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ABSTRACT

LOW PRESSURE CHEMICAL VAPOR DEPOSITION (LPCVD) OF
TITANIUM NITRIDE: SYNTHESIS AND CHARACTERIZATION

by
Sameer Dharmadhikari

Titanium tetrachloride and ammonia were used as precursors in a low pressure

chemical vapor deposition process to deposit titanium nitride films on silicon

wafers. The process was carried out at temperatures from 450 to 850 QC and the

activation energy for the reaction was determined. The order of the reaction, with

respect to the partial pressures of the reactant gases, was determined by

carrying out the reaction at varying partial pressures of the reactant gases. The

following rate equation was established for the reaction:

The titanium nitride thin films deposited were characterized for properties

like resistivity, stress, hardness, and density. The effects of varying the process

parameters (temperature, flow ratio, etc.) on these film properties were studied.
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CHAPTER 1

INTRODUCTION

1.1 	 Titanium Nitride Thin Films

Titanium Nitride (TIN) is a widely used material because of its special properties.

Apart from its main use as a diffusion barrier adhesion promoter in the

microelectronics industry, it has also been used as a wear-resistant coating on

tools and as a gold substitute for decorative coatings [1]. Currently, it is being

investigated for other applications such as solar energy absorber and

transparent heat mirror [1].

TIN has been deposited using various film deposition techniques [1 ]. Such

techniques are discussed in the next section. The principal physical properties of

bulk TiN are given in Table 1.1 [2].

Table 1.1 Physical properties of titanium nitride.

1
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1.2 Thin Film Deposition Methods

Thin film deposition has traditionally been used in the microelectronics industry

for microchip coating, wear and corrosion resistance, and thermal protection.

Deposition methods can be classified under two groups: Physical Vapor

Deposition (PVD) and Chemical Vapor Deposition (CUD).

1.2.1 Physical Vapor Deposition

Physical vapor deposition (PVD) is categorized as evaporation and sputtering.

The objective of both deposition techniques is to control the transfer of atoms

from a source to a substrate where film formation and growth proceed

atomistically, independent of a chemical reaction; hence the term physical vapor

deposition.

In evaporation, atoms are removed from the source by thermal means,

whereas in sputtering the atoms are dislodged from a solid target by the impact

of gaseous ions. Advances in vacuum-pumping equipment and Joule heating

sources spurred the emergence of PVD as a suitable industrial film deposition

process. In general, the properties of the film obtained by PVD are governed by

evaporation rate of the atoms, vapor pressure of the target materials, deposition

geometry, temperature, pressure, and the thermal history of the substrate.

Traditionally, evaporation was the preferred PVD technique over

sputtering. Higher deposition rates, better vacuum (resulting in cleaner

environments for film formation and growth), and versatility in using all classes of

materials, were some of the reasons for the dominance of evaporation.
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The microelectronics revolution required the use of alloys, with strict

stoichiometric limits, which had to conformally cover and adhere to substrate

surfaces. This prompted the need for the sputtering technique and so, as

developments were made in the use of radio frequency, bias, and magnetron

variants, so were advances made in sputtering. These variants extended the

capabilities of sputtering, as did the availability of high purity targets and working

gases. The decision to use either technique depends solely on the desired

application and has even spurred the development of hybrid techniques.

1.2.2 Chemical Vapor Deposition

Chemical vapor deposition (CVD) is a process in which volatile reactants in

vapor phase chemically react near or on the surface of a suitably placed

substrate to form a nonvolatile solid product that deposits atomistically on the

substrate. A wide variety of thin films utilized in Very Large Scale Integration

(VLSI) are prepared by CVD. These materials comprise dielectric, elemental and

compound semiconductors, electrical conductors, superconductor and magnetic

materials. In addition to its versatility, this materials synthesis and vapor phase

growth method can operate efficiently at relatively low temperature, which is an

added advantage, especially in those cases where the substrate cannot tolerate

higher temperatures.
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1.3 Chemical Vapor Deposition (CVD)

1.3.1 Basic Aspects of CVD

The product from a CVD process can be in the form of a thin film, a thick coating,

or if allowed to grow, a massive bulk. Deposits can have monocrystalline,

polycrystalline, or an amorphous structure. Chemical and physical conditions

during the deposition reaction strongly affect the composition and structure of the

product. This technology has become one of the principal methods of depositing

thin films and coatings in solid state microelectronics where some of the most

stringent purity and composition requirements must be met.

The different types of chemical reactions involved in CVD processes

include oxidation, reduction, hydrolysis, nitride and carbide formation and

synthesis reactions, to name a few. A sequence of several reaction types is

usually involved to create a particular end product. The chemical reactions may

take place not only on the substrate surface (heterogeneous reaction), but also

in the gas phase (homogeneous reaction) [3]. Heterogeneous reactions are

much more desirable, as such reactions selectively occur only on the heated

surfaces, and are known to produce good quality films. Homogeneous reactions,

on the other hand are undesirable, as they form gas phase clusters of the

depositing material, which can result in poor adherence, low density or defects in

the film. Thus one important characteristic of CVD application is the degree to

which heterogeneous reactions are favored over homogeneous reactions [3].
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1.3.2 Transport Phenomena in CVD

The sequence of steps in a typical CVD process can be described as follows [3]:

1. Arrival of the reactants

a. bulk transport of reactants into the chamber,

b. gaseous diffusion of reactants to the substrate surface,

c. adsorption of reactants onto the substrate surface.

2. Surface chemistry

a. surface diffusion of reactants,

b. surface reaction.

3. Removal of products

a. desorption of by-products from the substrate surface,

b. gaseous diffusion of by-products away from the substrate surface,

c. bulk transport of by-products out of the reaction chamber.

The steps are sequential and the slowest process is the rate-determining step.

Depending on the step that is rate-determining, the deposition process can be

either in the mass transport limited regime or in the surface reaction limited

regime [3].

If the deposition process is limited by mass transfer, the transport

process, usually determined by the gas-phase diffusion, is proportional to the

diffusivity of the gas and the concentration gradient. This mass transport process

that limits the growth rate is only weakly dependent on temperature. In this case,

it is very important that the same concentration of reactants be present in the

bulk gas regions adjacent to all locations of a wafer, as the arrival rate is directly
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proportional to the concentration in the bulk gas. Hence, to ensure films of

uniform thickness, reactors that are operated in the mass-transport-limited

regime must be designed so that all locations of wafer surfaces and all wafers in

a run are supplied with an equal flux of reactant species. The temperature

control is this case is not critical [3].

If the deposition process is limited by the surface reaction, the growth rate

(r) of the film deposited can be expressed as:

R = gas constant (1.987cal/mol),

T = absolute temperature (K).

In the operating regime, the deposition rate is a strong function of the

temperature and excellent temperature control is required to achieve the film

thickness uniformity that is necessary for controllable integrated circuit

fabrication. In this case, the rate at which reactant species arrive at the surface is

not as important. Thus, it is not as critical that the reactor be designed to supply

an equal flux of reactants to all locations of the wafer surface. That is why in

horizontal low pressure CVD reactors where high mass transfer rates are

prevalent because of the low pressure, wafers can be stacked vertically and at a

closely spaced positioning, because such systems operate in a surface reaction

rate limited (i.e. kinetic) regime [3].
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Figure 1.1 [4] is a typical plot of growth rate as a function of temperature.

For lower temperatures, it shows relatively steep temperature dependence and

for higher temperatures, it shows a milder dependence, thus indicating that the

nature of the rate-controlling step changes with temperature.

Figure 1.1 Deposition rate as a function of substrate temperature.

1.3.3 Film Growth Aspects of CVD

In general, lower temperature and higher gas phase concentration favor

formation of polycrystalline deposits. Under these conditions, the arrival rate at

the surface is high, but the surface mobility of adsorbed atoms is low. Many

nuclei of different orientation are formed, which upon coalescence result in a film

consisting of many differently oriented grains. Further decrease in temperature

and increase in supersaturating result in even more nuclei, and consequently in
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finer-grained films, eventually leading to the formation of amorphous films when

crystallization is completely prevented. Amorphous films, which include oxides,

nitrides, and carbides, are of great importance for microelectronics applications.

Deposition parameters such as temperature, pressure, input

concentrations, gas flow rates, reactor geometry and reactor opening principle

determine the deposition rate and the properties of the film deposit.

1.3.4 Reaction Mechanism in CVD

As mentioned in the previous sections, adsorption, surface reaction and

desorption are the important steps in the CVD process, which need to be

understood properly in order to be able to explain the reaction mechanism.

• Adsorption and Desorption: CVD reactions being surface catalyzed,

reactants adsorb on the surface. The simplest expression for the amount of a

gas adsorbed on a surface, is given by the Langmuir Adsorption Isotherm {5] as:

where 0 = fraction of the total sites adsorbed by the gas,

P = pressure of the gas,

K = equilibrium adsorption constant for the gas.

In CVD reactions, many times, both the reacting species adsorb onto the

surface, thereby resulting in what is known as competitive adsorption. The

adsorption isotherm in this case is given by:
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KA, KB = equilibrium adsorption constant for species A and B,

PA, PB = partial pressure of species A and B.

• Reaction: The surface catalyzed reaction in a CVD process is usually a

bimolecular reaction between the two adsorbed species. In that case, the rate of

the reaction is dependent on the concentration or the fraction of the sites

occupied by each of the species. If this reaction is the rate determining step,

which it usually is, the rate of film deposition can be given as:

This method of treating a surface catalyzed reaction is known as the

Langmuir-Hinshelwood kinetics [5]. If one of the pressures is maintained

constant and the other is varied, the rate first increases, passes through a

maximum and then decreases. The falling off of the rate at high pressures can

be explained to be due to the fact that one reactant displaces the other reactant,

as its pressure is increased. Two special cases of equation 1.3 are [5]:

1) Sparsely covered surfaces, where both PA and PB are sufficiently low (due to

dilution or very high vacuum), for the pressure terms in the denominator to be

neglected, so that the rate equation (1.3) becomes,

denominator in equation 1.3 might be neglected to give,
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1.4 Types of CVD Process

As mentioned in the previous section, chemical reactions are very intrinsic to any

CVD process and hence energy in some form or the other must be provided for

the desired chemical reaction to take place. This energy could be supplied by

heat (thermal), by an electric glow discharge (plasma) or by some kind of

electromagnetic radiation (e.g. laser). Depending on the type of energy supplied

to initiate and sustain the reaction, CVD processes have been classified as [6]:

(i) Plasma enhanced CVD, (ii) Photo induced CVD, or (iii) Thermally activated

CVD.

1.4.1 Plasma Enhanced CVD (PECVD)

In this method, gaseous reactants are introduced in a region of glow discharge

(plasma) created by applying an electric field, using A/C, D/C or microwave

sources, between two electrodes. This results in the formation of highly reactive

species, which react and form a solid thin film product on the substrate and

electrode surfaces. The molecules can be near to the ambient temperature but

the breakdown electrons will be at higher temperatures, causing the reaction.

Thus this method can be employed at relatively low temperature and is useful for

temperature sensitive materials. Film deposition rates are substantially higher in

this method than in thermally activated CVD. Also, conformal step coverage can
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be achieved. However, the disadvantage of this method is the complex process

that occurs in the plasma state making the synthesis of stoichiometric films

difficult.

1.4.2 Photo Induced CVD

Short wavelength UV radiation is used to activate the reactants in the gaseous

phase forming the product material. A selective absorption of photon energy by

the reactant molecules or atoms initiates the process. The advantage of this

method is low deposition temperature (needed for films like SiO2) and absence

of radiation damage. The limitation of this method is unavailability of effective

production equipment. In another type, laser beams are used for activating the

reactants. In yet another type, the reactant atoms or molecules absorb a specific

wavelength of the laser energy applied resulting in chemical gas phase reaction

that are very specific, leading to highly pure film deposits. But, these methods

are still in developing stages [6].

1.4.3 Thermally Activated CVD

This process uses direct thermal energy for the chemical reaction. The simplest

type of this CVD is the conventional atmospheric pressure CVD (APCVD) where

the reactant gases are allowed into the chamber at normal atmospheric

pressure. Energy is supplied by heating the substrate directly. The temperature

and the reactant flow rates determine the film growth rate. The advantage of the

APCVD is its simplicity in that no vacuum pumps are needed. The disadvantage
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is the tendency for homogeneous gas phase nucleation, which leads to particle

contamination, unless special optimized gas injection techniques are used. The

deposition rate and uniformity of the films deposited using CVD process can be

determined by the rate of mass transfer of reactant gases to the substrate, or the

rate of surface reaction of the reactant gases. In atmospheric pressure CVD,

these two rates are of the same magnitude.

Lowering the gas pressure by about 3-4 orders of magnitude enhances

the mass transfer rate relative to the surface reaction rate. This makes it possible

to deposit films uniformly with a highly economical close spaced positioning of

the substrate wafers kept vertically inside the chamber. Thus low pressure CVD

(LPCVD) is a widely used method in cost competitive semiconductor industry.

Another advantage of this method is that the gas phase nucleation is reduced.

Depending on the method of supply of thermal energy, CVD reactors can

be classified as either hot wall or cold wall reactors. In a hot wall reactor system,

the reactor is heated to a high temperature and the gas molecules hitting the wall

receive the thermal energy. Here, the substrate is indirectly heated. The

advantage of this system is a temperature gradient that can be provided to the

chamber, which results in uniform thickness. In the cold wall system, the

substrate is heated to high temperature directly. The reactants that are adsorbed

on the surface undergo chemical change due to the temperature of the

substrate. But in this case, controlling the wafer's temperature is difficult and

hence uniform deposition is difficult to achieve.
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1.5 Low Pressure Chemical Vapor Deposition (LPCVD) Process

Most LPCVD processes use resistance heating to attain isothermal conditions so

that the substrate and the reactor walls are of similar temperature. However,

infrared radiation heating techniques are also sometimes used.

The mass transfer of the gases involves their diffusion across a slowly

moving boundary layer adjacent to the substrate surface. The thinner this

boundary layer and the higher the gas diffusion rate, the greater is the mass

transport that results. Surface reaction rates, on the other hand, depend mainly

upon reactant concentration and deposition temperature. In LPCVD, the rate of

mass transfer is enhanced with respect to the heterogeneous surface reaction

rate by lowering the gas pressure. This improved rate of mass transfer makes it

possible to deposit films uniformly even on closely placed wafers. Moreover, high

deposition rates are attainable with LPCVD because of the large mole fraction of

reactive gases in the reactor, since no or little diluent gas is required [3].

Some of the main factors affecting the film thickness and uniformity in

LPCVD are the temperature profile in the reactor, the pressure level of the

reactor and the reactant gas flow rates. To obtain a uniform thickness profile

across each substrate wafer throughout the reactor, a judicious adjustment of

these parameters is required [7]. In general, the uniformity of thickness and step

coverage of the films obtained by LPCVD is very good. These films have fewer

defects, such as particulate contaminants and pinholes, due to their inherently

cleaner hot wall operations and the vertical wafer positioning that minimize the

formation and codeposition of gas phase particulate [7].
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1.6 Advantages of CVD

Thin films are used in a host of applications in VLSI fabrication, and can be

synthesized by a variety of techniques. Regardless of the method by which they

are formed, however, the process must be economical, and the resultant films

must exhibit uniform thickness, high purity and density, controllable composition

and stoichiometries, high degree of structural perfection, excellent adhesion and

good step coverage.

CVD processes are often selected over competitive deposition techniques

because they offer the following advantages [71:

1. A variety of stoichiometric and non-stoichiometric compositions can be

deposited by accurate control of process parameters.

2. High purity films can be deposited that are free from radiation damage

without further processing.

3. Results are reproducible.

4. Uniform thickness can be achieved by low pressure.

5. Conformal step coverage can be obtained.

6. Selective deposition can be obtained with proper design of the reactor.

7. The process is very economical because of its high throughput and low

maintenance cost.

1.7 	 Limitations of CVD

CVD process is basically limited by the feasibility of the chemical reaction

involved therein. Furthermore, the kinetics of that reaction governs the process
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as a whole. Technological limitations of CVD include the unwanted and possibly

deleterious by-products of the reaction that must be eliminated, and the ever

present particle generation induced by homogeneous gas phase nucleation that

must be minimized.

1.8 	 Objectives of this Study

In this study, titanium tetrachloride (TiCI 4) and ammonia (NH 3) are used as

precursors to deposit a titanium nitride film on silicon substrates by low pressure

chemical vapor deposition (LPCVD). The deposition was carried out at pressures

of the order of 0.01 to 0.1 torr. Some properties of TiCI4 used for the study are

listed below in Table 1.2.

Table 1.2 Properties of titanium tetrachloride.

This thesis seeks to: (a) study and determine the kinetics of the reaction

and establish a rate equation, (b) characterize the deposited films for their

properties, and (c) study the effect of variation in the process parameters on

these film properties.
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In the next chapter, a literature survey of the work done on TiN deposition

by different researchers is presented. In chapter 3, the experimental setup and

the procedures for the deposition process are described, followed by the

different characterization methods used for determining the film properties. In

chapter 4, the results obtained are put forth and the significance of these results

discussed.



CHAPTER 2

LITERATURE SURVEY

In this chapter a range of deposition techniques used for titanium nitride have

been reviewed. The kinetic study and the characterization of titanium nitride films

as carried out by different workers have also been presented.

2.1 Deposition Techniques

Titanium nitride (TiN) thin films have been deposited over the past years using

the different techniques mentioned in the previous chapter. And different

reactants have been used as the precursors for these depositions.

The choice of the deposition method as well as the precursors is dictated

by the temperature requirements and the equipment availability. The properties

of the deposited film are dependent to a great extent on the deposition technique

(CVD, PVD, etc) as well as on the precursors used.

TiN has been commonly deposited using reactive sputtering or by rapid

thermal nitridation of sputter deposited titanium [8]. However the sputter

deposited films suffer from a lot of disadvantages like poor conformality, low step

coverage, etc. In the recent years, as the aspect ratios of features have

increased, CVD methods have been sought as a better alternative for TiN thin

film deposition. Many workers have studied the deposition of TiN films by

different types of CVD. Table 2.1 shows a summary of the methods and

reactants different researchers have used to deposit titanium nitride.

17



18

Table 2.1 Summary of different deposition techniques and reactants used for
TiN thin film deposition.

2.2 Properties and Applications

In the last few years there has been a great interest in the study of the physical

properties of titanium nitride thin films. This is due to the variety of applications

found for this material in several areas. It is widely used as a wear resistant

coating on tools, as a gold substitute for decorative coatings and for thin film

resistors [1]. Recently it has been investigated as a diffusion barrier in various
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semiconductor metallization schemes (as a diffusion barrier), a contact layer for

silicon, a gate electrode in metal/oxide/semiconductor integrated circuits and

even as a solar energy absorber and transparent heat mirror because of its

optical properties in the visible and IR regions. These different applications of

TiN are a result of its properties, which depend on the composition (N:Ti ratio),

impurity (O 2 ,CI,etc.) content and the structure, which in turn depend on the

growth technique used and the deposition parameters employed. Table 2.2 gives

a brief summary of the different properties of TiN film and the process by which

these films were deposited.

Table 2.2 Summary of properties of TiN films deposited by different processes.



20

2.3 Kinetic Studies on TIN CVD

As can be seen from Table 2.1, TiN CVD has been done using different

combinations of reactants. Commonly NH 3 and N2 have been used as sources of

N while titanium halides (more commonly TiCI 4), titanium dialkylamides,

tetrakisdimethyl (or ethyl) amino titanium (TDMAT/TDEAT) have been the

common sources for Ti. But whatever the reactants, the reaction rate is always

important since it ultimately determines the film growth rate. This study of the

reaction rate and mechanism, better known as the kinetic study, has been

carried out by several researchers, for different reactant combinations and

reactor geometries.

Buiting et. al. [13] deposited TiN films from TiCI 4 , NH3, H2 and Ar gas

mixtures, in a small cold wall LPCVD system. They found out that the reaction

rate and hence the deposition rate to be proportional to the 1.3 power of the

partial pressure of NH 3 and inversely proportional to 0.5 power of the partial

pressure of TiCI 4 . They proposed the following rate equation:

The activation energy of their process was 61 kJ/mol.

A similar study was carried out by Imhoff et. al. [19] using the same

reactants and a similar reactor system, with the only difference being that in this

case, instead of TiCI 4, NH 3 was introduced closer to the substrate. In this case,

the deposition rate was obtained to be:
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Imhoff et. al. proposed that these contradictory rate orders were a result of a

difference in the gas injection configuration in the two reactor systems. The gas

(say A), which was injected closer to the substrate, poisoned the sites for

adsorption by the other gas (say B). As a result, increasing the partial pressure

of A, gave lesser sites for adsorption of B, thereby leading to a decrease in the

deposition rate, hence the negative power. The apparent activation energy was

determined to be 79 kJ/mol.

Dekker et. al. [14] carried out TiN deposition in a hot wall CVD reactors at

temperatures higher than 800°C, using TiCI4, N2 and H2 as the reactants. They

found the growth rate dependence on TiCI 4 concentration to change from a

positive order to a negative order with increasing TiCI4. The rate order was 0.5

with respect to N2 concentration and changed from 1 to 1.5 for H2 concentration.

The apparent activation energy was around 100 kJ/mol.

Jiang et. al. [20] used a cold wall CVD to deposit TiN on graphite

substrates using TiCI 4, NH3 and H2 at temperatures from 1100-1600 °C and for

to increase with increasing flow ratio and deposition temperature. For higher flow

ratios, the deposition rate decreased with increasing flow ratio and was almost

constant with increasing deposition temperature.

Bouteville et. al. [21] have carried out a thermodynamic study of titanium

nitride formation on a patterned silicon substrate, using TiCI 4 , NH3 and H2. They

performed calculations in the temperature range of 700-1300 K and in the

pressure range 27-133 Pa so as to determine the yield.
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2.4 Characterization Studies on TiN

TiN is widely used in a variety of applications due to its different properties. Many

researchers have studied the properties of thin film and coatings of TiN by a

variety of methods.

Wu et. al. [23] demonstrated the capabilities, advantages and limitations

of different techniques, namely scanning electron microscopy (SEM),

transmission electron microscopy (TEM), thin film X-ray diffraction (XRD),

secondary ion mass spectroscopy (SIMS), X-ray photoelectron spectroscopy

(XPS) and Rutherford backscattering spectroscopy (RBS), to obtain valuable

information primarily about the morphology of TiN thin films.

Several researchers [8,9,17,23] studied conformality and step coverage of

TiN films deposited by different methods. Almost all of them found TiN films to

be nearly 100% conformal for aspect ratios as high as 1.7. For higher aspect

ratios, conformality was found to be pretty good.

Many researchers [1,13,23] have studied the variation of film resistivity.

They found that the CI content was responsible for high resistivity and that CI

content decreased with increasing temperature. Thus, high deposition

temperature led to the formation of films with low resistivities of around 100

ohm-cm. Presence of oxygen in the film was also found to cause an increase in

the film resistivity [15]. Roman et. al. [16] found out that presence of oxygen

during deposition even resulted in weaker adhesion of the film because of the

TiO2 formed. Arena et. al. [18] used XPS and Auger electron spectroscopy (AES)
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to obtain qualitative information about Cl in TiN films and even studied its effect

on the corrosion and step coverage of the films.

Oh et. al. [22] have studied the preferred orientation of TiN thin films using

XRD technique. They absented that as the thickness of the TiN deposited

increased, the preferred orientation changed from (200) to (110) to finally (111).

They concluded it to be a combined effect of strain energy and surface energy of

the film. Yokoyama et. al. [24] also found the preferential orientation to be (200)

by carrying out XRD of TIN films deposited by cold wall LPCVD.

Kurtz and Gordon [1] tested hardness of TiN film 3µm thickness grown on

stainless steel substrate and found it to be 8.5 on Moh's hardness scale, on

which diamond is 10. Roman et. al. [16] used Vicker's method to determine

hardness of sputter deposited TiN on high-speed steel, to be around 2000

kg/mm2.



CHAPTER 3

EXPERIMENTATION

3.1 Experimental Setup

The schematic diagram of the LPCVD reactor is shown in Figure 3.1. This

reactor was manufactured by Advanced Semiconductor Materials (ASM)

America Inc. as a polysilicon micro-pressure CVD system. The horizontal

reaction chamber consists of a 13.5 cm diameter and 135 cm long fused quartz

tube encapsulated within a 10 kW, Thermco MB-80 heating furnace. The reactor

door is constructed of 300 series stainless steel, with a side hinge and sealed

with an O-ring. The vapors of the precursor coming from the TiCI 4 bubbler were

passed to the reactor through a MKS vapor source mass flow controller. UNIT

mass flow controllers (UFC-1100) control the flow of ammonia and argon into the

reaction chamber. A simple manual valve was used to control the flow of

nitrogen into the reactor during the operation of devacuuming the reactor.

The other end of the reaction chamber is connected to a vacuum station

comprised of a Leybold-Heraeus TRIVAC dual stage rotary vane pump backed

by a Leybold-Heraeus RUVAC roots blower. The rotary pump helps maintain the

necessary vacuum, while the blower increases the exhaust flow rate out of the

reactor. A wire mesh at the blower inlet was used to prevent solid particulate

material, from entering the blower and the pump. A ceramic tube was setup

between the chamber and the heater to enhance the radiation heat transfer thus

reducing the temperature deviation through the reaction tube. The temperature

24
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was maintained constant across ail zones and confirmed using a calibrated K

type thermocouple. Mass flow controller set points were programmed with a

MICON 3 microprocessing controller which produces the set point voltage and

automatically monitors the flow vs. the programmed flow limits. The pressure in

the reactor was monitored with an automatic exhaust valve and measured at the

reactor inlet using a capacitance manometer (13 torr MKS baratron pressure

gauge).

Figure 3.1 Schematic diagram of the experimental setup.
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3.2 	 Pre-experiments

3.2.1 Flow Meter Calibration

Since the flow ratio as well as the actual flow rates of the reactant gases were

important parameters, the flow meters for the reactant gases were calibrated

first, before starting with the main experiments. The flow rate of ammonia and

argon, obtained from respective cylinders, was measured and controlled using

UNIT mass flow controllers. Flow rate of gaseous TiCI4, coming from a bubbler

containing pressurized liquid TiCI4 , was measured and controlled using MKS

vapor source flow controller. This flow meter gave the flow reading directly in

sccm and was not needed calibrated.

The way in which the calibration of the UNIT flow controllers was done is

as follows. For a certain starting vacuum pressure of the reactor, and the valve

open by certain percent, the gas was allowed to enter the reactor for a certain

amount of time (At) and the final pressure of the reactor at the end of the time

period was noted. The pressure increase (OP) was measured and used to

calculate the volume of the gas corrected to the STP conditions (i.e. at T o 273K

and P o 760 torr). The expression for flow rate (F.R.) in sccm corrected to STP

was derived from the gas law and is as follows:
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By carrying out this calculation for different percentages of the valve

opening, a calibration plot was obtained of the actual flow vs. % valve value. This

calibration plot was used to determine the percentage at which the valve should

be kept open so as to give the desired flow rate and hence the desired flow ratio.

These flow calibrations were done periodically to check for inconsistencies.

3.2.2 Leakage and Outgassing Check

Before starting the experiments, the reactor setup was for leakage and

outgassing. With the reactor evacuated and the flow controllers fully open, the

valves were closed and the flow controller reading was monitored for any change

indicating valve leakage. Leakage of the reactor was checked using alcohol at all

the potential points of leakage like the reactor entrance and the entry point of the

reactants. A rapid increase in the pressure indicated leakage.

Finally the reactor was checked for outgassing, which is the volatilization

of the deposited compounds on the inside of the reactor, due to extremely low

pressure inside the reactor. To check for outgassing, the pressure in the reactor

was lowered to the minimum steady value. Then all the inlet and outlet valves

were closed and the pressure in the reactor was monitored. The increase in the

pressure was noted. If this increase is very rapid, it implies that there is

considerable outgassing. This is taken care of by keeping the reactor evacuated

for a long time and even by heating it. But no matter what, there will always be a

certain minimal outgassing in the reactor, which is not a problem during the

experimentation and can be neglected.
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3.3 	 Experimental Procedure

3.3.1 Wafer Loading

Single sided polished silicon wafers of type <111>, with a diameter of 100 mm

and thickness of around 525 gm, were cut into four approximately equal parts

(quarters). Along with these four quarters, whole wafers were introduced for the

purpose of stress and thickness measurement. The wafer for stress

measurement was placed back to back with another whole wafer so that

deposition took place only on one side. For the whole wafer to be used for film

thickness measurement by Dektak, a small wafer piece was kept face-to-face

with it. Before loading into the reactor, the weights of all these pieces were

measured using an electronic balance and noted. They were then loaded onto a

clean quartz boat by placing them vertically in the slots provided on the boat. The

reactor was brought to atmospheric pressure, by filling it with nitrogen, so as to

open the door. The boat was then carefully kept inside the reactor at a distance

of 65 cm. from the reactor inlet and the door was shut close.

3.3.2 Reactor Start-up

Once the wafers were loaded, the door of the reactor was shut and all the inlet

valves were closed. Now the bypass valve was opened and the chamber

pressure was reduced from atmospheric pressure to 5 torr. Then the outlet

(main) valve was opened so that the pressure dropped down to as low as 50

mtorr. This two step procedure of reducing the chamber pressure ensured that

the process wafers were not subjected to a sudden force and as a result they
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didn't break. A low pressure was maintained inside the chamber using the

vacuum pumps. At this point the reactor was checked for any possible leakage.

The furnace was then switched on. The temperature of the reactor was

increased in steps of 200°C till the final desired temperature was reached. The

external cooling system (fans) was switched on to keep the pump end cool.

When the temperature and the pressure stabilized, the reaction was

started. Before opening any of the reactant gas valves, the flow controllers for

these valves were set to the desired level. The valves were then opened one

after the other. The timer was started as the pressure of the reactor stabilized.

The deposition was then allowed to take place for a certain period of time.

Among the deposition parameters recorded were the pressure, reaction

temperature, flow rates of the reactants and the deposition time.

3.3.3 Reactor Shutdown and Wafer Unloading

At the end of the given time period, the furnace and the turbo pump were shut

off. The flows of the reactant gases were shut off one after the other. Here care

was taken to see that the gases were evacuated from the lines as well. The

reactor was then allowed to cool overnight.

After the reactor has cooled to room temperature, it was still under

vacuum. So nitrogen was let into the reactor till the pressure became

atmospheric. The door of the reactor was then opened and the boat was pulled

out using a long rod with a hook at the other end. The weight of the wafers was

measured and recorded.
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3.3.4 Reactor Cleanup

During every run, the inside of the reactor also became coated and it was

essential to clean the reactor so as to avoid outgassing during the next run.

Alcohol and acetone, which are good solvents, were used to clean the reactor.

Water was avoided since it, being not volatile, stays in the reactor. The boat was

also cleaned and readied for the next run.

3.4 Characterization

(A) Film Weight: An electronic balance was used to measure the weight of the

wafers, accurately to 0.1 milligram, before and after the deposition process. The

difference gave the film weight.

(B)Thickness: The thickness of the deposited films was measured with the help

of the Sloan II Dektak machine. To facilitate this measurement, the film had to be

deposited on the wafer in such a way that a certain part of the wafer was

obscured and didn't have the film, but the film was deposited on the surrounding

portion. This was done by keeping a small piece of the wafer in face-to-face

contact with the wafer on which the film was to be deposited. So that after the

deposition, the portion of the wafer covered by the small piece was just the

original silicon surface while the surrounding area was the deposited film. The

wafer used for thickness determination was always kept at the same distance

from the reactor inlet for all the runs. The Sloan Dektak machine had a

mechanical stylus profilometer, which scanned and plotted the profile of the
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surface as it went from the undeposited region into the deposited region. The

thickness of the film could be obtained from this plot.

(C) Growth Rate: Growth rate was determined in terms of Å /min, by dividing

thickness by the time of deposition. Growth rate was used as measure of the

rate of reaction and was studied with respect to the temperature of deposition as

well as the partial pressures of the reactant gases in order to establish the rate

equation.

(D) Density: The titanium nitride films were deposited on just one side of the

wafers by placing them back to back. The film was thus deposited on a known

surface area of 78.5 sqcm and the thickness of the film was determined as

described in section 3.4.2. Thus the volume of the film could be determined, and

knowing the film weight, density could be determined as the ratio of mass

(weight) to volume.

(E) Stress: The stress in the film was determined by a house-developed device,

employing dual laser beam equipment, which measures change in radius of

curvature of the wafer resulting from the film deposited on one side. Two fixed

and parallel He-Ne laser beams were incident on the wafer surface before and

after deposition. The reflected beams from the two surfaces were then projected

by an angled plane mirror as two points onto a scale at a fixed distance and their

separation was measured. The change in separation of these two points, D(mm),
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before and after deposition of a film of thickness T(µm), was fed into the

following equation, obtained by simplifying Stony's equation, to obtain actual

(F) Resistivity: To determine the resistivity of the film, first the sheet resistance

was determined using a standard four-point probe. The sheet resistance when

multiplied by thickness of the film gave the resistivity of the film.

(G) Hardness: The hardness of the titanium nitride films deposited was

measured using the nanoindentation technique. The data obtained gave the

values for hardness at different indentations starting from zero to more than 200

nm. The hardness of the film was taken to be the value for an indentation of 200

nm since the value more or less stabilized at this depth.

(G)X-ray Diffraction: The films deposited were analyzed using X-ray diffraction

(XRD), so as to determine the orientation of the lattice planes. The equipment

used was a Phillips X-ray Diffractometer, which was operated using APD

software. A 40 kV voltage was used at a current of 45 mA to do the XRD. The

angle (20) range scanned was 5° to 110° in a duration of 6 hours.

(H)Optical Measurements: Optical measurements for the deposited films were

carried out using a benchtop emmissometer. These measurements gave the

spectral data for reflectance, transmittance and emittance of the films.



CHAPTER 4

RESULTS AND DISCUSSION

The results of titanium nitride thin film deposition on silicon substrates, under

varying conditions of temperature and flow ratios of the reactant gases are

discussed in this chapter. The changes in the film properties, electrical as well as

mechanical, due to variation in the process parameters are also explained. In all

the experiments, films deposited were uniform and without cracks. No peeling

was observed indicating that the adhesion properties of titanium nitride on silicon

substrate are excellent.

First, in the kinetic study of the reaction, the change in the growth rate due

to variation in the deposition temperature is used to determine the activation

energy for the reaction. The rate order of the reaction with respect to the reactant

gases is determined by studying the change in the growth rate due to variation in

the partial pressure of the reactant gases. The kinetic study is followed by the

characterization study, in which the effect of varying the process parameters on

the various mechanical and electrical properties of the film is studied.

4.1 Kinetic Study

The kinetic study of titanium nitride thin film deposition, using TiCl 4 and NH 3 as

the precursors, was carried out by taking the growth rate as a measure of the

reaction rate and studying it as a function of temperature and the partial

pressures of the reactant gases.
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4.1.1 Temperature Effects

The deposition was carried out at different temperatures while keeping all other

parameters constant and the growth rate of the films in each case was

determined. Two sets of data were obtained: (a) For a NH 3/TiCl4flow ratio of 10,

experiments were carried out at 450, 475, 500, 530, 550, 600 and 700 °C and (b)

For a NH 3/TiCI 4 flow ratio of 5, experiments were carried out at 600, 700, 800

and 850 °C. In both cases, the thickness data, knowing the time of deposition,

measure of the rate of the chemical reaction and the rate of the chemical

reaction can be expressed as follows:

where PA = partial pressure of species A

x,y = reaction rate orders

The constant k in the above reaction depends on the temperature

according to the Arrhenius expression given below.

where Ea = activation energy for the reaction, kcal mol-1

R = gas constant, 1.987 cal K -1 mo1 -1

T = temperature, K

Ao = constant

Since the flow rates of the reactants and the total pressure was

maintained constant, and only the temperature was varied, the growth rate for
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each of these experiments was dependent only on the exponential term in

equation 4.2.

By taking natural logarithm (In) on both sides of the above equation and

plotting a graph of In (growth rate) versus (1000/T), the following plot is obtained.

Figure 4.1 Plot of growth rate vs. 1000/T.

Neglecting the horizontal part of the plot, since that is for the diffusion

controlled regime, the negative slope of the plot gives the ratio between the

activation energy and the gas constant. By determining the slope of the curve,

the activation energy for the reaction can be calculated. For the plot shown in

Figure 4.1 above, the slopes of the two lines are almost equal and give an

calculated to be about 10 kcal/mol.
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4.1.2 Partial Pressure of TiC14

To study the effect of partial pressure of TiC1 4 on the growth rate, TiCI4 flow rate

was changed while keeping flow rate of NH3 constant at 50 sccm. The reactor

temperature and pressure were also maintained constant. Since the mole

fraction of NH3 varied, its partial pressure also changed, but these changes were

relatively small enough, compared to the changes in the partial pressure of TiCI 4 ,

to be neglected. The growth rate was then plotted versus the partial pressure of

TiC14 on a double logarithmic plot as shown in Figure 4.2 below. All other

parameters being constant in equation 4.1, the growth rate is proportional to the

partial pressure of TiCI 4. If x is the order of proportionality, then we have,

Figure 4.2 Plot of growth rate as a function of partial pressure of TiCl 4 .
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4.1.3 Partial Pressure of NH 3

To study the effect of partial pressure of NH 3 on the growth rate, argon had to be

introduced into the reactor for the following reason. Unlike in the case ofTiCI4,

changing the flow rate of NH3 while maintaining constant, the flow rate of TiCl 4

and reactor pressure, changed partial pressures of both the gases significantly.

Hence, if only partial pressure of NH 3 was to be changed, another gas (argon)

was needed to compensate for this change and thus maintain partial pressure of

TiCI4 constant. Argon being an inert gas did not participate in the reaction.

Figure 4.3 Plot of growth rate as a function of partial pressure of NH 3 .

As in the case of TiCI4, the growth rate was plotted versus the partial pressure of

ammonia on a double logarithmic plot (Figure 4.3) and the slope of this plot gave

the order of the reaction with respect to ammonia as 1.37.
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4.1.4 Rate Equation

Knowing the values of the activation energy and the rate orders with respect to

ammonia and titanium tetrachloride, the following rate equation can be

established using equations 4.1 and 4.2, where rate is in mol/min.

4.1.5 Reaction Mechanism

In the gaseous phase at lower temperatures, NH3 and TiCI4 are known to form a

experiments carried out. At higher temperatures, the complex is believed to

finally decompose into TiN.

The rate equation obtained in section 4.1.4 can be explained with the help

of the theory put forth by Imhoff et. al. [19] using Langmuir-Hinshelwood model

for the case of competitive adsorption. As explained in section 1.3.4, this model

states that the growth rate vs. reactant partial pressure plot shows a maximum.

At low partial pressure of the reactant, the growth rate increases with the partial

pressure of the reactant and the reaction order is positive. At high partial

pressures of this reactant, growth rate decreases with increasing reactant partial

pressure and reaction order is negative. In the present study, even though TiCI4

partial pressure was low, since TiCI 4 was introduced in the reactor closer to the

wafers (see Figure 3.1), its local partial pressure was high as compared to that of

NH 3 and this is why the rate order is negative for TiCI 4 and positive for NH3.
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To study the reaction mechanism in detail, consider the following

elementary reactions:

(1) TiCI4 adsorption: Because of the sp a hybridization of the Ti atom in the TICI4

molecule, direct adsorption of TiCl 4 on one site is less probable. Instead it

adsorbs dissociatively on 2 adjacent sites [19], according to,

(2) NH3 adsorption: On hot surface, NH 3 adsorption is dissociative according to

the following steps,

TiN, according to the following reaction [17]:

Of these, last reaction is by far most probable since it involves and one step for

NH3 dissociation and two sites for the reaction.

According to the Langmuir-Hinshelwood theory, the numerator of the

growth rate expression is related to the adsorption phenomena, leading to TiN

formation, while the denominator is related to the adsorption phenomena, which

inhibit TiN deposition by poisoning surface sites [14 Thus at a fixed temperature

the growth rate can be given as,



40

dissociatively, but its adsorption is inhibited by TiCI4. Moreover, local partial

pressure of NH 3 is much lower than the partial pressure at which it enters. Thus

θNH2 α  PNH3 . Thus using the expression given by Laidler [5] for bimolecular

adsorption, we have,

Since TiCI4 is introduced near the substrate, a high value for adsorption term for

in the denominator.

Thus the rate order with respect to TiCI4 is near the experimental value of -0.42.

Since NH3 was introduced far from the wafers, and impinges a TiCI4

poisoned surface, an attenuating component a' needs to be introduced as

explained by Imhoff et. al. [19], in order to lead to a reaction order of 1.37 for

NH3 .

As Imhoff et. al. have concluded, the reactor geometry as well as the

location of entrance of the reactants are important factors in determining the

dependence of the growth rate on the partial pressure of the reactants. Suiting

et. al. have proposed that increasing PTiC14 results in more complex formation,

which in turn results in the decrease in TiN formation as less NH 3 is available.

This is another possible explanation for the negative order for TiCI 4 .
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4.2 Characterization Study

4.2.1 Temperature Effects

(A) Color: The color of pure TIN films has been reported to be golden [1]. In the

experiments carried out in this study, the color of the films deposited was found

to be dependent on the deposition temperature. The color was brilliantly golden

at deposition temperatures greater than 750°C. For deposition temperatures in

the range 550-750 °C the color became brownish, while for still lower

temperatures (<550°C) the films were grayish in color.

(B) Density: A series of experiments was carried out at a constant NH3:TiCl4

flow ratio of 5 and pressure of 70 mtorr at 600, 700, 800 and 850 °C. The density

of the films deposited was determined by dividing the film weight by film volume

as calculated from the product of film thickness and known area of the wafer.

Figure 4.4 Variation in film density with deposition temperature.
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The thickness in this case was obtained using Sloan Dektak as mentioned

in section 3.4.2. There is a sight increase in the density with temperature. Higher

density at higher deposition temperatures might be an indication that films were

becoming purer and thus achieving a density closer to that of bulk TNN.

(C) Stress: Stress was determined for the films deposited at a pressure of 70

mtorr at four different temperatures for each of the flow ratios of 5 and 10. It was

found to be tensile. This means that the film causes the wafer to be concave on

the side it is deposited. Figure 4.5 shows the results plotted for the two different

flow ratios. The stress decreased with the increase in temperature. The lowest

stress was observed to be 40 MPa at a deposition temperature of 850°C, for a

flow ratio of 5. Since it is not desirable of films to exert stress on the wafer, either

tensile or compressive, low stress means better film quality

Figure 4.5 Variation in film stress with deposition temperature.
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(D) Resistivity: The variation in resistivity with temperature was also studied at

2 different flow ratios. Figure 4.6 shows the results. Resistivity was found to

decrease with increasing temperature. All the experiments were carried out at a

pressure of 70 mtorr. The lowest resistivity obtained was 86 µohm-cm at a

temperature of 850°C and flow ratio of 10. Since TIN is used in the

microelectronics industry as a diffusion barrier, low film resistivity is an important

characteristic, and again, high temperature leads to this desirable film quality.

Figure 4.6 Variation in film resistivity with deposition temperature.

(E) Hardness: On an average, the titanium nitride films were 50% harder than

silicon. At an indentation of 200 nm, the value of the hardness ranged from 13 to

17 GPa depending on the film deposition process parameters while the hardness
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for silicon was found to be about 10 GPa. Study of the variation in the film

hardness with the deposition temperature (Figure 4.7) showed that the film

hardness decreased with increasing film deposition temperature, for a NH3:TiCI 4

ratio of 5.

Figure 4.7 Variation in film hardness with deposition temperature.

4.2.2 Flow Ratio Effects

(A) Growth Rate: The growth rate was measured for a series of experiments

carried out at 600°C at a pressure of 70 mtorr for different flow ratios: 5, 7,10, 25

and 50. The results are plotted in Figure 4.8 below. It can be seen that the

growth rate increases almost proportionally with the flow ratio.

The results of the kinetic study can be used to explain this behavior. Since
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ratio was increased by decreasing the flow rate of TiC1 4 . This increased the

partial pressure of NH 3 and decreased that of TiC1 4. From the kinetic study, we

have found out that the growth rate is directly proportional to the partial pressure

of NH 3 and inversely proportional to the partial pressure of TiC1 4. This explains

the increase in the growth rate with increase in the flow ratio.

Figure 4.8 Variation in growth rate with flow ratio.

(B) Density: As the flow ratio was increased, the density increased at first but

then became constant at a value of around 4.9 gm/cc (Figure 4.9). The films in

this case were deposited at a temperature of 600 °C and pressure of 70 mtorr.

This variation in the density might be due to the change in the composition of the

film.



Figure 4.9 Variation in film density with flow ratio.

4.2.3 Optical Properties

Figure 4.10 shows the optical characterization of a Tin film deposited at 600°C

and 70 mtorr pressure, using a NH3 :TiCI4 flow ratio of 5. From the reflectance,

emittance and transmittance spectra in the IR region, it can be concluded that

TiN films can act as a good reflector of IR radiation (i. e. heat), since they reflect

more than 80% of the radiation. It is for this heat reflecting property of TiN films

that they have been used as heat mirrors in architectural applications N. Almost

zero radiation is transmitted while a very small percent is emitted. However this

behavior was found to change at a deposition temperature of around 750°C,

where the reflectance went down considerably and the emittance increased; the

transmittance remained unchanged. The probable cause for this was formation

of some kind of oxide that had different optical properties.

46



Figure 4.10 Optical Properties of TiN.
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4.2.4 X-ray Diffraction (XRD)

X-ray diffraction analysis was carried out for a TIN film of thickness 2578 A

deposited at 600°C and 70 mtorr, using a NH3 :TiCI4 flow ratio of 5. The

corresponding X-ray diffraction plot is shown in Figure 4.11. From the d-value of

Table 4.1 compares the relative intensities of different orientations for the

above film with those given in the diffraction data card for TiN. Looking at the

minimal relative intensities of the peaks for orientations other than (200), we can

safely say that the orientation of the film is (200). This is in agreement with the

findings of Oh et. al. [22], who have confirmed that for lower thickness (<5900A),

TiN films exhibit a preferred orientation of (200).

Figure 4.11 X-ray Diffraction plot for TIN.



Table 4.1: Comparison of experimental XRD data with standard data.
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4.3 	 Additional Studies

4.3.1 Etching Study

In many applications of thin film deposition, etching of the film is an important

aspect. In wet etching, mostly hydrogen fluoride (HF) is used for etching of thin

films. However, HF is a very dangerous chemical and is notorious for causing

skin burns. Thus finding an alternative to HF for etching becomes essential. In

the case of TiN thin films, Buiting et. al. [13] have reported that the mixture of

ammonium hydroxide, hydrogen peroxide and water is effective in etching the

film.
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Figure 4.12 Etching characteristics.

Etching experiments were carried out using an etching solution containing

the same experiment. NH4OH used was concentrated while H2O2 was used as a

were carried were 1:1:2, 1:1:1 and 1:1:0.

Figure 4.12 shows the results of the etching experiments. The rate of

etching (given by the slope of the plot during the initial stages of etching)

decreased as the proportion of water was increased, i.e. as the etching solution

was diluted. In the case where no water was added, the film etched almost

completely within just half an hour, while it took more than 2 hours in the case
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where dilution was maximum. In all the cases, the etching was complete and

uniform, thus proving the ammonium hydroxide-hydrogen peroxide mixture as an

efficient etching solution for etching of TIN thin films.

4.3.2 Effect of Aluminum on LPCVD of TiN

During one of the experiments, it was observed that the presence of aluminum in

the reactor altered the color of the TiN film deposited. In the case of deposition

carried out at 600°C, in the presence of aluminum, the color of the film deposited

was found to be brilliant golden, which is characteristic of pure TiN films [141.

However for the deposition carried out under the same process conditions but in

the absence of aluminum, the color of the film deposited was observed to be

reddish brown. This implied that the presence of aluminum was affecting the

composition of the deposited film.

However, the same golden color of the film is observed for deposition

carried out at higher temperatures (-850°C). This implies that there is some

similarity between the composition of the film deposited at 600°C in the presence

of aluminum and the one deposited at 850°C in the absence of aluminum. This

similarity was presumed to be low chlorine content in both the films. The chlorine

content in the case of film deposited at 850°C is low since the chlorine content

decreases with increase in the deposition temperature [13}. So it was suggested

that the low chlorine content of the film deposited in the presence of aluminum

was a result of the fact that aluminum reacted with the chlorine to form AlC1 3 .

Thus lesser chlorine went into the film, thereby imparting a golden color to the
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film. This inference was further strengthened by the fact that the resistivity of this

film was very low (2142).

This aspect of TiN deposition might be particularly useful in the

applications where TiN coating is used for decorative purposes or as a low

resistivity film and the substrate on which the film is deposited cannot tolerate the

temperature at which a pure TiN film is deposited. By carrying out the deposition

in the presence of aluminum, this might be achieved at considerably lower

temperature, which the substrate can survive. Apart from making the process

feasible, this also results in huge savings in energy and time. Essentially, an

entire separate study can be carried on the LPCVD of TiN in the presence of

aluminum.
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