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ABSTRACT

SELECTED PROBLEMS OF INFERENCE ON BRANCHING
PROCESSES AND POISSON SHOCK MODEL

by
Satrajit Roychoudhury

This dissertation explores the development of statistical methodology for some problems

of branching processes and poison shock model.

Branching process methods have become extremely popular in recent days. This

dissertation mainly explores two fundamental inference problems of Galton-Watson

processes. The first problem is concerned with statistical inference regarding the

nature of the process. Two methodologies have been developed to develop a statistical

test for the null hypothesis that the process is supercritical versus an alternative

hypothesis that the process is non-supercritical. Another problem we investigate

involves the estimation of the `age' of a Galton-Watson Process. Three different

methods are discussed to estimate the `age' with suitable numerical illustrations.

Computational aspects of these methods have also been explored.

The literature regarding nonparametric aging properties is quite extensive.

Bhattacharjee (2005) recently introduced a new notion of nonparametric aging property

known as Strong decreasing Failure rate (SDFR). This dissertation explores necessary

and sufficient conditions for which this nonparametric aging property is preserved

under Essary-Marshall-Proschan shock model. It has been proved that the discrete

SDFR property is transmitted to continuous version of SDFR under a shock model

operation. A counter example has been constructed to show that the converse is false.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background of Branching Process

The theory of branching processes is an area of Applied Probability that describe

situations in which an entity exists for a time and then may be replaced by one, two,

or more entities of a similar or different typeA It is a well-developed and active area

of research with theoretical interests and practical applications.

The theory of branching processes has made important contributions to biology

and medicine since Francis Balton originally considered the extinction of family

names among the British peerage in the nineteenth centuryA More recently, branching

processes have been successfully used to illuminate problems in the areas of molecular

biology, cell biology, developmental biology, immunology, evolution, ecology, medicine,

and othersA For the experimentalist and clinician, branching processes have helped

in the understanding of observations that seem counterintuitive, have been used to

develop develop new experiments and clinical protocols, and have provided predictions

which have been tested in real-life situations. For an applied probabilist and statistician,

the challenge of understanding new biological and clinical observations has motivated

the development of new methods in the field of branching processesA

1.2 An Overview

This dissertation explores two different inference problems regarding Balton-Watson

processA first problem deals with estimation of `age' of a Balton-Watson process

and the second one is constructing a statistical testing procedure for the mean value

of the first generation of a Balton-Watson processA

In this dissertation different nonparametric estimators of the age of Balton-

Watson Process have been developed, which substantially improves upon earlier work

1
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in this case, that were either concerned with some specific parametric families of

offspring distribution (such as geometric and Poisson families) or in the nonparametric

case where restricted to single observation. Another contribution is the development

of large sample parametric tests for the explosion vsA non-explosion hypothesisA

This is also a significant improvement over the past literature, that were mostly for

parametric casesA In this dissertation a significant work has been done to see whether

a new nonparametric aging notion, introduced by Bhattacharjee (2005), is preserved

under shock model operationA

There are many situations where it is required to estimate the age of a processA

This situation arises when somebody is interested in estimating the length of time a

specific species has existed in its present form, without knowing much past informationA

This kind of problems arises often in Anthropology, social studies etcA This problem

also arises in genetics when somebody wants to know the age of mutations of an

alleleA There are two ways a statistician can deal with such a problem. The first

method considers the `age' as a parameter and then attempts to estimate it by using

classical or Bayesian estimation procedures. The technique of second method is to

treat the `age' as a random variableA In this technique the probability structure of

the process is used to find the distribution of `age'A Examples of such a method

is `stopping time' of a Mark processA In this dissertation, the chosen emphasis

is on developing methodology in the context of the first methodA In Chapter 3,

three different methods of estimation of `age' of a Balton-Watson process is discussed

along with examplesA An EM (Expectation Maximization) algorithm is developed

to estimate the parameters of offspring distributionA All the estimators have been

developed in the parametric setupA This means no analytical parametric form of

the offspring distribution is assumed. This chapter concludes an estimation procedure

for the probability of extinction of a Balton-Watson processA



3

In Chapter 4, a fundamental question regarding the nature of Galton-Watson

process is discussedA Biven data of several consecutive generations of a Balton-Watson

process, the first question that comes into mind is about the extinction of the processA

The extinction of the Balton-Watson process has a relation with the mean of first

generationA All these relationships are discussed in Chapter 2A In Chapter 4, two large

sample test statistics have been developed along with their asymptotic properties to

deal with such testing problemsA

The body of concepts, tools and methods collectively known as the statistical

theory of reliability owe their genesis to problems dealing with "lifetimes" of hardware

component and systemsA Originally, interest in such problems were driven by a need to

successfully model and predict the probability of a complex system of interconnected

components to operate successfully, allowing for possibility of component failuresA

Over time, it was realized however that many of these ideas whose development were

first motivated by problems in hardware reliability had parallels in other fieldsA For

example, the notions of failure intensity and hazard functions are also known to and

used by demographers and actuaries as the "force of mortality"A Similarly, various

notions of "aging" to model degradation of performance as developed by reliability

theorists were found to have interconnections with appropriate notions of various

forms of stochastic partial orderings specific problem posed in Chapter 5 is one

of investigating a certain class of probability generating functions, and was in fact

motivated by the connection between a strong anti-aging (nonparametric) property

and failure distributions which have a shock model representation driven by a Poisson

processA



CHAPTER 2

PRELIMINARIES OF GALTON-WATSON PROCESS

This chapter discusses some basic preliminaries of Balton-Watson processes that we

will need in Chapter 3 and 4A The definitions and results stated in this chapter can

be found in by Athreya and Bey (1972) A These are used to prove our results in the

next two chapters of this dissertationA

2.1 Galton-Watson Process

A Balton-Watson process is a Mark chain {Ζη ; n = 0, 1, 2, • • • } on the nonnegative

integersA Its transition function is defined in terms of a given probability distribution

δ13 being the Kronecker delta and {ρ 1 ; k = 0, 1, 2,AA • } being the unfold convolution of

{pk ;1k=0,1, 2,•••1.

The probability function {Pk } is the total datum of the problemA The process

can be thought of as representing an evolving population of particlesA It starts at time

0 with Ζο particles, each of which splits independently of the others into a random

number of offsprings according to the probability law {Lk}A The total number Zip

of particles thus produced is the sum of Ζρ random variables, each with probability

function {Lk}A It constitutes the first generationA These go on to produce a second

generation of Α2 particles, and so on. The number of "offspring" produced by a single

" parent" particle at any given time is independent of the history of the process, and

of other particles existing at presentA The number of particles in th n-th generation

is a random variable Α, . The Equation (2A1) tells us that if Αη = 0, then ΑΖ,+k = 0

4
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for all k > Ο. Thus Ο is an absorbing state, and reaching Ο is the same as the process

becoming extinctA

2.2 Generating Functions

An important tool in the analysis of the process is the generating function
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Higher moments can be derived similarlyA

2.5 Elementary Properties of Generating Functions

All the properties of the transition functions Ρ (i, j) are contained in the generating

functions fn(s)A In particular, the asymptotic behavior of { fn (s)} can be translated

into limit theorems about the { An  } process, which are discussed in the next sectionA

The simple properties are as followsA
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Lemma 2.5.3. The functions f(s) are differentiable and converge on [0, 1)A Moreover

for ails E [q, 1), f(s) < (f'(s))n and for all s E [0, q), f(s) > (f'(s))nA This suggests

that f(s) has a geometric rate of decayA

2.6 Extinction Probability

As a special case of Lemma 2A1.2 it can be noted that fn (0) T q. But lima fn (0) =71-400
lima P{Zi  = 0} = lima P{Zi = 0 for some 1 < i < n} = P{Zi = 0 for some i > A},

n 	 n

which is by definition the probability that the process eventually becomes extinctA

Applying Lemma 2A1A1, the classical extinction probability theorems are obtainedA

Theorem 2.6.1. The extinction probability of the {Zip} process is the smallest non-

negative root (q) of the equation t = fat)A  It is 1 if m < 1 and < 1 if m> 1A

Theorem 2.6.2. lima P{Zn  = k} = 0 for k > 1A Furthermore,

Ρ{1ίm Ana = 0} = 1 — Ρ{1im Ad = οο} = qA
η 	 η

2.7 Limit Theorems

Different limit theorems describing the divergence nature of A n are stated in this

sectionA

The stochastic process { An, n = 0, 1, 2, • • • } is the sum of i independent copies

of the process {A0 - 1, A1  A2, • • • }A Using the Mark property

Ε ( Αη+k Ι ΑΒ = 2., Αη-1 = Ζη-1, AA , Α 1 = 2 1 ι A1 =i 1 )

= Ε(Aη±k Ι Add = 2η ) = 2nΕ(Ak  Ad = 1) = inmkA A

Hence if we set

-ηW,- = A,, m,
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CHAPTER 3

ESTIMATION OF AGE OF A ALTON BATSON PROCESS

There are several situations in which we might want to estimate the age of a mark

processA For example, we might know, at least approximately, the number of plants or

animals of a certain species in existenceA Bow suppose we are interested in estimating

the length of time the species has been in existence in its present form, without

having much historic information such as fossils for carbon dating. Another source

of applications would be geneticsA In a genetic context, the usual problem is to find

the age of an allele, given its current frequencyA In other words, we are interested

in estimating how long ago a mutation took placeA For a discrete time branching

process (Balton Watson Process) {A2 : j = 0, 1, 2, A • • }, its age is the generation

label n that corresponds to our earliest observed value Ana, of this process. There are

essentially two different approaches to the problem of estimating the 'age' parameter n

for stochastic process, one could adopt a statistical approach by forming a likelihood

based on our observations, and then estimate the age by, for instance, maximum

likelihood paradigmA For examples of this method, see Stigler (1970), Thompson

(1976) A Alternatively, one can define the age in terms of some random variable, and

find its distribution. For example of this method see Levikson, BA (1977)A In this

chapter the first method is used to deal with the problemA

3.1 Background Bork

Let Zo = 1, A1 i A2 A.A denote the sizes of successive generations in a Balton-Watson

process, starting with a single ancestor, and with a probability generating function

(pgf) of the progeny distribution with mean mA Without loss of generality, o = 1

is assumed as is customary; since for the case of multiple ancestors (o > 1), the

process {A3 , j > 0} is equivalent to o statistically identical copied of a Balton Watson

10
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Process with the same offspring distribution and starting with a single ancestorA The

problem of estimating the age of Balton-Watson process was first addressed by Stigler

(1970)A He assumed the generating function is known and further that it has fractional

linear form (iAeA a geometric distribution with modified zero term) and the process

is supercritical (iAeA, m > 1) A So in this case conditioning on non-extinction of

the process the likelihood of generation 'n` based on one observation A in, where n is

unknown, is

Stigler (1970) also proved the consistency and asymptotic efficiency of this estimatorA

Later, Crump and Howe (1972) studied the case where n is estimated from data

containing several generations of a Galton-Watson process viz, Ζ ικ , Ζι+l, AAA ΖA They

have explored the Markov structure of {Zη} to estimate the generationA Since Zk'S

form a Mark chain with stationary transition probabilities, the likelihood with



12

respect to n is proportional to the marginal distribution of ΖA Hence the mle of n is

1 + d where 1 is obtained by the formula given by Stigler(1970) and d is the number

of observation taken (i.eA, d = n — 1)A They have used a non-parametric MALE of m,

which is

obtained by Harris (1963)A Crump and Howe (ibid) also proved the asymptotic

properties of the estimatorA In both of the previous cases the underlying assumption

is that the generating function is fractional linear generating functionA It is possible to

find the MALE for some cases other than the fractional linear generating functionA Ades

et alA (1982) developed an algorithm to obtain the MALE for several other parametric

families of offspring distributions such as Poisson and negative binomialA

3.2 General Case

Let the observed sample from a Balton-Watson process, be over (r + 1) consecutive

generations, denoted by (Ζ υ , Zn+1, AAA , ΖΖ+r ), where r E {0, 1, 2, AA}, and the age

parameter n is unknownA Throughout this chapter no restrictive assumptions are

made about the form of the offspring distribution's pgf gas)A The only assumption will

be m> 1, since otherwise the population would become extinct with probability one,

in which case the estimation problem would most likely not arise at allA It should also

be pointed out that the assumption that o = 1 is not testableA Suppose the offspring

distribution has a finite support {0, 1, AAA ,M}A This assumption of a maximum

number of offsprings is not unrealistic in applied contextsA Since we have observations

of (r + 1) generations; we may choose for exampled = max(ΖΖ , ZΖ+ι, AA , Zη+r)A Let

p = (ροζ, ρί, • • • , ρΜ) be the corresponding offspring distribution (iAeA p, = probability

of j offsprings) A Bow to estimate n, first it is required to find the MALE of mA Finding

the MALE of m is equivalent to finding the MALE of p, since m = ΣΡ jΡj A The
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nonparametric likelihood of p is given by,

where k$ denotes the number of individuals in (n + j)-th generation who gave rise

to exactly 1 offsprings in the next generation. This likelihood can be further simplified

where k 1 = ΣΡ;-ó kίί) . denote the total number of individuals in the observed r

generations who gave birth to exactly 1 offspring in the next generationA Bote, k 1 is

not observableA Bow taking logarithm in both sides of Equation (3A1) the equation

becomes

Using Sterling's Approximation formula for factorials,
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where C and C' involve terms independent of p and Ιςń+.i

The objective is to maximize the 1(p) subject to the following set of constraints

The problem posed above involves both equality and inequality constraintsA So

maximization is not possible directlyA There is another issue involved hereA It is

clear that the likelihood is related to the data by the factors ^l+.i A So the optimal

value of p will be a function of Ιςńj+.i if equation (3A2) is maximized directlyA But the

values of kń+^
 are unknownA One method to deal with such a situation is described by

Dion etA a1.(1982), where they have considered all the processes for which the given

data can be obtainedA But that method is very much hideous, specially when M is

largeA The second problem for that method is, the generation Gables must be knownA

An alternative method based on ΕΜ algorithm is described below which has been

implemented to solve those problemsA A brief overview of ΕΜΠ algorithm is given in

Appendix AA

3.2.1 Solution via ΕΜ Algorithm

The likelihood function can be written as
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where C' is the term independent of p and pad) denotes the value of p at d-th iterationA

The problem now reduces to find p which maximizes Q, instead of 1, under the

constraints a), b) and c) following (3A2)A The surrogate function Q can be further

simplifiedA The definition of k1 in (3A1) is



Now the problem reduces to maximizing a3A5) under the constraints a), b) and

c). A closed form exact analytical solution for a "Nonparametric maximum likelihood

estimator" aNPΜLE) of p is not possibleA An approximate solution can be obtained

by implementing a suitable numerical optimization scheme using MATLAB, or other

suitable softwareA

Example 1:

The following simulated data is generated form a Balton-Watson Process with probability

generating function gabs) = 0A1 + 0A3s + 0A6s 2 A Four hundred a400) samples of r = 10

generations are generated from this process and EΜ method is used to estimate

p = aροζ, p1)' of offspring distribution in each caseA The following table is showing the

estimated values of p starting with 10 different initial valuesA Convergence is achieved

in all casesA where t denotes the number of steps needed for convergence and



Table 3.1 Estimation of ροζ , P1 of Offspring Distribution by ΕΜ Algorithm

17

The following data is simulated from a Balton-Watson Process with probability

generating function gas) = 0A01 + 0A1s + 0A3s 2 + 0.25s3 + 0A2s4 + 0A14s 5 of the

offspring distributionA 400 samples of r = 10 generations are generated and ΕΜ

method is method used to estimate the offspring distribution p = aροζ, ρ1, ρ2, ρ3, ρ4)'

A The following table shows the estimated values if p for 10 different initial valuesA

Convergence is achieved in all casesA
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Table 3.2 Estimation of La , p1, ρ2, ρ3, ρ4 of Offspring Distribution by EM Algorithm

Here t denotes the number of steps needed for convergenceA

3.3 Μethod of Μoment Estimator

Suppose η , Ζ +1 A • • , η+r are observations of ar + 1) successive generations of a

Balton-Watson process with pAgAfA gabs) of the offspring distributionA Now gas) can be

estimated by the method discussed in Section 3A2A From the basic results of branching

process it is known that,
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pH being the estimator of pi, obtained by maximizing a3.6) subject to constraints a),

b) and c) A

Now let us look into the properties of the estimator ń1 The following theorem

shows that ń l has good large sample propertiesA

Theorem 3.3.1. ńl  is a consistent estimator of n in the explosion set (iAeA, on the

ProofA Al can be re-expressed via the equation,



Now, applying Mark inequality

20

There are some interesting observations in this contextA Firstly from the last

theorem it is clear that this estimate will work better when the process is explodingA

In other words this estimator will work better when probability of extinction is close to

zeroA Secondly in case of single observation aiAeA, r = 0) this estimator is a special case

of Stigler's a1970) estimator when q=0. So this leads to another problem regarding

the probability of extinction qA

3.4 Μaximum Likelihood Estimation of the Generation

This method is mainly motivated by a theorem by Ades et alA a1982), which can be

stated as follows.

Theorem 3.4.1 guarantees the bimodality of the coefficients of the generating

functions in successive generations and suggests the following algorithm to find the
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MALE of generation label n, corresponding to the first observed values of a Balton-

Watson processA

3.4.1 Algorithm

Let Ζ^, Ζ^+l, • • • , Zn+r, n > 0 be the observed (r + 1) consecutive generations of a

Balton-Watson process with generating function g(s)A We assume ροζ = 0 so that

the process is necessarily supercriticalA There is no assumption about the from of the

offspring distribution except that the distribution has finite support.

• Estimate ΠΙ, 1 = 0, 1, AAA. M, by using the EM algorithm discussed earlierA

• Suppose the observed value of Ζυ  is kA

• Compute the generating functions of A n , which is gnus) the nth composition

of gas), for n = 0, 1, 2, .A A

• Estimate gn us) by using the estimated ΠA

• Collect the coefficient of se `d j < k from gn us), estimate of genus) for each nA

• Compare the coefficientsA If n l is the smallest number for which coefficient of s e

in gnu (s) is less than coefficient of s 3 in gnl+l (s) for all j < k or in other words

if nlA = minfn : coefficient of se in gn+ι(s) < coefficient of se in genus) `d j < k}

then, using theorem 2A4A1 the MALE of n is n l A

So the MALE of n can be written as

ń2 = minfn : coefficient of se in gn±i(S) < coefficient of se in genus) V j < k}

The method discussed above is intuitively appealing and easy to comprehend and

implement for moderate values of An , but has few drawbacks. However the method is

computationally intense when Ευ  is largeA Also computation of g„ for large n is really a
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difficult job. If An  is large, then a large number of comparison have to be made to find

the MALEA To apply this method when the generating function has ρ οζ > 0, unimodality

condition like Theorem 3.4A1 needs to be proved for the generating functionA Next we

explore another method to estimate n by exploiting the Mark structure of  ΖA

3.5 Using Μartingale Approach

For both method of moment estimate and MALE we have some constraints about the

generating functionA For method of moment estimate to work well we need a zero

probability of extinction (q = 0) and to ensure a global maximum of likelihood for

the existence of the MALE of n, we require the bimodality condition of Ades et alA

(1982), which generally requires ρ ο=0A But the martingale method described below

does not require any such restrictive assumption.

3.5.1 Exploring the martingale Structure

Again let Ana, Ζ +l, . • • , zZn+r be our observations of consecutive generations of a

Balton-Watson process with progeny generating function gas)A The supercriticality

assumption (m > 1) is still needed to ensure that the process does not become extinct,

so that the estimation problem of n is still well definedA The offspring distribution can

be estimated by using the EM algorithm discussed earlierA Also here we additionally

assume that the offspring distribution has a finite second moment which them implies
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Now, given %n+j- Ι with j > 1, the quantities A and fLk , k = n + 1, n + 2, AA , n +

j — 1} are constantsA Thus to evaluate (3.10), only the first term in the right hand

side needs to be computedA This is,

Hence, fAn ,, s} is a submartingale (See Appendix B, for a brief basics of the

martingale theory)A Now as x 2 is a convex function of x, ffAń, %n} is also a

martingale.

3.5.2 Estimator of the generation n (Age)

The underlying justification of the estimator, which will be proposed in this section,

will lie in the following inequality, (See Sen and Singer (1993) )



24

Theorem 3.5.1. (Ηέjek-RenyunChow Inequality) If fAn , %n} be a submartingale

and let ffcń, n > 1} be a nonincreasing sequence of positive numbers. Let An =

maxfAΧ , 0}, and assume that ΕΧ exists for every n > 1. Then, for every € > 0,

As we have shown that fAna, %,} is positive valued submartingale, the above

inequality can be usedA Using Theorem (3.5.1) and choosing cc = m ^ .) , An, it follows

that



Using this, the inequality (3.12) can be rewritten as

25

Here the optimization needs to be carried out with respect to two variables n and

m simultaneously, which is computationally little bit difficult and getting a feasible

solution may not be possible in many casesA Hence we propose to replace m in (3A14)

by its plug in estimator Μ. Thus the final form of the estimator is

The justification of the estimator comes from (3A14), which shows ń3 has good large

sample behaviorA Note, computationally it is easier to implement than the MALEA The
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most important feature of this estimator is that it does not depend on the specific

properties of the offspring distributionA

3.6 Examples

Example 1:

The ΕΜ algorithm is used to calculate the offspring distributionA The table

gives you the comparison between estimatesA The fractions are rounded off by taking

least integer captained in itA
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Table 3.4 Estimation of Beneration by Method of Moments and Martingale Method
and MALE

Example 2:

Here clearly r=6 (since there are 7 observations)A All three methods are applied to

Table 3.5 Observations

estimate the age n (the generation label of the first observed value 5)A The EM

algorithm is used to calculate the offspring distributionA The table gives you the

comparison between estimatesA
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Table 3.6 Estimation of Beneration by Method of Moments, Martingale Method andMALE

3.6.1 Discussion

There are some interesting observations in this contextA In Example 1, q=0A That

is the reason the method of moment estimate is giving much better estimate than

the other estimatesA Another interesting feature in this example is though ρ οζ 7 0

but this offering distribution has a bimodal property. So the MALE can estimated

and it is giving a pretty good result. But for the second example q=0A011153, this

detonates the performance of method of moment estimateA Also the Martingale based

estimator in this example does not appear to be very goodA The main reason is sample

sizeA From the asymptotic property of the estimate it can be intuitively said that

for this estimator to work well, it is preferable to have a relatively large number of

observation (large r)A To verify this more data are drawn from the pAgAfA of Example

1, gabs) = 0A1 + 0A3s + 0A6s2 A The following table verifies the correctness of such

intuition- based on computations, analogous to those in Example 1, carried out in

progressively larger sample;
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3.7 Estimation of Probability of Extinction

As discussed earlier, one of the important factor of a Balton-Watson process is the

probability of extinctionA Again assume An , Ζ2 , AAA , Ζ„+,. are r + 1 generations of a

Balton-Watson process with generating fbction gas)A The assumptions m> 1 and

Γο = 1 is still valid hereA Because without supercriticality assumption the estimation

of probability of extinction does not make any senseA Stigler(1971) obtained an

estimator of the probability of extinction by estimating the offspring probabilities

in parametric set upA Later Keiding(1976) used a martingale approach to find the

probability of extinction of the whooping crane population of Borth AmericaA He

assumed the bderlying generating fbction is negative binomialA Also Guttrop

(1991) and Bakes (1975) studied nonparametic testing procedures for estimating

the probability of extinction by exploring the martingale structure of Xn = ka1) —

pkNAA PPkes(1975) also discussed its asymptotic propertiesA But here the offspring

probabilities are estimated by the considering all possible trees which can evolve

the given dataA Now as discussed in Chapter 2, probability of extinction) is the

minimum root of the equation gas) = sA This idea helped to propose a nonparametic
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estimator for the probability of extinctionA The estimator can be propose as;

where g(s) is the plug-in estimate of gabs). The offspring probabilities are estimated

by the ΕΜ algorithm described earlierA The asymptotic properties of the estimator

can be established by using the following theorem proved by

Now if an estimator of probability of extinction defined by,

These theorem ensures the asymptotic normality of qA



CHAPTER 4

HYPOTHESIS TESTING IN GALTON-WATSON PROCESS

In this chapter a fbdamental problem regarding Balton-Watson process has been

explored. Suppose the evolution of a population follows a simple Balton-Watson

process but the offspring distribution is not knownA What can be said about the

nature of the process by observing first few generations? In other words, from few

observations is it possible to statistically infer whether that the process is going to

extinct or explode in future? How does one conclude that the process is sub-critical',

`critical' or `supercritical'A These questions can be mathematically formulated as

the problem of testing an explosion vs extinction hypothesis; in other words as the

problem of testing

where m is the mean of offspring distributionA The problem is challenging mainly

for two reasonsA First, as the observed values in a Galton-Watson process are from

a Mark chain, they are not independently and identically distributed (iAi.dA)A Thus

common statistical testing procedures based on i.i.d observations are not applicable

in this case, second difficulty is regarding the estimation of the model parametersA

As discussed in the previous chapter, an ΕΜ method is required to estimate the

parametersA But in this method it is not possible to obtain a closed form estimate of

the parametersA Also, due to dependence structure, one must be careful in applying

the standard limit theorems to construct large sample testsA

4.1 Background Bork

There is some literature regarding the testing problem mentioned aboveA But in

most of the cases, such tests has been developed only for parametric family of

31
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generating functions. Basawa and Scott a1976) has developed a procedure for testing

such hypothesis bder the assumption that the offspring distribution has a "power

series" p.m.. Later Basawa a1981) developed an conditional testing procedure to

test the above hypothesis. Also this problem was dealt by Basawa and Scott (1987)

by exploring the process structure and Sweeting(1978) . In the next two sections a

nontraditional approach has been taken to deal with such hypothesis, in a nonparametric

set up.

4.2 Test based on Conditional Fisher Information

As explained in Chapter 3 asection 3.1), without loss of generality, we again assume

that is o = 1 throughout this chapter. The first technique that has been used, is

based on the asymptotic behavior of the of the maximum likelihood estimates. As

discussed earlier there are some literature in branching processes where the testing

problem has been explored for parametric cases, but no work has been for general

parametric set up. In this chapter a methodology has been developed for testing

the hypothesis in very general setup. Suppose Ζικ, Ζει  ... , Ζ are first n generations

of a Balton-Watson process. We donor assume that the observation start at the

first generation. They can start at any generation. The same methodology will

be applicable on that case. The objective is to test the hypothesis stated in (Α l ).

Here also the only bderlying assumption is that the offspring distribution has a

finite support. If the offspring distribution has support f0, 1, 2, ... , M} and Al , l =

0, ... , M are the corresponding probabilities, then the nonparametric likelihood is

given by,
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where k 1 's are same as in equation a3A1) in Chapter 3. Suppose that Ln(ρ)is

MALE of pA

Looking into the hypotheses (Α l ), it is clear that they constitute separable

family of hypotheses, since bder Ηρ the bderlying process of Ζ ικ, Ζεις AA. being

supercritical and thus exploding with positive probability, is completely different from

the bderlying process of Ζι  Ζε, AAA bder Η1 which faces extinction with certaintyA

Let pro and 13xu be the MALE of p bder Η0 and Ηl respectivelyA Α test statistic

defined a test statistic which can deal with such a situation, as defined by defined by

Cox(1961), is

where k 1 is the number of element gave birth to exactly 1 offspring in n generations

and C is the term independent of p. The log-likelihood can be approximately written

as;
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The conditional Fisher information is defined as

Then the bconditional Fisher information can be obtained by,

Cox(1982) has proved that if Ι (ρ)['n (ρ)] -1 4 Ο then Th has a asymptotic normal

distribution. . Here the two following theorem will show that Box's method is not

applicable in the current context.

W is defined in Chapter 2 and L is the time to extinction of the process bder the

alternative hypothesis Η l .

To prove Theorem 4.2.1 the following Lemma is need to stated.
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This theorem proves the contiguity that is need for both null and alternative

hypothesis is missing here. Under null hypothesis the ratio is converging to a nontrivial
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positive valued random variable. So Cox method will not work in this case. So a

alternative test can be suggested by the following way;

test for testing Η0 against Ηl . But the problem is find the exact distribution for Τ ι is

really difficult. So bootstrap technique can be used to solve that problem.The outline

of the method is as follows;

• from the given data a considerable number of bootstrap samples are chosen.

• For each bootstrap sample Τ 1 is calculated.

• This gives an empirical distribution of Τ and that is used in taking the decision.

4.2.1 Example

Consider Table 3.3. If Τf21 calculated for this data and Ται= 0.47. 95-th percentile

of Τ 1 calculated with 5000 bootstrap sample is 3.56. So H0 is not rejected at 5%

level of significance. So the process is probably Supercritical. This shows that test

procedure is working.

4.3 Using Least Favorable Setup

The method described in previous section is intuitively very appealing and also

easy to implement. But one another problem is as it is not possible to find the

exact distribution of Τl for most of the cases there is a possibility of significant

reduction in the power. In this section another method is discussed based on the

`least favorable null hypothesis '.This is still an ongoing process. For simplicity assume,

M=2. That means the offspring distribution has support in f0, 1, 2} and ροζ, Αι , p2
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are corresponding probabilitiesA On that consider the following hypothesis;

The generalization of this method for M > 2 is discussed at the end of this sectionABefore

describing the method it is required to give definitions of some important notions;

d_ f _ 1 T,Paκt Fa m h1P N»11 Hvnnthρς ς

So here both the null and alternative hypothesis are compositeALet LA  be the likelihood

ratio test aaLRT) for testing Η and ΗA If 1A2 is the observed value of LA  A It is required

to find the p-valueA of the test for conclusionA Now,

As the null hypothesis is composite this probability depends on particular null value

of Θ, which anywhere in the null parameter spaceA Thus,PΘ(LA Ι > 1A u ΙΘ Ε Η0 ) is not

just a fixed number on the null parameter space, but a fbction of Θ, and hence does

not define a p-valueAA In this case, a reasonable approach to overcome this difficulty

appears to be not to reject Η if there is at least one value in the C with which the

data are consistent; or equivalently reject  Η if the data are inconsistent for all Θ Ε CA

In this situations the usual procedure to define the p-value is as follows;
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Suppose the supremum is achieved at 8 _ 80 . So it can be said that the strength

of evidence against Η and in favor of Η based on LA  = 1A2 depends on the

assumed true value of Θ E C and that is `least' when Θ = 80. That is the reason

ι2 : Θ = 8 is called the least favorable null value for LA  (also called the least

favorable null configuration of LA . and the distribution of LA  is called least favorable

null distribution of LA . Further discussion on least favorable null configuration is

available on Lehman a1994) and Sivapulle & Sen (2005).

It is time now to define the following theorem;

Theorem 4.3.1. Suppose Ζ l ι Ζ2, ... , Ζ are n-generations of a Galton-Watson process

with generating function gas) = ροζ + ρ l s -I- ρ2s2. Then the testing problem Α l or

equivalently Al the the least favorable null hypothesis is Η2 : m = 1 or equivalently

Η2 : p2 = ροζ

Proof. Using Equation(4.2) the log-likelihood can be written as;

This means the likelihood fbction is monotonically decreasing in δ. From here it is

clear that the supremum in Equation(4.2) will be achieved when δ=0 a ρ2 = Ρ0.

Hence the proof.
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Theorem (4A3A1) implies that the least favorable set up for testing,

For performing such a testing for the given set up there are other tolls requiredA One

of them is kε A In next subsection a brief introduction for X2 is illustrated.

Or in other words the null distribution of the ART for testing hypothesis of type Α3 is

called the Χ 2 distribution. The formula for computing X2 is given in the next theorem;

Theorem 4.3.2. (Gourieroux etA alA (1982)) Let C be a closed convex cone in R and

V be a p x p positive definite matrixA Then the distribution of 2 (V, C) is given by,

The method for determining we ap, V, C) discussed in details in Sen and Silvapulle
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4.3.3 Test Statistics

Using the theorem above and applying related techniques from Sen and Sivapulle

(2005)the following the likelihood ratio test(LRT) statistic can be derived as to test

where p is the MALE of p = aροζ, Ρ2) bder Ηl and p is MALE bder H2. This is a

work in progress to find the asymptotic distribution of ART by using the results of

--2 distribution. This is still an ongoing process. The analogy is same as hypothesis

testing of mean of normal distribution bder order constraint (see Sen & Sivapulle

(2005)) . This notion can be expanded for M > 2 with just little bit modification of

hypothesis.



CHAPTER 5

A FAΜILY OF PROBABILITY GENERATING FUNCTIONS

INDUCED BY SHOCK ΜODELS

5.1 The Problem

The question we want to investigate can be simply posed as follows. If Q is a

probability measure on the half line, bder what conditions, is the fbction defined

by

a probability generating function (p.g.f) of a positive integer valued random variable

Ν?

For any y in (0, 1), recognizing the integrant to be the p.g.f. of a geometric

distribution over the positive integers; the answer is clearly affirmative if the support

of the mixing distribution Q is no larger than a0,1] . The case y = 1 corresponds

to a mixing distribution degenerate at 1. For y Ε a0, 1], we can think of N as

conditionally geometric given y so that Equation 5.1 is the unconditional p.g.f of

N, when the parameter y is randomized over the bit interval. In other words, if

Qa0,1] = 1, then the fbction defined by 5.1 is a Bayesian's view of the p.g.f of N

when y has a prior Q. In fact if fΧl , Χε, ... } is a sequence of binary exchangeable

random variables, then using the fact that for any integers n, k such that 1 < k < n,

any fi li i2 ,...,ik } c f1, 2,...,n}
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For some probability measure Q in a0,1], by the classic result of DeFinetti, Feller

(1961), it easily follows that the random variable

for some bique measure Q supported by the bit interval.

However, the answer of our question is not clear, since the integrant in Equation

a5.1) is not a p.g.fAA for y > Ι. This leads us to ask: if the support of Q on extends

beyond [0, 1], i.e., if Q(1, οο) > 0 , can (5.1) still be the p.g.fAA. of a positive valued

random variable N?

5.2 Μotivation and Μain Results

The motivation for this problem comes from the following observations. Let

be the standard Essay Marshall and Proschan ahenceforth abbreviated as EMP)

shock model (1923) survival probability, where failure is caused by shocks arising over

time according a homogeneous Boisson process fNat); t > 0} with intensity λ > 0

and the distribution of J := the number of shocks to failure, has tail Pk := P(J >

k)A EΜΡ(1923) proved that all the standard non-parametric positive and negative

aging properties of J in discrete time are preserved by the survival probability S in

continuous timeA

Our problem stated in Section 5.1, was motivated by an apparently surprising

connection, via geometric distributions, between the structure of the Laplace-Stieltje's
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transform of HEMP shock model distributions and a new class of negatively aging

nonparametric life distributions recently introduced and studied by Bhattacharjee

(2005). The next four results (Lemma 5.2.1, Theorems 3.2.2-3.2.4) makes this connection

clear and puts our motivation perspective.

Definition 5.2.1. A non-discrete lifetime Χ F has the SDFR (Strongly Decreasing

Failure Rate) property, if the tail (ie, the reliability) fbction of Χ ; Fat) := ΡίΧ > t)

is a ComAletely Monotone Function (see Feller 1939) on [0, οο).

Definition 5.2.2. A negatively integer valued discrete lifetime Χ has the discrete

SDFR property if its tail probabilities Pk := ΡίΧ > k), k = 0, 1, 2, • • • , is a

ComAletely Monotone Sequence (Feller 1939).

Lemma 5.2.1. The Laplace-Stieltjes transformation of S in a2) is given by

Bhattacharjee (2005) has proved the characterization of SDFR by the following

theorem.



with a bique mixing distribution G continuous at zero.

where a denoted equality in distribution, Y and Z > 0 are independent random

variables, and Y ~ Expamean=t).

aii) A discrete non-negative integer valued random variable X is discrete SDFR iff its

for some probability measure Q on [0, 1], with Qf0} < 1.

These above results motivate us to investigate closure properties of the HEMP

Shock Models with respect to the new non-parametric aging notion SDFR. We have

proved the following results.

5.2.1 Μain Results
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expresses using a5.2), as
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Is the converse is true? The following theorem gives a necessary and sufficient

condition for the converse to be true, which led us to the question posed in Section

5.1.

Theorem 5.2.4. The HEMP Shock Model distribution fbction S is SDFR Siff the

number of shocks to failure has a probability generating function Ø(z) = ΕΖ with a

bique representation

for some mixing distribution fbction Q with support in the half line[O, Mc).

Proof. By Lemma 5.2.1 for s> O, we have



Thus, if the HEMP shock model probability S is to be a completely monotone

At this point a obvious question is; what more can we say about Q? In

particular, what should be the support of Q? Are there any necessary and sufficient

conditions on Q such that the right hand side of a5.1) is always a probability generating

fbction? In search of an answer to this question we have fobd an apparently

surprising necessary condition (Theorem 5.2.6) A As a preliminary, we need the following

lemma.

Lemma 5.2.5. For any non-negative integer valued random variable N with distribution,



Proof. Simply note,

48

This leads us to the following result. 	 ❑

Theorem 5.2.6. If the right hand side of aa5.1)is a probability generating fbction

of a nonnegative random variable N then Q[2, οο) = O i.e., Q cannot have support

beyond (O,2).



where Ay :=A —1, for y > 1.

Applying Lemma 5.2.5 to the integrand in the second term of (5A5) with

49

ν

In the first term the right hand side of (5.2), the series is absolutely convergent so

the integral and the summation can be interchanged. But the series in the integrand
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(5.2) diverges. Thus, we must have Q[2,οο) = O, for the generating fbction of the

shock resistance probabilities in (5.2) to converge for all O < z < 1. 	 0

Note, for all z E (O,1), we can thus write,

Theorem 5.2.5 implies for the fbction Az) defined by a5.1) to be a p.g.f., we

must have Q[2,Mο)=O. Is this the sharpest possible result? Or is there a sharper

necessary condition? Also, are there interesting/nontrivial sufficient condition, other

than Q to be supported by the bit interval, to ensure q5a.) to be p.g.f.?

The question remains : for what conditions on Q, is Pk is a tail probability of

a discrete non-negative random variable? i.e., what conditions on Q would ensure

that, Pk non-negative and monotonically non-increasing? We have Pk —^ O directly

from (5.9) the expression, so that proving 1k ,. guarantees that Pk represents the tail

probabilities of an honest distribution.

As remarked, if Q(O,1]=1, then the fbction in (5.3) is trivially a p.g.f, representing

a mixture of geometric distributions. Contrary to crude intuition the fbction

defined via the integral in (5.3) can be a p.g.f and the mixing distribution Q can have

positive mass in the interval (1,2) as the following example shows
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Counter example Define the c.d.f. Q by

and choose the parameters α, β to satisfy Ο < α < and β > s Using this Q,

and a5.9), we can easily compute

which is a tail probability. Here the support of Q exceeds the bit interval. Choosing

β = 3 and α =, A- , we have

Lk is not Completely Monotone sequence = Pk is not SDFR,

although the corresponding HEMP shock model survival probability S in a5.2) non-

discrete SDFR, with Lk as chosen above.

So a necessary and sufficient condition for (5.1) to be a p.g.f is;

Theorem 5.2.7. The necessary a sufcient condition for the converse of to hold is

if 3 some non-negative random variable Y ~ Q such that



CHAPTER 6

CONCLUSION

In this dissertation, some specific inference problems of Branching Process and Poisson

shock model are discussed. Methodologies has been developed to deal with such

situations.

6.1 Inference of Branching Processes and Future Work

This dissertation explores two very basic problems of statistical inference of Balton-

Watson Process. In most of the literature of Balton-Watson process, different parametric

assumptions has been made about the offspring distribution. But in this dissertation

no parametric assumption is assumed for the offspring distribution. On that sense,

here a more general setup has been considered.

In Chapter 2, most of the definitions and important results of branching process

has been stated. Also all the notations are introduced in this chapter. Throughout

the dissertation same notations has been used.

Chapter 3 deals with a specific problem of Galton-Watson process where statistical

methodologies is developed to estimate the `age' of Galton-Watson process. In

this section the first challenge is to find a good method of estimating the offspring

distribution. The method existed are either for parametric families or not computationally

convenient. An EM algorithm is developed for estimating the offspring distribution.

The efficiency of the method in estimating the offspring distribution is discussed with

two illustrated examples. Both cases show that the method is working pretty fine.

A method of moment estimate has been proposed to estimate the generation from

given r successive generation size. This method is generalization of Stigler's (197O).

Asymptotic properties of the estimator are proved. In next section we have derived a
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algorithm for finding maximum likelihood of the generation. The method is inspired

by the results of Ades et al. The computational aspect of the method is also discussed.

A thord method is developed my exploring the Markov structure of Balton-Watson

process. The limit theorem regarding this method has been established. In this

chapter two numerical illustrations has been described to show the efficiency of the

proposed estimators in estimating `age'. The initial assumption of the process is the

process is supercritical. Which implies that the process has a nontrivial probability

of extinction. A method of estimating the probability of extinction is proposed at the

end of this chapter. It is also proved that bder the assumption of supercriticallity

the estimator has a asymptotic normal distribution which can be used for testing

purpose.

One fundamental challenge regarding Balton-Watson process is to identify the

nature of the process. That means from a given data, is it possible to conclude

that the process is `subcritical'or 'supercritical'? A statistical testing procedure is

required to draw such a conclusion. All older works regarding this context is based

on the parametric structure of the offspring distribution. The main problem here is

to estimate the random variable W. Except few parametric cases it is very difficult to

find the distribution of W. A bootstrap technique has been developed in Chapter 4 to

construct a asymptotic statistical testing procedure to test such type of hypothesis.

Also a method based on least favorable set up is discuss in this chapter.

6.1.1 Future Work

There are several directions of future work:

• completing the test statistics related to least favorable null hypothesis.

• Exploring and extending the use of such methods for Mark Branching Processes,

and more generally for Age-dependent Branching Processes.
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• Another interesting future work is inference regarding the time to extinction

of a Balton-Watson Process. Bhattacharjee (1982) has proved that L has a

log-convex densityA Is that result can be used to find a estimator for the mean

time to extinction? Density estimation and constrained likelihood methods may

be handy in this contextA

• Bayesian estimation for Branching processes.

• Developing software fault cobt models using the ideas of Branching Processes.

6.2 Poisson Shock Μodel and Future Work

A closure property of SDFR bder Poisson shock model is discussed in Chapter 5A It

has been shown that the discrete SDFR property transmitted to continuous SDFR

bder Poisson shock model decomposition. An example is constructed to show that

the converse is not true. A necessary and sufficient condition for converse to be true

has been developed at the end of this chapterA

6.2.1 Future Work

• Constructing a statistical procedure to test whether a given data has a bderlying

distribution fbction which has a SDFR property.

• Applying such a method for modeling biological phenomenons like Cori Cycle

activity in human body, which is believed to have a log-convex densityA



APPENDIX A

AN OVERVIEW OF EΜ ALGORITHΜ

Maximum likelihood estimators aMALE) are very popular and useful in estimating the

parameters of statistical models, since they have good asymptotic propertiesA But in

real life, it is often virtually impossible to find the MALE of the parameters by direct

maximization of the likelihood function due to their complex structure. In such

situations, parameters are estimated using iterative methodsA The EM algorithm is

one of the most effective algorithms for local maximization since it iteratively transfers

a complex fbction to a highly stable simple one. This algorithm also overcomes the

drawbacks of the Newton's method and the Fisher scoring method. Newton's method

requires calculation of complicated second derivatives and the Fisher scoring method

involves calculation of the expected information matrixA For problems with large

number of parameters, both algorithms involve large matrix inversions and this is

computationally very intrusive. In this situation the EM algorithm is useful since it

is based on an optimization transfer principle that replaces a complex optimization

problem by a sequence of simple onesA This method is called the EM method because

the alternating steps involve an expectation and a maximization.

This method was described and analyzed by Dempster, Laird, and Rubin (1922),

although the method had been used much earlier, by Hartley (1958), for exampleA

Many additional details and alternatives are discussed by McLachlan and Krishnan

(1992) A

The EM methods can be explained most easily in terms of a random sample

that consists of two components, one observed, while the other part is bobserved or

missingA The missing data can be missing observations on the same random variable

that yields the observed sample, or the missing data can be from a different random
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variable that is related somehow to the random variable observedA Though many

common applications of EΜ methods do involve missing data problems, this is not

necessaryA Often, an EΜ method can be constructed based on an artificial "missing"

random variable to supplement the observed data.

Description Consider the data U = (Y, Z), where Y is the observed part and Z

is the bobserved part of the dataA Our objective is to estimate the parameter vector

8, which are involved in the distribution of both components of UA The EΜ algorithm

like all maximum likelihood algorithms, seeks to maximize the alikelihood L(8)

of the observed data with respect bknown parameters 8A If f (UΙ8) denotes the

density fbction alikelihood) of the complete data, then the ΕΜ algorithm maximizes

the surrogate fbction

with respect to ΘA This optimization is done iteratively beginning with some initial

values of 8 and then update it to maximize QA

So the EΜ approach to maximizing In f (Y 8) has two alternating steps:

The EΜ method can be slow to converge, however, Wu a1983) has discussed

about the convergence criteria of ΕΜ algorithmA



APPENDIX B

BASICS OF ΜARTINGALE

Basic definitions and results of martingales are discussed in this appendix.

B.1 Definitions

Definition B.1.1. Martingale and martingales

Definition B.1.2. Integrability

B.2 Propositions

Proposition B.2.1. Equivalence
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APPENDIX C

R CODES

The R codes used for simulation studies and modeling are given in this appendix.

C.1 R Code for Generating Samples From a Balton- Watson Process

offspring 4- function(n,p)
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C.2 Matlab Code for Estimating Parameters of Offspring Distribution
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