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Theorem 3.5.1. (Héjek-Renyi-Chow Inequality) If {X,, S,.} be a submartingale
and let {c}, n > 1} be a nonincreasing sequence of positive numbers. Let X} =
max{Xp,,0}, and assume that EX;} exists for every n > 1. Then, for every € > 0,

n
P{IIEI?leCZX,:' >el <€ {C:LEXI’- + ZCZE(XI:_ - XI:—I)}
<k< k=2

As we have shown that {M,, 3,} is positive valued sub-martingale, the above

inequality can be used. Using Theorem (3.5.1) and choosing ¢}, = %, Vn, it follows

that
M2, L EME S EME - M)
P{max 55 > ep <7t { z; e , (3.12)
J=
m‘s("')
where 6(r) > 0 is a arbitrary function of r with the property that — 00 as

m2r
r — oo. For example §(r) can be chosen as 4r.

For a Galton-Watson Process, it is well known that

EZ, = m"t

2. ,n—1 n __
Var(Z,) = omm(m1 1),

where 02= VarZ;. These properties can be used to simplify equation (3.12). Note

that,
EMy; = E(Zny—m™)?
= Vaan+j
n = (i _
= AN s

m—1
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Using this, the inequality (3.12) can be rewritten as

5 mn—l(mn _ 1)

(m—1)
— 1) Z{mn-f-_'/ —1(mnti 1)

m"+’—2(m"+’ 1Y (3.13)

. amn+7i2
P{ max (Zn+J m )

é(r)\—1
0<j<r md() > 6} = (em ) [0

Again,

0.2((m N 1)6m6(r))—1[mn—l(mn _ 1) + Z{mnﬂ'—l(mnﬂ' _ 1) _ mn+j—2(mn+j—1 _ 1)}]

0.2

— n+r—1 n+r
= o 1)em5(’)m (m 1)

= RHS of equation (3.12) - 0 as r — oo.

(Znyj — m"H)?

= P{OII<1?<XT 50 >et — 0 as r — oo.
Z . — n+j\2
= max( ' Jm ) 20 as r— 0. (3.14)
0<j<r ms(r)

The convergence result in Equation (3.14) motivates us to propose the following:

i\2

N ) ( Zn+j _ mn+.7)
Mg = min max
n>1, m>10<5<r mé()

(3.15)

Here the optimization needs to be carried out with respect to two variables n and
m simultaneously, which is computationally little bit difficult and getting a feasible
solution may not be possible in many cases . Hence we propose to replace m in (3.14)

by its plug in estimator 7. Thus the final form of the estimator is

A~ S 2
. . (Znyj — M)
fi3 = min max v
n>1 0<j<r mé(r)

The justification of the estimator comes from (3.14), which shows 713 has good large

sample behavior. Note, computationally it is easier to implement than the MLE. The



26

most important feature of this estimator is that it does not depend on the specific

properties of the offspring distribution.

3.6 Examples

Example 1:

The following data is generated from g(s) = 0.1 + 0.3s + 0.6s2.

Table 3.3 Observations of 11 Consecutive Generations

k Zy

4 4

) 3

6 6

7 7

8 10

9 14

10 23

11 37

12 59

13 101
14 157

The EM algorithm is used to calculate the offspring distribution. The table
gives you the comparison between estimates. The fractions are rounded off by taking

least integer cantained in it.
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Table 3.4 Estimation of Generation by Method of Moments and Martigale Method
and MLE

Method Estimated
Value of

Generation

Method of Moments | 5
Martingale Method 13
MLE 8

Example 2:

The following data is generated from g(s) = 0.01+0.15+0.352+0.255%+0.2s*+0.14s.

Here clearly 7=6 (since there are 7 observations). All three methods are applied to

Table 3.5 Observations

Zy,

5

13
41
135
403
1209

o N O Ot lx W N

3508

estimate the age n (the generation label of the first observed value 5). The EM
algorithm is used to calculate the offspring distribution. The table gives you the

comparison between estimates.
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Table 3.6 Estimation of Generation by Method of Moments, Martigale Method and
MLE

Method Estimated
Value of

Generation

Method of Moments | 7
Martingale Method |9
MLE X

3.6.1 Discussion

There are some interesting observations in this context. In Example 1, ¢g=0. That
is the reason the method of moment estimate is giving much better estimate than
the other estimates. Another interesting feature in this example is though py # 0
but this offpring distribution has a unimodal property. So the MLE can estimated
and it is giving a pretty good result. But for the secong example ¢=0.011153, this
detoriates the performance of method of moment estimate. Also the Martingale based
estimator in this example does not appear to be very good. The main reason is sample
size. From the assymptotic property of the estimate it can be intuitively said that
for this estimator to work well, it is preferable to have a relatively large number of
observation (large r). To verify this more data are drawn from the p.g.f. of Example
1, g(s) = 0.1 + 0.3s + 0.6s%2. The following table verifies the correctness of such
intuition- based on computations, analogous to those in Example 1, carried out in

progressively larger sample;
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Table 3.7 Change in Martingale Method Estimate with r

r ng
10 13
20 14
30 10
40 11
50 9
60 9
70 7

3.7 Estimation of Probability of Extinction
As discussed earlier, one of the important factor of a Galton-Watson process is the
probability of extintion. Again assume Z,, Z,,...,Z,,, are 7 + 1 generations of a
Galton-Watson process with generating function g(s). The assumptions m > 1 and
Zo =1 is still valid here. Because without supercriticality assumption the estimation
of probability of extinction does not make any sense. Stigler(1971) obtained an
estimator of the probability of extinction by estimating the offspring probabilities
in parametric set up. Later Keiding(1976) used a martingale approach to find the
probability of extinction of the whooping crane population of North America. He
assumed the underlying generating function is negative binomial. Also Guttrop
(1991) and Pakes (1975) studied non-parametric testing procedures for estimating
the probability of extinction by exploring the martingale structure of X, = k® —
prN. Pkes(1975) also discussed its asymptotic properties. But here the offspring
probabilities are estimated by the considering all possible trees which can evolve
the given data. Now as discussed in Chapter 2, probability of extinction(q) is the

minimum root of the equation g(s) = s. This idea helped to propose a nonparametic
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estimator for the probability of extinction. The estimator can be propose as;
¢ = inf{s: §(s) = s}

where §(s) is the plug-in estimate of g(s). The offspring probabilities are estimated
by the EM algorithm described earlier. The asymptotic properties of the estimator

can be established by using the following theorem proved by

Theorem 3.7.1. (Guttrop 1991) Let p, be the true offspring distribution. If 1. m >
1, (0/8s)g(s, p) is jointly continuous in s and p, and a; = (8/0p;)g(s, P,) exist.2. NY/2(p—
Po) KR N(0,%); Here, p is an estimator of p.

Now if an estimator of probability of extinction defined by,
¢ = inf{s: g(s,p) = s}
Then, NY2(G—gq) > N(0,h 2a'Sa)

where h =1 — (9/0s)¢'(s, p)

These theorem ensures the asymptotic normality of §.



CHAPTER 4

HYPOTHESIS TESTING IN GALTON-WATSON PROCESS

In this chapter a fundamental problem regarding Galton-Watson process has been
explored. Suppose the evolution of a population follows a simple Galton-Watson
process but the offspring distribution is not known. What can be said about the
nature of the process by observing first few generations? In other words, from few
observations is it possible to statistically infer whether that the process is going to
extinct or explode in future? How does one conclude that the process is ‘sub-critical’,
‘critical’ or ‘super-critical’. These questions can be mathematically formulated as
the problem of testing an explosion vs extinction hypothesis; in other words as the

problem of testing

Hy : m>1 (L] H :m<1 (Al)

where m is the mean of offspring distribution. The problem is challenging mainly
for two reasons. First, as the observed values in a Galton-Watson process are from
a Markov chain, they are not independently and identically distributed (i.i.d.). Thus
common statistical testing procedures based on i.i.d. observations are not applicable
in this case, second difficulty is regarding the estimation of the model parameters.
As discussed in the previous chapter, an EM method is required to estimate the
parameters. But in this method it is not possible to obtain a closed form estimate of
the parameters. Also, due to dependence structure, one must be careful in applying

the standard limit theorems to construct large sample tests.

4.1 Background Work
There is some literature regarding the testing problem mentioned above. But in

most of the cases, such tests has been developed only for parametric family of

31



32

generating functions. Basawa and Scott (1976) has developed a procedure for testing
such hypothesis under the assumption that the offspring distribution has a ”power
series” p.m.f. Later Basawa (1981) developed an conditional testing procedure to
test the above hypothesis. Also this problem was dealt by Basawa and Scott (1987)
by exploring the process structure and Sweeting(1978). In the next two sections a
nontraditional approach has been taken to deal with such hypothesis, in a nonparametric

set up.

4.2 Test based on Conditional Fisher Information
As explained in Chapter 3 (section 3.1), without loss of generality, we again assume
that is Zy = 1 throughout this chapter. The first technique that has been used, is
based on the asymptotic behavior of the of the maximum likelihood estimates. As
discussed earlier there are some literature in branching processes where the testing
problem has been explored for parametric cases, but no work has been for general
nonparametric set up. In this chapter a methodology has been developed for testing
the hypothesis in very general setup. Suppose Z;, Z,, ..., Z, are first n generations
of a Galton-Watson process. We donot assume that the observation start at the
first generation. They can start at any generation. The same methodology will
be applicable on that case. The objective is to test the hypothesis stated in (A;).
Here also the only underlying assumption is that the offspring distribution has a
finite support. If the offspring distribution has support {0,1,2,..., M} and p;, [ =
0,...,M are the corresponding probabilities, then the nonparametric likelihood is

given by,

n

La(p) = [[ P(Zjs1 = k31|25 = ky) (4.1)

Jj=0
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where, P= (p()vpla O )pM—l)l and

kj! KO k(l) KD

P(Zj+1 J+1|Z "k) k(O)‘k(l)' ‘ k‘(M)'po pl pM

where k(®)’s are same as in equation (3.1) in Chapter 3. Suppose that L,(p)is
differentiable with respect to p and Ep(dl“TLl;‘(p-))2 < oo for each n. Also suppose
that J, is the minimal o-field generated by Z;, Z,,..., Z, and Ly=1.Let p be the
MLE of p.

Looking into the hypotheses (A;), it is clear that they constitute separable
family of hypotheses, since under H, the underlying process of Z;, Z,... being
supercritical and thus exploding with positive probability, is completely different from
the underlying process of Z;, Z,, ... under H; which faces extinction with certainty.
Let Py, and py, be the MLE of p under Hy and H, respectively. A test statistic
defined a test statistic which can deal with such a situation, as defined by defined by
Cox(1961), is

Tr =y (Pr,) — By [l (Pro)] — U (Pr,) — Eoy, [V, (B,
where 1y, (p) = In Ln(py, | H;). Taking log of Equation (4.1) ;

M
p)=C+> kInp, (4.2)

=0

where kO is the number of element gave birth to exactly | offspring in n generations
and C is the term independent of p. The log-likelihood can be approximately written

as;

2
15,(B) = 1 (Brr) + 2 (B, — B [‘2;”—;1‘)’)] , Bap =0
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The conditional Fisher information is defined as

0*l(p)

In(p) = _E(ap/ap

'gn—l)

Then the unconditional Fisher information can be obtained by,

§n(p) = Ep,(In(p))

Cox(1982) has proved that if I,(p)[én(p)]™! = 0 then T}, has a asymptotic normal
distribution. . Here the two following theorem will show that Cox’s method is not

applicable in the current context.

Theorem 4.2.1. If Z,, Z,, ..., Z, are first n generations of a Galton-Watson process
with generating function g(s), which has a finite support. Then,

T
| as. I_TmZZkIM—lxM—l, under H;.
In(p)[fn(p)]— — k=0

Wly_ixm—1, under Hy.

W is defined in Chapter 2 and T is the time to extinction of the process under the

alternative hypothesis Hj.
To prove Theorem 4.2.1 the following Lemma is need to stated.

Lemma 4.2.2. (Toeplitz Lemma)(Hall and Heyde 1980) Let an;, 1 <3 < kyp, n > 1,
and z;, @ > 1, be real numbers such that for every fixed i, a,; — 0 and for all n,
Yoilanil £ C < oo. If £, — 0, then ) . aniz; — 0, and if Y, an; — 1, then z, — z
ensures that ). anz; — 2. In particular, if a;, 4 > 1, are positive numbers and

bn =Y i, ai T 00, then z, — z ensures that b, "7 . a;z; — .

Proof of Theorem 4.2.1
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Equation(4.2) can be rewritten as ;

M-1 M-1 M-1
(p)=c+ Y kYInp+(N-> km(1-> m) (4.3)
=0 =0 =0

n
with N = Z Z;. Now using Equation (4.3) one can obtain the following;

j=1
( k(O) KO N- St b N— zM Le® N-3 Mo kO \
(-5 m)? (1- Z 5l m)? (1-3.25 m)?
Ny M2 ) k(l) ZM g N-YZ M1 k®
2 = e I=
_g l(gg _ T,y - z?’-‘p,)z =Ty
pl
N-F 251 kO N-325" kO kw) -+ D Dl 10
\ =T T s T2
3%l(p) Di {k(") k® kM-1 N — 2{”51 k® y
— P 18, , R
op'dp R Pl (1—-XMp)?
Thus
9*l(p) E(k9|S,) E(kY|Sy) E(k®)|Sy)
In(p):=—-FE _1)| = Diag , U
(P) (ap'a [Sr-1)l { 3 p? Phr-1
BV = TG K019,
(1- 1—0 pz)2
The factor k¥ can be written as
kO = kD 4 kP 4+ 4 k0 (4.4)

where k§-l) denotes the number of element in the j-th generation that gave birth to
exactly | offsprings. From the offspring structure it is clear that for given {Z;, Z, ..., Z,},

kP ~Bin(Z;,p). =  E(k®|S,) = Np.Thus I,,(p) becomes;

1 1
I N|Diag{—, —,---,
n(p) [ g{Po P pM—l}
1
"'Tlll]ﬁy,-
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Thus,
1 1 1
»(p) = E(N)|Diag{—, —, -
&(p) = E(N)] g{po o pM_l}
1
+ ——1'1]

Now E(N) =377, E(Z;) = 377, m’. That implies,

L,(P)[én(P)] ™" = N x [E(N)]™" X Iny—1xm—1

Case I: m < 1, ie, under H,;

Asm <1,

=, m(l —m")

E = J = -_——

(V) Zm 1—-m
J=1
m
—_ — as nm — 00
1-m

. . . . n a.s T
Again under H; the process has certain extinction. So )%, Z; — > 5, Zjasn — oo.

T 7.
= N/E(N)% % as n — oo.
Case II: m > 1, ie, under H

In Toeplitz lemma if ay, = m"* then b, = >_;_ ar = > p_, m* T 0o as n T co. Then

n Z; i
BV~ S S

(4.5)

now n%— — W a.s as j — 0. So applying Topelitz lemma to Equation(4.4),

N

a.s
E—(—N—)HWasn—eoo.

Hence the proof.

This theorem proves the contiguity that is need for both null and alternative

hypothesis is missing here. Under null hypothesis the ratio is converging to a nontrivial
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positive valued random variable. So Cox method will not work in this case. So a

alternative test can be suggested by the following way;

Tra = V{{In(P) [6n(P)] ™ 110 HIIn () [€n(P)] '], } 111

now gsing Theorem (4.2.1), the asymptotic null distribution of T,; 23 T} = (mW/{(1—
m) Z Z}) as n — o0o. So this test statistic can be used to construct a asymptotic
testkfztgr testing Hy against H,. But the problem is find the exact distribution for 7} is
really difficult. So bootstrap technique can be used to solve that problem.The outline

of the method is as follows;
e from the given data a considerable number of bootstrap samples are chosen.
e For each bootstrap sample T;,; is calculated.

e This gives an empirical distribution of 7" and that is used in taking the decision.

4.2.1 Example

Consider Table 3.3. If T,; calculated for this data and T,;= 0.47. 95-th percentile
of T, calculated with 5000 bootstrap sample is 3.56. So Hy is not rejected at 5%
level of significance. So the process is probably Supercritical. This shows that test

procedure is working.

4.3 Using Least Favorable Setup
The method described in previous section is intuitively very appealing and also
easy to implement. But one another problem is as it is not possible to find the
exact distribution of 7} for most of the cases there is a possibility of significant
reduction in the power. In this section another method is discussed based on the
‘least favorable null hypothesis’ This is still an ongoing process. For simplicity assume,

M=2. That means the offspring distribution has support in {0, 1,2} and po, p1, p2
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are corresponding probabilities. On that consider the following hypothesis;

Hy:m>1 ws H : m<l1 (A7)

This hypothesis can be equivalently stated as,

Ho : po>po  vs Hi: pa<po (4})

The generalization of this method for M > 2 is discussed at the end of this section.Before

describing the method it is required to give definitions of some important notions;

4.3.1 Least Favorable Null Hypothesis
Suppose X1, Xs,..., X, be iid observations from a distribution with p.d.f. f(8).

Consider the following testing problem,

Hy:0eC wvs H :0¢cC (As)

So here both the null and alternative hypothesis are composite.Let L 4, be the likelihood
ratio test(LRT) for testing H} and Hj. If l4, is the observed value of L4,. It is required

to find the p-value of the test for conclusion. Now,

p — value := P(La, > l4,|Hp)

As the null hypothesis is composite this probability depends on particular null value
of 6, which anywhere in the null parameter space. Thus,Py(La, > l4,|0 € Hy) is not
just a fixed number on the null parameter space, but a function of 8, and hence does
not define a p-value. In this case, a reasonable approach to overcome this difficulty
appears to be not to reject Hj if there is at least one value in the C with which the
data are consistent; or equivalently reject Hy if the data are inconsistent for all 8 € C.

In this situations the usual procedure to define the p-value is as follows;

p — value := sup P(Lga, > la,) (4.6)
0cH)



