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Now, given %n+j- Ι with j > 1, the quantities A and fLk , k = n + 1, n + 2, AA , n +

j — 1} are constantsA Thus to evaluate (3.10), only the first term in the right hand

side needs to be computedA This is,

Hence, fAn ,, s} is a submartingale (See Appendix B, for a brief basics of the

martingale theory)A Now as x 2 is a convex function of x, ffAń, %n} is also a

martingale.

3.5.2 Estimator of the generation n (Age)

The underlying justification of the estimator, which will be proposed in this section,

will lie in the following inequality, (See Sen and Singer (1993) )
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Theorem 3.5.1. (Ηέjek-RenyunChow Inequality) If fAn , %n} be a submartingale

and let ffcń, n > 1} be a nonincreasing sequence of positive numbers. Let An =

maxfAΧ , 0}, and assume that ΕΧ exists for every n > 1. Then, for every € > 0,

As we have shown that fAna, %,} is positive valued submartingale, the above

inequality can be usedA Using Theorem (3.5.1) and choosing cc = m ^ .) , An, it follows

that



Using this, the inequality (3.12) can be rewritten as
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Here the optimization needs to be carried out with respect to two variables n and

m simultaneously, which is computationally little bit difficult and getting a feasible

solution may not be possible in many casesA Hence we propose to replace m in (3A14)

by its plug in estimator Μ. Thus the final form of the estimator is

The justification of the estimator comes from (3A14), which shows ń3 has good large

sample behaviorA Note, computationally it is easier to implement than the MALEA The



26

most important feature of this estimator is that it does not depend on the specific

properties of the offspring distributionA

3.6 Examples

Example 1:

The ΕΜ algorithm is used to calculate the offspring distributionA The table

gives you the comparison between estimatesA The fractions are rounded off by taking

least integer captained in itA
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Table 3.4 Estimation of Beneration by Method of Moments and Martingale Method
and MALE

Example 2:

Here clearly r=6 (since there are 7 observations)A All three methods are applied to

Table 3.5 Observations

estimate the age n (the generation label of the first observed value 5)A The EM

algorithm is used to calculate the offspring distributionA The table gives you the

comparison between estimatesA
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Table 3.6 Estimation of Beneration by Method of Moments, Martingale Method andMALE

3.6.1 Discussion

There are some interesting observations in this contextA In Example 1, q=0A That

is the reason the method of moment estimate is giving much better estimate than

the other estimatesA Another interesting feature in this example is though ρ οζ 7 0

but this offering distribution has a bimodal property. So the MALE can estimated

and it is giving a pretty good result. But for the second example q=0A011153, this

detonates the performance of method of moment estimateA Also the Martingale based

estimator in this example does not appear to be very goodA The main reason is sample

sizeA From the asymptotic property of the estimate it can be intuitively said that

for this estimator to work well, it is preferable to have a relatively large number of

observation (large r)A To verify this more data are drawn from the pAgAfA of Example

1, gabs) = 0A1 + 0A3s + 0A6s2 A The following table verifies the correctness of such

intuition- based on computations, analogous to those in Example 1, carried out in

progressively larger sample;
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3.7 Estimation of Probability of Extinction

As discussed earlier, one of the important factor of a Balton-Watson process is the

probability of extinctionA Again assume An , Ζ2 , AAA , Ζ„+,. are r + 1 generations of a

Balton-Watson process with generating fbction gas)A The assumptions m> 1 and

Γο = 1 is still valid hereA Because without supercriticality assumption the estimation

of probability of extinction does not make any senseA Stigler(1971) obtained an

estimator of the probability of extinction by estimating the offspring probabilities

in parametric set upA Later Keiding(1976) used a martingale approach to find the

probability of extinction of the whooping crane population of Borth AmericaA He

assumed the bderlying generating fbction is negative binomialA Also Guttrop

(1991) and Bakes (1975) studied nonparametic testing procedures for estimating

the probability of extinction by exploring the martingale structure of Xn = ka1) —

pkNAA PPkes(1975) also discussed its asymptotic propertiesA But here the offspring

probabilities are estimated by the considering all possible trees which can evolve

the given dataA Now as discussed in Chapter 2, probability of extinction) is the

minimum root of the equation gas) = sA This idea helped to propose a nonparametic
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estimator for the probability of extinctionA The estimator can be propose as;

where g(s) is the plug-in estimate of gabs). The offspring probabilities are estimated

by the ΕΜ algorithm described earlierA The asymptotic properties of the estimator

can be established by using the following theorem proved by

Now if an estimator of probability of extinction defined by,

These theorem ensures the asymptotic normality of qA



CHAPTER 4

HYPOTHESIS TESTING IN GALTON-WATSON PROCESS

In this chapter a fbdamental problem regarding Balton-Watson process has been

explored. Suppose the evolution of a population follows a simple Balton-Watson

process but the offspring distribution is not knownA What can be said about the

nature of the process by observing first few generations? In other words, from few

observations is it possible to statistically infer whether that the process is going to

extinct or explode in future? How does one conclude that the process is sub-critical',

`critical' or `supercritical'A These questions can be mathematically formulated as

the problem of testing an explosion vs extinction hypothesis; in other words as the

problem of testing

where m is the mean of offspring distributionA The problem is challenging mainly

for two reasonsA First, as the observed values in a Galton-Watson process are from

a Mark chain, they are not independently and identically distributed (iAi.dA)A Thus

common statistical testing procedures based on i.i.d observations are not applicable

in this case, second difficulty is regarding the estimation of the model parametersA

As discussed in the previous chapter, an ΕΜ method is required to estimate the

parametersA But in this method it is not possible to obtain a closed form estimate of

the parametersA Also, due to dependence structure, one must be careful in applying

the standard limit theorems to construct large sample testsA

4.1 Background Bork

There is some literature regarding the testing problem mentioned aboveA But in

most of the cases, such tests has been developed only for parametric family of

31
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generating functions. Basawa and Scott a1976) has developed a procedure for testing

such hypothesis bder the assumption that the offspring distribution has a "power

series" p.m.. Later Basawa a1981) developed an conditional testing procedure to

test the above hypothesis. Also this problem was dealt by Basawa and Scott (1987)

by exploring the process structure and Sweeting(1978) . In the next two sections a

nontraditional approach has been taken to deal with such hypothesis, in a nonparametric

set up.

4.2 Test based on Conditional Fisher Information

As explained in Chapter 3 asection 3.1), without loss of generality, we again assume

that is o = 1 throughout this chapter. The first technique that has been used, is

based on the asymptotic behavior of the of the maximum likelihood estimates. As

discussed earlier there are some literature in branching processes where the testing

problem has been explored for parametric cases, but no work has been for general

parametric set up. In this chapter a methodology has been developed for testing

the hypothesis in very general setup. Suppose Ζικ, Ζει  ... , Ζ are first n generations

of a Balton-Watson process. We donor assume that the observation start at the

first generation. They can start at any generation. The same methodology will

be applicable on that case. The objective is to test the hypothesis stated in (Α l ).

Here also the only bderlying assumption is that the offspring distribution has a

finite support. If the offspring distribution has support f0, 1, 2, ... , M} and Al , l =

0, ... , M are the corresponding probabilities, then the nonparametric likelihood is

given by,
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where k 1 's are same as in equation a3A1) in Chapter 3. Suppose that Ln(ρ)is

MALE of pA

Looking into the hypotheses (Α l ), it is clear that they constitute separable

family of hypotheses, since bder Ηρ the bderlying process of Ζ ικ, Ζεις AA. being

supercritical and thus exploding with positive probability, is completely different from

the bderlying process of Ζι  Ζε, AAA bder Η1 which faces extinction with certaintyA

Let pro and 13xu be the MALE of p bder Η0 and Ηl respectivelyA Α test statistic

defined a test statistic which can deal with such a situation, as defined by defined by

Cox(1961), is

where k 1 is the number of element gave birth to exactly 1 offspring in n generations

and C is the term independent of p. The log-likelihood can be approximately written

as;
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The conditional Fisher information is defined as

Then the bconditional Fisher information can be obtained by,

Cox(1982) has proved that if Ι (ρ)['n (ρ)] -1 4 Ο then Th has a asymptotic normal

distribution. . Here the two following theorem will show that Box's method is not

applicable in the current context.

W is defined in Chapter 2 and L is the time to extinction of the process bder the

alternative hypothesis Η l .

To prove Theorem 4.2.1 the following Lemma is need to stated.
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This theorem proves the contiguity that is need for both null and alternative

hypothesis is missing here. Under null hypothesis the ratio is converging to a nontrivial
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positive valued random variable. So Cox method will not work in this case. So a

alternative test can be suggested by the following way;

test for testing Η0 against Ηl . But the problem is find the exact distribution for Τ ι is

really difficult. So bootstrap technique can be used to solve that problem.The outline

of the method is as follows;

• from the given data a considerable number of bootstrap samples are chosen.

• For each bootstrap sample Τ 1 is calculated.

• This gives an empirical distribution of Τ and that is used in taking the decision.

4.2.1 Example

Consider Table 3.3. If Τf21 calculated for this data and Ται= 0.47. 95-th percentile

of Τ 1 calculated with 5000 bootstrap sample is 3.56. So H0 is not rejected at 5%

level of significance. So the process is probably Supercritical. This shows that test

procedure is working.

4.3 Using Least Favorable Setup

The method described in previous section is intuitively very appealing and also

easy to implement. But one another problem is as it is not possible to find the

exact distribution of Τl for most of the cases there is a possibility of significant

reduction in the power. In this section another method is discussed based on the

`least favorable null hypothesis '.This is still an ongoing process. For simplicity assume,

M=2. That means the offspring distribution has support in f0, 1, 2} and ροζ, Αι , p2



38

are corresponding probabilitiesA On that consider the following hypothesis;

The generalization of this method for M > 2 is discussed at the end of this sectionABefore

describing the method it is required to give definitions of some important notions;

d_ f _ 1 T,Paκt Fa m h1P N»11 Hvnnthρς ς

So here both the null and alternative hypothesis are compositeALet LA  be the likelihood

ratio test aaLRT) for testing Η and ΗA If 1A2 is the observed value of LA  A It is required

to find the p-valueA of the test for conclusionA Now,

As the null hypothesis is composite this probability depends on particular null value

of Θ, which anywhere in the null parameter spaceA Thus,PΘ(LA Ι > 1A u ΙΘ Ε Η0 ) is not

just a fixed number on the null parameter space, but a fbction of Θ, and hence does

not define a p-valueAA In this case, a reasonable approach to overcome this difficulty

appears to be not to reject Η if there is at least one value in the C with which the

data are consistent; or equivalently reject  Η if the data are inconsistent for all Θ Ε CA

In this situations the usual procedure to define the p-value is as follows;


