
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Fall 1-31-2006

Design and resource management of reconfigurable Design and resource management of reconfigurable

multiprocessors for data-parallel applications multiprocessors for data-parallel applications

Xiaofang Wang
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Wang, Xiaofang, "Design and resource management of reconfigurable multiprocessors for data-parallel
applications" (2006). Dissertations. 758.
https://digitalcommons.njit.edu/dissertations/758

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.njit.edu%2Fdissertations%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/758?utm_source=digitalcommons.njit.edu%2Fdissertations%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

DESIGN AND RESOURCE MANAGEMENT OF RECONFIGURABLE
MULTIPROCESSORS FOR DATA-PARALLEL APPLICATIONS

by
Xiaofang Wang

FPGA (Field-Programmable Gate Array)-based custom reconfigurable computing

machines have established themselves as low-cost and low-risk alternatives to ASIC

(Application-Specific Integrated Circuit) implementations and general-purpose

microprocessors in accelerating a wide range of computation-intensive applications.

Most often they are Application-Specific Programmable Circuits (ASPCs), which are

developer programmable instead of user programmable. The major disadvantages of

ASPCs are minimal programmability, and significant time and energy overheads caused

by required hardware reconfiguration when the problem size outnumbers the available

reconfigurable resources; these problems are expected to become more serious with

increases in the FPGA chip size. On the other hand, dominant high-performance

computing systems, such as PC clusters and SMPs (Symmetric Multiprocessors), suffer

from high communication latencies and/or scalability problems.

This research introduces low-cost, user-programmable and reconfigurable

MultiProcessor-on-a-Programmable-Chip (MPoPC) systems for high-performance,

low-cost computing. It also proposes a relevant resource management framework that

deals with performance, power consumption and energy issues. These semi-customized

systems reduce significantly runtime device reconfiguration by employing user-

programmable processing elements that are reusable for different tasks in large,

complex applications. For the sake of illustration, two different types of MPoPCs with

hardware FPUs (floating-point units) are designed and implemented for credible

performance evaluation and modeling: the coarse-grain MIMD (Multiple-Instruction,

Multiple-Data) CG-MPoPC machine based on a processor IP (Intellectual Property) core

and the mixed-mode (MIMD, SIMD or M-SIMD) variant-grain HERA (HEterogeneous

Reconfigurable Architecture) machine. In addition to alleviating the above difficulties,

MPoPCs can offer several performance and energy advantages to our data-parallel

applications when compared to ASPCs; they are simpler and more scalable, and have less

verification time and cost. Various common computation-intensive benchmark

algorithms, such as matrix-matrix multiplication (MMM) and LU factorization, are

studied and their parallel solutions are shown for the two MPoPCs. The performance is

evaluated with large sparse real-world matrices primarily from power engineering. We

expect even further performance gains on MPoPCs in the near future by employing ever

improving FPGAs. The innovative nature of this work has the potential to guide research

in this arising field of high-performance, low-cost reconfigurable computing.

The largest advantage of reconfigurable logic lies in its large degree of hardware

customization and reconfiguration which allows reusing the resources to match the

computation and communication needs of applications. Therefore, a major effort in the

presented design methodology for mixed-mode MPoPCs, like HERA, is devoted to

effective resource management. A two-phase approach is applied. A mixed-mode

weighted Task Flow Graph (w-TFG) is first constructed for any given application, where

tasks are classified according to their most appropriate computing mode (e.g., SIMD or

MIMD). At compile time, an architecture is customized and synthesized for the TFG

using an Integer Linear Programming (ILP) formulation and a parameterized hardware

component library. Various run-time scheduling schemes with different performance-

energy objectives are proposed. A system-level energy model for HERA, which is based

on low-level implementation data and run-time statistics, is proposed to guide

performance-energy trade-off decisions. A parallel power flow analysis technique based

on Newton's method is proposed and employed to verify the methodology.

DESIGN AND RESOURCE MANAGEMENT OF RECONFIGURABLE
MULTIPROCESSORS FOR DATA-PARALLEL APPLICATIONS

by
Xiaofang Wang

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Engineering

Department of Electrical and Computer Engineering, NJIT

January 2006

Copyright © 2006 by Xiaofang Wang

ALL RIGHTS RESERVED

APPROVAL PAGE

DESIGN AND RESOURCE MANAGEMENT OF RECONFIGURABLE
MULTIPROCESSORS FOR DATA-PARALLEL APPLICATIONS

Xiaofang Wang

Dr. Sotirios G. Ziavras, Dissertation Advisor and Committee Chair 	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Alexandros V. Gerbessiotis, Committee Member 	 Date
Associate Professor of Computer Science, NJIT

Dr. Jie Hu, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Durgamadhab Misra, Committee Member 	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Roberto Rojas-Cessa, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Xiaofang (Maggie) Wang

Degree:	 Doctor of Philosophy

Major:	 Computer Engineering

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, January 2006.

• Master of Science in Electrical Engineering,
Beijing University of Technology (formerly Beijing Polytechnic University),
Beijing, P. R. China, 1994.

• Bachelor of Science in Microelectronics,
Nankai University, Tianjin, P. R. China, 1991.

Publications:

X. Wang and S. G. Ziavras,
"Exploiting Mixed-Mode Parallelism for Matrix Operations on the HERA
Architecture through Reconfiguration,"
IEE Proceedings, Computers and Digital Techniques, accepted in 2005.

X. Wang and S. G. Ziavras,
"A Multiprocessor-on-a-Programmable-Chip Reconfigurable System for Matrix
Operations with Power-Grid Case Studies,"
International Journal of Computational Science and Engineering, Special Issue
on Parallel and Distributed Scientific and Engineering Computing, accepted in
2005.

X. Wang and S. G. Ziavras,
"Parallel LU Factorization of Sparse Matrices on FPGA-Based Configurable
Computing Engines,"
Concurrency and Computation: Practice and Experience, Vol. 16, No. 4, pp.
319-343, 2004.

iv

X. Wang, S. G. Ziavras, and J. Hu,
"Energy-Performance Optimization through Resource Management in
Reconfigurable Mixed-Mode Single-Chip Multiprocessors," submitted in
December 2005.

X. Wang and S. G. Ziavras,
"A Framework for Dynamic Resource Management and Scheduling on
Reconfigurable Mixed-Mode Multiprocessors,"
IEEE International Conference on Field-Programmable Technology (FPT'05),
Singapore, Dec. 11-14, 2005.

X. Wang and S. G. Ziavras,
"Adaptive Scheduling of Array-Intensive Applications on Mixed-Mode
Reconfigurable Multiprocessors,"
IEEE 39th Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, California, Oct. 30-Nov.2, 2005.

S. G. Ziavras, X. Wang, and M. Z. Hasan,
"Intra- and Inter-FPGA Programmable Multiprocessor Designs with Emphasis
on Large-Scale Matrix Operations,"
Workshop on Architecture Research using FPGA Platforms (in conjunction with
the 11 th International Symposium on High-Performance Computer
Architecture), February 2005.

X. Wang and S. G. Ziavras,
"Mixed-Mode Scheduling for Parallel LU Factorization of Sparse Matrices on
the Reconfigurable HERA Computer,"
International Conference on Advances in Computer Science and Technology
(ACST 2004), St. Thomas, U.S. Virgin Islands, November 2004.

X. Wang and S. G. Ziavras,
"HERA: A Reconfigurable and Mixed-Mode Parallel Computing Engine on
Platform FPGAs," The 16th International Conference on Parallel and
Distributed Computing and Systems (PDCS 2004), MIT, Cambridge, MA,
November 9-11, 2004.

X. Wang and S. G. Ziavras,
"A Configurable Multiprocessor and Dynamic Load Balancing for Parallel LU
Factorization,"
The 5th Workshop on Parallel and Distributed Scientific and Engineering (Proc.
of the 18th IEEE International Parallel and Distributed Processing Symposium
(IPDPS2004)), Santa Fe, New Mexico, April 2004.

X. Wang and S. G. Ziavras,
"Performance Optimization of an FPGA-Based Configurable Multiprocessor for
Matrix Applications,"
IEEE International Conference on Field-Programmable Technology (FPT'03),
pp. 303-306, Dec. 2003.

X. Wang and S. G. Ziavras,
"Parallel Direct Solution of Linear Equations on FPGA-Based Machines,"
The 11 th Workshop on Parallel and Distributed Real-Time Systems (Proc. of the
17th IEEE International Parallel and Distributed Processing Symposium
(IPDPS2003)), Nice, France, pp. 113-120, April 22-26, 2003.

X. Wang, S. G. Ziavras, and J. Savir,
"Efficient LU Factorization on FPGA-Based Machines,"
The 7th International Multi-Conference on Power and Energy Systems, Palm
Springs, CA, pp. 459-464, February 2003.

vi

To my beloved parents
and husband.

vii

ACKNOWLEDGMENT

As an international student, I have been very fortunate to get help from many people in

many aspects during this important and rewarding phase of my professional life. I thank

all of them.

In particular, I would like to express my deepest and sincere gratitude to my

dissertation advisor, Dr. Sotirios G. Ziavras, for many things: his constant

encouragement strengthened me in delving into this research and finding solutions

when I was confused; his great insight and perspectives inspired me toward completing

successfully this thesis; he spent countless hours on advisement, discussion, and

revising our papers; he was always there when I had a problem to discuss; ... What I

have learned from him will benefit me in my lifetime as a professional. Special thanks

are also given to the other members of my dissertation committee, Dr. Alexandros V.

Gerbessiotis, Dr. Jie Hu, Dr. Durga Misra and Dr. Roberto Rojas-Cessa, for their

suggestions, comments and beneficial discussions.

I am grateful to several funding sources that supported my Ph.D work. They

involve a Teaching Assistant position in the ECE department at NJIT, multi-year

research grants for the U. S. Dept. of Energy PowerGrid project, and the ECE Phonetel

and Hashimoto Fellowships.

The valuable and prompt support from Altera and Xilinx engineers during my

implementation of the multiprocessors is highly appreciated.

My father always encouraged me to challenge my talents and to pursue the

Ph.D. degree. Finally, I am very happy in fulfilling his hope and making him happy.

viii

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 High-Performance Applications 	 1

1.2 Current High-Performance Computing Systems 	 1

1.2.1 Proprietary Supercomputers 	 2

1.2.2 Shared-Memory Multiprocessors. 	 3

1.2.3 Message-Passing Multicomputers 	 5

1.2.4 Distributed Shared-Memory Multicomputers. 	 5

1.2.5 Cluster-Based Computers 	 5

1.2.6 Grid Computing 	 6

1.3 Reconfigurable Computing 	 7

1.3.1 Current Trends in Reconfigurable Systems 	 8

1.3.2 New Opportunities... 	 11

1.4 Motivations 	 12

1.5 Objectives and Contributions 	 14

1.6 Dissertation Organization. 	 17

2 RECONFIGURABLE COMPUTING 	 19

2.1 Field-Programmable Gate Arrays 	 19

2.2 Recent Advances in FPGAs 	 21

2.3 Examples of Coarse-Grain Reconfigurable Architectures 	 23

2.4 Design Methodology for Reconfigurable Machines 	 24

ix

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3 MULTIPROCESSORS ON A PROGRAMMABLE CHIP 	 28

3.1 A Coarse-Grained IP-based MPOPC (CG-MPOPC) 	 30

3.1.1 Multiprocessor Architecture 	 30

3.1.2 Processing Element 	 31

3.1.3 Memory Hierarchy Design 	 32

3.1.4 Implementation Results 	 34

3.2 HERA: A Reconfigurable Mixed-Mode Parallel Computer 	 34

3.2.1 System Organization 	 35

3.2.2 PE Architecture 	 37

3.2.3 Memory Configuration 	 39

3.2.4 Instruction Set 	 40

3.2.5 Implementation Results 	 43

4 APPLICATION STUDY 	 44

4.1 Generalized Cannon's Matrix-Matrix Multiplication Algorithm 	 44

4.1.1 Data Partitioning and Mapping 	 44

4.1.2 Dynamic Mixed-Mode Scheduling on HERA 	 45

4.2 Parallel LU Factorization of Large Sparse Matrices 	 47

4.2.1 Overview of LU Factorization 	 47

4.2.2 Near-Optimal Ordering Selection 	 50

4.2.3 Minimum Degree Ordering.... 	 53

x

TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.2.4 Dynamic Task Scheduling.... 	 53

4.2.4.1 Task Definition 	 54

4.2.4.2 State Information 	 55

4.2.4.3 Dynamic Scheduling Procedure 	 56

4.2.4.4 Theoretical Performance Analysis 	 58

4.2.5 Dynamic Mixed-Mode Scheduling on HERA 	 63

	

4.3 Parallel Direct Solution of Sparse Linear Equations 65

4.4 Parallel Solution of Newton's Power Flow Equations 	 67

4.4.1 Newton's Solution to the Power Flow Problem 	 69

4.4.2 Parallel LU Factorization of Jacobian Matrices 	 72

4.4.3 Parallel Solution of Newton's Power Flow Equations 	 77

4.4.4 Relevance to Other Work 	 78

5 PERFORMANCE RESULTS AND ANALYSIS 	 80

5.1 Mixed-Mode Scheduling of MMM on HERA 	 80

5.2 Parallel LU Factorization of Sparse Matrices on CG-MPoPC 	 82

5.2.1 MPoPC Customization and Configuration 	 83

5.2.2 Experiments and Analysis 	 86

5.3 Parallel LU Factorization of Sparse Matrices on HERA 	 93

5.4 Parallel Power Flow Analysis on CG-MPoPC 	 97

	

6 SYSTEM-LEVEL ENERGY MODELING 100

xi

TABLE OF CONTENTS
(Continued)

Chapter	 Page

	

6.1 Related Work 101

6.2 Power Characterization of Library Function Units.... 	 103

6.3 HERA System-Level Energy Model 	 109

7 A FRAMEWORK FOR RESOURCE MANAGEMENT ON MPOPCs 	 113

7.1 Related Work 	 114

7.2 Problem Definition and Objectives.. 	 115

7.3 Framework Overview 	 116

7.4 Application Model 	 117

	

7.4.1 Task Flow Graph 117

7.4.2 IF-THEN-ELSE 	 119

	

7.4.3 Loops 120

7.5 Architecture Synthesis and Reconfiguration 	 122

	

7.5.1 Parameterized Hardware Component Library 123

7.5.2 Application-Specific System Synthesis 	 124

7.6 Dynamic Resource Scheduling for Performance-Energy Optimization 	 131

7.6.1 Related Work 	 131

7.6.2 Loop Partitioning., 	 134

7.6.3 PE Search 	 135

7.6.4 Dynamic Resource Scheduling Schemes 	 137

7.6.4.1 Optimize the Performance without Energy Constraints 	 139

xii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

7.6.4.2 Optimize the Performance with an Energy Constraint 	 141

7.6.4.3 Optimize the Energy Cost under an Allowable Performance Loss 142

7.7 Experimental Results 	 143

7.7.1 Singular Value Decomposition 	 143

7.7.2 Parallel Power Flow Analysis 	 147

8 CONCLUSIONS AND FUTURE WORK	 153

8.1 Conclusions 	 153

8.2 Future Work 	 156

BIBLIOGRAPHY 	 158

LIST OF TABLES

Table Page

2.1 Comparison of Previous Coarse-Grain Reconfigurable Systems. 25

3.1 The Instruction Set of HERA 41

4.1 Sparsity of Benchmark Power Matrices 	 48

4.2 Sparsity of the Benchmark Matrices for Power Flow Analysis 	 72

4.3 The Sizes of the Blocks in the Jacobian Matrix 	 74

5.1 HERA Execution Times for Irregular Matrices under Different Execution
Modes 	 82

5.2 Characteristics of the Test Matrices ordered into the DBBD Form 	 88

5.3 Execution times (seconds) for the benchmark matrices on the two MPoPCs 	 90

5.4 IEEE Single-Precision Floating-Point Performance and Resource Utilization 	 94

5.5 Latency Comparison also Involving a DSP Processor 	 97

5.6 Optimal Partitioning of the Ybus Matrices of the Benchmark Systems 	 98

5.7 Execution Times (msec) to Solve the Linear Equations for the Benchmark
Systems on our Configurable Multiprocessor.. 	 99

5.8 Execution Times (sec) for Newton's Power Flow Equations with Seven
Processors 	 99

6.1 Resource Usage (in slices) of Floating-Point FUs on XC2V6000-5 	 105

6.2 Total power consumption (mW) of the IEEE-754 Single- and Double-Precision
FP FUs 105

7.1 Major Parameters of an FP FU in PHCL 	 124

7.2 SVD Task Information 	 145

7.3 Task Information of the Parallel DBBD Power Flow Algorithm 	 150

7.4 Optimal Partitioning of the Ybus Matrices for the Benchmark Systems 	 151

xiv

LIST OF TABLES
(Continued)

Table Page

7.5 The Parallelism Profile during the Execution 	 151

7.6 Execution Times for the Benchmark Matrices 	 151

7.7 Comparison between the Modeled and XPower-Reported Energy Consumption.. 152

7.8 Performance-Energy Optimization for the 7917-Bus System 	 152

xv

LIST OF FIGURES

Figure Page

1.1 Temporal computing vs. spatial computing 8

1.2 Conventional methodology in reconfigurable computing 	 10

2.1

	

A CLB in Virtex II FPGAs 21

2.2 Slice configuration in Virtex FPGAs 	 21

2.3 Virtex 4 FPGA [Xilinx] 	 22

2.4 Conventional development flow for FPGA-based systems 	 24

3.1 The CG-MPoPC architecture 	 31

3.2 CG-MPoPC memory configuration 	 33

3.3 HERA system architecture 	 36

3.4 A HERA PE 	 38

3.5 HERA memory interface 	 40

3.6 HERA general instruction format 	 41

4.1 A partitioning example for matrices A and B (q = 3, p1= 2, p2 = 3, p3 = 3) 	 45

4.2 Sparse DBBD matrix format 	 49

4.3 DBBD ordering for a matrix of size 10279 x 10279 	 52

4.4 The non-zero elements in the 10279-Yb us and the corresponding DBBD matrices 52

4.5 Typical PE mode assignment for large DBBD matrices 	 65

4.6 Sparse DBBD Ybus matrix 	 72

4.7 The Jacobian matrix produced from the DBBD Yb us matrix 	 74

4.8 Nonzero elements for the 7917-bus system 	 75

5.1 Performance comparison of MMM on HERA and two Dell PCs 	 81

xvi

LIST OF FIGURES
(Continued)

Figure	 Page

5.2 HERA speedup of parallel over uni-PE execution 	 82

5.3 PE and SC connectivity 	 84

5.4 MPoPC configurations for the tasks in DBBD-based parallel LU factorization... 	 85

5.5 Interconnecting on-chip data memories for the MPoPC configurations of Fig.5.4 86

5.6 Impact of network partitioning on the execution time of parallel LU
factorization for a DBBD matrix of 2582 x 2582 	 89

5.7 Speedup comparison of the run-time and static scheduling policies on the
customized MPoPC 	

5.8 Speedup (over the uni-processor) of the static and dynamic scheduling policies
for the 10279-Ybus matrix. No hardware FPUs 	 91

5.9 Percentage of time needed to factor the last block in the 10279-Ybus matrix 	 92

5.10 Comparing the predicted and real performance for the 7917-matrix 	 92

5.11 Execution time for the 10279-Yb us matrix affected by pre-fetching 	 93

5.12 Execution times on HERA under the SIMD, MIMD and mixed modes (HERA
system frequency: 125MHz) 	 95

6.1 Dynamic power consumption (per slice) of the single- and double-precision FP
FUs 	

6.2 Impact of the average input activity rate on the core dynamic power
consumption 	

6.3 Relationship between the core dynamic power consumption and the clock
frequency 	 109

7.1 Design methodology overview/flowchart 	 117

7.2 A typical task flow graph 	 118

7.3 SIMD, MIMD and mixed-mode mapping of conditional blocks 	 120

90

105

107

xvii

LIST OF FIGURES
(Continued)

Figure Page

7.4 Special examples of FOR loops 	 122

7.5 An example of function selection for PEs 	 131

7.6 Cross-iteration dependence 	 135

7.7 PE search path 	 136

7.8 Execution times with and without partial runtime reconfiguration (RTR) 	 146

7.9 Normalized execution times for our strategy and naive dynamic scheduling 	 147

xviii

CHAPTER 1

INTRODUCTION

1.1 High-Performance Applications

Many large-scale scientific and engineering problems appearing in areas such as

bioinformatics, power engineering, astrophysics, high-energy physics and chemistry,

structural analysis, circuit simulation, traffic simulation, and fluid dynamics can be

formulated as the recurring solution of a system of equations [Bailey, 1998; Fox, et. al.,

1988]. The corresponding matrix-based algorithmic solutions are often computation

intensive and present major challenges to current computing systems. For example, the

complexity of two common algorithmic cores in the above applications, namely LU

factorization and matrix multiplication, require 0 (N3) time for an N x N is the matrix.

Besides these classic high-end applications, many algorithms in newly emerging areas,

such as wireless communications, data-intensive internet applications also present

greedy demands for computing power in order to provide real-time services. Parallel

computing has been recognized as an effective and viable solution to accelerate such

problems and significant research has been ongoing for decades. New exciting frontiers

in bioinformatics in the past few years, such as the sequencing of the human genome,

rely heavily on parallel computers [Grama, et al., 2003].

1.2 Current High-Performance Computing Systems

After tremendous investment and decades of experimentation, clusters of Cray-like

vector supercomputers, distributed shared-memory multicomputers employing crossbar

1

2

or multistage interconnection networks, and clusters of scalar uni- and multi-processor

systems dominate the high-performance computing field [Bell, et al., 2002; Simon,

2003; Kuck, 1996]. Steady advances in related technologies provide the possibility and

flexibility to mix features found in these systems, so many hybrid computing systems

have been developed. Our taxonomy of parallel architectures is based on the

programmer's, or more specifically, the compiler's view.

1.2.1 Proprietary Supercomputers

Supercomputers typically follow custom designs and fall into one of these computing

architectures: vector supercomputers, and shared-memory (SM) SIMD, distributed-

memory (DM) SIMD, SM-MIMD and DM-MIMD machines [Hwang, 2003]. The

performance of these machines largely depends on their architecture and proprietary

compilers. Traditional supercomputers have accomplished a great deal of success in

solving computation-intensive problems and represent the top end of stand alone

computing systems in terms of high computing power, high bandwidth and low latency

interconnects, very fast memories and high 1/0 rates. Representative supercomputers,

some of them still in use, include the Earth Simulator from NEC, the T3D and T3E

from Cray, the SX-4/5 from NEC, the Challenge XL and Origin 2000 from Silicon

Graphics, and the CM-5 from Thinking Machines Corporation. The performance of the

best performing 500 (TOP500 list) supercomputers in the world can be found at

http://www.top500.org, where the term "supercomputer" is used in a broader scope.

Most state-of-the-art custom supercomputers are vector based or contain a cluster of

vector components and off-the-shelf RISC processors, such as the Opteron, PowerPC or

3

PA-RISC. The traditional supercomputer industry has languished in recent years [Bell,

et al., 2002; Vaughan-Nichols, et al., 2004]; besides reduced government and industry

spending on supercomputer technology, the high price, the long design and

development cycles, the difficulty of programming them, the high cost of maintaining

them and their huge power consumption, limit the application of supercomputers to

many diverse fields. Although PC clusters have demonstrated increased performance

(as shown in the TOP500 list), their long interconnect latencies still require custom

supercomputers in numerous capacity and mission-critical problems or problems

characterized by fine-grain parallelism. Some areas often requiring custom

supercomputers are weather forecasting, climate research, molecular modeling

(computing the structures and properties of chemical compounds, biological

macromolecules, polymers, and crystals), physical simulations (such as simulation of

airplanes in wind tunnels, simulation of the detonation of nuclear weapons, and research

into nuclear fusion), and cryptanalysis.

1.2.2 Shared-Memory Multiprocessors

The most common architecture employed in current shared-memory multiprocessors is

non-uniform memory access (NUMA) symmetrical multiprocessing (SMP) [Tosic,

2004]. Multiprocessors used to be present in high-end mainframes and servers and they

appear now in many kinds of systems, including high-end PCs and workstations.

Examples include the Sun Enterprise 6000, the SGI Challenge and the Intel SystemPro.

The SMP systems are usually small due to their nature of shared memory.

4

Recent advances in integrated circuit technology have fueled another

opportunity: multiprocessor-on-a-chip. Single-chip multiprocessors based on fixed

logic have recently emerged as the result of major hurdles in superscalar microprocessor

design [Ronen, et al., 2001]. Two major categories of multiprocessors have attracted

intensive interest in the academic and industrial settings. The first category utilizes

advanced superscalar cores with a shared memory [Krashinsky, et al., 2004; Hammond,

et al., 2000; Barroso, et al., 2000] whereas the other integrates a large number of simple,

pipelined cores, like MPSoCs (MultiProcessor-Systems-on-a-Chip) [Power4; Hofstee,

et al., 2005; Wolf, 2004; Stolberg, et al., 2005; Henkel, et al., 2004; Jerraya, et al.,

2004]. Recent research category in the first group include, among others, Hydra

[Olukotun, et al., 1996], SCMP [Baker, et al., 2002] and SCALE [Krashinsky, et al.,

2004]. Hydra is designed around complex superscalar processors. SCALE combines

vector processing and multithreading. SCMP is a multiprocessor organized in a 2-D

mesh without global communication channels. Current MPSoC implementations have

been optimized for real-time applications in networking, multimedia and

communications using heterogeneous processors and custom function units [Jerraya, et

al., 2004]. For chip multiprocessors based on custom logic, a high volume is required to

amortize the high development and NRE (nonrecurring engineering) costs, especially

for deep sub-micron designs. Also, the ever-shortening product cycles and the high

design complexity of such solutions limit their viability [Bergamaschi, et al., 2001]. We

have also seen some reconfigurable single-chip multiprocessors based on custom

reconfigurable logic instead of commercial FPGAs, e.g., PACT XPP [Becker, et al.,

2003].

5

1.2.3 Message-Passing Multicomputers

Message-passing multipcomputers are normally implemented with a distributed-

memory architecture. They consist of multiple computers, often called nodes,

interconnected by a uniform point-to-point network [Hwang, 2003]. Each node is an

autonomous computer consisting of a processor, local memory, and sometimes attached

disks or I/O peripherals. The boundary between multiprocessors and multicomputers

has become blurred in recent years. Examples falling into this category include the Intel

Paragon and iPSC/2, Transputer-based systems and nCube machines. Multicomputer

design and implementation have been declining since the mid-1990s with the increasing

popularity of cluster-based systems and distributed shared-memory systems.

1.2.4 Distributed Shared-Memory Multicomputers

These are systems normally implemented with a point-to-point interconnection network

but there is often both hardware and software support to implement shared memory

[Hwang, 1993].

1.2.5 Cluster-Based Computers

A computer cluster is viewed as a single computing system comprising interconnected

stand-alone computers that communicate with one another either via message passing or

shared memory [Bell, et al., 2002]. Taking advantage of exponential advances in

commercial off-the-shelf (COST) components since the mid-1990s, such as general-

purpose microprocessors and Ethernet technologies, clusters of open architecture

systems quickly entered the mainstream of the high-performance computing (HPC)

world as the specialist supercomputer market shrank. They have much lower cost than

6

the latter and are also rather scalable in hardware. More than half of the TOP500

supercomputers released in November 2004 are labeled as clusters [TOP500], making

them the most common architecture on the list. They bring the benefits of parallel

processing at reduced cost to a broader scope, and provide an easy-to-use and accessible

parallel processing alternative to the majority of high-performance applications. The

ease of implementing standard programming models on them is a tremendous

advantage. However, although it is easy to scale up and upgrade the hardware

configuration of clusters, the performance of many parallel algorithms does not scale

well on these machines primarily due to high communication latencies [Lan, et al.,

2003]. They are more effective for loosely-coupled tasks lacking frequent

communications [Vaughan-Nichols, et al., 2004].

1.2.6 Grid Computing

While computer clusters are often groups of dedicated homogeneous computers

administrated as a single system, grid systems focus on integrating, virtualizing and

coordinating computing resources and services within distributed heterogeneous

systems that are in separate administrative domains [OGSA-WG]. Grids share

advantages with cluster-based systems, such as low-cost and stand-alone nodes easy to

maintain. They also share exaggerated disadvantages, such as very high communication

costs. TeraGrid [Reed, 2003] is the largest research grid in this category.

7

1.3 Reconfigurable Computing

At the physical level, two primary approaches have been employed in the

implementation of applications: programmable microprocessors and customized

hardware utilizing ASIC chips. Programmable microprocessors have a general-purpose,

fixed architecture that implements applications temporally via atomic operations

dictated by machine instructions (temporal computing). They can also support very

limited spatial execution of operations with multiple functional units. However, the

price of the programming flexibility is rather low performance, which can be far below

that of an ASIC design. Also, microprocessors consume more power than ASICs. In

contrast, ASICs are designed and manufactured explicitly for specific applications by

spatially decomposing operations that can be implemented directly by dedicated

functional units like adders or multipliers (spatial computing) and modification requires

re-design and re-fabrication of the chip, which is an expensive process, especially with

multi-million-gate chips in sub-micron processes. ASICs are designed to perform a

specific algorithm quickly and efficiently, but cannot be altered after fabrication. Figure

1.1 illustrates the two computing approaches for the execution of a small loop.

Reconfigurable computing [Compton, et al., 2002] sits between the extremes of

general-purpose microprocessors and specialized ASICs, and allows a high degree of

both spatial and temporal execution of the operations. A reconfigurable system usually

employs reconfigurable devices, such as FPGAs, and works closely with one or more

general-purpose processors to accelerate computation-intensive or highly parallel

applications. The reconfigurable logic can be adapted (reprogrammed) for different

application. Hence, reconfigurable systems are flexible due to field programmability

8

after fabrication and are much less expensive than ASIC designs; but they are less

efficient in terms of power and resource consumption, and are usually slower than the

latter. On the other hand, they can offer much better performance due to their (semi-)

customization for a wide range of applications as compared to general-purpose

microprocessors. However, their adaptation requires hardware expertise.

Figure 1.1 Temporal computing vs. spatial computing.

1.3.1 Current Trends in Reconfigurable Systems

FPGA-based computing machines have recently demonstrated considerable

performance gains over general-purpose microprocessors for many computation-

intensive applications [Compton, et al., 2002; Bondalapati, et al., 2002]. Most of them

take advantage of the fine-grain architecture in earlier FPGAs and are fully customized

for a specific class of applications, like ASIC designs, but with much lower costs and

more flexibility than ASIC designs. Most machines target bit-level multimedia and DSP

applications where floating-point operations are not often necessary. Because floating-

9

point units (FPUs) consume a very large portion of the resources in earlier FPGAs, very

few such machines support floating-point arithmetic. Due to the limited resources in

prior FPGAs, the fine-grain functional units in such machines most often are not

program accessible and their overall processing capabilities are rather limited. These

FPGAs are developer-, rather than user-programmable. A small change in the algorithm

requires full reconfiguration of the hardware, which takes significant time. Moreover,

full hardware reconfiguration is required when the problem size exceeds the available

resources on the FPGAs, which is a major overhead in terms of time and energy during

the application execution. Each reconfiguration consumes tens to hundreds of

milliseconds. Figure 1.2 shows the general idea of such approaches. Figure 1.2 (a) is the

application data flow graph, and the resource requirements and execution times of the

tasks are shown in Figure 1.2 (b). Task mapping and scheduling on the FPGA is shown

in Figure 1.2 (c). Let the configuration time of the FPGA be 1 unit of time. It is clear

that the required hardware configuration time is rather significant compared to the

computation time. Also, many resources are wasted during execution, as the figure

shows. In an application shown for the Dynamic Instruction Set Computer (DISC), the

configuration overhead contributes more than 25% of the total execution time [Wirthlin,

et al., 1996].

In contrast to the ever increasing speed of logic resources, the configuration

overhead for SRAM-based FPGAs becomes more serious with increases in the chip size

[Pan, et al., 2004] since the size of the configuration data is proportional to the total

number of on-chip resources. For example, the configuration time of the device we use,

10

Figure 1.2 Conventional methodology in reconfigurable computing.

the XC2V6000-5, is at least 50 msec [Xilinx Virtex II]. In comparison, we can multiply

two matrices of size 1000 x 1000 in about 5 msec and perform the LU factorization a

matrix of size 1000 x 1000 in about 50 msec on the same FPGA chip [Wang, et al.,

2005]. The power required to reconfigure the device is another serious issue that cannot

be ignored. The aforementioned device requires at least 29.7 W (800 mA * 3.3 V + 100

mA * 1.65 V + 100 mA * 1.65 V) [Xilinx Virtex II] power consumption during each

configuration, which results in a total 1485 mJ of energy consumption. Research efforts

trying to alleviate both problems include reducing the number of reconfigurations

[Ghiasi, et al., 2004], increasing the sharing of function units [Cardoso, 2003],

compression of the configuration bits [Pan, et al., 2004; Li, et al., 2001] and alternative

architectures, such as multi-context FPGAs [DeHon, 1997]. The reconfiguration of such

devices is carried out by switching from one configuration (context) to another one

stored in the device by replicating the configuration memory; this is known as context

switching [Scalera,et al., 1998]. Additional storage resources are needed in such devices

11

to store multiple configurations and intermediate results between reconfigurations. This

causes serious power issues and these choices do not appeal to most FPGA vendors.

Further discussion about the conventional design methodology and its

disadvantages is presented in detail in Chapter 2. However, we expect this approach to

continue playing a major role in application areas where field programmability by the

user is not required or is needed rarely and the problem size is small enough and full

reconfiguration is not required.

1.3.2 New Opportunities

With the recent achievement of multi-million-gate platform FPGAs to contain richer

embedded feature sets, such as plenty of on-chip memory, DSP blocks and embedded

microprocessor IP cores, FPGA-based reconfigurable computing is going through a

revolution. New FPGAs employ coarse-grain architectures to facilitate more powerful

coarse-grain datapaths. The peak floating-point performance of FPGAs has

outnumbered in the last two years that of modern microprocessors and is growing much

faster than the latter [Underwood, 2004]. Recent research efforts in the design and

implementation of FPUs [Zhuo, et al., 2004; Liang, et al., 2003] and computation-

intensive algorithms on state-of-the-art FPGAs provide evidence to this effect. However,

they follow the traditional approach where the circuitry is only applicable to the specific

algorithms invented by the developer and the studied problems were of very small size.

It is now viable for FPGAs to accommodate some high-performance applications. Even

supercomputer manufacturers have recently incorporated FPGAs in their designs. For

TM
example, Cray incorporates six Xilinx Virtex 4 FPGAs per chassis in its XD1

12

supercomputers that can be used as coprocessors to accelerate computation-intensive

applications. The advent of soft IP configurable processors from FPGA vendors, such

as Microblaze from Xilinx and Nios from Altera, have inspired some multiprocessor

implementations on FPGAs [Hung, et al., 2005; Salminen, et al., 2005; Hoare, et al.,

2004; Ravindran, et al. 2005]. However, we have not seen FPGA-based single-chip

multiprocessors that incorporate hardware FPUs.

1.4 Motivations

From the above discussion we can see that PC-based cluster systems and SMP

multiprocessors are the dominant high-performance platforms for the majority of

computation-intensive applications. Nevertheless, their shared-memory nature limits the

size of SMP systems and the high communication latencies in cluster systems make

them more effective for loosely-coupled tasks lacking frequent communications. Both

of them are based on general-purpose COTS components and are only effective on

certain classes of applications. Due to the different characteristics of general-purpose

and high-performance computing, we cannot rely solely on COTS components to

improve the latter. Moreover, conventional (micro)architectures are fast approaching a

performance limit due to the limited ILP (Instruction Level Parallelism) in real

programs [Ronen, et al., 2001]; their large power dissipation is a major problem as well.

Also, wire delays decrease much slower than transistor switching times for deep sub-

micron processes. As a result, a major shift from ILP to TLP (Thread Level Parallelism)

is present in the industry and research communities. To this extent, AMD, Intel, Sun,

and IBM, among others, have recently introduced multicore chips.

13

The author is among the very few who observed very early that FPGAs provide

a new opportunity to the high-performance computing field. State-of-the-art FPGAs

have made it feasible to build high performance computing systems at affordable costs

with hardware support for floating-point operations. High-performance applications

often involve complex matrix-based algorithms where software programmability and

standard FP representation are indispensable. Scalability and portability are also

essential to performance due to the variant size of matrices and the ever changing

parameters of various applications. These systems can leverage system level concepts

from high-performance computing and can dynamically tune their architecture to fit the

applications. They are also accessible to applications due to their low cost. However,

this new approach requires extensive expertise in computer architecture, parallel

processing, and digital and FPGA-based designs in order to yield high performance.

The majority of the FPGA community still follows the conventional approach of

designing and implementing acceleration circuitry for specific algorithms, as discussed

in Section 1.3. To the best of our knowledge, we have not seen yet major research

efforts in the new MPoPC direction and very few FPGA-based computing systems

incorporating FPUs have been published.

The programming of reconfigurable systems for high performance can be quite

challenging as it essentially involves hardware design. Although several groups have

recognized that the success of such systems will highly depend on high-level design

tools to efficiently map applications onto the hardware, they focus their efforts on

developing more general, software-oriented approaches that resemble traditional

compilers for general-purpose microprocessors; they assume simplified and regular

14

models for reconfigurable systems, or no specific architecture at all. Due to their

difficulty in implementing hardware, most of the published results are based on

simulation only. This is a major drawback as it is indeed important to implement such

systems in order to evaluate the performance accurately. Reconfigurable systems are

more diverse than conventional high-performance computing systems due to their

reconfiguration flexibility and the eventual (semi-)customization of hardware to run

application code. It is hence very important for the mapping tools to be hardware-

oriented and take into account the specific idiosyncrasies, features and constraints of the

target systems in order to achieve the high performance they are designed for; this is

often accomplished by fully utilizing the hardware resources.

1.5 Objectives and Contributions

The first objective of this research is to propose a design methodology for high-

performance, low-cost reconfigurable systems targeting large data-parallel applications

[Hills, et. al., 1986] and utilizing new-generation FPGAs. The focus here is on high-

performance and reconfigurable MPoPCs implemented with state-of-the-art platform

FPGAs. A major contribution is the pioneering nature of reconfigurable MPoPCs, and

the system-oriented approach to design and implement them for data-parallel

applications. No related major efforts have been published.

Two different types of MPoPCs with hardware FPUs were designed and

implemented to provide a base for further study: (a) a coarse-grain MPoPC (CG-

MPoPC) based on a configurable IP processor core from Altera (i.e. Nios) that was

implemented on the Altera SoPC FPGA board, and (b) the HERA mixed-mode variant-

15

grain machine that was implemented on Xilinx FPGAs. CG-MPoPC is designed to run

in the MIMD mode while HERA can be reconfigured at runtime to support a variety of

independent or cooperating computing modes, such as SIMD, MIMD and M-SIMD.

Therefore, HERA can potentially match better in the time spectrum all subtask

characteristics of a given application. The PEs in both systems are equipped with large

data and instruction on-chip memories. Platform FPGAs also provide substantial

flexibility to integrate many features found in conventional high-performance

computing systems. In contrast to previous FPGA-based custom computing machines,

these systems are also user-programmable by general-purpose instructions. To save on

reconfiguration time, full hardware reconfiguration during execution is eliminated by

employing user-programmable PEs. Parallel solutions for two computation-intensive

benchmark applications, namely matrix-matrix multiplication (MMM) and LU

factorization, which require 0(N3) floating point operations (N x N is the matrix size),

are studied and implemented on the two MPoPCs. Large sparse real-world matrices

from power engineering, with size of up to 10279 x 10279, are employed in the

evaluation process. A large, complex real-world application, namely power flow

analysis based on Newton's method [Tinney, et al., 1967] was parallelized and mapped

onto the two MPoPCs. Its real-time solution is of critical importance to the security of

any power grid and current solutions on cluster systems suffer many limitations [IEEE,

1992]. Efficient application mapping, dynamic task scheduling and load balancing

techniques are proposed and analyzed on my MPoPCs. The innovative nature of this

work has the potential to guide research in this arising field of high-performance

reconfigurable computing.

16

MPoPCs sit between the two categories of chip multiprocessors (Section 1.2.2)

by taking advantage of the field reprogramability of FPGAs: they are similar to the first

category in that all PEs share the same microarchitecture and ISA (Instruction Set

Architecture); it also shares MPSoC features since the PEs are simple and yet highly

(but not fully) optimized for target applications. HERA targets data-intensive, matrix-

based applications in general; however, the end user can choose certain features for the

PEs as shown later. A distinct advantage of MPoPCs is that it can be customized in the

field by the end user due to the presence of reconfigurable logic; in addition, this can be

done at a very low cost and risk of design, implementation and verification. The PE

configuration is closely customized and reconfigured to match application's

characteristics and, hence, increase the resource utilization for high-performance. The

author also emphasizes the importance of on-chip local memory due to the ever

increasing memory-processor latency gap. This is similar to the recently announced Cell

processor, where PEs are interconnected by a bus [Hofstee, 2005].

On the software side, programming reconfigurable MPoPCs, especially

heterogeneous systems like HERA, is very challenging given the tremendous flexibility

provided by MPoPCs. The performance of computing systems highly depends on a

good match of the hardware system with the application. Efficient resource

management is essentially the key to achieve high performance for designs based on

reconfigurable logic. Based on the HERA design, a resource-oriented and architecture-

conscious framework for mapping data-parallel applications (described at a high level)

is proposed, in addition to dynamic resource management and reconfiguration schemes.

The applications are profiled and then expressed using weighted task flow graphs

17

(wTFGs) consisting of SIMD and MIMD tasks associated; several parameters denote

the complexity of each task. At static time, an application-specific HERA configuration

based on an in-house designed parameterized hardware component library (PHCL) is

synthesized for various performance-energy objectives. The architecture can be

reconfigured at runtime as needed by the tasks. Then, a proposed runtime management

approach takes advantage of HERA's mixed-mode parallelism in order to increase the

resource utilization while at the same time optimizing the performance and/or

consumed energy. During the execution of an application, this approach may

dynamically repartition and redistribute active SIMD tasks among the available PEs

(Processing Elements) in the system. Experiments with the parallel power flow analysis

algorithm and singular value decomposition (SVD), which requires at least 20 times

more FP operations than LU factorization, are performed to test the proposed

framework. A HERA system-level energy model which is based on physical-level

implementation data and run-time application statistics is proposed to guide the run-

time scheduling decisions.

1.6 Dissertation Organization

Chapter 2 provides a technical background on FPGA devices and reconfigurable

computing. Chapter 3 presents the design and implementation details of the two

MPoPCs. The development of MMM, parallel LU factorization of large sparse matrices,

parallel direct solution of sparse linear equations and parallel processing for power flow

analysis on the MPoPCs, as well as related issues for mapping and scheduling are

discussed in Chapter 4. Chapter 5 contains experiments and performance analysis.

18

Power characterization and system-level energy modeling are presented in Chapter 6.

The resource management framework for HERA and experimental results are presented

in Chapter 7. Finally, conclusions of this research and suggestions for future work are

presented in Chapter 8.

CHAPTER 2

RECONFIGURABLE COMPUTING

FPGAs are the most common devices employed in reconfigurable computing. This

chapter provides a technical background on FPGAs and discusses the most recent

advances in FPGA architectures. It also contains some examples of coarse-grain

reconfigurable systems. The current FPGA development approaches are also discussed

in order to provide an introduction for our compilation methodology in Chapter 7.

2.1 Field-Programmable Gate Arrays

FPGAs are a class of integrated circuits (ICs) that contain arrays of pre-fabricated logic

and interconnection modules whose functions are electrically configurable to meet

specific design requirements by the user; this is done by using system development

software after the ICs have been manufactured and delivered. FPGAs were introduced

in the mid-1980s as alternatives to custom-designed MPGAs (Mask-Programmable

Gate Arrays) in order to reduce dramatically the high NRE costs, long design cycles,

and inherent risks associated with the latter, and provide the benefits of customized

ASIC designs. Most modern FPGAs employ SRAM (Static Random Access Memory)

technology to achieve programmability and comprise a matrix of configurable

components, such as logic blocks, distributed and/or block memories, hierarchical fast

routing resources and/or microprocessor(s) [Altera; Xilinx]. Both of the functions

performed in the logic blocks and the routing of signals in the interconnection fabric are

programmable by the SRAM bits connected to them; programming the SRAM bits

19

20

configures the FPGA. Most applications often require that FPGAs be configured only

once. This is known as static reconfiguration. Runtime reconfiguration allows

applications to dynamically change the configuration of FPGAs at runtime. An

important feature in modern FPGAs is the support of partial runtime reconfiguration.

The penalty resulting for this flexibility of FPGAs is larger signal delay and a lower

system frequency compared to ASIC designs implemented with similar silicon

processes.

The basic computational cell in a Xilinx Virtex II FPGA is a Configurable Logic

Block (CLB) [Xilinx], shown in Figure 2.1, which is made up of four similar slices tied

to a switch matrix for accessing the general routing fabric, with fast local feedback

within the CLB. The output from the function generator in each slice drives both the

slice output and the D input of the storage element. Figure 2.2 shows a detailed view of

a single slice. Each slice includes two 4-input lookup tables, carry logic, arithmetic

logic gates, wide function multiplexers and two storage elements. As the diagram

illustrates, the lookup tables can be configured and accessed in three different ways,

including: 4-input LUT, 16 bits of distributed SelectRAM+ memory, or a 16-bit

variable-tap shift register element. These LUTs are essentially 16 x 1 (with four inputs)

or 32 x 1 (with five inputs) memory blocks used as universal function generators

capable of serving as truth tables for the implementation of any arbitrary 4- or 5-input

logic function. The extra multiplexers (MUXFx and MUXF5 in Figure 2.2) can be used

to combine LUTs to realize functions with up to eight inputs.

When reconfigurable computing (RC) was introduced in the late 1980's, the

largest FPGAs had only 2K gates of reconfigurable logic, far from enough real estate to

21

build computing systems. By the mid-90's, the size of reconfigurable devices increased

to 50K gates of reconfigurable logic; but the continued low gate count, poor

programming architectures, lack of partial reconfigurablity and high cost of these

devices restricted the use of RC architectures for research and experimentation

purposes. They were mainly used as highly integrated glue logic tying together the

intelligent parts of systems or emulation engines for ASIC designs before they were

fabricated.

Figure 2.1 A CLB in Virtex II FPGAs [Xilinx]. Figure 2.2 Slice configuration in Virtex FPGAs
[Xilinx].

2.2 Recent Advances in FPGAs

With the arrival of million plus gates of reconfigurable logic on a chip in 2001 and the

addition of high-performance RISC CPUs, block RAM, multi-gigabit high-speed serial

I/Os, dedicated DSP logic, and other system enhancements, FPGAs have increasingly

become system oriented (Systems-On-a-Programmable-Chip, SOPC) [Xilinx; Altera].

They have quickly taken over innumerable ASIC SoC designs with their flexible device

integration capability, programmable I/O, very capable clock speed, and significantly

lower overall design cost.

22

To give an idea of the state-of-the-art in FPGAs, let us consider the recently

released Xilinx Virtex 4 FPGAs [Xilinx] shown in Figure 2.3. Virtex 4 employs a

highly modularized architecture called the application-specific modular block

(ASMBL), where the reconfigurable logic is structured into long, narrow stripes. Each

stripe can be defined during the silicon manufacturing stage to contain either standard

configurable logic elements or a function-specific block with specialized elements to

handle DSP operations, memory, high-speed I/O, mixed-signal functions, or some other

generic, yet application-optimized function. Its logic fabric and fixed blocks can all

operate at 500-MHz clock rates. The largest available Virtex 4 device, XC4VFX140, is

embedded with 63,168 slices and 9,936 Kbits of B1ockRAM. Designers now have

additional axis of flexibility to choose parts with varying mixures of special features

more appropriate to their application.

Figure 2.3 Virtex 4 FPGA [Xilinx].

23

2.3 Examples of Coarse-Grain Reconfigurable Architectures

Earlier FPGA-based reconfigurable computing systems were mostly fine-grain systems,

where processing elements (PEs) typically comprised logic gates, flip-flops and LUTs

operating at the bit level [Compton, et al., 2002; Prasanna, et al., 2002]. Fine-grain

systems are difficult to program, inefficient in application mapping and take significant

time to compile and reconfigure [Venkataramani, et al., 2003], which is required in

these approaches for applications oversizing the available hardware. The most

important reason was insufficient resources in the FPGAs at that time. On the other

hand, as more and more resources were allowed on a single die, coarse-grain systems

(where the PEs contain complete functional units like ALUs and/or multipliers

operating upon multiple-bit words), have become more common [Singh, et al., 2000].

While overcoming the disadvantages of fine-grain systems, coarse-grain systems tend to

have fewer long-distance control signals and more regular localized modules; these

features favor multi-million-gate devices where wire delay is more of a limiting factor

to the system frequency than gate delay. New FPGA architectures also favor coarse-

grain designs. We are only interested in coarse-grain designs in this work. Table 2.1

shows a comparison of available coarse-grain reconfigurable systems.

Most of these coarse-grain systems appeared as coprocessors to offload the main

processor of computation intensive cores, mostly from signal and image processing.

Only Raw included a 4-stage pipelined FPU in its PEs. As the table shows, only a very

small amount of memory was included and no general-purpose instructions were

provided in these systems. Finally, all of them were implemented by ASIC processes,

although some of them were initially designed for FPGAs. Thus they are not flexible

24

enough like FPGA-based reconfigurable systems to support significant resource

management. We did not find comparable systems on FPGAs.

2.4 Design Methodology for Reconfigurable Machines

Traditionally, FPGA-based designs follow a very similar flow as that for ASIC designs,

as shown in Figure 2.4. Hence, mapping applications to FPGAs have mostly considered

a hardware expertise.

Figure 2.4 Conventional development flow for FPGA-based systems.

The entire procedure can be very time-consuming for multi-million-gate devices

and the resulting configuration data can be used only for a fixed-size, specific device.

The entire FPGA implementation procedure (from the design partitioning) is repeated if

the target device changes. Runtime reconfiguration has made possible the concept of

"Virtual Hardware" [Ling, et al., 1993], where the FPGA resources are assumed

unlimited and applications are partitioned into function blocks that are then executed by

time-sharing the same hardware in a specific order. Hardware virtualization allows to

1: Ebeling, et al., 1996; 2: Taylor, et al., 2002; 3: Miyamori, et al., 1999;
4: Mirsky, et al., 1996; 5: Singh, et al., 2000; 6: Ye, et al., 2000;

25

26

implement applications that are too large to fit on an FPGA. The major obstacle to its

practical application is the significant overhead of reprogramming the hardware, which

is typically on the order of tens to hundreds of milliseconds for current FPGAs [Xilinx;

Altera]; this overhead may be larger than the actual computation time for small function

blocks.

As expected advances in technology (Moore's Law) increase the resources on

single programmable chips, the above design procedure becomes more and more time-

consuming and cumbersome, and requires extensive expertise in both hardware and

software. Motivated by this problem, the past few years have seen an increasing interest

in developing tools to compile applications written in high-level programming

languages for target FPGAs; such languages are C/C++ and Java [Gokhale, et al., 2000;

Cardoso, et al., 2003; Najjar, et al., 2003, Venkataramani, et al., 2003]. These tools

typically take the user application code and produce corresponding VHDL code (RTL

level) or a circuit netlist (the output of Logic Synthesis in Figure 2.4), and then FPGA

place-and-route tools map the design to FPGAs. They still follow the same design

philosophy of APSCs, as discussed in Section 1.3. The major problem with most of

these approaches that try to mimic conventional compilers in allocating and configuring

silicon resources is the extreme difficulty in identifying required components and their

interconnectivity. It is crucial to take into account the idiosyncrasies of the underlying

reconfigurable system while these approaches often apply generic techniques. Moreover,

their time-consuming procedure has to be to be repeated every time a change is made to

the source code. Most of them implicitly or explicitly assume the concept of virtual

hardware which requires full or partial run-time reconfiguration. While these

27

approaches can bring FPGAs closer to more users who are not familiar with hardware

design methodology, their performance in terms of area and speed are still

unsatisfactory compared to the VHDL-based manual designs.

CHAPTER 3

MULTIPROCESSORS ON A PROGRAMMABLE CHIP

Although the customization of hardware can lead to high-performance, it also limits the

use of such systems due to the lack of elasticity in reusing and reprogramming

functional units for various applications. Increasing the reusability of functional units is

an effective way in reducing the number of required reconfigurations [Ghiasi, et.al.,

2004; Cardoso, 2003]. Also, the continuous success of processor-based temporal

computing platforms, including most current high-performance parallel systems, owes a

great deal to their standard general-purpose and backward compatible architectures, and

their standard programming environments; they protect and encourage long-term efforts

and investments. It gives us a hint that in order to make reconfigurable computing

machines mainstream computing platforms, standard architectures and

microarchitectures, and corresponding development methodologies like those for

microprocessors are absolutely essential.

This chapter discusses two approaches to FPGA-based MPoPC designs that I

have implemented: CG-MPoPC, a reconfigurable IP-based MIMD MPoPC based on

Altera FPGA devices, and HERA, a mixed-mode MPoPC machine based on the Xilinx

Virtex II devices. Our target applications are matrix-based data-parallel and stem from

the high-performance engineering and scientific fields. A pipelined IEEE-754 standard

FPU was designed and implemented, and employed on both systems. The first MPoPC

employs a configurable processor IP core from Altera optimized for platform FPGAs.

Such RISC configurable soft cores have recently become available to greatly empower

FPGA-based system implementations. Conventional processors gain in performance by

28

29

increasing the clock frequency; this results in intolerable high power consumption and

the physical limits are often reached. IP configurable processors, on the other hand,

provide extra opportunities in lower power consumption, higher transistor utilization,

programmability and flexibility. The processor can be tailored to better meet the

requirements of the application. The instruction set architecture (ISA), register file,

software development APIs (Application Programming Interfaces), memory hierarchy

and size, and communication channels can all be configured and extended as deemed

appropriate. Also, standard and user customized logic engines can be easily added,

modified or extended, as needed. We can identify critical instructions in the application

code that affect performance the most and implement them in hardware. Configurable

processor cores also provide us with substantial flexibility in SOPC integration. Such

configurable IP cores are designed with a general-purpose microarchitecture and

instruction set to achieve good performance for a large range of possible applications.

Hence, the first system is intended for many diverse applications. However, the

generality of such systems to provide the provisions for many scenarios leads to a rather

low utilization of hardware resources and lower performance than a custom designed

solution to any particular application. In contrast, a fully-customized and reconfigurable

PE is designed and implemented for HERA in order to meet more stringent

performance requirements. Moreover, HERA can be reconfigured dynamically at

runtime to support a variety of independent or cooperating computing modes, such as

SIMD, MIMD and M-SIMD, to best match in the time spectrum all subtask

characteristics of a given single application. More discussion about mixed-mode

computing follows in Section 3.2. In order to evaluate and compare the performance of

30

different interconnection networks, the PEs in the first MPoPC are interconnected via

an X-tree network where HERA employs a 2-D mesh organization. The first approach

takes much less time to develop and implement, and is easier to program than the

HERA custom approach. We also employ FPGAs from the two major vendors, i.e.,

Altera and Xilinx, in order to compare the architecture capabilities and performance of

different devices.

3.1 A Coarse-Grained IP-based MPoPC (CG-MPoPC)

3.1.1 Multiprocessor Architecture

We customize the MPoPC configuration to better match applications. Figure 3.1 shows

one configuration of the CG-MPoPC. The PEs form multiple binary trees to support

communication patterns in a matrix-based algorithm (details follow in Chapter 4). Each

PE is guided by the SC (system controller) that utilizes the boot up code stored in the

PE's private memory. An interrupt-driven control channel in a star configuration

connects the SC to every PE. There is also a direct communication channel between the

SC and the root of every binary tree. As the feature size of silicon processes enters the

submicron range, wire delay becomes significant compared to logic delay. The routing

of chip-level and clock signals tends to become more cumbersome in complex multi-

million gate SOPC designs. In contrast, our binary tree network for data

communications eliminates global transfers and is also scalable in size. The serial and

TCP connections were implemented between the multiprocessor and the host PC. TCP

31

provides a flexible, quick and efficient communication channel in our parallel system,

which can be accessed by all other hosts in the network.

Figure 3.1 The CG-MPoPC architecture.

3.1.2 Processing Element

We employed a 32-bit Nios ® [Altera] IP processor core from Altera to implement each

PE and the SC. The Nios ® RISC processor is fully configurable and its implementation

yields over 200 DMIPS (Dhrystone MIPS) in the Altera Stratix II FPGA. It utilizes a 5-

stage pipeline and conforms to a modified Harvard memory architecture. Configurable

processors necessitate trade-offs between performance and the resources consumed. A

typical Nios® processor in our machine consumes about 1600 logic elements (LEs). A

pipelined IEEE 754 single-precision FPU and some trigonometric functions, such as

sine and cosine, were implemented in hardware with every PE. They are needed by our

target applications. These functions take considerable time if implemented in software.

All these hardwired functions can be accessed by application code via custom-made

instructions. The FPU runs at 128.3MHz for the 3-stage adder/subtractor, 150.8MHz for

32

the 5-stage multiplier and 165.4MHz for the 28-stage divider. These efficient

realizations result in significant performance improvements for matrix operations

[Wang, et al., 2004]. Taking advantage of the high density of new generation FPGAs,

we are among the first ones to implement IEEE 754 FPUs in FPGA-based configurable

parallel systems.

3.1.3 Memory Hierarchy Design

Since current configurable machines lack latency reducing software support, the

memory design becomes a dominant factor in performance. Moreover, although new

silicon technology and computer architecture advances facilitate faster processors, the

performance gap between processors and memories tends to increase. If we rely solely

on the on-board SRAM memory in our shared-memory multiprocessor, the overall

speedup may drop substantially due to severe memory contention and large system

synchronization. Fortunately, new generation FPGAs make available large on-chip

memory with wide communication channels. Our FPGA-based multiprocessor

architecture capitalizes on this advantage and forms several kinds of memories in order

to maximize performance.

Every PE in our system has a local, exclusive on-chip program memory and a

shared on-chip data memory. The PE shares its on-chip data memory with its sibling

and parent in the binary tree, as shown in Figure 3.2. The sizes of the program and data

memories for each PE are determined by the available memory capacity of FPGAs and

the total number of PEs. The shared on-chip data memory improves the performance by

minimizing the transfers of large blocks of data between memories. All the required

33

interconnection between on-chip memories and/or processors is implemented based on

the multi-mastering, fully connected AVALON® bus of Altera. Thus, the

communication bandwidth is quite large and the on-chip memory access time is only

one clock cycle. All PEs share the on-board synchronous SRAM (SSRAM) memory,

whose access takes at least four clock cycles, on the average. We implemented a

controller to oversee the system's operation, and also pre-fetch instructions and data

from the on-board memory into the PEs; the latter use the on-chip memory to run the

application code because of its much lower latency compared to the on-board SRAM

memories. On-chip data and instruction caches are also employed to reduce the memory

access latency. We implemented a direct-mapping cache with the write-through policy

in each PE. Our experimental results show that the speedup obtained by employing this

cache can be more than 20%. The cache size and configuration can be tailored to the

specific algorithm requirements due to the presence of configurable logic.

Figure 3.2 Memory configuration.

34

3.1.4 Implementation Results

An SOPC development board from Altera [Altera] was employed to implement the

MPoPC. It is populated with the largest APEX2OKE FPGA device, the

EP20K1500EBC652-1x, which includes 51,840 logic elements and 442,368 bits of on-

chip memory. The board also contains two banks of SSRAM chips for a total of 2 MB.

Seven PEs, each with an FPU, plus the SC were fitted on the board. The system runs at

50MHz. EP20K1500E is a relatively slow device, which is built with a 0.18μm and 8-

layer-metal process. It is enough to serve our purpose of an initial evaluation of the

performance for real reconfigurable systems utilizing the new platform FPGAs.

3.2 HERA: A Reconfigurable Mixed-Mode Parallel Computer

From the application's point of view, the performance of general-purpose computing

systems is not optimal for most subtasks due to the system's expected unsuitability;

different subtasks in an application normally require different architectures for high

performance. SIMD and MIMD are the two fundamental and complementary parallel

modes of execution. SIMD's superior ability for data parallelism, often enhanced with

low inter-PE communication and synchronization overheads, makes it superior to

MIMD in performing fine-grain tasks [Parhami, 1995; Meilander, et. al., 2003]. Many

numerical analysis algorithms, such as large-scale matrix multiplication and LU

factorization, have a very high degree of structured, fine-grain parallelism and can

benefit substantially from the SIMD mode. However, due to SIMD's implicit

synchronization, SIMD machines are often under-utilized for applications involving

dynamic parameters and an abundance of conditional statements. On the other hand,

35

MIMD machines consisting of independent PEs are good at conditional branching.

Mixed-mode heterogeneous computing [Siegel, et. al., 1996], where the machine's

operational mode (i.e., SIMD, MIMD, M-SIMD, etc.) changes dynamically as deemed

suitable by the individual subtasks in an application, is an effective approach in

alleviating such problems.

3.2.1 System Organization

Figure 3.3 shows the general diagram of our HERA machine with m x n PEs

interconnected via a 2-D mesh network. Most matrix-based computations are well

structured and map naturally to the 2-D mesh which is easily implemented by the FPGA

place and route processes. We employ fast, direct NEWS (North, East, West and South)

connections for communications between nearest neighbors. Nearest PE pairs on the

same row or column can also communicate through one port of the data memory of the

PEs to the west and north. Since every PE also has a Local Control Unit (LCU), most of

the instruction decoding is carried out by the LCU. By giving the decoding work to the

LCUs, we avoid broadcasting a large number of control signals to all the PEs. For

debugging and system control, it is desirable for the host processor to have access to all

the local program and data memories of the PEs. However, such an implementation has

an adverse effect on system timing when the number of PEs increases. We designed a

two-level bus scheme for global instruction distribution and communication. Every

column has a Cbus and the eight Cbuses are connected to the Column Bus. Individual

PEs or groups of PEs can be selected by their ID number(s) (address(es) on the

36

Cbus(es)). The bus control logic is implemented in the Sequencer. If we have more PEs,

we may increase the number of bus levels.

The total number of PEs is determined by the available resources in target

FPGA devices and the resource requirements of the application. The computing fabric

is controlled by the system Sequencer that communicates with the host processor via the

PCI bus. Interrupt logic between the Sequencer and the host processor is

implemented.

Figure 3.3 HERA system architecture.

The host can access the on-board DDR II SRAM and the on-chip memories of

each PE. Each SRAM chip is owned exclusively by a group of PEs. The Global Control

Unit (GCU), included in the system Sequencer, fetches instructions from the global

program memory (GPM) for PEs operating in SIMD. Due to the presence of FPGAs,

37

besides that the system operating mode is reconfigurable at runtime, the capabilities of

each PE and the number of PEs can be reconfigured based on the application's

requirements. The host can load different FPGA images in the same C/C++ code to

finish different subtasks at runtime. Thus, FPGAs provide another dimension of

flexibility to optimize the hardware to match the specific characteristics of applications.

3.2.2 PE Architecture

In SIMD, we need to maximize the number of PEs in order to get the best possible

performance. We employed a RISC or load-store architecture for our PE to save on

hardware resources. Furthermore, the simplicity of the RISC architecture makes the

implementation of the processor pipeline easy. Figure 3.4 shows the block diagram of

the PE. All data paths are 32 bits. The PE contains several major components: a 7-stage,

pipelined, 32-bit floating-point (FP) function unit (FFU), an LCU, 32-bit dual-port local

program memory (LPM), 32-bit dual-port local data memory (LDM) and eight NEWS

communication ports. Data in one of the NEW_IN registers can be sent to any of the

four neighboring NEWS_OUT registers by using one instruction.

Our HERA design implements IEEE 754 single-precision pipelined FP

operations in each PE. We employed a 3-stage pipeline in the FP adder, subtractor and

multiplier, and a 28-stage pipeline in the FP divider. HERA supports both global and

local PE masking. Every PE in the processor array is assigned an ID number that serves

in global masking. The last seven bits of all the instructions select a particular PE or a

group of PEs. Every PE holds a mask bit and computes the mask value with every

instruction. A specific bit in instructions selects between global and local masking. Each

38

PE comprises 32 32-bit general-purpose registers (GPRs) and several system registers:

local instruction register (LIR), local program counter (LPC), data memory address

register (DMAR), program memory address register (PMAR), local status register

(LSR), local masking register (LMR) and 1-bit operating mode register (OMR). Similar

to some other RISC processors, the RO GPR is fixed at zero.

Figure 3.4 A HERA PE.

The operating mode of each PE is configured dynamically by the host processor

through its OMR by using the Configure instruction: "0" indicates SIMD and "1" sets

the PE into MIMD. All PEs operate in SIMD when powered up. To switch a PE to

MIMD from SIMD, the sequencer first distributes the instructions to the LPM of the PE

through the Column Bus and Cbus, and then sends a Jumpl instruction to the PE with

the starting address in the MIMD code. OMR is set to 1. To switch back to SIMD,

OMR is reset to "0" and the PE then listens for the broadcasting of a global instruction.

39

The data in the registers and memories remain intact during switching. The instructions

come from GPM in SIMD and from LPM in MIMD. The masking in the SIMD mode

can use the PE's ID number and/or LMR.

3.2.3 Memory Configuration

The sizes of LPM and LDM were determined by the number of memory blocks in the

FPGA device. They are configured as dual-ported 32-bit memories. Figure 3.5 shows

the connections of the two memory ports of LPM and LDM. We tried to make the data

memory as large as possible in order to reduce the data I/O time. The A port of LPM is

connected to one Cbus, and serves as the interface to the sequencer and host processor.

This way, the host processor has access to all LPMs. It sends application programs to

every PE through this port from the Main Memory if the PE is to operate in MIMD.

Port B of an LPM can be accessed by the local PE to get the instructions. An interesting

feature of our design is the LDM interface. Our matrix algorithms usually involve

frequent accesses of intermediate results in nearest neighbors. The NEWS network can

handle well single word communication. However, it may take many cycles to transfer

a large amount of data by using NEWS connections. Based on our experience with

matrix algorithms on our IP-based multiprocessor machine, where PEs often use results

from the east and north neighbors, we employed a shared dual-ported memory to

address this problem. The A port of LDM is accessed by the local PE, and the B port is

shared with the neighbors to the south and east. A PE can directly write to or read from

the LDMs of its west and north neighbors via their B ports. Thus, we eliminate block

data transfers between nearest neighbors. Another important use of the shared port is to

40

pipe the data assigned to each PE into its LDM at system initialization. The A port of

LDM of the first PE on every row is also accessible via the data bus.

Figure 3.5 HERA memory interface.

3.2.4 Instruction Set

The efficiency of the PE greatly depends on its Instruction Set Architecture (ISA). Our

design philosophy is to have a small and highly optimized instruction set for our target

applications, while not losing generality for the sake of programming efficiency. The

simplicity of the instructions also facilitates pipelined implementation. The instructions

of HERA are classified into six major groups: integer arithmetic, FP arithmetic,

memory access, jump and branch, PE communication, and system control, as shown in

Table 3.1. Our target applications generally require intensive FP operations and

demonstrate very limited control flow. Hence, we concentrate on optimizing the

performance of FP instructions. All the instructions are 32 bits wide. We use a three-

41

field general format for all instructions as shown in Figure 3.6. Some fields are not used

for some instructions that have one or two operands (see Table 3.1) and we still keep

the alignment of the same operands in order to speed up decoding. System control

instructions have special formats. An immediate FP operand is stored in the memory

location immediately following the instruction. All the memory addresses are currently

10 bits long.

42

The destination register of Get_N/E/W/S instructions or the source register of

Send_N/E/W/S instructions can also be one of the four NEWS OUT registers. This

way, data can bypass a PE to reach the next PE because we can use shared NEWS

registers between PE pairs. The instructions support immediate, register and base

addressing. The calculation of the effective address in base addressing is carried out by

the control unit. The memory addresses in global instructions can be modified by the

local PEs because we include local control logic. This feature is really useful and

provides flexibility in some applications. The Standby instruction comes in pairs. The

first instruction stops the PE's execution and sets the corresponding bit in the status

register to "1", and then the PE waits for another Standby instruction to resume

execution. The second Standby instruction supplies a jump address. The status bit is

reset to "0" by the second Standby instruction. This status bit of all the PEs is monitored

by the sequencer.

HERA can be partitioned at run time into several islands, each comprising a

group of PEs running in SIMD or MIMD. The partitioning is achieved by global and

local PE maskings; the mask status is stored in the Global Mask Register (GMR) and

Local Mask Register (LMR), respectively. A PE in SIMD is active only when both

registers are set. The LMR can be set by executing locally a comparison instruction.

Every PE is assigned a distinct ID that serves in global masking. The last seven bits of

an instruction in SIMD form three fields: 3 bits each for the row and column address,

and 1 bit for masking. A "1" in this bit sets the GMR of all the PEs in the column and a

"0" only sets the GMR of the specific PE whose address is contained in the instruction.

Combined with the PE ID and appropriate masks, the system can be configured

43

dynamically into a mixed-mode computing system capable of supporting

simultaneously SIMD, MIMD and multiple-SIMD.

3.2.5 Implementation Results

Our first implementation was carried out on the high-performance WILDSTAR

FPGA board from Annapolis Micro Systems [AnnapMicro]. The board is populated

with two Xilinx XC2V6000-5 Virtex II FPGA devices and 24MB of DDRII SRAM

memory (12 chips). The XC2V6000 devices are embedded with 33792 slices and 144

BlockRAM (18Kbits each). The board communicates with the host computer via the

PCI bus interface. Every PE was assigned 4KB for LPM and 8KB for LDM. The

interface to the PCI bus operates at 133MHz and the datapath is 64 bits. The FPU

frequencies after place-and-route for the FPGAs we are using are 163.2MHz (add/sub),

172.5MHz (mul) and 172.2MHz (div). The performance of our FPU could be enhanced

by adding more pipeline stages. The computing fabric is clocked at 125MHz. The

system frequency is limited by the inter-FPGA communication channel speed. We

could also employ a commercial IP package and a more recent FPGA to further

improve the system performance. About 50 APIs are implemented to facilitate the

communication between the C/C++ application running on the host and the parallel

program on HERA. We removed the subtractor and divider from each PE in the case of

matrix multiplication, thus allowing us to implement 64 PEs in the two FPGAs. For LU

factorization with FP arithmetic, 36 PEs did fit in the two devices. Our hardware design

was implemented in VHDL and can easily retarget other FPGA boards.

CHAPTER 4

APPLICATION STUDY

4.1 Generalized Cannon's Matrix-Matrix Multiplication Algorithm

Cannon's matrix-matrix multiplication (MMM) algorithm [Cannon, 1969] is for a

memory efficient parallel implementation on torus-connected processor arrays, where

each processor communicates directly with its immediate neighbors in the four NEWS

directions. The original algorithm assumes that the input matrices and the partitioned

matrix blocks are all square. In our implementation, however, matrices A and B for A x

B can be of any shape and size (still, the number of rows in A and the number of

columns in B should be the same).

4.1.1 Data Partitioning and Mapping

Assume PEs are organized in a q x q 2D torus. Let A and B be matrices of size N1 x N2

and N2 x N3, respectively. We assume that the on-chip memory can store 3m 2 floating-

point elements. To be able to store complete blocks from the input and output matrices,

the maximum size of a matrix block should be m x m. Let p1= LN1/(q*m)i, p2=LN2/(q*m)]

and p3 lN3/(q * m)] . In general, we first partition A and B into a 2 x 2 block-based matrix

as shown in the example of Figure 4.1, in such a way that the sizes of A(1,1) and B(1,1)

are {pl* (q* m)}x{p2* (q* mil and {p2* (q* m)}x{p3* (q* m)}, respectively. The

remaining blocks A(2,1), A(1,2) and A(2,2) of A are decomposed into blocks with

maximum dimension m. B is partitioned similarly. Blocks A(1,1) and B(1,1) are then

44

45

partitioned into pl x p2 and p2 x p3 blocks of size (q * m) x (q * m) again and are

distributed into the processors in a cyclic checkerboard-like fashion.

Figure 4.1 A partitioning example for matrices A and B (q = 3, pl = 2, p2 = 3, p3 = 3) .

4.1.2 Dynamic Mixed-Mode Scheduling on HERA

If A and B are square, and can be partitioned into an integer multiple of q blocks, then

Cannon's algorithm works best in the SIMD mode; all the PEs are then busy all the time,

except during the initial alignment. If A and B are not square or cannot be partitioned in

such a way that N (the matrix dimension) is a multiple integer of q * m, then the

multiplication of the border blocks is not efficient in the SIMD mode since the sizes and

numbers of blocks are irregular. Then, some PEs are idle while other PEs are busy at

some point because SIMD is an implicitly synchronous mode. We solved this problem

by changing the computation mode of the PEs. Also, we skip the initial alignment by

assigning data blocks in a pre-skewed way. Because our PE is pipelined, we assume that

multiplication, addition and shift operations all take one clock cycle, Tclk. The total

execution time for Cannon's procedure on one partition is

46

the submatrix is n x n.

The dynamic mixed-mode scheduling procedure for our modified Cannon's

algorithm on HERA is as follows:

(1) Carry out block multiplications involving A(1,1) * B(1,1) by using Cannon's

algorithm; the total time is about pl* p2 * p3* Tc(n) . All the PEs are configured into

SIMD and take part in this step.

(2) If the size of A(1,2) and/or B(2,1) is larger than '/2(q* m), then carry out A(1,1) *

B(1,2) and/or A(2,1) * B(1,1) in SIMD using Cannon's procedure.

(3) We define a job as a multiplication of two blocks. Jobs are divided into two groups:

SIMD and MIMD jobs. SIMD jobs are those corresponding to similar numbers of

operations on the PEs. The remaining jobs go to an MIMD queue. Count the number

of jobs and their associated numbers of operations in the remaining work.

Determine the IDs of PEs that will work in the SIMD or MIMD mode based on the

job information.

(4) Configure individual PEs in the system into either the SIMD or MIMD mode based

on the decision in the previous step. The system now works in the mixed mode.

Assign the SIMD jobs to the PEs running in the SIMD mode and distribute the

MIMD jobs to the PEs running in the MIMD mode.

For the calculation of the quadrants in the resulting matrix, A(1,1) * B(1,1),

A(1,1) * B(1,2) and A(2,1) * B(1,1) consume most of the execution time. In all the steps,

except Step 1, data locality has priority in job assignments.

47

4.2 Parallel LU Factorization of Large Sparse Matrices

4.2.1 Overview of LU Factorization

Consider the solution of a system of simultaneous linear equations in the form Ax = b,

where A is a large sparse N x N nonsingular matrix, x is a vector of N unknowns and b is

a given vector of length N. A widely employed direct method is LU factorization that

works as follows. We first factorize A so that A = LU, where L is a lower triangular

matrix and U is an upper triangular matrix. Their elements can be determined by the

following equations, respectively, if L has all l's in its diagonal [Duff, et al., 1990].

Once L and U are formed, the unknown vector x can be identified by forward

reduction and backward substitution, respectively, using the two equations Ly = b and

Ux = y. Since LU factorization is a computation-intensive procedure, its parallel

solution has been a quite active research area. Thus, plenty of parallel techniques have

appeared in the literature.

Matrices appearing in electric power applications, such as power flow, transient

analysis and contingency analysis, are very large and extremely sparse [IEEE, 1992].

The average number of non-zero elements per row is normally around four, as shown in

Table 4.1. The bus admittance (Ybus) matrices in this table of dimension 1648, 7917

and 10279 represent Northeastern U.S. power networks. Matrix BCSPWR10 is from the

Boeing Harwell collection in the Matrix Market [Matrix Market] and represents an

Eastern U.S. electrical power system. Although the LU factorization of sparse matrices

48

potentially has fewer operations than that of dense matrices, it can suffer tremendously

from dynamic fill-ins. Many good parallel direct solvers for sparse matrices have been

developed [Gupta, 2002; Duff, 1998], such as SuperLU [Demmel et al., 1999] and S+

[Fu, et al., 1998]. These packages are often optimized for proprietary parallel computers.

However, the performance of such solvers has not been thoroughly analyzed for power

matrices. In [Gupta, 2002], the speedup of the best solver for circuit simulation matrices,

which are similar to power matrices but more dense, was shown to decrease with

increases in the matrix sparsity. Some other solvers show no speedup at all for such

matrices. Some research also has shown that SuperLU does not show performance gains

for circuit simulation matrices [Bomhof, et al., 2000]. Coarse-grain parallel algorithms

based on network partitioning have been demonstrated to be very efficient and

promising for power matrices [Koester, et. al., 1994; Chen, et al., 2005].

* NNZ: Number of non-zero elements

The sparse Ybus matrix can be reordered into the DBBD (Doubly-Bordered

Block Diagonal) form shown in Figure 4.2 by a heuristics-based algorithm

[Sangiovanni-Vincentelli, et al., 1977]. The basic idea behind such a reordering

algorithm is to divide an interconnected network into independent sub-networks and a

collection of cutting nodes. This way, LU factorization can first be applied to

completely independent sub-networks, thus speeding up the algorithm dramatically. The

information corresponding to the cutting nodes is then processed at a lower rate.

49

Figure 4.2 Sparse DBBD matrix format.

In the DBBD form of Figure 4.2, the Aik's represent matrix sub-blocks (sub-

networks) and all the non-zero elements in the matrix appear only inside these sub-

blocks. For every fixed i, the blocks A„, A n, and A,„ are said to form a 3-block group,

where iE [1, n-l] and n 5- N. A nn is known as the last block and represents the cutting

nodes. The Aii's will be referred to as diagonal blocks, and A in and An, will be called

right border block and bottom border block, respectively, where i E [1, n-1]. Ain and Ant

represent the couplings (connections) between the nodes in the i-th independent sub-

network and the cutting nodes. Since all non-border, off-diagonal blocks contain only

0's, if we apply Eq. (4.1) and (4.2) to a DBBD matrix we can find out that there will be

no fill-ins in these blocks during factorization. Thus, the resulting matrix keeps the

same DBBD form, as shown in Eq. (4.3).

50

The calculations of Lkk, Ukk, Lnk and Ukn for different k's (i.e., 3-block groups)

are independent of each other. So, we can distribute different 3-block groups to

different processors to be factored in parallel, with no data exchanges until the

factorization of Ann . The last block, Ann, requires data produced in all the right and

bottom border blocks, so its factorization is the last step. To factor the last block, pairs

of blocks are first multiplied in parallel to produce A„*„ = , for k E [1, n-1]. The

summation of the n-1 products obtained for the different values of k and its addition to

A nn is needed to factor the last block. This summation is carried out along the binary

tree in parallel by the other processors and the results are sent to the processors assigned

the last diagonal block (for a highly parallel approach). We can see that the DBBD

format presents great advantages for parallel implementation. A group of the three

processors sharing the same data memory in a sub-tree were used to factor the last

block.

4.2.2 Near-Optimal Ordering Selection

Our earlier research revealed that the total number of independent blocks and the size of

the last block can have a significant impact on the entire factorization time. The sizes of

the blocks after ordering largely depend on the physical characteristics of the matrices

and the ordering parameters, such as the maximum number of nodes allowed in a block

(sub-network). While the problem of determining an optimal ordering is NP-complete,

we can select a near-optimal ordering for a given matrix based on our LU factorization

algorithm and the target architecture. The best solution is also application-dependent.

51

We find here a near-optimal ordering by applying the following criteria in decreasing

order.

1. Roughly decide a size range for the last block by setting different limits for the

maximum number of nodes (MaxNodes) in each independent block. Increasing

the limit decreases the size of the last block and the total number of independent

blocks. Nonetheless, we may reach a point where further increasing the limit

may not result in a big difference. If several such points exist, choose the one

produced with the smallest value of MaxNodes in an effort to reduce the sparsity

inside independent blocks. In general, the larger the block size, the more the fill-

ins (i.e., more operations) produced during the factorization. Figure 4.3 shows

our results as a function of MaxNodes in a block for the 10279-Ybus system. The

figure shows that a near-optimal ordering can be obtained by limiting MaxNodes

between 150 and 200. Further increasing MaxNodes decreases the last block size

faster than the total number of blocks. This, of course, is undesirable since the

sparsity in the independent blocks increases.

2. The imbalance in the block size (n i x n 1 is the size of the i-th diagonal block)

should be as small as possible.

3. Let p be the total number of PEs and n-1 the total number of 3-block groups.

We should keep {(n-1) mod p} as large as possible for good load balancing at

the end.

4. The sparsity of each diagonal block should be as small as possible.

52

To illustrate the effect of ordering the matrix, the location of non-zero elements

in the original 10279-Yb us and the corresponding DBBD matrices for MaxNodes =180

are presented in Figure 4.4.

Figure 4.3 DBBD ordering for a matrix of size 10279 x 10279.

Figure 4.4 The non-zero elements in the 10279-Yb us and the corresponding DBBD matrices.

53

4.2.3 Minimum Degree Ordering

For extremely sparse matrices, such as those from power electric networks, the matrix

blocks in the DBBD matrices are still very sparse. Hence, efficient ordering techniques

are preferred inside the matrix blocks in order to reduce the number of floating-point

operations for DBBD LU factorization and further improve the performance. This is more

important for very large matrices. For symmetric matrices, minimum degree ordering

(MDO) [George, et. al., 1989] has been demonstrated to be able to significantly reduce

fill-ins during LU factorization. A column-based approximate ordering algorithm

[Amestoy, et. al., 1996] based on the MDO can be applied to nonsymmetric matrices.

4.2.4 Dynamic Task Scheduling

We need good scheduling to translate the hardware parallelism into high speedups for

real applications. By ordering the matrices into the DBBD form, we eliminate all data

dependences between different blocks during the factorization of the 3-block groups. If

each processor operates on a distinct 3-block group, then this elimination of all inter-

processor communications in this phase of the process is obviously of utmost

importance. However, due to the very high sparsity of power matrices, the independent

diagonal blocks and border blocks in the DBBD matrices are still sparse. The problem

of fill-ins is still visible but to a lower extent. Moreover, the size of these blocks may

have a large variance. All these factors along with memory contentions in shared-

memory implementations contribute to unpredictable execution times. Therefore, a

dynamic load balancing strategy is needed to reduce the effect of uncertainty during

factorization. There have been some static and dynamic scheduling algorithms for fine-

54

grain parallel LU factorization [Fu, et al., 1996; Gupta, 2002; Duff, 1998], where the

data dependences and related communication costs are the main concerns. These studies

have assumed parallel systems that differ from ours in the granularity, the embedded

interconnection networks and other components. Since the DBBD form eliminates data

dependences between 3-block groups, our main focus is to reduce the idle time of

processors due to different values for fill-ins, irregular sizes and sparsity of blocks. To

take advantage of the network architecture in our system, we propose a centralized

scheduling and load balancing approach. Centralized algorithms perform well for

coarse-grain tasks and systems of low-to-medium size where quick and more

comprehensive decisions can be made based on global information. This choice also

minimizes the scheduling overhead, which is often a major disadvantage of distributed

dynamic scheduling and load balancing. We employ the SC to take care of load

balancing at runtime; in this approach, all processors report their load information to the

controller. Configurable logic allows us to customize the hardware design at any time in

order to facilitate software optimizations and to better utilize resources.

4.2.4.1 Task Definition

DBBD-based parallel LU factorization involves four types of jobs:

(1) FAC: Independent factorization of all the 3-block groups.

(2) MUL: multiplication of the factored border block pairs (LnkUkn) and (local)

accumulation of the partial products inside each PE to later produce the inner

m,
product LnkUkn, where mi is the total number of 3-block groups assigned to PE;

k=1

55

pairs of blocks cannot be scheduled until the respective FAC work has finished.

(3) ADD: Addition of two partial products from the MUL work.

(4) LAST: Parallel LU factorization in Ann upon finishing all other factorization and

multiplication work; this work begins with the synchronization of the involved

PEs. The last block is normally dense.

The general task format is FAC/MUL/ADD{n t n,,, #xxx} , where #xxx is the

starting memory address for the i-th 3-block group and n„ x nn is the size of the last

block. These three classes of tasks are implemented in assembly code and stored in the

local program memory of every PE.

4.2.4.2 State Information

The global information used by the SC includes at least the:

o Total number of PEs, p.

o Size of the matrix, N x N.

o Number of diagonal blocks, n-1.

o Size of the last block, nn x nn .

o Size of the diagonal block in every 3-block group, ni x n i, where l< i < n-1.
o NZ numbers in the i-th 3-block group; they are represented by nzd(i), nzu(i) and

nzl(i), where l< i < n-1 and stand for NNZ in the diagonal, upper and lower

block, respectively.

o Memory addresses for matrix blocks in the on-board memory.

The task pool profile includes at least the:

o Total number of tasks, Nt

o Approximate execution time T(k) of task k.

o Number of remaining tasks, Nr.

o The candidate PE(k) for each remaining task k.

56

The SC keeps a load index L(j), 1 < j < p, for each PE that includes, among others,

the:

o Task type (FAC/MUL/ADD) and corresponding information (size, NNZ, etc.).

o Starting time of the assigned group.

o Progress in the current task: the percentage of remaining work.

o Expected task completion time.

o Possible next group for this PE.

o List of finished tasks.

• dist(j): communication distance between the PE and the SC expressed in

number of hops.

Part of this information is generated by the PEs at runtime and it is up to the SC to

probe this information at the appropriate time.

4.2.4.3 Dynamic Scheduling Procedure

Dynamic task scheduling for load balancing is carried out by the SC as follows.

Step 1: Get task information from the host; the matrix blocks are assumed stored in the

on-board shared memory.

Step 2: Approximate the execution time for each task based on the NNZs (including the

fill-ins) and the size. Set up the task and PE load profiles. The total numbers of

operations are approximated by:

FAC: nzd(i)	 4n, +1
* nzd(i)+ n' -1 * (nzu(i) + nzl(i)) (mul/add)

2 +
nzl(i) (division),

6 	 2

MUL: max{nzl(i),nzu(i)}* nn (mul/add)

ADD: assume that the partial products are dense and the number of mul/add

operations is nn .

Step 3: Put the tasks in a queue by ordering them in descending order with respect to the

number of operations.

57

Step 4: Assign the largest available job from the top of the task queue to an available PE

and continue assigning tasks from the top of the queue until all PEs are busy.

Step 5: Reevaluate and update the load information for all PEs.

Step 6: Speculate the next task assignment for PEs and pre-fetch data for them. If N, >

p, schedule the largest task first to the PE with the lowest expected task

completion time; if Nr < p, try to distribute the tasks to the PEs under different

parents.

Step 7: Probe the work status of each PE and update its load information in fixed time

intervals.

Step 8: If a PE becomes available for a new task, the SC should send the task scheduled

in Step 6 and then should go back to Step 5. If the pre-fetching of the data for

the task has not finished, the original memory address for the data should be sent

to the PE. If the task queue is empty, go to next step.

Step 9: If a PE is idle and the task queue is empty, the SC should first check the status

of the processors along the summation tree to locate its nearest busy processor.

If the idle processor is one of the two direct neighbors of a busy processor, then

the SC should modify the ongoing task of the working processor and the idle

processor should be asked to immediately share its work via the shared memory

(i.e., without any data transfer). If the nearest busy processor is not a neighbor,

the SC should further decide whether it is cost effective to ask the idle processor

to help the working processor. The decision should be based on the

communication cost (distance and volume of the data block) of the two

processors, the size of the currently executing task, the progress (i.e., the current

58

running time divided by the expected task completion time) and the type of the

current task. If it is an FAC task, the idle processor should begin to multiply the

pair of border blocks following factorization in the working processor. If the

working processor is in the multiplication phase and the percentage of remaining

work is greater than 33% (this experimental number is based on the

computation/communication time ratio in our machine), then the SC should

copy half of the remaining data to the idle processor and modify the working

processor's load information. The multiplication results should be collected

along the binary tree.

At any time during this procedure PEs can interrupt the SC for a task request or

to report exceptions.

4.2.4.4 Theoretical Performance Analysis

Since there are three basic operations in parallel DBBD LU factorization, namely LU

factorization of 3-block groups, multiplication of border blocks and addition of partial

sums for submatrices of the same size as the last diagonal block, we first derive the

execution times of these operations. The resulting equations are to be used to some

extent by the SC for dynamic load balancing. We also employ them in theoretical

performance analysis.

A. Execution times of basic operations

We assume that the +, - and * floating-point operations take the same amount of time, Tf,

and floating-point division takes 4T1 time. These assumptions are reasonable for

59

advanced floating-point units. Given a 3-block group with a diagonal block of size n„

the total number of operations for either multiplication or addition is:

and the number of divisions is:

The total execution time to factor such a 3-block group is a function of ni and nn,

and is given by:

The total computation time for the multiplication of two matrix blocks,

factored lower block and Um is the i-th ni x nn factored upper block, is:

We can see that ni dominates the factorization time and nn dominates the

multiplication time in the processing of the 3-block group.

The time required to add two n„i x n„, matrices is:

With on-chip memory every access takes just one clock cycle (assuming no bus

contention). If Talk is the clock period, reading/writing a matrix of size n,i x n 1 or ni x n„

in floating-point representation requires time:

60

(4.9)

where K is a constant associated with the processor and its shared memory. In our

system, K is between 3 and 5 if the algorithm is coded in assembly, and between 10 and

15 if the algorithm is coded in C. The average time for the block's transfer between the

on-chip memory and the on-board SSRAM in our system is around 4Tmem(ni,n,z).

The execution time to factor the last block is given by:

B. Sequential execution time

If we assign all the DBBD matrix blocks to a single processor, then the n-1 independent

3-block groups will be processed in time:

The remaining work is the factorization of the last block that takes time Tiast(nn).

If we also consider the startup time, Tstart, taken by the host to send the matrix and

application code to the memory and the time Tend to collect the factored data, the

sequential execution time to factor the entire DBBD matrix is given by:

C. Parallel solution with static scheduling

The worst case scenario for a parallel solution appears when all p processors finish their

work on n-2 independent 3-block groups at the same time and just one 3-block group is

61

left at the end (the smallest block according to our scheduling policy). The time spent

on the n-2 3-block groups is:

The last 3-block group will be handled by a single processor in time:

After finishing with all the 3-block groups, every PE adds the partial sums of its

two children and writes the result back into the memory to be accessed by its parent in

the next step. The collection of the partial sums along the binary tree of height,

h =1- {log 2 (p +1)-1}1, takes time:

The last block is factored by three neighbors after the summation of the partial

sums. Since the three neighbors share memory, we save on computation time but not on

communication time: I Tlast(nn)+ 2Tmem(nn) •
3

Thus, the worst case time required with static scheduling is:

62

D. Parallel solution with dynamic task scheduling

If we employ the proposed dynamic load balancing technique, then the work on

the last 3-block group in the worst case will be performed by three neighboring

processors; all the other p-3 processors will be normally working on the parallel

summation of partial results at that time. Eq. (4.14) is then replaced by:

So, the total time is reduced to:

The upper bound on the speedup, Tseq
— , compared to the sequential solution, is a
Tdyn

complex function of {n„ nn, p, Tfi Tclk}. Since the factorization and multiplication have

complexity 0(n3), this algorithm will have good performance with a large number of

processors, as shown by Eq. (4.18). The last block in the DBBD matrix is usually dense

after combining all the partial products. The factorization of the last block dominates

the execution time. The size of the last block also has a big impact on the factorization

and multiplication times, as demonstrated by Eqs. (4.6) and (4.7). Therefore, we should

try to make the last block as small as possible. On the other hand, the minimum size of

63

the last block largely depends on the physical characteristics of the original matrix.

With more independent 3-block groups, we may have fewer floating-point operations

and increased times for the summation of partial products and data communication.

Also, the size of the last block increases with more independent blocks. With fewer

such blocks, however, the total number of fill-ins is normally larger and this increases

the total factorization time.

4.2.5 Dynamic Mixed-Mode Scheduling on HERA

The parallel LU factorization of sparse DBBD matrices involves irregular computation

patterns and blocks of various sizes, as the result of the physical characteristics of the

original matrices. However, many parts in the algorithm could still benefit from an

SIMD implementation. As a natural consequence, a combination of appropriate parallel

execution modes should give better results.

For this application, our HERA machine comprises 36 PEs mapped to a 6 x 6

mesh. To map an application algorithm onto a mixed-mode system, the main focus is on

identifying the optimal mode of parallelism for each subtask. We should also take into

account the costs incurred when switching between different pairs of modes:

SIMD/MIMD, SIMD/M-SIMD and MIMD/M-SIMD. The following is the general

scheduling procedure to carry out the parallel LU factorization of DBBD matrices on

our mixed-mode machine.

Step 1 Identify 3-block groups of comparable size and put them into different task
(SIMD &

M-SIMD)

queues. Divide and configure the system into M-SIMD based on the task

information. Assign 3-block groups from each queue to the PEs working in the

64

same SIMD group, and perform the FAC and MAC work on these groups until

the number of remaining 3-block groups is less than the number of PEs (i.e., 36).

Step 2 Assign the remaining 3-block groups so that groups of comparable size go to the
(M-SIMD)

same column of PEs (see Figure 3.3) and every PE has the largest possible

number of idle nearest neighbors. This is an effort to facilitate the subsequent

PAC work. If necessary, reconfigure the system into a different M-SIMD layout.

Step 3 A PE is reconfigured into MIMD as soon as it finishes its work and no more 3-
(M-SIMD

MIND) block group is waiting in the task queue.

Step 4 Assign each PE in MIMD to the multiplication of a pair of (row and column)
(M-SIMD

MIMD) factored border blocks. Since the LDM has a shared port with its east and south

neighbors, every idle PE will help its neighbors after it finishes its own work; no

data transfer incurs in this process.

Step 5 After the factorization of all the 3-block groups and the multiplication of
(SIMD)

factored border blocks, reconfigure all the PEs again into the SIMD mode to

carry out the PAC work.

Step 6 Factor the last block in the SIMD mode.
(SIMD)

Figure 4.5 shows a typical PE mode assignment in the above procedure for large

DBBD matrices. When the number of tasks in one or more task queues is larger than 36,

we begin with one or more single SIMD configurations, which is a special case of M-

SIMD in Step 1.

65

Figure 4.5 Typical PE mode assignment for large DBBD matrices.

4.3 Parallel Direct Solution of Sparse Linear Equations

Once L and U are determined, then the equations in the form Ax = b can be written as

two triangular systems, Ly = b and Ux = y, whose solutions can be obtained by forward

reduction and backward substitution, respectively.

The factored LU matrix produced by this algorithm is in the DBBD format. This

format shows inherent parallelism in the forward reduction and backward substitution

phases. In forward reduction, the following equation is used:

where lij stands for L ij. If the matrix blocks are distributed among the processors in the

increasing processor-address, row-number orders, communication is required to transfer

the results in the y vector to the processor with the next higher address before the latter

begins its work. However, except for the diagonal blocks in the sparse DBBD matrix,

all matrix blocks in L of Eq. (4.2) contain all zeros (see Eq. 4.3), so no communication

is required between processors. Therefore, solving for the values in the y vector

66

corresponding to the independent diagonal blocks can be carried out in parallel, except

for the last block that requires all the solved data of L and the values in the y vector

from all the processors with lower addresses. We let every processor generate the partial

sums after it finds the unknowns in y, which are then accumulated for the last processor

by employing a binary tree of processors configuration. The procedure is as follows. (1)

All processors operate in parallel to solve the part of the y vector assigned to them,

using their assigned diagonal blocks in matrix L and vector B. (2) All processors

perform matrix-by-vector operations in parallel involving their lower border block and

the corresponding solved block in the y vector. (3) Partial results are accumulated in

parallel by all processors so they can be used in the next step to obtain the solutions in

the last diagonal block. (4) Finally, forward reduction is carried out in the last diagonal

block by the processor with the highest address. (Parallel processing could be applied in

this stage as well).

The equation for backward substitution is

where uij stands for U. In our DBBD parallel algorithm, we start backward substitution

in the last block involving the processor with the highest address. After the solutions are

obtained for the last block, this processor broadcasts its solved block for x to all the

other processors. Finally, all the processors find the solutions in parallel for their

assigned block in the x vector.

67

4.4 Parallel Solution of Newton's Power Flow Equations

The real-time solution of the AC power flow problem is a critical and fundamental task

in power system planning and operations. An efficient power flow solution can also

improve the performance of other relevant problems, such as those associated with

transient stability. Among the vast number of power flow solutions, two major

categories of solvers have been thoroughly investigated and widely employed by the

power research and industry communities: Newton's method [Tinney, et al., 1967] and

the Fast Decoupled Power Flow (FDPF) method [Stott, et al., 1974]. Newton's method

solves repeatedly simultaneous, large, sparse, linear systems of equations. The LU

factorization of the Jacobian matrix at each iteration in the direct solution of the linear

equations has been a great challenge to the computation capability and memory capacity

of available computing platforms [IEEE, 1992]; this is the main reason that the

employment of an exact Newton's method is often avoided, especially when the

computation is carried out in real time and/or involves very large power systems. On the

other hand, FDPF algorithms require LU factorization only once and the result is

repeatedly used throughout the entire power flow analysis process by employing a fixed

and smaller coefficient matrix. Thus, the solution time can be reduced dramatically.

Although many improvements can make FDPF more robust, in some cases where the

coefficient matrices are ill-conditioned FDPF has convergence difficulties even with the

application of good pre-conditioners. The conventional Newton's method is still

commonly employed by the power industry.

To overcome the heavy computation demands caused by LU factorization in

Newton's method, parallel computing techniques may be applied [IEEE, 1992; Falcao,

68

et al., 1996]. More specifically, researchers have realized the importance of selecting

appropriate parallel architectures for high performance. However, parallel computing in

power engineering has not been widely accepted by the industry due to the scarce

availability of low-cost, high-performance parallel machines suitable for these tasks

[IEEE, 1992; Falcao, et al., 1996]. Although parallel computers have been successful in

solving several computation-intensive problems, their high price and long design and

development cycles, and the high cost of maintaining them often make their long term

availability unpredictable [Bell, et al., 2002]. Moreover, the efficient parallelization of

the exact Newton's method has proved to be a Herculean task and few good speedups

have been reported in the literature. PC clusters have emerged in recent years as a

parallel-computing alternative to take advantage of the ever-increasing computing

power of commercial-off-the-shelf (COTS) general-purpose microprocessors. Parallel

implementations of FDPF methods on PC clusters are popular in solving the AC power

flow problem due to their reduced computation and memory requirements and the high-

availability of these computing platforms [Tu, et al., 2002; Chen, et al., 2005].

However, the high communication overheads present in these platforms quickly

diminish the performance when increasing the system size; therefore, these

implementations suffer in terms of scalability and efficiency. Details of relevant work

will be presented in Section 4.3.6 after we present the details of our proposed algorithm.

Based on our parallel DBBD LU factorization algorithm introduced in the last

section, we propose a novel partitioning technique for nonsymmetric Jacobian matrices

and use the DBBD algorithm to solve the power flow problem in parallel with Newton's

method.

69

4.4.1 Newton's Solution to the Power Flow Problem

The main objective of power flow analysis is to determine precise steady-state voltages

(magnitudes and angles) on all buses in a given network, and then to derive from them

the real and reactive power flows into every line and transformer; the network topology

and all information about the generation and load lines are known. For most network

buses, the active and reactive powers are specified; they can be evaluated by the

following equations for a network with N buses [Grainger, et al., 1994]:

where P, Qi and V„ are the active power, reactive power and complex voltage at bus i,

respectively, with Vi =IN Z6i, V k	 kl Z&, yik =Iyikl ZOik = gik + jbik, for i, k E [1, N]; yik is an

element of the bus admittance matrix (Ybus matrix). If the number of voltage-controlled

buses in the system is Ng, then we need to solve (2N-Ng-2) equations.

Newton's method expands these equations into a Taylor series and incorporates

the first-derivative information when updating the voltages. Thus, the following linear

equations are produced to be solved iteratively until the mismatches Ag and AV are

smaller than a pre-specified tolerance:

matrix J=The Jacobi	 {J11, ,1 12 , J21 , T22,an	 J 	 is reevaluated at each iteration by the

following equations that use updated voltages:

70

(4.24)

In order to derive the mismatches at each iteration from the above linear

equations, two kinds of methods are usually employed: direct and iterative methods

[Grainger, et al., 1994]. LU factorization followed by forward reduction and backward

substitution [Duff, 1998] is one of the most widely used direct methods to solve the

linear systems. Then, Eq. (4.23) can be solved by the following two sets of equations:

Direct methods are usually more robust and efficient for larger matrices, but it

may be difficult to extract substantial parallelism while maintaining a low inter-

71

processor communication overhead. Moreover, the typical computation complexity of

LU factorization is 0(M3), where M x M is the matrix size (i.e., the size of the Jacobian

matrix in our case). In Newton's method, the LU factorization is applied on a new

Jacobian matrix at each iteration. The repetitive solution of the linear equations in

Newton's method is very time-consuming for large networks, if the problem is solved

sequentially.

There have been many attempts to develop parallel algorithms optimized for

different parallel architectures for efficiently solving the power flow problem. Excellent

reviews of high-performance computing efforts in power engineering appeared in [IEEE,

1992; Falcao, et al., 1996]. Our parallel approach stems from the fact that the Ybus and

Jacobian matrices are usually very sparse, especially for large networks. Table 4.2

shows the sparsity (percentage of non-zero elements in a matrix) in the benchmark

matrices used in experiement. For networks with thousands of buses, the typical number

of nonzero elements per row is less than four. Although the LU factorization of sparse

matrices potentially has fewer operations than that of dense matrices, it can suffer

tremendously from dynamic fill-ins. As we discussed in the Introduction, network

partitioning is a promising approach to reduce the number of operations applied to

power matrices. The basic idea behind such an approach is to divide an interconnected

network into independent sub-networks and a collection of cutting nodes. The DBBD

form is obtained by reordering a given sparse matrix based on network partitioning.

This way, LU factorization can first be applied to completely independent sub-networks

in parallel, thus speeding up the algorithm dramatically. The information corresponding

to the cutting nodes is then processed at a lower rate. Details follow in Section 4.4.3.

72

Table 4.2 Sparsity of the Benchmark Matrices for Power Flow Analysis
Systems 57 118 300 1648 7917
Branches 80 186 411 2516 12147
Dimensionality of the Jacobian matrix 106 181 530 2982 14508
% of non-zeros in the Yb us matrix 6.56 3.42 1.24 0.246 0.0514
% of non-zeros in the J matrix 6.40 3.21 1.33 0.244 0.0513

4.4.2 Parallel LU Factorization of Jacobian Matrices

A. Network Partitioning

The sparse Ybus matrix can be reordered into the DBBD form shown in Figure 4.6 by

the node tearing technique or other similar heuristics-based algorithm. { Yii, Y, , Y.}, for

i E [1 , n-1], are matrix blocks representing a sub-network; for a given value of i, this

will be referred to as a 3-block group. Ynn represents cutting nodes and is referred as the

last block. Let AT, be the number of cutting nodes, i.e., the size of Ynn is /V, x N. All

other blocks contain all zeros. The maximum number of nodes in each diagonal block

and, hence, the sparsity of the blocks can be tuned by a user parameter, MaxNodes,

during network partitioning. Generally speaking, the more diagonal blocks (sub-

networks) in the DBBD matrix, the denser the blocks are and the larger the last block

Ynn is. Different orderings may result in big differences in the total solution time of the

equations. In our implementation of the reordering technique, we seek an ordering with

a large number of diagonal blocks but not a too large Ynn . This objective is justified in

Subsection 4.4.3.

Figure 4.6 Sparse DBBD Ybus matrix.

73

The node tearing technique assumes that the matrix is symmetric whereas Newton's

method requires employs a nonsymmetric Jacobian matrix as the coefficient matrix. To

obtain the DBBD form for the Jacobian matrix, we first examine Eqs. (4.24)-(4.27) to

produce J ik (i, k = 1, 2). We observe that every element in J ik is directly related to the

corresponding element in the Ybus matrix; the zero elements in the Ybus matrix cause the

corresponding elements in each of the four quadrants in the Jacobian matrix to be zero.

This reveals a structural similarity involving non-zero elements in the J ik and Ybus

matrices. After we order the Ybus matrix into the DBBD form, the corresponding

Jacobian matrix should have the form shown in Figure 4.7 (a).

In this figure, {Ji_dii , Jr u11, Jibi 1, for i E [1, n-1 	 Jjnd1 1 and along with all the

other zero elements in the corresponding quadrant constitute J 11 in Eq. (4.23), whereas

Ji_b12) and Jnd12 are in J 12 , and so on. The sizes of the diagonal blocks in

the four quadrants are shown in Table 4.3. Syi is the size of the ith diagonal block in the

Ybus matrix and Ngi is the number of PV buses that appear in the ith diagonal block of the

Ybus matrix. Ng E Ngi is the total number of PV buses in the system.

74

Figure 4.7 The Jacobian matrix produced from the DBBD Yb us matrix.

If we permute the Jacobian matrix shown in Figure 4.7 (a) in such a way that the

four blocks related to the same ith diagonal block in the Ybus matrix are grouped together,

we can find that the Jacobian matrix can also be represented in the DBBD form, with

the ith diagonal block being of size (2Syi - Ngi). The blocks 1 i, .42112, Ji_d22} ,

{Ji_ul 1 ,Ji_u12,Ji_u21, Ji_u22} , and {Ji_b11,Ji_b12,Ji_b21,4_622} , for i E [1, n-1], form the new 3-

block groups {4, 4,, Jni} in the DBBD Jacobian matrix (shown in Figs. 4.7 (b), (c) and

(d)), and .Inn = {in_d11,Jn_d12,4_d21,4_d22} (shown in Figure 4.7 (e)) becomes the new last

block in the DBBD Jacobian matrix. Figure 4.8 shows the nonzero elements in different

matrices for the 7917-bus system.

Table 4.3 The Sizes of the Blocks in the Jacobian Matrix

Figure 4.8 Nonzero elements for the 7917-bus system.

75

76

B. Parallel LU Factorization of the DBBD Jacobian Matrix

After we order the Jacobian matrix into the DBBD form, Eq. (4.23) can be solved by

the parallel DBBD LU factorization algorithm described in Section 4.2, which is then

followed by parallel forward reduction and backward substitution described in Section

4.3. The calculations of Lkk, Ukk, Lnk and Ukn for different k's (i.e., 3-block groups) are

independent of each other. So we can distribute different 3-block groups to different

processors to be factored in parallel, with no data exchanges until the factorization of

J„. This is the reason that we try to maximize the number of diagonal blocks in the

matrix reordering procedure. The last block, 4,, requires data produced in all the right

and bottom border blocks, so its factorization is the last step. Before factoring the last

block, pairs of the already factored border blocks are first multiplied in parallel to

produce J„k„ = Lnkub, , for kE [1, n-1]. The summation of the n-1 products obtained for the

different values of k and the addition of its results to J„ is then carried out in a binary

tree fashion in parallel and the results are sent to the processors assigned to the

factorization of the last diagonal block (for a highly parallel approach). The last block

becomes denser after all the partial results are applied to it and its factorization require a

significant amount of time. Thus, the most computation-intensive part of the entire

problem can be solved efficiently in parallel. Another advantage of the DBBD ordering

is that the results can be used repeatedly for different values of the right hand side in the

linear system and the 3-block groups assigned to each processor remain the same as

long as the network topology does not change.

77

4.4.3 Parallel Solution of Newton's Power Flow Equations

We summarize here our parallel DBBD Newton algorithm for power flow analysis

based on the above parallel LU factorization approach.

Step 1. Use the heuristics-based node tearing algorithm to reorder the Ybus matrix into

the DBBD form and sort the 3-block groups {Yii, Yin and Yizi, for i E [1, n-

1]} according to their computation cost (by estimating the number of floating-

point operations based on the number of nonzero elements); try to get the best

partitioning results according to our rules discussed earlier. Then, renumber the

buses in the original network file according to the selected partitions so that the

ordered DBBD matrix has continuous bus numbering; the purpose of the

renumbering is to speedup the remaining steps. This preprocessing step is

performed on a PC.

Step 2. Assign the relevant bus data along with the 3-block group(s) in the Ybus matrix

to the processors. The bus data for the cutting nodes is copied into every

processor in order to subsequently minimize the number of data collisions

during processor communication.

Step 3. Initialize in parallel the voltages to a flat voltage start.

Step 4. Evaluate Eqs (4.21) and (4.22) and calculate AP and AQ in (4.23) in parallel

using 3-block groups, bus data and voltages (they are updated at every

iteration). Then, every processor checks to see if all AP and AQ in its assigned

bus range are sufficiently small (we set the tolerance at 0.001p.u.); it sends its

decision to a control processor, which may stop the iterative procedure based

on the information reported by all the computing processors.

78

Step 5. Form in parallel the 3-block groups {Jib fin and Jni} in the DBBD Jacobian

matrix. In this step, every processor uses the data assigned to it in Step 1 and

performs calculations on its assigned 3-block groups. inn is processed by the

control processor.

Step 6. Apply in parallel LU factorization to the 3-block groups {Jii, 4 and Jni}; use the

procedure described earlier. Also apply our dynamic load balancing techniques

during this procedure in order to increase the efficiency. We employ the

control processor to monitor the load information of every processor and

predict and assign jobs based on its capabilities, job costs related to

computation and communication.

Step 7. Solve Eq. (4.23) in parallel by forward reduction and backward substitutions in

order to derive the voltage corrections Aδ and AV . Then, apply these

corrections to the current voltage values.

Step 8. Go back to Step 4.

From this description, we can see that the most time-consuming steps are carried

out in parallel and little inter-processor communication is needed.

4.4.4 Relevance to Other Work

We focus here on a comparison with other DBBD-related parallel algorithms. Several

parallel implementations of the power flow analysis problem by FDPF based on DBBD

partitioning have been reported, where the target matrices for LU factorization are

symmetric and smaller than the corresponding Jacobian matrices [Tu, et al., 2002;

Chen, et al., 2005; Koester, et al., 1994]; In contrast, the Jacobian matrices in our work

79

are nonsymmetric. To the best of our knowledge, we have not found any important

literature about the parallel solution of exact Newton's method with parallel DBBD LU

factorization. In the former papers, the total number of independent blocks in the DBBD

Ybus bus matrix (i.e., n-1) is limited by the number of available processors, which is

normally small. For large power systems with thousands of buses, the resulting 3-block

groups are still very sparse. It is also very difficult in this situation to balance the

processor work loads. Since these approaches often target PC clusters or other loosely

coupled systems with high communication latencies, more independent blocks will

incur more communication overhead at the end of the procedure, thus limiting

performance. Good performance is only observed for a small number of processors.

Since all the processors in our system are embedded into a single chip and we

also employ an architecture optimized for the application, our system presents very low

communication costs to our algorithm. The system architecture can even be changed at

run time, as needed, to match the dynamically changing characteristics of the

application by taking advantage of the reconfigurability of FPGAs. Another major

contribution of our approach is the application of our dynamic load balancing

techniques in the parallel LU factorization of large DBBD Jacobian matrices where load

imbalance is a major bottleneck that can inadvertently affect the performance [Chaff, et

al., 1993].

CHAPTER 5

PERFORMANCE RESULTS AND ANALYSIS

5.1 Mixed-Mode Scheduling of Matrix-Matrix Multiplication on HERA

We first implemented on HERA with 64 PEs our mixed-mode MMM scheduling for

square matrices of size up to 1000 x 1000. The execution times on HERA are presented

in Figure 5.1. Previous MMM work on FPGAs targeted fixed-point data and the

floating-point performance on platform FPGAs in [Zhuo, et al., 2004] was shown for a

small 8 x 8 matrix, therefore we cannot compare HERA's performance with other

related work on FPGAs. We implemented instead block-based MMM in C code on two

commercial PCs; comparative results are also shown in Figure 5.1. The block-based

MMM code for the Dell PCs was optimized by several techniques, such as using best

block sizes for the L 1 and L2 caches, compiler flags and copy optimization. We can see

that our results on HERA are better than those on the dual-Xeon 2.66GHz and the uni-

Pentium IV 2GHz systems despite HERA's much lower clock frequency (i.e. 125MHz).

In fact, the relative speedup on HERA improves further for larger matrices. The

performance of HERA shown here is not significantly faster than that of a conventional

microprocessor because we used entry-level FPGA devices in our current

implementation. However, we expect dramatic performance gains in the near future by

employing more advanced FPGAs. A testimony to this effect appeared in [Underwood,

2005] that shows the performance of FPGAs in floating-point operations to be growing

at a much faster rate than that of microprocessors; it surpassed the latter in 2003-2004,

which agrees with our results.

80

81

The speedup of the parallel implementation on the 64-PE HERA over the

sequential one on the 1-PE HERA is shown in Figure 5.2. The speedup for the 100 x

100 case is much lower because the ratio of computation to communication times is

much lower than for the other cases. We could improve the speedup further in all cases

by using a bigger local memory since the complexity of multiplication on a single PE

for a pair of blocks is 0(N3) and that of communication (i.e. shifting) is 0(N2), where N

x N is the block size. With increases in the problem size, the speedup and, of course, the

efficiency stabilizes in a very narrow range. We also evaluated the performance of our

mixed-mode scheduling for a variety of non-square matrices. The multiplication of

irregular matrices is required in the parallel LU factorization of sparse DBBD matrices.

SIMD mappings, where all the PEs work in the SIMD mode all the time were also

implemented for these matrices; the results are shown in Table 5.1. From this table, we

can see that dynamic mixed-mode scheduling can greatly boost performance.

Figure 5.1 Performance comparison of MMM on HERA and two Dell PCs (optimized
code was run on all the machines).

82

Figure 5.2 HERA speedup of parallel over uni-PE execution.

Table 5.1 HERA Execution Times for Irregular Matrices under Different Execution
Modes

(Clock frequency: 125MHz)
Matrix Dimensions HERA in

SIMD mode, sec

HERA in

mixed-mode, sec

Improvement

%N1 N2 N3

105 101 113 0.0115 0.0103 10.1

201 215 323 0.0864 0.0723 16.3

324 599 315 0.3699 0.3366 9.8

05 611 613 0.9254 0.7853 15.1

509 301 201 0.2163 0.1894 12.4

677 202 677 0.5037 0.4749 5.7

711 713 403 1.3344 1.1584 13.2

955 957 976 5.6077 5.1872 7.5

5.2 Parallel LU Factorization of Sparse Matrices on CG-MPoPC

The main objective of this set of experiments was to evaluate any performance gains

when customizing the architecture, interconnection network and memory hierarchy of

83

the MPoPC. Several benchmark matrices from the Harwell-Boeing Collection in the

Matrix Market [MATRIX] and the U. S. northeastern power grid were used.

5.2.1 MPoPC Customization and Configuration

Given an FPGA device, we first analyze and profile the application tasks and

evaluate different system configurations, including PE functionality and

interconnection network, in order to find the best solution for each task. Different

hardware configurations may result in different numbers of PEs in the MPoPC

system. An FPGA configuration image is then generated at static time for each task

and is loaded at runtime as needed. Since we utilize configurable and extensible

processors instead of custom processors, different system configurations can be

designed, built, and evaluated very quickly.

A System Controller (SC) is implemented with each MPoPC configuration since

we are currently using a PC to download MPoPC configuration and application data.

The SC has access to the local memories of every PE, as shown in Figure 5.3. Avalon

[ALTERA] is a multi-mastering non-shared bus which is used to connect all the local

data memories of the PEs to the SC. All the PEs share the on-board SDRAM memory

and a memory controller is included in the SC. The on-board memory keeps all the

intermediate results when reconfiguring the FPGA for each task. As per Section 4.2,

DBBD-based parallel LU factorization consists of four categories of mega-tasks having

different computation operations and communication patterns. For each task the

MPoPC configuration is determined using two rules: (1) Choose the smallest base Nios

processor for the PEs since FP operations are implemented in hardware. (2) Maximize

84

the local instruction and data memories of each PE as allowed by the available on-chip

FPGA memory resources.

Figure 5.3 PE and SC connectivity.

The chosen configuration for each mega-task is as follows.

• FAC: All four FP operations (i.e., +, * and /) are required. Hence, each PE

contains a complete FPU. Since no communication is required between the PEs, the

interconnection is dramatically simplified. The SC takes care of data 1/0 and

communications with the host processor. The system is shown in Figure 5.4.a. The

local data memory of each PE is shared with its three neighbors, as shown in Figure

5.5.a, employing different access priorities.

• MAC: Only addition and multiplication are needed. So no hardware FP support for

the other two operations is implemented in the PEs. This saves dramatically on

hardware resources and results in an increased number of PEs since typically a FP

divider takes more than twice the resources needed by an FP adder. A torus network

is chosen in this phase as shown in Figure 5.4.b. The local data memory of each PE

85

is shared with its three neighbors, as shown in Figure 5.5.b, employing different

access priorities.

• PAC: Only an FP adder is included in each PE and a multi-tree network (shown in

Figure 5.4.c) is efficient for this mega-task. Three neighboring PEs share the same

data memory as shown in Figure 5.5.c.

Figure 5.4 MPoPC configurations for the tasks in DBBD-based parallel LU
factorization.

Note: The actual number of PEs in an MPoPC depends on the given application and the FPGA device.

• LAST: This is the bottleneck of the entire application, especially for large matrices

usually having a large last block (A„); it becomes much denser just before LU

decomposition is applied to it. We still use a torus-connected MPoPC (Figure 5.4.b

and Figure 5.5.b) for this mega-task. A full FPU is included in each PE. A block-

based parallel algorithm is used for large matrices with a big last block [Grams, et

al., 2003]. The sharing of the data memory among neighbors reduces the

communication overhead.

Figure 5.5 Interconnecting on-chip data memories for the MPoPC configurations of
Figure 5.4

5.2.2 Experiments and Analysis

The Altera SOPC development board with an EP20K1500EBC652-1x APEX2OKE

FPGA was used in our experiments. Although this is a relatively old FPGA with limited

resources and speed (it was released in 2000), it can serve our purpose here. The Stratix

II EP2S180device [Altera] with 9,383,040 bits of on-chip memory and 384 hardware

multipliers can accommodate 23 copies of our processor with a system frequency of

more than 135MHz. Our design clocks the board at 50MHz. A single-precision (32-bit)

IEEE 754 pipelined FPU was developed and implemented; it runs at 128.3MHz for the

3-stage adder/subtractor of 671 LEs, 150.8MHz for the 5-stage multiplier of 785 LEs

and 165.4MHz for the 28-stage divider of 2508 LEs. All the programs are implemented

in assembly language and are stored entirely in the on-chip program memory.

Since the chosen matrix partitioning approach can have a tremendous impact on

the execution time of parallel LU factorization, we first simulated the parallel LU

factorization of DBBD matrices for a wide range of matrix partitioning results; this

way, we produced a near-optimal partitioning for each power system. For example,

Figure 5.6(a) shows the general trend in the number of cutting nodes (NO and number of

87

independent diagonal blocks (n-1) produced when increasing MaxNodes (the maximum

number of nodes allowed in each sub-network) for a 2852 x 2852 matrix (a Jacobian

matrix of the 1648-bus system). The relative execution time of parallel LU factorization

based on different partitioning results in Figure 5.6(a) is shown in Figure 5.6(b). It is

clear that the choice made in the network partitioning phase can have a big impact on

the LU factorization and equation solution times. Table 5.2 shows the results of near-

optimal partitioning for the benchmark systems. The last matrix corresponds to a power

network in North America. The near-optimal partitioning results highly depend on the

individual characteristics of the power system. This also shows the necessity for load

balancing, especially for large power systems, such as the 7917- and 10279-bus

systems; they produce very irregular blocks and nonzero patterns. For most large-scale

applications, such as in power and circuit simulation, the matrix sparsity normally

increases with increases in the matrix size; this favors the choice of more diagonal

blocks in the partitioned DBBD matrix. However, the size of the last block increases as

a result of more independent 3-block groups.

The numbers of PEs implemented for the four mega-tasks are 9, 16, 21 and 9,

respectively. As a result of the customization of the MPoPC configuration, we are able

to increase the hardware parallelism and the utilization of hardware resources. In order

to compare the performance of the customized MPoPC with a fixed architecture for this

algorithm, we implemented an MPoPC with PEs interconnected via the network shown

in Figure 5.4.c. The comparison of the execution times for the benchmark matrices is

shown in Table 5.3. The best performance improvement is 14.05% for matrix

BCSPWR09.

Table 5.2 Characteristics of the Test Matrices Ordered into the DBBD Form

Matrix PSADMIT PSADMIT BCSPWRO9 BCSPWR10 7917 -
matrix

10279-matrix

Dimensionality of admittance matrix (Ybus) 494 1138 1723 5300 7917 10279

Non-Zero Elements 1666 4054 6511 21842 32211 37755

Total diagonal blocks (n) 27 67 42 125 51 74

Dimension of the largest diagonal block 20 20 50 50 198 180

Dimension of the smallest diagonal block 11 4 29 30 84 55

Dimension of the last diagonal block 45 100 134	 , 577 517 474

Distribution of block sizes*
13(20)%
8(15), 5(12),
1(8)

22(20)
26(15),
18 (12), 1(4)

10(50),14(40),
18(30)

30(50),40(40),
55(30)

5(160),
12(180),
12(150),
26(120),
1(84)

17(170-180),

17(130140),
34(110), 1(55)

* 13(20) stands for 13 diagonal blocks of size close to 20 x 20.

88

89

(a) The effect of MaxNodes on network partitioning. 	 (b) Relative execution time of parallel LU
factorization for the DBBD Jacobian matrix.

Figure 5.6 Impact of network partitioning on the execution time of parallel LU
factorization for a DBBD matrix of 2582 x 2582.

We also compared the performance of run-time scheduling with that of static

scheduling. The speedups for all the test matrices under the run-time and static

scheduling policies are shown in Figure 5.7. Both scheduling policies show good

performance that improves with increases in the matrix size. The matrix of size 5300 x

5300 has a large last block that limits the speedup. Run-time scheduling performs better

in all the cases. Static scheduling cannot handle well the effect of dynamic fill-ins and

renders some PEs idle during the procedure. The performance of run-time task

scheduling is better for matrices with irregular distribution of block sizes, as shown for

PSADMIT and the 7917-matrix. A 10.89% speedup results for the 7917-matrix.

90

Table 5.3 Execution Times (seconds) for the Benchmark Matrices on the two MPoPCs
the run-time scheduling policy)

Matrix Size Customized MPoPC Fixed MPoPC	 Improvement (%)

494x 494 0.089 0.099 11.24

1138x 1138 0.857 0.944 10.12

1723 x 1723 2.437 2.779 14.05

5300x 5300 50.11 56.38 12.51

7917x 7917 132.8 147.2 10.81

Figure 5.7 Speedup comparison of the run-time and static scheduling policies on the
customized MPoPC

We further tested the performance of dynamic scheduling with that of static

scheduling on systems with more PEs (without hardware FPUs for the sake of higher

scalability). The speedups for the 10279-Ybus matrix with up to 28 processors are shown

in Figure 5.8. We chose this matrix because it is the largest one in the group and it also

displays more irregularity in the location of non-zero elements. Dynamic scheduling

performs better in all the cases. We observed that the performance improvement of(with

91

dynamic task scheduling further improves with increases in the number of PEs. It

demonstrates a 16.4% speedup with 25 PEs.

Figure 5.8 Speedup (over the uni-processor) of the static and dynamic scheduling
policies for the 10279-Ybus matrix. No hardware FPUs.

With an increase in p, the efficiency, Speedup , of the algorithm decreases because
p

the time spent on the factorization of the last block becomes a more significant

component of the entire execution time; this is shown in Eq. (4.16) and (4.18). Our

experiments show that the best choice is to use three immediate neighbors sharing the

same data memory to factor the last block. Figure 5.9 shows the percentage of time

needed to process the last block in the 10279-Yb us matrix for different numbers of PEs.

The results prove that we have to make the last block as small as possible in the ordering

phase. In general, however, dynamic task scheduling potentially performs better with

more blocks in the DBBD matrix. For most large-scale applications, such as power

applications and circuit simulations, normally the matrix sparsity increases with increases

in the matrix size; this favors more diagonal blocks in the partitioned DBBD matrices.

However, the size of the last block increases as a result of more independent 3-block

92

groups; its factorization could then diminish the speedup. So the bottleneck appears in the

factorization of the last block.

Figure 5.9 Percentage of time needed to factor the last block in the 10279-Yb us matrix.

We can deduce from Table 5.2 and our theoretical analysis that the matrix of size

7917 x 7917 potentially represents the worst-case scenario. Hence, we measured the

speedup for this matrix by varying the number of PEs and compared with the predicted

performance from Section 4.2. We used a fixed MPoPC configuration similar to Figure

5.4.b with 9 PEs. Figure 5.10 shows the results. The measured results generally follow

the predicted speedups. Any differences are due to software overheads and some

simplifications made in the analysis. In general, however, run-time task scheduling

potentially performs better with more blocks in the DBBD matrix.

Figure 5.10 Comparing the predicted and real performance for the 7917-matrix.

93

Also, the transfer of matrix blocks between the on-board and on-chip memories

becomes a bottleneck for a large number of PEs. We employed data pre-fetching and the

relevant execution times for the 10279-Yb us matrix are shown in Figure 5.11. Pre-fetching

almost eliminates any contribution of the data load time to the total execution time by

overlapping load operations with computations.

Figure 5.11 Execution time for the 10279-Yb us matrix affected by pre-fetching.

5.3 Parallel LU Factorization of Sparse Matrices on HERA

Experiments implementing the SIMD, MIMD and mixed-mode scheduling schemes were

performed on the 36-PE HERA machine. For the sake of comparison, similar to

[Govindu, et al., 2004] we synthesized and implemented our design using the Xilinx ISE

5.2i toolset for an XC2VP125-7 FPGA. The divider in [Govindu, et al., 2004] uses a

look-up table based reciprocator and a multiplier that result in precision errors. Table 5.4

shows that our FPU components generally result in higher frequency of operation; the

overall latency and resource consumption are always smaller for our design. The test

94

matrices shown in Table 5.2 were used. The running times under these parallel execution

modes are presented in Figure 5.12. It is clear that mixed-mode parallelism consumes less

time for all the matrices and the advantage is more significant when the 3-block groups

are highly irregular in size and shape, such as for the matrices of dimension 1723 and

7917. For the former (i.e., 1723) matrix, speed ups of 19.1% and 15.5% are obtained

compared to the SIMD and MIMD implementations, respectively.

1 AMC 0.4 mgr, single-precision floating-point performance and resource utilization
Functional Unit Area

(Slices)
Frequency

(MHz)
Latency
(Cycles)

Add/Sub

XC2V6000-5 349 163.2 3
XC2VP125-7 348 184.1 3

XC2VP125-? [G] 402/425/520* 100/150/220* 6/12/16*

Multiplier

XC2V6000-5 95 172.5 3

XC2VP125-7 95 199.5 3

XC2VP125-? [G] 130/201/229* 100/150/220* 4/7/10*

Division
XC2V6000-5 875 172.2 27

XC2VP125-7 883 197.9 27

* Based on three special-purpose designs for LU factorization

Under the SIMD mode, some PEs are sometimes idle during the factorization of

the 3-block groups and the multiplication of the border blocks. The total execution time is

independent diagonal blocks. T (FAC + MUL) is the maximum execution time among the

PEs for the i th iteration of jobs. T 2 is the time for a PE to perform one addition and one

communication during the PAC work. Tract corresponds to the execution time for the last

block. In MIMD, the PAC work may begin while some PEs are still working on FAC or

MAC tasks. The worst case execution time is

95

where T (FAC + MAC) is the execution time of
Tmimd = max {" 	 (FAC + MAC)}± Flog 2 piT 2 + Traci,

15PE,s. 36

the 	 iteration for PEA that processes mj 3-block groups. From the equations, it is easy to

see why MIMD performs better than SIMD for the matrices of dimension 1723, 5300 and

7917, and worse than SIMD for the rest of matrices. The disadvantage of MIMD is that

half of the memory is available for data. In our architecture, the communication cost in

MIMD is not significantly higher than that in SIMD, so their performance is quite close.

However, MIMD tends to perform better than SIMD in this algorithm for large matrices

where we have a good chance that matrix blocks are more irregular and sparse. Due to

insufficient work, all modes perform comparably for the 494 x 494 matrix.

Figure 5.12 Execution times on HERA under the SIMD, MIMD and mixed modes
(HERA system frequency: 125MHz).

96

Several previous works have presented fixed-point implementations of LU

factorization. The only relevant work on floating-point LU factorization with platform

FPGAs [Govindu, et al., 2004] involved just a dense 48 x 48 matrix and compared with a

DSP processor. A circular linear array architecture is implemented, specifically for LU

factorization. To resolve data dependencies, Govindu and et al. assume a stream of s

"stacked" dense matrices; s has to be larger than the combined latency (in cycles) of the

multiplier and subtractor units. The total latency is s * n + s * n2 for n x n matrices and

the throughput is one matrix per n + n2 cycles. Also, shift registers are inserted in the

datapaths that bypass the FPUs and the control logic must be able to delay the control

signals. This design is inflexible since the number of processors and their storage space

are specific to the matrix size.

We have to emphasize here that [Govindu, et al., 2004] attempts to maximize the

throughput because it is an application-specific programmable circuit (ASPC) whereas

HERA is a fully-programmable system. Results in [Govindu, et al., 2004] were reported

for s = 10, 19 and 25. The latencies as shown in [Govindu, et al., 2004] for non-optimized

code on the TMS320C6711 DSP processor are included in Table 5.5; matrices of various

sizes were considered. Note that [Govindu, et al., 2004] only shows the "effective

latency" which is actually the inverse of the throughput for processed matrices. It can be

deduced that HERA's performance is much better than that of both systems.

There are 35 PEs in HERA running at 147MHz (for the Xilinx ISE tools) and

each PE can complete three floating-point operations per cycle. Therefore, HERA has a

peak performance of 15.44GFLOPs whereas the performance of the TMS320C6711x

family is 600-1500MFLOPs (for 100-250MHz frequencies) [TMS320]. There are often

97

Table 5.5 Latency Comparison also Involving a DSP Processor
(latency in msec)

Matrix Size
Design in [G]

f = 100MHz

HERA

f= 147MHz

TMS320C6711 [G]

f= 150MHz

Number of matrices 1* 100 1** 100 1

8 x 8 0.06 6 0.052 0.156 11.5

16 x 16 0.26 26 0.431 1.293 23.0

24x 24 0.58 58 1.210 3.630 55.2

32x 32 1.02 102 2.920 8.760 87.5

* Average latency based on a stream of 100 matrices [[Govindu, et al., 2004]]. ** Single matrix

more disadvantages to DSP processors that rely heavily on the clock frequency for high

performance. FPGAs can offer much more flexibility in memory hierarchy and

configuration, system architecture and processor microarchitecture, data formats,

interconnection networks, etc.; an FPGA-based design can be optimized based on various

metrics such as energy, throughput, latency, area, design time, budget, etc.

5.4 Parallel Power Flow Analysis on CG-MPoPC

We implemented our parallel power flow analysis algorithm on our CG-MPoPC on the

SOPC development board for the benchmark matrices shown in Table 5.6. The system

frequency is 50MHz and seven processors with hardwired FPUs fit into the FPGA device.

Table 5.7 shows the execution times of LU factorization, forward reduction and

backward substitution (including communication times) for the chosen benchmark

systems. The corresponding execution times for Newton's power flow solution are listed

in Table 5.8. The uni-processor solution times in Table 5.8 are obtained by running the

DBBD algorithm on a single processor. The obtained speedups are very good for our 7-

processor parallel system. The speedup is also system-dependent. For example, for the

98

7917-bus system, the speedup is lower than those for the 300- and 1648-bus systems

because of the larger number of cutting nodes; the process associated with these nodes

becomes a bottleneck. From Tables 5.7 and 5.8, we can deduce that for a large system the

time spent on LU factorization dominates the total execution time, which justifies our

effort and time spent on ordering the Ybus and Jacobian matrices.

Table 5.6 Optimal Partitioning of the Ybus Matrices of the Benchmark Systems

Dimensionality of admittance

matrix (Ybus)
57 118 300 1648 7917

Maximum nodes in a block 7 18 16 120 150

Number of independent diagonal
blocks

7 7 21 18 67

Minimum dimensionality of
independent diagonal blocks

4 11 6 33 15

Maximum dimensionality of
independent diagonal blocks

7 18 16 120 150

Dimensionality of the last block 12 12 42 134 541

18, 18,
7(150),5x9, 120, 109, 17(130),

Size distribution of independent
diagonal blocks*

5x7 ** ,
6, 4

17, 16,
14, 12,

11

6x_16, 15,
3x14,
2x12

3x10,
'
6

99, 3(90),
5(85)*, 79,
5(75), 33

10(120),
13(100),
19(90),
1(15)

*5(85) stands for 5 blocks of size close to 85 x 85.
**5 x 7 stands for 5 blocks of size 7 x 7.

99

Table 5.7 Execution Times (msec) to Solve the Linear Equations for the Benchmark Systems on our Configurable Multiprocessor
(seven processors)

Benchmark systems 57-bus 118-bus 300-bus 1648-bus 7917-bus

Dimensionality of the Jacobian matrix 106 181 530 2982 14508

LU factorization of the Jacobian matrix 13.42 39.11 479.12 7,425 107,391

Forward reduction 0.56 1.12 6.61 102.1 3,210.7

Backward substitution 0.59 1.30 8.81 109.3 3,291.5

Total time 14.57 41.53 494.54 7,636.4 113,893.2

Table 5.8 Execution Times (sec) for Newton's Power Flow Equations with Seven Processors
Benchmark systems 57-bus 118-bus 300-bus 1648-bus 7917-bus

Iterations 4 4 5 5 6

Total time 0.069 0.198 2.582 39.21 712.4

Uni-processor 0.425 1.148	 1 15.75 247.8 4,210.3

Speedup 6.16 5.79 6.10 6.32 5.91

Tolerance: 0.001p.u.

CHAPTER 6

HERA SYSTEM-LEVEL ENERGY MODELING

A system-level energy model for HERA is proposed based on physical-level

implementation data and run-time application statistics to guide run-time scheduling

decisions. As CMOS processes enter the deep submicron range, power or energy

consumption is increasingly becoming one of the major challenges for most computing

systems. For MPoPCs employed in embedded applications, power constraints form a

critical design specification. Most of the power modeling and/or low-power design or

research efforts on modern FPGAs [Shang, et al., 2001; Li, et al., 2005; Anderson, et

al., 2004] involve sophisticated physical power models and assume detailed low-level

design information at the gate- or register-transfer level. Continuous increases in chip

density and gate count make these such low-level tools too slow and limit their

applicability in architecture studies. In contrast, system-level power modeling [Brooks,

et al., 2000; Ye, et al., 2000] is more practical and still reliable approaches for architects

to quickly estimate power/energy consumption early in the design process. This is of

utmost importance for FPGA-based systems that normally have a short turnaround time.

Moreover, previous research has demonstrated that design decisions made in a very

early phase of the development process, in which the design consists of a yet very

abstract description (algorithmic abstraction level), have the greatest influence on power

dissipation [Raghunathan, et al., 1998]. We follow this approach here. Prasanna's group

has investigated extensively algorithmic-level energy modeling and optimization

techniques based on application-specific architectures [Prasanna, 2005].

100

101

6.1 Related Work

Our energy modeling aims to provide a quantitative basis for performance-energy trade-

offs at runtime. System-level power/energy modeling approaches for processors are

generally instruction-based [Tiwari, et al., 1994; Sinha, et al., 2001] or component-

based [Brooks, et al., 2000; Ye, et al., 2000]. In the former category, exhaustive energy

measurements for all the instructions are performed and the total energy consumption of

a program is obtained by summing up individual energy costs; the hindrance lies in

estimating inter-instruction impacts [Tiwari, et al., 1994] (e.g., data dependencies) on

the consumption. These processor-dependent results do not provide much information

on the distribution of the consumption among individual components; this information,

however, is prudent to use in architecture optimization. The second approach evaluates

individual processor components, such as the ALU, controller, memory, bus, and cache,

and develops a detailed model for them using physical design parameters. Component-

level modeling is obviously time-consuming. A hybrid approach can be used with

extensible processors [Sun, et al., 2005], where the energy consumption of the basic

processor is modeled by an instruction-level technique whereas a component-based

approach is applied to the custom extensions.

In contrast to significant power/energy modeling efforts and (micro)architecture-

level exploration of microprocessors [Benini, et al., 1999; Benini, et al., 2000;

Marculescu, et al., 2001], minuscule system-level results have appeared for on-chip

multiprocessors or FPGA-based systems. An instruction-level rapid energy estimation

approach for soft IP microprocessors on FPGAs is presented in [Ou, et al., 2004]; a

processor is treated as a black box and the impact of inter-instruction interaction is

102

ignored. Moreover, due to major architectural differences between FPGA- and SoC-

based designs, our MPoPC analysis cannot rely on previous results for fixed logic.

[Loghi, et al., 2004] stimulates a shared-memory, bus-interconnected homogeneous

ARM-based on-chip multiprocessor system to find out that the main consumers of

power are the caches.

In our framework, HERA PEs are generated from an in-house developed

hardware library that may contain diverse types of FP units. Our full knowledge of the

HERA system provides a great advantage for accurate power modeling. Before deciding

on appropriate system-level energy modeling and performance-energy optimization

approaches, we performed experiments to evaluate the effect of various factors on

power consumption. ISE 7.1 and XPower 7.1 from Xilinx, ModelSim SE 6.0 and

Synplify Pro 8.0 are our power analysis tools. Based on physical-level measurements,

we will show that the PEs are the main contributor of power and, hence, they become

our focus in power modeling. The PE local memories are constructed with dedicated

BlockRAM blocks in Xilinx FPGAs and exhibit different characteristics than those in

[Loghi, et al., 2004]. We propose a state-based component-level power model. The

activity cycles of the function units (FUs) in individual PEs are measured for a given

application at run-time using dedicated monitoring hardware. Since the device-based

physical power data of the FUs are evaluated only once at static time, the time spent on

energy estimation for an application is quite reasonable.

103

6.2 Power Characterization of Library Function Units

The FUs in PHCL are the primitive components used to synthesize individual PEs for a

semi-customized MPoPC. Hence, their performance and energy characteristics form the

basis for system energy modeling. We use dedicated logic such as BlockRAM, 18 x 18

multipliers, and DSP blocks, rather than LUTs, as much as we can when designing the

PHCL FUs. These embedded logic blocks have better performance in terms of delay

and power consumption compared to LUT-based designs. The details of the PHCL FUs

can be found in Chapter 7. Power dissipation in SRAM-based FPGAs can be broken

down into static and dynamic parts. As feature sizes shrink, dynamic power has a

decreasing trend because smaller-feature processes usually come with lower voltage and

capacitance whereas static power rises dramatically. For modern FPGAs at 90nm or less,

static power can exceed dynamic power.

The static power of an FGPA highly depends on the technology, the specific

device and the working conditions; it is independent of the runtime activity rates of the

FUs. Hence, it can be determined at static time using vendor power analysis tools. The

static power is largely determined by the design size, which can be translated in our

case into a precision choice for the FP FUs. Let FUj,k denote the kth FP FU capable of

the operation type j. Currently we support five FP operation types: +, *, /, and . We

approximate the contribution of FUJ,k with the following equation:

where (I), X, and are the total number of logic resources expressed in logic cells, on-

chip memory blocks, and embedded DSP blocks, respectively, of the target FPGA

device. PzL,static pf,static and PIm 'sratic are the total static power consumption of the logic

104

resources, DSP blocks, and on-chip memory blocks, respectively, of the chosen FPGA

device. Ejuk D5 k and A/fluk are the usage of logic resources, DSP blocks, and on-chip

memory blocks of FUJ k, respectively. Note that our calculation of static power for

individual FUs is different from related works where the static power of the entire chip

is used when comparing the static power of a design with its dynamic power. Since we

aim to efficiently use all available resources, it is not fair to compare the static power of

all the resources with the dynamic power of the few resources that individual FUs use.

Table 6.2 shows the total power of the single and double-precision FUs in our PHCL.

"S_" and "D_" stand for single- and double-precision, respectively. Their resource

usage is shown in Table 6.1. The total number of slices in our target device (XC2V6000)

is 33,792. As shown in Table 6.2, the dynamic power of all the FUs still dominates the

total power. This table also shows that double-precision FUs consume much more

dynamic power than corresponding single-precision FUs. The number of PEs that can

fit in an FPGA device decreases if double-precision FUs are dictated by the application.

Hence, the performance will be reduced due to a smaller number of PEs as compared to

single-precision systems. However, the total power may decrease if the entire chip is

engaged in computing. Figure 6.1 shows the power per slice characteristics of various

designs. We can see that all the double-precision FUs, except the divider, consume a

smaller amount of power per slice than their single-precision counterparts. It is clear

from Table 6.1 that we can have more than double the number of PEs if we choose

single-precision instead of double-precision. Hence, an important conclusion is that

lowering the precision of operations should normally be expected to decrease the total

energy consumption for a given application.

Table 6.1 Resource Usage (in slices) of Floating-Point FUs on XC2V6000-5
FU Single-

Precision
Double-Precision

Adder 343 745

Multiplier 119 836

Divider 731 3089

Square-root 666 2757

Table 6.2 Total Power Consumption (mW) of the IEEE-754
Single- and Double-precision FP FUs

(Clock Frequency: 100MHz; Average Input Activity Rate: 20%)

FU Dynamic Static Total

S ADD 247.5 4.1 251.6

D ADD 472.52 8.91 481.43

S MUL 75.92 1.42 77.34

D MUL 493.76 9.997 503.76

S DIV 559.84 8.74 568.58

D DIV 2526.5 36.94 2563.44

S_SQRT 435.976 7.964 443.94

D_SQRT 1409.03 32.97 1442

105

Figure 6.1 Dynamic power consumption (per slice) of the single and double-precision
FP FUs.

106

Contributors to the dynamic energy consumption of an FPGA are the device

core, and the auxiliary and I/O blocks. The latter two parts are directly related to the real

board implementations, so we are only interested in the first factor. The dynamic power

of an FU is determined by the following equation:

where am is the average number of activated switches per clock cycle inside the FU,

C jk is the switch capacitance in Farads and Vjk is the voltage in Volts.

We can have control the clock frequency and input activity rate of the FUs at the

system level. Figure 6.2 shows the impact of the average input activity rate on the

core's dynamic power. The differences due to different input activity rates are quite

insignificant compared to the big gap between the idle (activity rate is 0%) and active

states. Hence, we distinguish among four power states for each FU in HERA: active,

idle, standby, and sleep; each FU is an indivisible block. An FU consumes both static

and dynamic power in the active and idle states, and only static power in the standby

state. All consumptions are eliminated by shutting down the power supply to an FU,

which puts it into the sleep state. An FU enters the idle state when no instruction

accesses it and its consumption is due to clock activities. An FU is put into standby by

disabling its clock signal. Given the little differences in the consumption of the standby

and sleep states, and the significant overhead of switching the power supply for

individual FUs, we do not recommend high utilization of the sleep state. Moreover,

more than 80% of the static power of our target FPGA is due to the auxiliary blocks.

107

Figure 6.2 Impact of the average input activity rate on the core dynamic power
consumption.

The power consumption of FUj,k in the active, idle, and standby states is

represented by i.pj dkk) Ps; kcii" (F), and P;kdb-v, respectively, where F is the system clock

frequency and is determined after the system synthesis and implementation. pi:cikdby is

108

the static power and is determined after the FU's implementation on a given FPGA

device. P i d (F) is represented as a linear function of F and obtained by performing,,k

experiments with various F values. Both PicikdbY and Pidkle(F) are independent of the

application. We also approximate the dynamic power part of Pre(F) as a linear

function of the input activity rate, as suggested by Figure 6.2. Note that Eq. (6.2) shows

that the dynamic power portion of Paktive) is a linear function of a m instead of the

average input activity rate. a jk is dependent on the design as well as input activity

rates. While it is impossible and impractical to perform an exhaustive simulation of

input data to get the average activity rate of the design since HERA is used to solve

repeatedly different sets of data produced at runtime, vendors suggest an average

activity rate between 12% and 24% [Xilinx Power, 2003]. Given an application, we

obtain a typical rate for each task by simulating the application using ModelSim and

XPower to get Pia kctive F) Figure 6.2 also implies that the clock consumption of different

designs (when the input activity rate is 0%) is approximately the same for the same

clock frequency. Figure 6.3 verifies that the core dynamic power consumption is

proportional to the clock frequency.

The parameters associated for other system components, such as the BlockRAM

blocks, the buses, and the Sequencer, are obtained by performing similar experiments.

For the BlockRAM memory, it turns out that the power variations between read and

write operations are very small. The input activity rates, including those of data and

addresses, have very little impact on the consumption whereas the clock activity and the

number of accesses are the main contributing factors. Hence, the clock of all the

109

BlockRAM blocks in HERA is controlled by a glitch-free enable signal provided with

the memory blocks. Due to limited space, we do not show here the detailed

experimental results for these components.

Figure 6.3 Relationship between the core dynamic power consumption and the clock
frequency.

6.3 HERA Energy Estimation Model

Our energy model targets a dynamic HERA system during scheduling instead of the

initial solution just after synthesis. The total number of PEs in the dynamic system

changes as time evolves. Some PEs may disappear at some point and the resources will

be used by new PEs, as needed. The details will be presented in Chapter 7. The total

number of PEs during the entire execution is represented by p and all are assigned

distinct IDs. The major components of HERA are the PEs, and their LDM and LPM,

buses, NEWS interconnect, Sequencer, GDM and GPM, and the system template. The

SDRAM chips are outside of the FPGAs and are not considered in this paper. The total

energy consumption, Esys , of HERA for a given application can be represented by:

110

where E," and EstP„' represent the energy consumption of a PE and system template,

respectively. A PE or system template includes mainly the control logic, system and

pipeline registers, and decoding and issue logic. Although a PE or system template may

require different numbers of resources for different configurations and, hence, may have

different energy consumptions, we consider a constant energy value for different

configurations because the FUs consume most of the transistors in a PE. In HERA, a PE

template uses less than 10 percent of the logic resources in a PE. The template is treated

as an FU and is evaluated by the same equation as for Lu, except that the templates are

in either the active or idle state (never in the standby or sleep state). The energy

consumption EfF. ku. of FUJ,k is determined by:

where Fl is the clock frequency of PE(i), and E;:ve ,Etidkie and EsitdkbY represent the energy

consumption per clock cycle of FUJ,k in the idle, active, and standby state, respectively.

ridle ractive and C:" are the respective total clock cycles of FUJ,k in PE(i) in the
k

corresponding states; they are collected at runtime. If an FU has an s-stage pipeline,

then E jk in the three states can be determined by:

111

(6.5)

where Ei is the average energy consumption of stage i in the corresponding state. The

energy consumption of the CFBs in a PE is determined by the same approach as for the

FUs. The local memories (LDM and LPM) of PE(i) are implemented with on-chip

embedded memory blocks (e.g., BlockRAM in Xilinx FPGAs). Based on our

experiments in Section 7.1, we identify energy consumption for three states: idle, one-

port access (acc_1), and simultaneous dual-port access (acc -2). Their consumption is:

where mon is the total number of memory blocks in PE(i), and E midelem , Emacec„- 1 and Em"a- 2 are

the energy consumption per clock cycle of a memory block in respective state. E7v,E. m is

treated similarly. Similarly, we can find the energy consumption of the Sequencer by:

The NEWS interconnect and the buses are implemented mainly with global

routing fabric. It has been shown that a large part of FPGA power is due to the routing

resources [Shang, et al., 2002; Li, et al., 2005]. Local routing resources are mainly used

by PEs and counted in the PEs' power. We distinguish between two power states for

them: idle and active, represented by pidlebus, pactivebus pidlenews andPactiveNEWS,respectively. The

total energy consumption due to the NEWS interconnect can be found by:

112

where Cidle i, NEws and Cactive i, News are the total numbers of clock cycles in the respective states.

For the buses, the following equation is used:

where mb is the total number of buses.

All the clock counts needed by the above equations are collected at runtime as

each component is equipped with appropriate hardware. The counters can be read and

reset by the host processor by using the Configure instruction. The bus activity

information is monitored by the bus controller in the Sequencer. Each PE counts its own

NEWS requests and memory accesses.

CHAPTER 7

A FRAMEWORK FOR RESOURCE-EFFICIENT MAPPING ON MPOPCs

As the VLSI technology continues to allow more resources on a single chip and

promises billion-transistor chips in a few years, we expect FPGAs to evolve into coarse-

grain architectures and reconfigurable MPoPCs to become more appealing, thus

entering the mainstream of high-performance computing. The good performance results

of CG-MPoPC and HERA provide strong evidence in this new research direction.

However, as discussed in the Introduction and also from experience gained with the two

MPoPCs, designing, implementing, and programming MPoPCs are very time-

consuming processes that require a lot of expertise in the software, hardware, and

system design areas. Moreover, the design complexity increases with increases in the

chip size and thus this approach becomes more error-prone. As shown in previous

chapters, current compilation tools based on the spatial computing concept are not

applicable to MPoPCs. The functional units in our MPoPCs are reusable for different

tasks by supporting general-purpose instructions and they are closer to temporal

computing platforms from the programmer's point of view while still providing spatial

parallelism. A new methodology is needed to take over the hardware expertise from the

user and efficiently exploit the advantages provided by MPoPCs.

In this chapter, a framework is proposed to map data-parallel applications to

coarse-grain reconfigurable MPoPCs like HERA without diving into the pains of

VHDL-based hardware design. The focus here is to maximize the performance through

customization of the PEs and efficient resource management at runtime based on the

application's characteristics. This framework does not assume any specific device

113

114

characteristics and thus can be applied to any current or future FPGAs. The

performance of the target system is predictable since the general system organization is

fixed and a library of place-and-routed function units is employed to generate the

system based on information from the mapping results. Also the requirement of full

hardware reconfiguration of FPGA chips is eliminated during execution and advantage

is still taken of partial runtime reconfiguration that overlaps the computations; this

limited reconfiguration is used to change the functionality of PEs when required before

further computation proceeds at the affected locations. This way, we can maximize the

utilization of the available resources at rates unimaginable for conventional

microprocessors.

7.1 Related Work

Resource management is a broad area and can be investigated from many perspectives.

Ref. [Jin, et al., 2005] presents a methodology to find an optimal multiprocessor

configuration that maximizes the throughput for IP packet forwarding; the configuration

of each processor is fixed. [Sun, et al., 2005] proposes a novel method to synthesize a

heterogeneous MPSoC for a given application by customizing the instruction set of

extensible processors. Cesario et. al present a component-based MPSoC design

approach in [Cesario, et al., 2002]. In contrast to our bottom-up approach in architecture

synthesis that utilizes the in-house developed PHCL, a top-down flow based on a virtual

architecture model is employed in the latter approach. Also, our approach emphasizes

semi-customizing the architecture to a specific application. The benefits of [Cesario, et

al., 2002] are high-level abstraction, high adaptability, and ease of integration for

115

software and hardware components. [Nollet, et al., 2005] proposes a resource

management heuristic for NoCs (Networks-on-Chip) that involve reconfigurable logic

tiles. Most of these approaches target real-time applications and assume full knowledge

of the task load information at static time. HERA is a mixed computation mode

machine and tasks are decomposable and will be mapped to multiple PEs at runtime.

Hence, it is impossible to know their execution times at static time.

7.2 Problem Definition and Objectives

The starting point for our design exploration is a matrix-based data-parallel FP

application and an FPGA chip that supports run-time reconfiguration. The latter has the

following available resource populations: J (logic resources expressed in logic cells), X

(on-chip memory blocks), and (embedded DSP blocks). Logic cells are the basic

building blocks consisting of one or more look-up tables (LUTs) and storage elements

(e.g., Configurable Logic Blocks (CLBs) in Xilinx FPGAs and Logic Elements in

Altera FPGAs). The memory blocks are dedicated on-chip memory resources; e.g.,

BlockRAM or TriMatrix memory for Xilinx or Altera FPGAs, respectively. The DSP

blocks, if available, can implement math functions. Our focus is the efficient

management of the available resources based on HERA with three common

performance-energy optimization objectives: (1) optimize the performance with no

energy constraints; (2) optimize the performance with energy constraints; and (3)

reduce the energy cost for a given performance loss.

116

7.3 Framework Overview

Figure 7.1 shows our general process flow targeting heterogeneous MPoPCs like HERA.

There are five major phases in this framework: task profiling, system synthesis, task

coding using the target system's instruction set, system implementation on FPGAs and

dynamic, adaptive resource -efficient task decomposition, mapping, and scheduling. The

implementation on FPGAs follows the same procedure as any VHDL-based design

methodology. Due to limited space, we focus on task profiling, system synthesis, and

dynamic resource management and application mapping and scheduling. Resource

management is applied in two stages: (a) static-time application-specific system

synthesis and (b) run-time adaptive scheduling of tasks.

The target architecture should have the following key features that can be found

in HERA and support a variety of independent computing models (SIMD, MIMD, and

M-SIMD):

• PEs are programmable and customizable from a library of hardware components;

• 2-D mesh layout;

• NEWS nearest neighbor connection;

• Each column of PEs has a shared bus;

• The dual-ported data memory of each PE is also directly accessible by its

immediate south and west neighbors;

• All the local memories form a global data and program memory accessible to

the sequencer;

• Every PE is selectable by the sequencer by its ID and mask;

• General-purpose instruction set.

117

Figure 7.1 Design methodology overview/flowchart.

7.4 Application Model

We start from an application described in a high-level language, such as C/C++, Java,

FORTRAN, or just a piece of behavioral pseudo-code. We target floating-point (FP)

data-parallel and computation intensive algorithms, where a few blocks of code, such as

nested loops, consume most of the overall execution time; these loops are controlled by

conditional statements.

7.4.1 Task Flow Graph

In our framework, the behavioral description of the application is first analyzed to

construct a Task Flow Graph (TFG), G = (S, D); it is a weighted, directed acyclic graph

118

(wDAG). S and D represent the sets of nodes and edges, respectively. Figure 7.2 shows

a typical TFG. Each node in this graph represents a task Si E S, where i E [1, s] is

inclusive of all the tasks. There are two types of tasks: SIMD tasks and MIMD tasks.

Associated with each task Si are its computing mode (SIMD represented by a circle or

MIMD represented by an octagon), any FP operation types (+, *, /,), and an FP

computation number (total FP operations of all the types), represented by (S , n(S ,

and 0(5,), respectively. The memory requirements in bits of each task are represented

by two parameters, ac (S 1) and a d(S , for the instructions and data, respectively. A

directed edge between two tasks Si and Si represents a data dependence between them

and its weight Dij E D represents the volume of data in bits that goes from task Si to Si .

An entry task is defined as a node with no incoming edges (e.g., SI in Figure 7.2) and an

exit task is defined as a node with no outgoing edges (e.g., S8).

Figure 7.2 A typical task flow graph.

A typical data-parallel application in engineering and science consists of blocks

of conditional statements and nested loops. We concentrate on coarse-grain partitioning

of applications and the sizes of tasks, illustrated by their covered areas in the TFG (for

the sake of simplicity), may vary in a large range. We first analyze the application to

119

locate typical computation constructs, and approximate the amount of computation and

communication that each block requires. Blocks are identified by their leading

keywords, such as for, if, while, etc. The selection of an optimal mode for each task is a

complex procedure and is not the focus here. Reference [Watson, et. al., 1994] provides

some insight into this issue based on PASM [Siegel, et. al., 1996], a partitionable

SIMD/MIMD system employing COTS microprocessors and a multi-stage

interconnection network. An SIMD task in our study is a data-parallel block (e.g., a

nested loop), which can benefit from synchronous execution under SIMD, while an

MIMD task is more of the control-flow style which may need one or more PEs. It is

assumed that the computation cost of MIMD tasks is much less than that of SIMD tasks,

which is common in data-parallel applications. An SIMD work may need just one PE

based on its work load and my heuristics for candidate PE selection for tasks; this

decision process will be introduced later in this paper. Specifically, two common types

of tasks are handled with special attention: IF-THEN-ELSE conditional statements and

loops.

7.4.2 IF-THEN-ELSE

SIMD is implicitly synchronous and conditional statements are generally inefficiently

implemented on a pure SIMD machine. For example, consider the code and its SIMD

and MIMD mappings in Figure 7.3. In this case, assume the conditions C1, C2, C3 are

determined based on the PE's local data which are not modified by Nock], block2, and

block3. Let the best computing modes for block], block2, and block3 be MIMD, SIMD,

and SIMD, respectively. It is also assume that these conditions are mutually exclusive.

120

(i.e., only one condition is true at any time in all PEs). Thus, PEs are divided into

groups with various sizes and the PE locations are unknown at compile time. In the

PE C; group (i = 1, 2 or 3), the condition Ci is true while the OTHERS group contains

all the PEs where all the three conditions are false. Let the execute time of block; be T(i).

3

The total execution time of this code on a pure SIMD machine is yT(i) while the time
i=1

is max{T(1), T(2), T(3)1 if all PEs in the same machine run in the MIMD mode.

Moreover, more PEs are idle in the SIMD mode and the corresponding resources are

wasted. However, some overhead is introduced in the pure MIMD machine due to the

unsuitable mode for block2 and block3. In our mixed-mode systems, this dilemma can be

handled very efficiently by configuring the system into the MIMD/M-SIMD mixed-

mode: PE_C 1 in MIMD, PE_C2 in SIMD-1 and PE_C3 in SIMD-2.

Figure 7.3 SIMD, MIMD, and mixed-mode mapping of conditional blocks.

7.4.3 Loops

Loops are extremely useful for managing and processing large amounts of data, and are

very common in data parallel applications. They often represent the most time-

121

consuming parts in programs and correspond to the largest source of parallelism.

Significant research efforts for many decades have concentrated on efficient

parallelizing and scheduling loops for diverse parallel architectures [Rauchwerger, et.

al., 1999; Gupta, 1992; Polychronopoulos, et. al., 1989; Polychronopoulos, et. al., 1987].

FOR loops are the most common loops in data-parallel algorithms. In practice, these

loops have diverse characteristics and special preprocessing techniques are required to

maximize the speedup. Specifically, the following type of loops is studied in this work.

where /1,12, ..., Si, S2, ..., N1, N2, ..., are integers and Si < Ni, for i = 1, 2, ...

No conditional exits are present in this type of loops. Conditional FOR loops can

essentially be transformed into WHILE loops and treated as the latter. Loops may be

nested as frequently in practice as needed and may be treated as a single SIMD task

with partitioning left to the scheduler. Matrix-matrix multiplication is an example of

regular, simple nested loops. The three indices have the same iteration range and there

is no data dependence inside or between loops. This work focuses on more complex

scenarios where the data dependences inside loops and between different iterations of a

single loop are allowed. Data dependences between different loops are treated on the

task level. Flow dependences and cross-iteration dependences [Kwang, 1993], shown in

Figure 7.4 (a) and (b), are the major obstacles for parallelization. In (a), the ten

iterations of the loop are independent of each other, but there is a flow dependence

[Kwang, 1993] between two statements. Each iteration of the loop can be executed in

122

parallel. In (b), the ten loops have to be processed in the appropriate order because the

ith iteration needs the result from the (i-2)`h iteration. Also, there may be load imbalance

across iterations. Figure 7.4 (c) shows such an example, which is the loop body of the

forward substitution in direct solvers of linear systems of equations.

(a) Flow dependence.	 (b) Cross-iteration dependence. 	 (c) Load imbalance across iterations.

Figure 7.4 Special examples of FOR loops.

7.5 Architecture Synthesis and Reconfiguration

Our first major effort in efficient resource management is the synthesis of a semi-

customized HERA configuration. The rationale behind this is that FP computing cores

are very resource expensive (especially for FPGAs) and not all FP operation types are

needed all the time by all the tasks in an application. For example, FP division is less

frequent than multiplication and addition in many data-parallel applications. Based on

our implementation results, a single-precision IEEE-754 FP divider is at least more than

two or six times larger in space than an FP adder or multiplier, respectively. These

differences are even larger for a double-precision FP divider. Unlike computing

platforms based on fixed hardware, such as microprocessors and MPSoC designs, our

MPoPCs are based on FPGAs which can be repeatedly reprogrammed at both static and

run times. Hence, it is possible and beneficial for an application to employ a dynamic

HERA architecture where the FP functionality of individual PEs and their number can

be modified as needed.

123

7.5.1 Parameterized Hardware Component Library

PHCL plays a major role in our methodology. The performance of the library function

units (FUs), in terms of speed and resource requirements, is manipulated in our

approach. All the components are designed in VHDL and placed and routed on the

target FPGA device. The major parameterized components for our matrix-based

applications include:

• Variable precision pipelined FP FUs (including IEEE-754 single- and double-

precision implementations). Table 1 shows the major parameters of an FU. A slice

in Xilinx Virtex II FPGAs consists of two flip-flops, two LUTs and associated

MUX, carry, and control logic [Virtex II datasheet]. The cores are parameterized by

the mantissa and exponent sizes. Different choices for the mantissa and exponent

lead to different data ranges and resource requirements. For each operation type (+,

-, *, /, and ,r) of the same precision, there are also several choices in terms of

latency, resource requirement, frequency, and power consumption. PPeak
5 pamve

Pkfie , and PstdbY represent the dynamic power consumption of the FU in the worst-

case, active, idle, and standby states, respectively, and will be introduced in detail in

the next section. Since FP cores are major consumers of logic resources and

embedded DSP blocks in FPGAs, it is very important to choose each time the most

appropriate precision for the function cores.

• HERA system and PE architecture templates used to create an instance of the

system and PE, respectively. A PE or system template includes mainly the control

logic, basic interconnects, generic PE or FU interface, and registers.

• Memory blocks of various sizes, including single and dual-port memories.

124

• Custom function blocks (CFBs), such as trigonometric function implementers.

• Various registers.

• Integer function cores parameterized by word size.

TABLE 7.1 Ma or Parameters of an FP k U in PHCl

Parameter Data

Function FP division

Mantissa (bits) 24

Exponent (bits) 8

Latency (cycles) 27

Frequency(MHz) 189

Logic resources (slices) 731

Embedded DSP blocks None

Memory blocks (BRAM) None

Target device Virtex II XC2V6000-5

ppeak (mW) 1181.2

pactive (mW) 1041.8

pidle (mW) 141.2

pstdby (mw) 11.7

7.5.2 Application-Specific System Synthesis

The primary goal is to find early on a near-optimal configuration of the PEs for each

task in the critical path (referred to as TiCP from this point on) so as to achieve given

performance-energy objectives. A critical path in a TFG is a linear array that includes a

pair of entry and exit tasks, and has the largest number of FP operations and

communication volume among all paths. The critical path potentially has the largest

negative impact on the overall execution time. The architecture generator takes a TFG

and the PHCL as input to generate an initial architecture; it employs the operation types

125

and amounts of operations in the TFG. Only the required FP FUs are included in the

PEs. It is possible that all the operation types are required throughout execution but only

one or two operations are needed for a few tasks. Hence, FUs are added to appropriate

PEs as needed. This way, we can potentially increase the number of PEs and reduce the

execution time for the application. The PE functionality can be reconfigured at run time

as needed by assigned tasks. We could get better solutions by configuring the PEs

associated with each TiCP in such a way that only the FP operations exclusively

dictated by a task are supported. However, this may require many full and partial device

reconfigurations that may results in substantial reconfiguration overhead. Hence, we are

mainly interested in PRTR of FPGAs when no computation can be scheduled on some

PEs while the remaining PEs are still working on their assigned tasks. FRTR is

employed only when the performance gains exceed the complete-system

reconfiguration overhead. This is often true with large matrices as we will demonstrate

in Section 7.7.2. The synthesis procedure is as follows:

I. Find the appropriate FP precision for the system based on the precision

requirements of the application. This step largely determines the total number of

PEs that can be implemented in the system.

2. Identify the required FP operation types (+, *, /,) in the application's tasks.

3. Select a system template in PHCL assuming the basic PE interconnection and

interface to the sequencer. Let the template requirements in logic cells and

memory bits be Lsys(p) and Msys(p), respectively, for p PEs. The PE datapath

(functionality and width), total number of PEs and the PE layout are

customizable.

126

4. Select CFBs in PHCL, assuming the resource requirement for logic resources,

memory blocks, and DSP blocks of the mth CFB is Em" , Dm' , and M,;,' ,

respectively.

5. Select FP FUs for the PEs for each task S, in the critical path according to the

chosen performance-energy objective. In initial synthesis, all the PEs for the

same task have the same configuration. The configuration of some PEs will be

changed through PRTR during the scheduling phase as needed by the tasks

outside of the critical path (non-critical tasks).

Let Hip, denote the kth implementation in PHCL of an FP FU capable of the

operation type j. The resource requirements and the energy consumption per cycle Ei of

PE, for the TiPC S, are:

0	 if PE(i) does not support the FP operation type j
L 1	 if PE(i) supports the FP oprtation type j

{0	 if PE(i) does not include an FU
yb 	1k =

if PE(i) includes an Rim

=
{0	 if PE(i) does not include a CFBm1

if PE(i) includes a CFBm

127

where LFju k 	and Mfj,uk are the usage of logic resources, DSP blocks, and on-chip

memory blocks of FUJ,k, respectively. E iFuk is this FU's energy consumption per cycle.

E: ,	 , and M,,,̀ " are the usage of logic resources, DSP blocks, and on-chip memory

blocks of the m' CFB, respectively. Fi is the system frequency for task Si. Note that up

to one instance of an FU for each FP operation is included in each PE. Hence,

Let p i be the number of PEs to be implemented for task Si. The total execution

time of the application is dominated by the TiCPs and can be approximated by:

where c is the total number of the TiCPs. C(0 1, p i) is the minimum clock cycles needed

for task Si when the required p i PEs are available; for simplicity, we represent 0(Si) for

task Si by Oi. It is possible that the optimal PE number for the minimum cycles is not p i.

This will be explained and dealt with when we discuss run-time scheduling. C(0,, p) is

obtained with symbolic simulation on HERA before synthesis. Nconf is the total number

of reconfigurations during the entire execution of the application. If a required FP

operation is not supported before scheduling a task, reconfiguration will apply. For each

PRTR, we count the number of reconfiguration by the percentage of reconfiguration

bits over the total configuration bits for the target device, which is represented by

CConference B is the configuration word width per cycle. For example, Xilinx Virtex

FPGAs support both parallel (B = 8 or 32) and serial (B = 1) configuration modes. F, is

the configuration frequency which is usually lower than the system frequency F. The

maximum Fc for Virtex II FPGAs is 50MHz (serial mode) or 66MHz (SelectMAP

128

mode). Assume capacities of Mc(i) and Md(i) for the instruction and data memories,

respectively, of each PE ; .

To estimate the energy consumption of the application, we sum up the average

energy consumption of all the tasks and the total reconfiguration energy overhead:

where s is the total number of tasks, Old is the number ofjth-type operations in Si, and

Cj,k is the latency (clock cycles) of FUj,k. Pconf is the average configuration power for the

entire chip. The average active power data of FUlk is used. Ps, and Pmem are the average

power of the system template and BlockRAM memory, respectively. For the sake of

simplicity, we are primarily interested in first-order factors here and neglect some

runtime effects, such as the impact of data dependencies. However, this is sufficient to

serve our purpose here, and we will refine the performance and energy in task

scheduling. The following three scenarios are considered to satisfy various

performance-energy optimization objectives.

• Case-1: Optimize the performance without energy constraints.

Our objective is to minimize 71 subject to Eq. (7.5) and the resource constraints

imposed by the FPGA device. The objective functions are:

129

• Case-2: Optimize the performance under energy constraints.

Let EB be the energy constraint (i.e., the allowable upper bound). The objective

is then to minimize T1 subject to the following constraint in addition to Eqs.(7.5)

and (7.8)-(7.10):

1
In general, the system frequency F does not affect Ex since TT (lc —and P cc F .

F

Hence, in the aforementioned two cases, we use the maximum system frequency for

each task Si that can be achieved by the chosen FUs in the PEs that can reduce the

execution time.

• Case-3: Optimize the energy cost for a permissible performance loss.

We assume that the base execution time TB is given in Case-1. Let /3 be the

permissible performance loss. Our objective is to minimize the total energy cost

EE subject to the following constraint in addition to Eqs.(7.5) and (7.8)-(7.10):

Since device reconfiguration incurs significant time and energy overheads, we

reduce the number of reconfigurations, and hence potentially increase the execution

time, up to the limit set by Eq. (7.12). Another possible approach is to reduce the

number of PEs for each TiCP according to the ratio ofβ . However, this may affect the

scheduling of other tasks that may violate the performance constraint.

If the energy budget in Case-2 cannot be satisfied, we have to go back to Step 1

in the synthesis procedure and choose a lower precision for the FP FUs. From above

equations, we can see that the exploration can be performed from several dimensions

130

and it is impossible to investigate all possible configurations for a reasonable period of

time. Hence, we introduce several limiting factors, such as (1) limiting the number of

reconfiguration, (2) using the fastest FUs, (3) using the same system frequency for all

the tasks, as a starting point for synthesis in order to reduce the solution complexity and

time. For less frequently used FP operations, we consider the following cases. An FP

divider is used as an example. The final optimization can be solved with an ILP (Integer

Linear Programming) solver.

A. Large tasks appear in the critical path.

For example, S 1 --->S3 --->S5 is the critical path in the TFG of Figure 7.5 (a); also an FP

divider is required by S3 which is a large task based on its number of FP operations. In

this case, an FP divider is initiated for all PEs at the very beginning.

B. Small tasks appear in the critical path.

Ss in Figure 7.5 (b) is such an example. Because S3 is the task that potentially

contributes the most to the execution time, the priority is to maximize the number of

PEs for S3 with the inclusion of an FP adder and a multiplier as well. No PE contains an

FP divider until the execution of S5. Some PEs will be reconfigured to add an FP divider

when the time comes for 55.

C. Tasks are not in the critical path.

This case is treated similarly to Case B. For example, an FP divider is added to some

PEs at the time needed to accommodate task 54 shown in Figure 7.5 (c).

Note that we are only interested in symbolic analysis of the application during

synthesis instead of actual FP calculations, so the solution time for the synthesis should

be reasonable. Also, since the synthesis happens at static time, it is tolerable and

131

worthwhile to go through such an optimization procedure for a given class of

applications. The same procedure applies to different sets of data.

Figure 7.5 An example of function selection for PEs.

7.6 Dynamic Resource Scheduling for Performance -energy Optimization

This section presents our second step of resource management, namely, run-time

adaptive scheduling with various performance-energy objectives.

7.6.1 Related Work

Based on various application scenarios, system architectures and performance

objectives, extensive scheduling research targeting multiprocessors has been done for

conventional fixed parallel architectures [Pinedo, 2002; Kwork, et. al., 1999; Grajcar,

2001; McCreary, et. al., 1994; Ziavras, 1993]. Scheduling is an NP-complete problem

and a good heuristic for near-optimal performance should be the goal. To compare

different scheduling techniques, we should consider the following aspects: objectives;

target architectures and their internal organization; target applications; dynamic or static

approach; central dispatch or distributed cooperation; and etc. Different scenarios

132

handle different parameters and constraints, hence, their efforts are different. The most

appealing and efficient scheduling heuristics for multiprocessors are list scheduling

[Adam, et. al., 1974; Gerasoulis, 1996] and a large body of its variants. List scheduling

is a task-oriented strategy which statically assigns a priority to each task and schedules

the tasks according to their reverse order of priority. Only one processor is considered

for each task. The differences among the algorithms based on list scheduling are the

assignment of priorities and several assumptions. A major problem is that their

assignment of priority without any runtime knowledge may lead to an inefficient

schedule [Grajcar, 2001; McCreary, et. al., 1994]. Dynamic critical path scheduling

[Kwok, et. al., 1996] can reduce the schedule lengths of list scheduling by incorporating

run-time information into the scheduling decision but can not save execution times and

resources. Also, it assumes dedicated hardware for communication and computation

that do not interfere with each other and these operations can happen simultaneously.

However, in reality communication time is becoming more significant in state-of-the-art

parallel systems as the computation power of processors is improved exponentially,

especially when fine-grain tasks are the target. Most of these algorithms concentrate on

one issue and make unrealistic simplifications on other issues, such as unlimited

number of processors, no communication costs and no data dependence [McCreary, et.

al., 1994; Grajcar, 2001]. Moreover, none of the above algorithms assumes

reconfigurable architectures.

Our target architecture is our semi-customized HERA mixed-mode MPoPC that

supports partial reconfiguration; the input to our scheduling policies is the Task Flow

Graph introduced in Section 7.4. Taking advantage of HERA's mixed-mode parallelism

133

and reconfigurability, our run-time scheduling focuses on dynamic decomposition and

redistribution of active SIMD tasks to available PEs. In our approach, different numbers

of PEs may be applied to an application's task in its lifetime as long as additional PEs

are available and the scheduling objective allows allocating new PEs to a task. We

propose scheduling schemes for various performance-energy objectives. An MPoPC

advantage over traditional multiprocessors is that the communication overhead is

dramatically reduced; this helps to collect information in dynamic scheduling. The

closest work to our scheduling schemes is for MPSoCs. Most of the latter with similar

objectives and target applications [Sun, et al., 2005; Srinivasan, et al., 2004] focus on

exploiting dynamic voltage scaling (DVS) (e.g., [Meyer, et al., 2005]) or dynamic

power management (e.g., [Zhu, et al., 2003]). They often assume streaming tasks with

periodic or aperiodic rates and deadlines. Furthermore, most of them attempt either to

minimize the energy/power or maximize the performance instead of studying tradeoffs

that involve both metrics. [Kadayif, et al., 2005] proposes a static technique to

determine the optimal number of processors for individual arrays in a bus-based shared-

memory MPSoC. Besides major architectural differences as compared to HERA, it

assumes one task at a time and independent arrays; also, a fixed processor size is used

for each array throughout execution. Due to the shared-memory nature of their

architecture, the best processor number for most benchmarks is less than five. In

contrary, our runtime objective is to balance the available PEs among various data and

control dependent tasks instead of applying the optimal number of processors to each

individual task. There are more key features that distinguish our strategy from existing

approaches. First, we target a real reconfigurable multiprocessor under real resource

134

constraints. Second, we everntually determine the appropriate number of PEs and the

binding of tasks to PEs at run time. Third, we dynamically reconfigure HERA to

accommodate the needs of tasks while reducing simultaneously the idle time of the

resources.

Let us first look at some important subtasks in this procedure before presenting

the overall algorithm.

7.6.2 Loop Partitioning

Our adaptive scheme explores runtime task decomposition and distribution. Most SIMD

tasks in our target applications are loops. Hence, loop partitioning is the basis of our

adaptive parallelization. We restrict our effort to assigning each time the complete or

part of an iteration to a PE. Hence, flow dependence is allowed inside an assigned

iteration. We distinguish among three cases.

FOR loops without cross - iteration dependence

Assume that the total number of PEs available to the loop is lc and the total number of

iterations is L. The loop space is split into K groups each of size LL/ ,,i or FL/ Icl. Each PE

gets such a group and the corresponding data set. These loops conform to the SIMD

mode and no communication is required. FOR loops without both flow dependence and

cross-iteration dependence are treated the same way.

FOR loops with cross-iteration dependence

We assume that the distance between successive data dependent iterations is w. Figure

7.6 shows the data dependences in a loop with w = 2. Let the total iteration space L in

the loop be a multiple of w and the loop can be divided into w partitions. The ith

135

partition contains the iterations 10+ i + k*w, where k E [0, L/w-1] and /0 is the starting

point of the loop index, for i E [0, w-1]. Each partition is then further divided into K

groups of size [i, /(K . w)] or rL/(K . w)-1+1 with continuous iterations. Each PE gets such a

group and the corresponding data set. By distributing data this way, data

communication is restricted between two neighboring groups.

Heterogeneous Loops

Each iteration in heterogeneous loops has different FP operations. Let fi be the number

of FP operations in the ith iteration and fi =a *i + b. Such a loop can be transformed into

a homogeneous loop by combining the ith and (n-i-1) th iterations into a new loop with a

constant number of operations [Cierniak, et. al, 1995]. Then the above partitioning

techniques can be applied to these loops.

Other loops that can be transformed into FOR loops (e.g., WHILE loops) are
treated similarly.

Figure 7.6 Cross-iteration dependence.

7.6.3 PE Search

As discussed earlier, the distance between PEs is one of the two critical parameters to

the communication cost between tasks. Thus, the order in which we search for one or

more candidate PEs is an important step affecting the overall mapping performance.

Based on the HERA organization and interconnect network, we propose column-

oriented PULSE search shown in Figure 7.7 (a). The motivations include the following:

136

o Our tasks are abundant in loops which favor the SIMD mode. The column buses

in HERA can be used to broadcast instructions in SIMD and M-SIMD.

o In this searching pattern, the distance between two adjacent stops is always one.

o One port of the data memory of each PE is shared with its immediate neighbors

to the west and south. By selecting candidate PEs in the PULSE pattern, there is

a large chance that we can save on communication time. For example, consider

the TFG shown in Figure 7.7 (b) and assume that Si and S2 have already been

executed by PE3 and PE4, respectively. We assume that S3 has to be mapped to a

PE other than PE3 or PE4. If S3 is assigned to PE8, then the communication

distance is only one hop (PE4 is asked to get the result of Si from PE3, and PE8

can access both results from S1 and S2 in the local memory of PE4).

Figure 7.7 PE search path.

Assume that the numbers of PEs assigned to tasks Si and Si are p i and pi,

respectively, and x =	 pd. The objective function to be minimized in this step is

the communication time among tasks:

137

where Do is the amount of data communicated between these two groups of PEs, /1, is the

transfer speed in bits/second between two immediate neighbors, Ton is the overhead to

initialize the transfer, H(i, j) is the number of hops between two communicating PEs

and Tcflict is the routing delay caused by data collisions. In order to reduce the collision

and communication costs, data locality is taken into account when mapping tasks to PEs.

7.6.4 Dynamic Resource Scheduling Schemes

We model the target system as an undirected graph GT = (P, L), where the vertex Pi E P

represents PE(i) and the edge L ij represents a bidirectional communication channel

between PE(i) and PEW, for i, j E [1, p]. Each PE(i) is associated with a parameter

v(PE(i)) that records its functionality and a parameter cm(PE(i)) that represents its

current computing mode. The weight w(Lo) on each L ij denotes its minimum

communication cost. The minimum communication cost is calculated based on the

minimum hops between PE(i) and PE(j). Also, communication jobs always have higher

priority than computation jobs (i.e., PEs are always forced to forward incoming data

even when they are busy). A priority is assigned to each task in TFG; it changes

dynamically as scheduling proceeds [Kwok, et al., 1996]. This is because the dynamic

assignment of PEs, the dynamic partitioning and migration of tasks to multiple PEs, and

the communication pattern and cost in our policy result in changes to the critical path. If

two tasks are assigned to the same PE, then the communication is removed. A task is

said to be READY when all its inputs are available. A QUALIFIED PE for a task is

defined as a PE that supports all the operation types 7t(S,) in the task Si.

138

According to Amdahl's Law [Hwang, 1993], the speedup is limited by the

sequential code. Also, increasing the number of PEs after a certain point will deteriorate

the performance due to disastrous communication overheads. For any application-

system pair, there is an optimal number of PEs for minimum execution time. On the

other hand, the energy is the product of the power and execution time. Due to the fact

that PEs consume different power in different states, chances are that this optimal

number of PEs does not necessarily correspond to minimum energy consumption.

Optimality involving both energy and performance depends on the task characteristics

as well as the architecture. Hence, we aim to optimize across two dimensions for each

task in the critical path: energy and/or performance vs. number of PEs. The number of

PEs for optimal energy and performance of Si is represented by N;, and Ns, ,

respectively. The corresponding energy consumption and execution time are es": and tr.
In our scheduling schemes, a task can be assigned various numbers of PEs

during its execution subject to the system status. For example, a task may be assigned

four PEs first and more PEs will join or leave later. Note that it is impossible to know

the physical locations of the PEs when carrying out this study. Therefore, we define the

following two dynamic metrics to evaluate the benefits of adding more PEs to a task.

Let the number of PEs assigned to Si be p i(k) and p k E Au() , where Pk is the total
T=I

number of PEs in the system in clock cycle k. We define the average remaining

completion time (ACT) and average remaining energy cost (AEC) for each task Si on

p i(k) PEs:

139

where 0,(k) and 0 , j (k) are the remaining numbers of the total and jth FP operations in

Si, at the clock cycle k, respectively. Cif ,/ and Pt , represent the required clock cycles and

power of the /th FU of the jth type. Tcp(Oi(k), p i(k)) represents the execution time for Si

with pi(k) PEs while Tcom (from Eq. 7.13) is the communication overhead caused by

distributing Si to p i(k) PEs as compared to scheduling it on just one PE. yj is the total

number of the FUs supporting the j th operation in these pi(k) PEs. Given our detailed

hardware and task information, Tcp(Oi(k), p i(k)) can be estimated very accurately. Tcom is

more variant. However, since we use the NEWS interconnect for runtime task

communication, we can always find a good route for the required data transfer. This is

an advantage over shared buses where conflicts may cause significant performance

degradation for a large number of PEs. Also, the local memories of PEs are addressable

by the sequencer. We analyze the communication patterns of each task at compile time

in distributing different subtasks (i.e., loop iterations) to multiple PEs in attempts to

refine Tcom. Since ACT is calculated at runtime, we approximate the overhead.

7.6.4.1 Optimize the Performance without Energy Constraints

This scenario happens when the performance of the system is crucial and the consumed

energy is not a concern. The Case-1 solution in the system synthesis phase of Section

7.5 is then applied. We focus on the TiPCs in this scenario and propose the following

scheduling algorithm.

140

141

During the procedure, we record and calculate the following values for each task

in addition to other aforementioned statistics:

• <pi(k), tic >, where p i(k) is the number of PEs assigned to Si in cycle tk.

We define the average number of PEs for S i as:

• The clock cycles spent by S i in each FU of a PE.

• The total energy cost Es of Si:

in PE(i) in the active state, and so on.

7.6.4.2 Optimize the Performance with an Energy Constraint

In some cases systems are limited by power input, such as planet exploration rovers and

battery-powered embedded systems. It is then desirable to maximize the performance

while meeting energy constraints. For this scenario, we use the Case-2 solution in the

system generation phase of Section 7.5. We first analyze the energy consumption in

Senerio-1 (Section 7.6.4.1) using the energy model, and then estimate the difference

between the actual consumption and its upper bound. Our system synthesis phase

assures that this difference is not significant. Hence, we focus on the ToPCs during

scheduling in this scenario in order not to significantly degrade the performance. The

142

following procedure is applied and the resulting decision table is incorporated into

Algorithm- I .

Algorithm -2 /* Generate a decision table for each task, which will be checked by Algorithm-1 for Case-21

We assume that the energy budget is reasonable; if the last iteration fails, we

have to either lower the computing precision or increase the total energy budget.

7.6.4.3 Optimize the Energy Cost under a Permissible Performance Loss

When energy consumption is of paramount importance, performance can be sacrificed

to an allowable extent in order to reduce the required energy. The total execution time is

143

largely determined by the TiPCs. Hence, we apply Case-1 in the system generation

phase and focus on the TiPCs to reduce the energy consumption.

Let fi be the allowed loss ratio. We decrease the performance of each task Si in

the critical path by the ratio /3. We find a number p i of PEs, with pi < pi,, for an

execution time determined by:

where Tp,,„ is the execution time when p i,„ PEs are assigned to Si. Whenever x PEs are to

be added to a critical task Si in the critical path for Algorithm-1, we apply the following

algorithm.

7.7 Experimental Results

7.7.1 Singular Value Decomposition

Singular Value Decomposition (SVD) has been chosen as a computation-intensive

algorithm to evaluate the performance of the design methodology. Given a matrix A

E RMx
N, SVD factorizes A in the form A = Uo- VT , where U = [u j, ..., um] is an M x M

orthogonal matrix, V = [v1, ..., vN] is an N x N orthogonal matrix, and o---diag(o-l, cr)

144

with r = min(M, N) and 6j 62 6r is a diagonal matrix. The 61 's are known as the

singular values of A, and the vectors ui and vi are the ith left singular vector and right

singular vector, respectively. The column-vectors of U and V are the normed

eigenvectors of AA T and A T A, respectively. The singular values ryi of matrix A can be

found as the square roots of the eigenvalues of A T A or AA T. Hence, the computation of

SVD is transformed into an eigenvalue problem to find all the eigenvalues A. and the

corresponding eigenvectors v of matrix A by solving the equation Av = Av. For

symmetric matrices, the classic solution to this equation is the Jacobi method introduced

in the 1900s; it reduces the matrix to a diagonal form via an iterative procedure. It is

very slow and, hence, generally not recommended for large matrices having more than a

few hundreds of rows or columns. The Golub-Kahan SVD algorithm [Golub, et. al.,

1965] is the most efficient and commonly employed implementation. It employs the

Householder method and the Givens reflection to reduce an N x N symmetric matrix to

a bidiagonal form instead of a diagonal form by a fixed (N-2) number of iterative

transformations, and then applies a QR decomposition. The advantage of SVD is that it

yields a solution for any matrix. A typical implementation of SVD requires O(MN2)

floating-point operations on a sequential processor [Golub, et. al., 1996].

The algorithm being studied here is based on the Golub-Kahan technique. This

algorithm is abundant in nested loops and requires for square matrices more than 20

times the number of floating-point operations in LU factorization. In this experiment, a

modified sequential description of the SVD algorithm in [Netlib] was analyzed and then

divided into the tasks summarized in Table 7.2. As we can see, the SVD problem is

very computation-intensive and is full of data dependences.

Table 7.2 SVD Task Information

145

This experiment employs a square root IP from [QinetiQ] and in-house

developed single-precision FP units and the Annapolis WILDSTAR II-PCI board with

two XC2V6000-5 FPGAs was used. The system was clocked at 125MHz. We first

evaluated the effect of runtime reconfiguration (RTR). The chosen numbers of PEs for

146

the four steps in Table 7.2 were 36, 42, 42 and 42, respectively. Five randomly

generated dense matrices were used; the execution times are shown in Figure 7.8. The

results prove that partial dynamic RTR system reconfiguration can improve the

performance significantly; the speedup increases with the matrix size. Figure 7.9 shows

the performance comparison of our adaptive scheduling with an alternative dynamic

scheduling where all the available PEs are assigned to each task when it is ready (fixed

through the task lifetime). Our adaptive scheduling, enforced by RTR, performs much

better than the naive scheduling strategy. It was observed during the experiments that

adaptive scheduling greatly reduces the effect of data dependences and the idle times of

PEs. It effectively shortens the critical path, which largely determines the execution

time of the entire application. An increase in the number of PEs improves dramatically

the execution of the largest SIMD tasks (three-nested loops), and the overheads of loop

partitioning and scheduling become less significant for larger matrix sizes.

Figure 7.8 Execution times with and without partial runtime reconfiguration (RTR).

147

Figure 7.9 Normalized execution times for our strategy and naive dynamic scheduling.

7.7.2 Parallel Power Flow Analysis

The parallel solution of computation-intensive power flow analysis (Section 4.4) is

employed in this set of experiments to evaluate system synthesis and performance-

energy optimization techniques. Table 7.3 shows the task information.

Single-precision FP FUs were chosen based on the two benchmark matrices in

Table 7.4. The fixed 125MHz system frequency was used in the experiments. From the

task table, we can see that tasks S5 i(ki), S7 i(ki), Sioi(ki) and Si AO consume most of the

execution time, especially for large matrices. The available number of PEs to these

tasks has a large impact on the entire performance. We compared the performance

without energy considerations for three cases: no device reconfiguration (NR), FRTR,

and the optimal solution during the synthesis and scheduling phases. We assume that

148

the device reconfiguration time is 50 msec [Virtex II datasheet]. Table 7.5 shows the

numbers of PEs available at the beginning of scheduling the tasks in the two

benchmarks for various synthesis approaches. The corresponding execution times and

energy consumptions are shown in Table 7.6. Note that only the available numbers of

PEs are shown for each task; the actual numbers of PEs for tasks vary at run-time. We

can see that the optimal solution of the synthesis procedure also depends on the size of

the matrices. The 7917-bus system has a larger number of reconfigurations than the

1648-bus system for the LU and multiplication tasks because of more matrix blocks.

The number of reconfigurations in HERA is reduced significantly as compared to

ASPCs for large matrices because it provides instructions for the PEs. In general, FRTR

provides the largest number of PEs for all the tasks. With NR, the smallest number of

PEs is used for all the tasks. However, we must consider the cost of different schemes.

Although we have a small number of PEs in NR, there is no reconfiguration overhead.

The overhead is significant with FRTR, especially when dealing with many

reconfigurations during the execution of small applications. For this reason, the

performance and energy consumption of FRTR for the 1648-bus system is worse than

for the other cases. FRTR cannot overlap tasks and substantial time is required to save

and restore data. Also, some resources are wasted waiting for reconfiguration. In the

optimal system configurations, both FRTR and PRTR are employed only when the

benefits exceed the penalty; of course, partial reconfiguration should overlap

computations as much as possible; tasks can be overlapped as well, so the overhead is

minimized. For the 7917-bus system, the reconfiguration overhead becomes much less

significant as compared to the computation time. Hence, FRTR shows a better

149

performance. In all the cases, the optimal configuration achieves better performance

than the other approaches. With an increase in the matrix size, the amount of

computation in large tasks also increases and the benefit of resource reconfiguration

becomes important as a result of increased PE numbers; this is shown for the 7917-bus

case.

For combined performance-energy optimization, we first evaluate the accuracy

of our energy models. The 1648-bus system is used in this experiment. The results

calculated from our energy model for the computation-dominant tasks are compared

with the XPower results reported in Table 7.7. An average activity rate is extracted from

ModelSim simulation results using Algorithm-1. The average error is about 7.6%,

which is an acceptable rate for system-level estimation models. Our power data for the

FUs come from implementations and the reasons for the differences are: (1) Only one

power value is assumed for FUs in the active state while FUs consumes different power

with different input activity rates; (2) The average activity rate varies with different sets

of data for various FUs; we used a fixed rate for all data instead. (3) The measurements

of the energy consumption for the bus system tend to be less accurate than for FUs due

to coarse-grain power modeling. System-level models generally have a higher error rate

than RTL-, logic- or gate-level models due to their simplified and less accurate

parameters. However, our objective is to develop fast, yet useful models for exploring

performance-energy optimizations without involving tedious and time-consuming low-

level simulations.

Finally we evaluate the performance of our performance-energy optimization

techniques. Table 7.8 shows the optimization results for the 7917-bus system. In

150

Scenario-II, we simply put idle FUs into the standby state and we reduce the total

energy consumption by 10.06% without major performance penalty. This is mainly due

to tasks S6 and S9, which cause many PEs to be idle. A performance penalty of 7.64% is

observed when we reduce the energy consumption by 20%, as shown in Scenario-III. In

Scenario-IV and Scenario-V, we relax the performance by 14.6% and 19.4%, and the

reduction in energy consumption is 26.2% and 40.8%, respectively. The energy

consumption can be further reduced by using lower-precision FP FUs.

n: the total number of 3-block groups in the matrix J
m: the total number of task pools that have the approximate same computing cost; each group i contains
k, 3-block groups.
q: the total number of 3-block groups with diverse computing cost

km

n=q+Em

151

Table 7.4 Optimal Partitioning of the Ybus Matrices for the Benchmark Systems

Benchmark System 1648-bus 7917-bus

Dimensionality of admittance matrix
(Ybus)

1648 7917

Dimensionality of Jacobian matrix (J) 2982 14508

Number of independent diagonal
blocks

18 67

Minimum dimensionality of
independent diagonal blocks 33 15

Maximum dimensionality of
independent diagonal blocks 120 150

Dimensionality of the last block 134 541

Size distribution of independent
diagonal blocks in Y

120, 109, 99, 3(90) ,
5(85)*, 79, 5(75), 33

7(150),17(130), 10(120),
13(100), 19(90), 1(15)

*5(85) stands for 5 blocks of approximate size 85 x 85.

Table 7.5 	TheParallelism Profile (l.e., Numbers or PEs) during the Execution
Task S 1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

NR 24 24 24 24 24 24 24 24 24 24 24

FRTR 48 64 64 48 24 24 48 48 24 48 48

Optimal
(1648) 48 48 48 24 24 24 48 48 32 32 32

Optimal
(7917) 48 48 48 48 24 24 48 48 39 48 48

NR: no reconfiguration is allowed;
FRTR: Full Run-Time Reconfiguration is used in order to get a maximum number of PEs;
Optimal (1648): Optimal solution for the 1648-bus system from the synthesis procedure
Optimal (7917): Optimal solution for the 7917-bus system from the synthesis procedure

Table 7.6 Ex ark MatricesExecution Times and Energy uonsum uons tor me benchmark
Case NR FRTR Optimal

1648-bus
Time (sec) 12.01 12.29 10.14

Energy (J) 271.3 288.4 231.5

7917-bus
Time (sec) 391.5 369.3 315.1

Energy (J) 10214 9630 8252

Table 7.7 Comparison between the Modeled and XPower-Reported Energy

Consumption (J)

Task Modeled
XPower-
Reported

S5
1648 84 77

7917 2526 2289

S7
1648 78 72

7917 2391 2192

S10
1648 34 32

7917 1030 974

S10
1648 32 30

7917 1023 965

I awe /.5 Performance-Energy optimization tor the 7917- Bus System

Scenario Objective Constraints
Energy

Consumption (J)
Execution Time

(sec)

I Minimize T None 8249 314

II Minimize T E <7424 7419 316

III Minimize T E <6600 6598 338

IV Minimize E T <361 6087 360

V Minimize E T <377 4883 375

152

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

This research started with the observation that PC clusters and SMP multiprocessors are

the dominant parallel platforms for the majority of high-performance applications while

the supercomputer industry has shrank in volume since the mid-1990s. However, the

shared-memory nature of SMP systems limits their scalability and the high

communication latencies of cluster systems make them more effective for loosely-

coupled tasks that lack frequent communications. On the other hand, with the advent of

multimillion-gate FPGAs, it has become feasible to build high-performance parallel

systems on reconfigurable chips. These platforms are characterized by very low cost

compared to supercomputer platforms that often employ ASIC chips, and the parallel

system design could match well the target applications.

Conventional FPGAs have been employed in the past primarily as application-

specific coprocessors to accelerate computation-intensive algorithms. This approach is

based on a development flow much like that for ASIC designs with the additional

advantage of hardware reconfiguration at runtime. However, significant time and

energy overheads are often required to reprogram the hardware due to not being able to

fit large applications that oversize the available resources. This dissertation advocates a

new philosophy in designing and implementing parallel reconfigurable systems:

Multiprocessors-on-a-Programmable Chip (MPoPCs). The regularity and localization

of MPoPC designs reduce dramatically the number of wires spanning long distances,

which is a critical performance issue in million-gate chips. By employing user-

153

154

programmable PEs, instead of task-specific function units, full reconfiguration of the

hardware at runtime for large applications is eliminated. Also, the general-purpose user

instructions for MPoPCs alleviate the burden of complex hardware design and, hence,

bring FPGA-based parallel processing closer to mainstream computing. At the same

time, existing research results in parallel processing could be exploited for the new

platforms.

To provide credible and reliable references for further study and also discover

real issues with MPoPCs, two MPoPCs were with pipelined hardware FPUs designed

and implemented based on the above philosophy. Previous FPGA-based custom

computing machines did not implement hardware FPUs due to the insufficient resources

in conventional FPGAs. Our MPoPCs target matrix-based data parallel applications that

require floating-point representations. The first MPoPC implementation, CG-MPoPC, is

based on a configurable IP processor core from Altera (i.e., Nios) and has been

implemented on the Altera SOPC FPGA development board. It is designed to run in the

MIMD mode, contains more instructions than HERA, the second MPoPC

implementation, and is capable of performing well for more diverse applications.

HERA on the other hand, concentrates on mixed-mode parallelism and has been

implemented on Xilinx FPGAs. It is equipped with more fine—grain communication

channels and is optimized for variant-grain matrix-based applications. The PE/node was

designed with an emphasis on matrix operations. The system can be reconfigured

dynamically at runtime to support a variety of independent or cooperating computing

modes, such as SIMD, MIMD and M-SIMD, to best match in the time spectrum all the

subtask needs of a given application. Both MPoPC systems are user-programmable with

155

general-purpose instructions. Their PEs are equipped with large data and instruction on-

chip memories. These platforms feature much lower cost and risk compared to ASIC-

based multiprocessors. Parallel solutions for representative computation-intensive

benchmark algorithms, namely matrix-matrix multiplication (MMM), LU factorization

and power flow analysis, were developed and realized on the two MPoPCs. Application

mapping and dynamic load balancing schemes were proposed and analyzed as well. The

performance of both systems was tested with large sparse, real-world matrices from

power engineering; they have size of up to 10279 x 10279. The results are better than

those of two commercial PCs. We expect even more dramatic performance gains in the

near future by employing ever improving FPGAs.

The success of such systems will highly depend on high-level design tools to

efficiently map applications onto the reconfigurable logic and remove the hardware

details from the end users. The seminal quality of MPoPCs is that we can semi-

customize a personal system in the field for any given application to match better its

computation and communication characteristics. An architecture-conscious resource

management framework was proposed and implemented to efficiently map data-parallel

applications onto HERA; the applications are depicted in a high-level functional form.

A two-phase approach is used. A mixed-mode weighted Task Flow Graph (w-TFG) is

constructed for the application, where tasks are classified according to their appropriate

computing mode, i.e., SIMD or MIMD. At compile time, an MPoPC is synthesized

under various performance and energy constraints for the given TFG; an Integer Linear

Programming (ILP) technique that uses a parameterized hardware component library is

applied. While it is always desirable to maximize performance, energy consumption has

156

emerged as a first-order design constraint, especially for embedded systems. A hybrid

system-level energy model for HERA is proposed to guide run-time architectural and

software decisions. Various dynamic scheduling schemes under different performance-

energy objectives are proposed. Partial run-time reconfiguration can be employed to

further increase resource utilization. A parallel power flow analysis technique by

Newton's method is proposed and employed to verify the methodology and evaluate the

performance.

8.2 Future Research

High-performance low-cost reconfigurable computing is an emerging new area and

many problems are still unexplored. Continuation of this work could focus on the

following fundamental issues:

1. Innovative FPGA circuits to reduce the device reconfiguration overhead in terms

of time and energy, and facilitate the synthesis of various system-level

architectures.

The reconfiguration overhead has been a critical obstacle to SRAM-based FPGAs

since ever their birth and will continue to be a must-solve problem if we want

FPGA-based reconfigurable systems to enter mainstream computing. Although

relevant research has shown promising results, it has failed to appeal to FPGA

vendors.

2. High-performance reconfigurable architectures and design methodologies

Reconfigurable logic provides tremendous flexibility. Research in this area should

not isolate the levels, that is, the circuit, gate, logic and system levels. A good

157

integration effort involving various levels will result in significant improvements for

reconfigurable computing.

3. Energy modeling for energy-efficient/aware design and scheduling techniques

targeting coarse-grain architectures

Power consumption has become a very critical issue in the design of many

computing systems involving current CMOS processes. A fundamental

breakthrough in device manufacturing processes is required to save the computing

industry in the long term. This is also true of FPGA-based platforms.

4. Efficient coupling and communication schemes between reconfigurable fabric

and general-purpose platforms.

Before we see a breakthrough in reconfigurable computing, the reconfigurable

fabric will have to work efficiently with general-purpose processors. The interface

between the two is another critical problem that may reduce substantially any

performance gains. Data prefetching, operation overlapping and intelligent memory

designs could potentially provide viable solutions.

Also, MPoPCs could aid network applications, such as intrusion detection and

packet forwarding, which have diverse performance and energy metrics. Bioinformatics

is another field that could benefit from the massive parallelism potentially provided by

FPGAs.

BIBLIOGRAPHY

Adam, T. L., Chandy, K. M., and Dickson, J. R. (1974). A comparison of list schedules
for parallel processing systems. Communications of the ACM, Vol.17, No.12,
pp. 685-690.

Ahmedsaid, A., Amira, A., and Bouridane, A. (2003). Improved SVD systolic array and
implementation on FPGA. IEEE International Conference on Field-
Programmable Technology (FPT), pp. 35-42.

Altera. http://www.altera.com.

Amestoy, P. R., Davis, T. A., and Duff, I. S. (1996). An approximate minimum degree
ordering algorithm. SIAM Journal on Matrix Analysis and Applications, Vol.
17, No. 4, pp. 886-905.

Anderson, J. H., and Najm, F. N. (2004). Power estimation techniques for FPGAs.
IEEE Transactions on VLSI Systems, Vol. 12, No. 10, pp. 1015-1027.

AnnapMicro (Annapolis Micro Systems, Inc.). http://www.annapmicro.com/.

Bailey, D. H. (1998). Challenges of future high-end computing, in High Performance
Computer Systems and Applications. Jonathan Schaeffer (ed.), Kluwer
Academic Press, Boston.

Baker, J. M. Jr., Bennett, S., Bucciero, M., Gold, B., and Mahajan, R. (2002). SCMP: a
single-chip message passing parallel computer. International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA'02),
Las Vegas, NV, pp.1485-1491.

Barroso, L., Gharachorloo, K., McNamara, R., Nowatzyk, A., Qadeer, S., Sano, B.,
Smith, S., Stets, R., and Piranha, B. V. (2000). A scalable architecture based on
single-chip multiprocessing. IEEE International Symposium on Computer
Architecture (ISCA'00).

Becker, J. and Vorbach, M. (2003). Architecture, memory and interface technology
integration of an industrial/academic configurable System-on-Chip (CSoC).
IEEE Symposium on VLSI, pp. 107 - 112.

Bell, G., and Gray, J. (2002). What's next in high -performance computing?
Communications of the ACM, Vol. 45, No. 2, pp. 91 -95.

Benini, L., and Micheli, G. De. (1999). System -level power optimization: techniques
and tools. IEEE International Symposium on Low Power Electronics and
Design, pp. 288-293.

158

159

Benini, L., Bogliolo, A., and Micheli, G. De (2000). A survey of design techniques for
system-level dynamic power management. IEEE Transactions on VLSI Systems,
Vol. 8, No. 3, pp. 299-316.

Bergamaschi, R., Bolsens, I., Gupta, R., Harr, R., Jerraya, A., Keutzer, K., Olukotun,
K., and Vissers, K. (2001). Are single -chip multiprocessors in reach? IEEE
Design and Test of Computers, Vol. 18, No.1, pp. 82 -89.

Bischof, C. (1987). The two-sided Jacobi method on a hypercube. SIAM Conference on
Hypercube Multiprocessors, pp. 612-618.

Bomhof, W., and van der Vorst, H. A. (2000). A parallel linear system solver for circuit
simulation problems. Numerical Linear Algebra Applications, Vol. 7, pp. 649-
665.

Bondalapati, K., and Prasanna, V.K. (2002). Reconfigurable computing systems.
Proceedings of the IEEE, Vol. 90, No. 7, pp.1201-1217.

Brent, R. P., and Lu1G, F. T. (1985(1)). The solution of singular-value and symmetric
eigenvalue problems on multiprocessor arrays. SIAM Journal on Scientific and
Statistical Computing, Vol. 6, No. 1, pp. 69-84.

Brent, R. P., Luk, F. T., and Van Loan, C. F. (1985(2)). Computation of the singular
value decomposition using mesh-connected processors. Journal of VLSI
Computer Systems, Vol. 1, No. 3, pp. 243-270.

Brooks, D., Tiwari, V., and Martonosi, M. (2000). Wattch: A framework for
architectural-level power analysis and optimization. IEEE International
Symposium on Computer Architecture (ISCA00), pp. 83-94.

Cannon, L. E. (1969). A cellular computer to implement the kalman filter algorithm.
PhD Thesis, Montana State University.

Cardoso, J. M. P. (2003). On combining temporal partitioning and sharing of functional
units in compilation for reconfigurable architectures. IEEE Transactions on
Computers, Vol. 52, No. 10, pp. 1362-1375.

Cardoso, J. M. P., and Neto, H. C. (2003). Compilation for FPGA -based reconfigurable
hardware. IEEE Design and Test of Computers, Vol. 20, No.2, pp. 65-75.

Cesario, W. 0., Lyonnard, D., Nicolescu, G., Paviot, Y., Yoo, S., Jerraya, A. A.,
Gauthier, L., and Diaz-Nava, M. (2002). Multiprocessor SoC platforms: a
component-based design approach. IEEE Design and Test of Computers, Vol.
19, No. 6, pp. 52-63.

Chen, S. D., Chen, J. F. (2005). A novel approach based on global positioning system
for parallel load flow analysis. International Journal of Electrical Power and
Energy Systems, Vol. 27, No.1, pp. 53-59.

160

Cierniak M., Li, W., and Zaki, M., J. (1995). Loop scheduling for heterogeneity. 4th
IEEE International Symposium on High-Performance Distributed Computing
(HPDC), Pentagon City, Virginia, pp. 78-85.

Compton, K., and Hauck, S. (2002). Reconfigurable computing: a survey of systems and
software. ACM Computating Surveys, Vol. 34, No.2, pp. 171-210.

DeHon,	 A.	 (1997).	 Multicontext field-programmable	 gate	 arrays.
http://www.cs.caltech.edu/courses/cs 1 84/winter2003/reading/dpga_preprint.ps.

Demmel, J. W., Gilbert, J. R., Li, X. S. (1999). An asynchronous parallel supernodal
algorithm for sparse gaussian elimination. SIAM Journal on Matrix Analysis
and Applications, Vol. 20, No.4, pp. 915-952.

Duff, I. S. (1998). Direct methods. Technical Report RAL-98-056, Rutherford Appleton
Laboratory, Oxfordshire, UK.

Duff, I. S., Erisman, A. M., and Reid, J. K. (1990). Direct methods for sparse matrices.
Oxford Univ. Press, Oxford, England.

Ebeling, C., Cronquist, D. C., and Franklin, P. (1996). RaPiD-reconfigurable pipelined
datapath. International Workshop on Field-Programmable Logic and
Applications, pp. 126-135.

Falcao, D. M. (1996). High performance computing in power system applications.
International Meeting on Vector Parallel Processing (VECPAR'96), Porto,
Portugal.

Fox, G., Salmon, J., Otto, S., Lyzenga, G., and Johnson, M. (1988). Solving Problems
on Concurrent Processors, Vol. 1: General Techniques and Regular Problems.
Prentice-Hall, New Jersey.

Fu, C., Jiao, X., and Yang, T. (1998). Efficient sparse LU factorization with partial
pivoting on distributed memory architectures. IEEE Transactions on Parallel and
Distributed Systems, Vol. 9, No. 2, pp. 109-125.

George, A. and Liu, J. (1989). The evolution of the minimum degree ordering
algorithm. SIAM Review, Vol. 31, pp. 1-19.

Gerasoulis A., and Yang, T. (1992). A comparison of clustering heuristics for
scheduling DAGs on multiprocessors. Journal of Parallel and Distributed
Computing, Vol. 16, No. 4, pp. 276-291.

Ghiasi, S., Nahapetian, A., and Sarrafzadeh, M. (2004). An optimal algorithm for
minimizing runtime reconfiguration delay. ACM Transactions on Embedded
Computing Systems, Vol. 3, No. 2, pp. 237-256.

161

Gokhale, M., Stone, J. M., Arnold, J., and Kalinowski, M. (2000). Stream-oriented
FPGA computing in the streams -C high level language. IEEE Symposium on
Field-Programmable Custom Computing Machines, pp. 49 -58.

Golub, G. H., and Kahan, W. (1965) Calculating the singular values and pseudoinverse
of a matrix. SIAM Journal on Numerical Analysis, Vol.2, No.3, pp. 205-224.

Golub, G. H., and van Loan, C. F. (1996). Matrix Computations (3rd edition). Johns
Hopkins.

Govindu, G., Choi, S., Prasanna, V. K., Daga, V., Gangadharpalli, S., and Sridhar, V.
(2004). A high-performance and energy-efficient architecture for floating -point
based LU decomposition on FPGAs. Reconfigurable Architectures Workshop
(RAW).

Grajcar, M. (2001). Strengths and weaknesses of genetic list scheduling for
heterogeneous systems. International Conference on Application of Concurrency
to System Design, pp. 123-132.

Grama, A., Gupta, A., Karypis, G., and Kumar, V. (2003). Introduction to Parallel
Computing (2nd Edition). Addison Wesley.

Gupta, A. (2002). Recent advances in direct methods for solving unsymmetric sparse
systems of linear equations. ACM Transactions on Mathematical Software, Vol.
28, No.3, pp. 301-324.

Gupta, R. (1992). Synchronization and communication costs of loop partitioning on
shared-memory multiprocessor systems. IEEE Transactions on Parallel and
Distributed Systems, Vol. 3, No. 4, pp. 505-512.

Hammond, L., Hubbert, B., Siu, M., Prabhu, M., Chen M., and Olukotun, K. (2000).
The Stanford Hydra CMP. IEEE MICRO, March-April 2000.

Henkel, J., Wolf, W., and Chakradhar, S. (2004). On-chip networks: a scalable,
communication -centric embedded system design paradigm. International
Conference on VLSI Design, pp. 845-851.

Hillis, W. D., and Steele, G. L. (1986). Data parallel algorithms. Communications of
the ACM, Vol. 29, No. 12, pp. 1170-1183.

Hoare, R., Tung, S., and Werger, K. (2004). An 88-way multiprocessor within an FPGA
with customizable instructions. IEEE International Parallel and Distributed
Processing Symposium (IPDPS).

Hofstee, H. P. (2005). Power efficient processor architecture and the cell processor.
International Symposium on High-Performance Computer Architecture (HPCA-
11), pp. 258 —262.

162

Hung, A., W. Bishop, D., and Kennings, A. (2005). Symmetric multi-processing on
programmable chips made easy. ACM/IEEE Design Automation and Test in
Europe (DATE-2005).

Hwang, K. (1993). Advanced Computer Architecture: Parallelism, Scalability,
Programmability. McGraw Hill.

IEEE Committee Report. Parallel processing in power systems computation. IEEE
Transactions on Power Systems, Vol. 7, No. 2, pp. 629-638.

Jerraya, A., and Wolf, W. (eds.) (2004). Multiprocessor Systems-on-Chips. Morgan
Kaufman.

Jin, Y., Satish, N., Ravindran, K., and Keutzer, K. (2005). An automated exploration
framework for FPGA -based soft multiprocessor systems. IEEE International
Conference on Hardware/Software Codesign and System Synthesis (CODES).

Kadayif, I., Kandemir, M., Chen, G., Ozturk, 0., Karakoy, M., and Sezer, U. (2005).
Optimizing array- intensive applications for on -chip multiprocessors. IEEE
Transactions on Parallel and Distributed Systems, Vol. 16, No. 5, May 2005, pp.
396-411.

Koester, D. P., Ranka, S., and Fox G. C. (1994). Parallel block-diagonal-bordered
sparse linear solvers for electrical power system applications. IEEE Scalable
Parallel Libraries Conference.

Krashinsky, R., Batten, C., Hampton, M., Gerding, S., Pharris, B., Casper, J., and
Asanovic, K. (2004). The vector-thread architecture. IEEE International
Symposium on Computer Architecture (ISCA-31), Munich, Germany.

Kuck, D. J. (1996). What is good parallel performance? And how do we get it? IEEE
Computational Science and Engineering, Vol. 3, No. 1, pp. 81 -85.

Kwok, Y., and Ahmad, I. (1996). Dynamic critical-path scheduling: an effective
technique for allocating task graphs to multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, Vol. 7, No. 5, pp. 506 -521.

Kwok, Y., and Ahmad, I. (1999). Static scheduling algorithms for allocating directed
task graphs to multiprocessors. ACM Computing Surveys, Vol. 31, No. 4, pp.
406-471.

Lan, Z., and Deshikachar, P. (2003). Performance analysis of large-scale cosmology
application on three cluster systems. IEEE International Conference on Cluster
Computing, pp. 56-63.

Li, F., Lin, Y., He, L., Chen, D., and Cong, J. (2005). Power modeling and
characteristics of Field Programmable Gate Arrays. IEEE Transactions on
CAD of Integrated Circuits and Systems, Vol. 24, No. 11, pp. 1712-1724.

163

Li, Z., and Hauck, S. (2001). Configuration compression for Virtex FPGAs. IEEE
Symposium on Field-Programmable Custom Computing Machines (FCCM'01),
pp. 147-159.

Liang, J., Tessier, R., and Mencer, 0. (2003). Floating point unit generation and
evaluation for FPGAs. IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM'03), pp.185-194.

Ling, X. P., Amano, H. (1993). WASMII: a data driven computer on a virtual
hardware. IEEE Workshop on FPGAs for Custom Computing Machines
(FCCM'93), pp. 33-42.

Loghi, M., Poncino, M., and Benini, L. (2004). Cycle-accurate power analysis for
multiprocessor systems -on-a-chip. ACM Great Lakes Symposium on VLSI, pp.
401-406.

Marculescu, D. and Iyer, A. (2001). Application-driven processor design exploration
for power-performance trade-off analysis. IEEE/ACM International Conference
on Computer Aided Design, pp. 306 -313.

Matrix Market. http://math.nist.gov/MatrixMarkett

McCreary, C. L., Khan, A. A., Thompson, J. J., and McArdle, M. E. (1994). A
comparison of heuristics for scheduling DAGs on multiprocessors. International
Parallel Processing Symposium, pp. 446-451.

Meilander, W. C., Baker, J. W., and Jin, M. (2003). Importance of SIMD computation
reconsidered. IEEE International Parallel and Distributed Processing
Symposium (IPDPS2003), pp. 266-273.

Meyer, B. H., Pieper, J. J., Paul, J. M., Nelson, J. E., Pieper, S. M., and Rowe, A. G.
(2005). Power-performance simulation and design strategies for single -chip
heterogeneous multiprocessors. IEEE Transactions on Computers, Vol. 54,
No.6, pp. 684-697.

Mirsky, E., and DeHon, A. (1996). MATRIX: A reconfigurable computing architecture
with configurable instruction distribution and deployable resources. IEEE
Symposium on Field-Programmable Custom Computing Machines (FCCM'96),
pp.157-166.

Miyamori, T., and Olukotun, K. (1998). REMARC: reconfigurable multimedia array
coprocessor. ACM/SIGDA International Symposium on Field Programmable
Gate Arrays.

Najjar, W., Bohm, W., Draper, B., Hammes, J., Rinker, R., Beveridge, R., Chawathe,
M., and Ross, C. (2003). From algorithms to hardware—a high-level language
abstraction for reconfigurable computing. IEEE Computer, Vol. 36, No. 8, pp.
63-69.

164

Netlib. http://www.netlib.org/.

Nollet, V., Marescaux, T., Avasare, P., and Mignolet, J.-Y. (2005). Centralized run- time
resource management in a Network-on-Chip containing reconfigurable
hardware Tiles. IEEE ACM/IEEE Design Automation and Test in Europe
(DATE2005), pp. 234-239.

OGSA-WG, https://forge.gridforum.org/projects/ogsa-wg.

Olukotun, K., Nayfeh, B. A., Hammond, L., Wilson, K., and Chang, K. (1996). The
case for a single-chip multiprocessor. International Symposium Architectural
Support for Programming Languages and Operating Systems, pp. 2 - 11.

Ou, J. and Prasanna, V. K. (2004). Rapid energy estimation of computations on FPGA
based soft processors. IEEE International SoC Conference (SOCC), Sept. 2004.

Pan, J. H., Mitra, T., and Wong, W. F. (2004). Configuration bitstream compression for
dynamically reconfigurable FPGAs. IEEE International Conference on
Computer Aided Design (ICCAD), Nov. 2004, pp. 766 -773.

Parhami, B. (1995). SIMD machines: do they have a significant future? Report on a
Panel Discussion, Symposium on the Frontiers of Massively Parallel
Computation, McLean, LA.

Pinedo, M. (2002). Scheduling: Theory, Algorithms, and Systems (2nd Edition).
Prentice Hall.

Polychronopoulos, C. D., and Kuck, D. J. (1987). Guided self-scheduling: a practical
scheduling scheme for parallel supercomputers. IEEE Transactions on
Computers, Vol. 36, No. 12, pp. 1425-1439.

Polychronopoulos, C. D., Kuck, D. J., and Padua, D. A. (1989). Utilizing
multidimensional loop parallelism on large scale parallel processor systems.
IEEE Transactions on Computers, Vol. 38, No.9, pp.1285-1296.

Power4, www-1. ibm. com/servers/eserver/pseries/hardware/whitepapers/power4.html.

Prasanna, V. K. (2005). Energy-efficient computations on FPGAs. Journal of
Supercomputing. Vol. 32, No.2, pp. 139-162.

QinetiQ. http://www.quixilica.com.

Raghunathan, A., Jha, N. K., and Dey, S.(1998). High-Level Power Analysis and
Optimization. Kluwer Academic Publishers.

Rauchwerger, L., and Padua, D. A. (1999). The LRPD test: speculative run- time
parallelization of loops with privatization and reduction parallelization. IEEE
Transactions on Parallel and Distributed Systems, Vol. 10, No. 2, pp. 160 - 180.

165

Ravindran, K., Satish, N., Jin, Y., and Keutzer, K. (2005). An FPGA-based soft
multiprocessor system for IPv4 packet forwarding. International Conference on
Field Programmable Logic and Applications, pp. 487-492.

Reed, D.A. (2003). Grids, the TeraGrid and beyond. IEEE Computer, Vol. 36, No.
1, pp. 62-68.

Ronen, R., Mendelson, A., Lai, K., Lu, S-L., Pollack, F., and Shen, J. (2001). Coming
challenges in microarchitecture and architecture. Proceedings of the IEEE, Vol.
89, No.3, pp.325-340.

Salminen, E., Kulmala, A., and Hamalainen, T. D. (2005). HIBI-based multiprocessor
SoC on FPGA. IEEE International Symposium on Circuits and Systems, pp.
3351-3354.

Sangiovanni-Vincentelli, A., Chen, L. K., and Chua, L. 0. (1977). An efficient heuristic
cluster algorithm for tearing large-scale networks. IEEE Transactions on
Circuits and Systems, Vol. 24, No.12, pp. 709-717.

Scalera, M. S., Murray, J. J., and Lease, S. (1998). A mathematical benefit analysis of
context switching reconfigurable computing. Reconfigurable Architecture
Workshop (Lecture Notes in Computer Science, No. 1388), pp. 73-78.

Shang, L., and Jha, N. K. (2001). High-level power modeling of CPLDs and FPGAs.
IEEE International Conference on Computer Design (ICCD), pp. 46-51.

Shang, L., Kaviani, A. S., and K. Bathala (2002). Dynamic power consumption in
VirtexTm-II FPGA family. ACM/SIGDA International Symposium on Field-
programmable Gate Arrays, pp. 157-164.

Siegel , H. J., Braun, T. D., Dietz, H. G., Kulaczewski, M. B., Maheswaran, M., Pero,
P., Siegel, J. M., So, J. J. E., Tan M., Theys, M. D., and Wang, L. (1996). The
PASM project: a study of reconfigurable parallel computing. International
Symposium on Parallel Architectures, Algorithms, and Networks, pp. 529-536.

Siegel, H. J., Maheswaran, M., Watson, D.W., Antonio, J. K., and Atallah, M. J. (1996).
Mixed-Mode System Heterogeneous Computing in Heterogeneous Computing,
M. M. Eshaghian (Ed.), Artech House, Norwood, MA, pp. 19-65.

Simon, H.D. (2003). The divergence problem. International Supercomputer Conference
(ISC2003), Heidelberg, Germany.

Singh, H., Lee, M.-H., Lu, G., Kurdahi, F. J., Bagherzadeh, N., and Filho, E. M. C.
(2000). MorphoSys: an integrated reconfigurable system for data parallel and
computation-Intensive Applications. IEEE Transactions on Computers, Vol.
49, No. 5, pp. 465-481.

166

Sinha, A., and Chandrakasan, A. P. (2001). JouleTrack - A web based tool for software
energy profiling. IEEE Design Automation Conference.

Srinivasan, K., and Chatha, K. S. (2004). An ILP formulation for system level
throughput and power optimization in multiprocessor SoC architectures. IEEE
International Conference on VLSI Design, pp. 255-260.

Stolberg, H.-J. Berekovic, M., L. Friebe, Moch, S., Kulaczewski, M. B., Flugel, S.,
Klusmann, H., Dehnhardt, A., and Pirsch, P. (2005). HiBRID-SoC: a multi-core
SoC architecture for multimedia signal processing. Journal of VLSI Signal
Processing Systems for Signal, Image, and Video Technology, Vol. 41, No. 1,
pp. 9-20.

Sun, F., Ravi, S., Raghunathan, A., and Jha, N. K. (2005). Synthesis of application-
specific heterogeneous multiprocessor architectures using extensible
processors. IEEE International Conference on VLSI Design, pp. 551-556.

Taylor, M. Kim, B., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald, Hoffmann, B.,
Johnson, H., P., Lee, J.-W., Lee, W., Ma, A., Saraf, A., Seneski, M., Shnidman,
N., Frank, V. S. M., Amarasinghe, S. and Agarwal, A. (2002). The RAW
microprocessor: a computational fabric for software circuits and general
purpose programs. IEEE Micro.

Tessier, R., and Burleson, W. (2001) Reconfigurable computing and digital signal
processing: a survey. Journal of VLSI Signal Processing, pp. 7-27.

Theys, M. D., Braun, T. D., and Siegel, H. J. (1998). Widespread acceptance of
general-purpose, large-scale parallel machines: fact, future, or fantasy? IEEE
Concurruncy, Vol. 6, No.1, pp. 79-83.

Tinney, W. F., and Hart, C. E. (1967). Power flow solution by Newton's method. IEEE
Transactions on Power Apparatus and Systems, Vol. PAS-86, No. 3, pp. 1146-
1152.

Tiwari, V., S. Malik, and Wolfe, A. (1994). Power analysis of embedded software: A
first step towards software power minimization. IEEE Transactions on VLSI
Systems, Vol. 2, No.4, pp.437-445.

TMS320C6711/11B/11C/11D	 floating-point	 digital	 signal	 processors,
http://focus.ti.com/docs/prod/folders/print/tms320c6711.html.

TOP500, www.top500.org .

Tosic, P.T. (2004). A perspective on the future of massively parallel computing: fine-
grain vs. coarse-grain parallel models comparison and contrast. 1st Conference
on Computing Frontiers, Ischia, Italy, pp. 488-502.

167

Underwood, K. (2004). FPGAs vs. CPUs: Trends in peak floating-point performance.
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
Monterey, CA, pp. 171-180.

Vaughan-Nichols, S. J. (2004). New trends revive supercomputing industry. IEEE
Computer, Vol. 37, No. 2, pp. 10-13.

Venkataramani, G., Najjar, W., Kurdahi, F., Bagherzadeh, N., Bohm, W., and Hammes,
J. (2003). Automatic compilation to a coarse -grained reconfigurable system -on-
chip. ACM Transactions on Embedded Computing Systems, Vol. 2, No.4, pp.
560-589.

Wang, X., and Ziavras, S. G. (2005 - 1). Exploiting mixed-mode parallelism for matrix
operations on the HERA architecture through reconfiguration. IEE Proceedings,
Computers and Digital Techniques, accepted.

Wang, X., and Ziavras, S. G. (2005 -2). A framework for dynamic resource management
and scheduling on reconfigurable mixed-mode multiprocessor. IEEE
International Conference on Field-Programmable Technology (FPT'05),
Singapore.

Wang, X., and Ziavras, S. G. (2005-3). Adaptive scheduling of array- intensive
applications on mixed-mode reconfigurable multiprocessors. IEEE Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, California.

Wang, X., and Ziavras, S. G. (2004 - 1). Parallel LU factorization of sparse matrices on
FPGA-based configurable computing engines. Concurrency and Computation:
Practice and Experience, Vol. 16, No. 4, pp. 319-343.

Wang, X., and Ziavras, S. G. (2004-2). Mixed-mode scheduling for parallel LU
factorization of sparse matrices on the reconfigurable HERA computer.
International Conference on Advances in Computer Science and Technology
(ACST 2004), St. Thomas, U.S. Virgin Islands, Nov. 22-24, 2004.

Wang, X., and Ziavras, S. G. (2004-3). HERA: A reconfigurable and mixed-mode
parallel computing engine on platform FPGAs. International Conference on
Parallel and Distributed Computing and Systems (PDCS 2004), MIT,
Cambridge, MA.

Wang, X., and Ziavras, S. G. (2004-4). A configurable multiprocessor and dynamic
load balancing for parallel LU factorization. IEEE Workshop on Parallel and
Distributed Scientific and Engineering (in conjunction with the 18th
International Parallel and Distributed Processing Symposium-IPDPS2004),
Santa Fe, New Mexico.

Wang, X., and Ziavras, S. G. (2003 - 1). Performance optimization of an FPGA-based
configurable multiprocessor for matrix operations. IEEE International
Conference on Field-Programmable Technology (FPT'03), Tokyo, Japan.

168

Wang, X., and Ziavras, S. G. (2003 -2). Parallel direct solution of linear equations on
FPGA -based machines. IEEE International Workshop on Parallel and
Distributed Real-Time Systems (in conjunction with the IEEE International
Parallel and Distributed Processing Symposium-IPDPS2003), Nice, France.

Wang, X., Ziavras, S. G and Savir, J. (2003-3). Efficient LU factorization on FPGA-
based machines. IASTED International Multi-Conference on Power and Energy
Systems, Palm Springs, California.

Watson, D., Siegel, H. J., Antonio, J. K., Nichols, M. A., and Atallah, M. J. (1994). A
block-based mode selection model for SIMD/SPMD parallel environments.
Journal of Parallel and Distributed Computing, Vol. 21, No. 3, pp. 271-287.

Wirthlin, M. J., and Hutchings, B. L. (1996). Sequencing run -time reconfigured
hardware with software. ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp.122-128.

Wolf, W. (2004) The future of multiprocessor systems -on-chips. IEEE Design
Automation Conference, pp. 681-685.

Xilinx Power Tools (2003): The power estimator, XAPP152 (Ver. 2.1).

Xilinx Virtex II datasheet. http://direct.xilinx.com/bvdocs/publications/ds031.pdf .

Xilinx. http://www.xilinx.com .

Ye, W., Vijaykrishnan, N., Kandemir, M., and Irwin, M. J. (2000). The design and use
of SimplePower: A cycle -accurate energy estimation tool. IEEE Design
Automation Conference, pp. 340-345.

Ye, Z. A., Moshovos, A., Hauck, S., and Banerjee, P. (2000) CHIMAERA: A high-
performance architecture with a tightly -coupled reconfigurable functional unit.
IEEE International Symposium on Computer Architecture (ISCA), pp. 225-235.

Zhu, D., Melhem, R., and Childers, B. (2003). Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multi -processor real- time systems. IEEE
Transactions on Parallel and Distributed Systems, Vol. 14, No. 7, pp. 686 -700.

Zhuo, L., and Prasanna, V. K. (2004). Scalable and modular algorithms for floating-
point matrix multiplication on FPGAs. IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 92 - 101.

Ziavras, S. G. (1993). Efficient mapping algorithms for a class of hierarchical systems.
IEEE Transactions on Parallel and Distributed Systems, Vol. 4, No. 11, pp.
1230-1245.

	Design and resource management of reconfigurable multiprocessors for data-parallel applications
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 3)
	Biographical Sketch (2 of 3)
	Biographical Sketch (3 of 3)

	Dedication Page
	Acknowledgment Page
	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Introduction
	Chapter 2: Reconfigurable Computing
	Chapter 3: Multiprocessors On A Programmable Chip
	Chapter 4: Application Study
	Chapter 5: Performance Results And Analysis
	Chapter 6: Hera System-level Energy Modeling
	Chapter 7: A Framework For Resource-Efficient Mapping On MPOPCs
	Chapter 8: Conclusions And Future Work
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

