the

two predicates that can replace their occurrences. Thus, this becomes a step

similar to factoring in the proof.

The conversion from the proof in LLAMA to a constrained logic follows the

rules given in the previous sections, allowing the constrained logic to mimic the

advantages of LLAMA. Here is a quick review of the "algorithm":

39

Step 1: Create a constraint formulae and constraint theory that contains

the sort hierarchy given in LLAMA's sort lattice.

Step 2: Create the initial clauses from the information given in the

problem. This piece has two components

1. Create arrays from the clauses and sorting functions given in the

problem.

2. Convert the sort arrays to constraints for each clause.

Step 3: Apply the resolution principles to the initial clauses in an attempt to

derive the empty clause. Some key points to remember for this stage are:

1. Resolution is handled in the standard way. Negate the desired

conclusion and apply resolution until the result is the empty clause.

2. At each step, a constraint set from one clause must be unifiable

with a constraint set from the second clause.

3. After a new clause is resolved, check to see if it can be simplified

or have characteristic literals unified.

So, the first step is to create constraints that contain the sort hierarchy. Due to

the size of the sort lattice created by all the possible combination of sorts, only a

subset of the sort lattice will be given here. Coincidentally, it happens to be the

exact subset of sorts used in the solution of the problem.

40

The next step is to convert the clausal forms of the axioms (from LLAMA) into a

clausal form that can work within the bounds of the constrained logic. After

applying this process to the initial clauses from the proof in LLAMA, the following

clauses are added to the constrained logic clause list:

In addition, the following are added to the constraint theory to account for the

Skolem functions:

41

Finally, the actual resolution is performed on the clauses. This process is given

below and performed in such a manner to show that in this constraint logic, a

proof that follows the same steps as Cohn's proof can be successfully derived.

At this point, the environment is false as can be seen from Cohn's proof.

However, in this constrained logic, the empty clause is required for a refutation.

While this adds some extra steps, they are just simple resolutions utilizing the

sorting functions that remove expressions from the clause without adding

anything new to the constraints.

42

Now we have our empty clause and the proof to our problem. Notice that by

using simplification to make moving through the proof easier, the constraints

don't give the information needed to answer the problem. That is why there may

be times where it is important to go back and create a complete constraint list for

the solution. The information we are looking for is the constraint on al. Looking

back at step 8, the last step al appeared in, the constraint on al was F. Since

al doesn't appear in any of the later constraints, it is not changed and is the final

constraint on al. Thus, the solution to this problem is F, or fox. This is precisely

the answer desired from this problem, as given by Stickel [5] (an English

explanation of the answer is also given).

This example does a good job of showing some of the reasons why an

optimized constrained logic alternative to LLAMA provides better clarity and

understanding. The same steps as in Cohn's proof were taken in the creation of

this proof. However, in this reformulation, the answer to the original problem is

much more apparent. If a complete constraint set is kept throughout the proof,

the answer to the problem is contained in the constraint set of the empty clause.

It should be stressed that this optimized constrained logic reformulation of

LLAMA has not been proven to be a complete deductive system. There are

questions about it like whether or not multiple constraint sets could be attached

to one clause.

CHAPTER 6

CONCLUSION

This thesis has demonstrated that it is possible to maintain the functionality and

expressiveness of Cohn's Many Sorted Logic, LLAMA, through the use of

Bürckert's constrained logic. While differences in what determines the final

clause needed to prove a theorem cause the constrained logic to have more

steps in the proof, this is partially offset by the lack of having to calculate sort

arrays for each clause in the delta signature. The reason that the constrained

logic can mimic LLAMA, so to speak, is that it allows predicates with more than

one term to be added to the constraints of the clause. This allows relationships

between sorts to be dealt with in the constraint theory, instead of having to

explicitly deal with it in the clauses themselves. At this point, this reformulation is

a happy medium between the efficiency of LLAMA and the understandability of

the Substitutional Framework. The question remains whether or not it is possible

to optimize this "new" logic to gain more of the benefits of LLAMA while

maintaining the current level of understandability.

43

REFERENCES

1. Hans-Jurgen Bürckert, "A Resolution Principle for Constrained Logics,"
Artificial Intelligence, vol. 66, pp. 235 — 271, 1994.

2. Anthony G. Cohn, "A More Expressive Formulation of Many Sorted Logic,"
Journal of Automated Reasoning, vol. 3, pp. 113 — 200, 1987.

3. Anthony G. Cohn, "On the Appearance of Sortal Literals: a Non Substitutional
Framework for Hybrid Reasoning," in Proceedings of the First International
Conference on Principles of Knowledge Representation and Reasoning,
Toronto, Ontario, Canada, pp. 55 66, 1989.

4, Alan M. Frisch, "A General Framework for Sorted Deduction: Fundamental
Results on Hybrid Reasoning," in Proceedings of the First International
Conference on Principles of Knowledge Representation and Reasoning,
Toronto, Ontario, Canada, pp. 126 136, 1989.

5. Mark E. Stickel, "Schubert's Steamroller Problem: Formulations and
Solutions," Journal of Automated Reasoning, vol. 2, pp. 89 — 101, 1996.

44

	Recasting Cohn's many sorted logic into a constrained logic
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: General Framework For Sorted Deduction
	Chapter 3: More Expressive Formulation of Many Sorted Logic
	Chapter 4: Resolution Principle for Constrained Logics
	Chapter 5: Recasting LLAMA Into a Constrained Logic
	Chapter 6: Conclusion
	References

	List of Figures

