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review of the literature relevant to the present work is in order. Specifically, the literature

being cited is on particulate behavior in vibrated containers and the effect of vibration on

segregation in hopper flow.

Historically, the earliest reported studies on vibrating granular beds are related to

structural vibrations. In the experimental work reported in 1782, wh ch marks the

beginning of research in structural dynamics, Chladni [1] used sand for displaying nodal

patterns of completely free vibrating plates. Faraday's work [2], also on elastic vibrations

and published in 1831, reported convection and heaping in the flow of particles on

vibrated beds. These two characteristics of the solids flows in vibrated beds are still

intriguing for researchers and remain quite unexplained.

Studies on the specific problem of vibration of particulate materials began

apparently more recently than the two works cited earlier. Bachmann [3] and, later, Kroll

[4] made important contribution as their studies were directed toward the effect of depth.

of bed of granular material. These authors reported that in beds having depths less than

six times the particle dial meter, vibrations set the particles into a fluidized state. However,

in beds of thickness greater than six particle diameters, the particles behave as a single

mass. These two works actually considered what are now recognized as shallow and deep

beds. The first attempt toward clear characterization of particulate behavior in vibrated

beds was made by Thomas et al. [5]. These authors used two-dimensional, rectangular

containers and, through their extensive experimental studies, identified four states of

particulate behavior in shallow beds; these were referred to as "Newtonian-I,"

"Newtonian-II," "coherent-expanded," and "coherent-condensed" states. In the

Newtonian-I state, the particles are in a state of random motion with nearly uniform
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density in vertical direction. The Newtonian-II state appearing with some increase in the

bed depth exhibits segregation of two layers during a portion of a cycle: a dilute upper

layer of particles in random motion of particles, and dense layer near the bottom. Further

increase in the depth results in a transition to coherent-expanded state in which the bed of

particles oscillates as single mass but is accompanied by considerable expansion and

contraction. Still further increase in depth leads to coherent-condensed state, which

represents transition to deep bed regime as observed by Bachmann [3].

It is now widely accepted that the two most important parameters which govern

the behavior of particulate materials under vibration are: (1) the dimensionless depth of

particulate bed, ho/d, where h © and d are the depth of particulate bed and particle diameter

d, respectively, and (2) the dimensionless amplitude of acceleration, or simply g-level

acceleration, F = aw2/g where a is amplitude of vibration, co the angular frequency of

vibration, and g is the gravitational acceleration. The behavior of particulates in deep

beds exhibits a variety of phenomena; the occurrence of these phenomena depends on the

dimensionless depth ho/d and the g-level acceleration F. Wassgren et al. [6] and

Wassgren [7] have recently presented a systematic characterization of the deep-bed

phenomena. These phenomena, which occur with increasing g-level acceleration, include:

cellular convection, heaping, small-amplitude surface waves, arching, and large-

amplitude surface waves.

As pointed out earlier, the phenomena of cellular convection and heaping were

first observed by Faraday [2]. The cellular convection, which begins at about 1-g

acceleration, is exhibited in the form of particles moving along the sidewalls of the

container and re-circulating within the bulk of material. The movement of particles is



4

observed to be downward along vertical walls as in cylindrical containers, and upward

along inclined walls as in conical or wedge-type containers. Heaping, which occurs at a

slightly higher acceleration of about 1.2 g and accompanies convection, is observed by

the formation of a mound of the bulk either centrally placed or more commonly inclined

from one end of the container to the other. Cellular convection and heaping have been

studied by many researchers; see for example, [6]-[11]. With further increase in the g-

level acceleration, convection and heaping phenomena disappear, and a variety of

phenomena, such as, small-amplitude surface waves, arching, and large-amplitude have

been observed [6, 7], [11]-[13].

Many particulate processes involve mixture of two or more materials. An

undesirable outcome of vibration is segregation of constituents from the mixture. For

example, in a vibrating container having a binary mixture, segregation is shown by

accumulation of larger size particles at the top of smaller size particles. Ahmad and

Smalley [14] made systematic investigations on the effect of various parameters on

segregation. Experiments were conducted by introducing a large particle at the base of

small particles in a cylindrical container. The cylinder was subjected to vertical vibrations

and segregation was studied in terms of rise time of the large particle. Among the various

parameters considered, the acceleration and size of large particle was found to be the

most important; segregation time was found to increase with increase in acceleration or

the particle size. Following the work of Ahmad and Smalley, segregation study based on

the rise time of a single large size particle has been used by many other researchers, for

example, Knight et al. [15], Vanel et al. [16]. Brone and Muzzio [17] utilized an

interesting technique for segregation study. In this technique, binary mixture of equal
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amounts (by volume) of two different size particles was vibrated in a cylindrical vessel

for a specified time. The mixture was subsequently frozen with a binder. Segregation was

studied by examining the structure on the surfaces of the vertical slices cut from the

frozen mixture. Borne and Muzzio [16] showed that the binary mixture can be driven

back and forth between segregated and homogeneous states by decreasing or increasing

the vibration frequency.

The theories on the segregation mechanism may be regarded as geometric and

convection theories. The geometric theories explain segregation as a consequence of the

higher tendency of small particles to fill gaps or holes formed underneath the larger ones

[16, 17]. The convection theory proposed by Knight et al. [15], attributes segregation to

the formation of convection rolls that tend to carry the larger particles to the bed surface.

The recent developments in the computer hardware of increased processing

speeds and data storage capabilities, cost reduction of the hardware, and availability of

computer graphics and visualization techniques have made computer simulations a

lucrative tool to study the particulate dynamics. By computer simulation one can realize

the actual experiment, and can achieve much more than what may not be possible

experimentally for many reasons. The simulation can control and aid in the measurement

of various parameter which are not feasible in experiments. They can also create an

ambience, for example reduced-gravity environment, which it is not possible to do with

experiments. Also, the state of particulate motion can be known at all times in simulation.

Most simulation models are discrete element (DE) types in that the particulate

bulk is modeled as a system of individual particles, which interact with the other particles

only at the contact points. The time step in the DE models is taken to be so small that
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during a single time step any disturbances may be considered to propagate no farther than

its contacting particles. Among the various versions of the DE simulations, the discrete

element method (DEM) developed by Cundal and Strack [18] is most widely used.

Another widely used technique advanced by Walton and Braun [19] and Walton [20] is

also a DE simulation; however, the contact model of these authors [19, 20] is

considerably different from that of Cundal and Strack [18].

Discrete element simulation has been employed for vibrating particulate systems

by a number of authors. These include simulation of a variety of phenomena, such as, [7],

[21]-[26], heaping [7], and arching [27], and the shallow bed phenomena [28].

1.2 The Present Work

Granular flow is a complex phenomenon, and it is not surprising that its basic mechanics

is not well understood. Complexity in the understanding and investigation of granular

flows also comes due to an enormous of variables involved which include the shape, size,

and materials of the particles, the types of handling devices, environmental conditions,

and so on.

The problems in the present search have been undertaken from a rather practical

standpoint. The present work is concerned with segregation analysis and particulate flow

characterization in vertically vibrated planar wedge-type hopper. Specifically the

problems considered in this thesis are the following:

1. Experiments on segregation analysis of discharge of binary mixtures from vertically-

vibrated wedge-type hoppers,
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2. Experiments on flow characterization of binary mixtures in vertically-vibrated,

wedge-type, sealed hoppers, and

3. Numerical simulation of binary-mixture flows in vertically vibrated, wedge-type,

sealed hoppers.

In the following chapters of this thesis, the details of numerical simulation

technique and its computer code are described in Chapter 2. The details of the

experimental facility used for the experimental investigations are given in Chapter 3. The

results of the research work on the three aforementioned problems are presented and

discussed in Chapter 4. Finally, the conclusions of the investigations are presented in

Chapter 5. In this chapter, the possibilities of further research that arise from the present

work are also described.



CHAPTER 2

NUMERICAL MODELLING

2.1 The Numerical Simulation Code

The granular dynamic simulation is an apparent forerunner of the granular dynamic

simulation. However, the analogy between the two techniques extends to no more than

that both consider the dynamical system of particles as a deterministic, classical N-body

problem. The molecular and granular systems are essentially different physical systems.

The molecules in a fluid are always in a state of random motion, the granules in a bulk

solid set in motion through some sustained source of disturbance. Energy conservation is

essential for a molecular system where as energy dissipation is the characteristic for the

granular system. A part of kinetic energy is lost either in dissipation due to friction and/or

plastic deformations in particulate collisions. Interacting solid particles are generally

modeled as hard or soft spheres. The hard sphere model considers the particles to be

infinitely stiff so that it rebounds immediately after the collision with another particles.

The soft sphere model allows colliding particles to overlap a small percentage of their

diameters.

The numerical simulation code used in the present study is the C++ version,

adapted by Maher Moakher for hopper flows, from the Fortran code developed by 0. R.

Walton based on the three-dimensional, soft sphere granular dynamics model of Walton

and Braun [19]. The present author introduced some modifications to account for the

vertical vibrations of the hopper.

The flow chart of the code is given in APPENDIX A. The operation of the code is

briefly as follows. The initial coordinates for particle centers are generated via a random

8
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number generator. A radii expansion technique is used to determine a non-overlapping

distribution of the particles. The zero-time setting of the particles is configured. This is

done by allowing the particles to fall under gravity and settle into a loose packing; this is

equivalent to pouring and setting of the granules in the hopper in an actual experiment.

The hopper is set in vertical vibration and numerical simulation begins with the solution

of the equations of motion of the interacting particles (modeled as soft spheres). The

solution is based on a finite difference algorithm of Verlet [30] which carries out

integration of the equations of motion in discrete time steps.

The code comprises of a number of functions (or subroutines). The input

parameters needed for simulation are read in the function datain. These parameters are as

follows:

• Types of (spherical) particles in the granular mixture

• Number of each type of particles

• Diameter and mass of each type of particle

• Coefficients of restitution (particle/particle and particle/wall)

• Friction coefficients (particle/particle and particle/wall)

• Stiffness coefficients (particle/particle and particle/wall)

• Ratio of normal to the tangential force

• Hopper dimensions

• Maximum simulation time

• Gravity acceleration

• Frequency and g-level acceleration of hopper vibration
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For a numerical simulation beginning at zero time, the initial positions and

velocity of the particles are generated in the function initl. However, if it is a

continuation of an earlier simulation, the function init2 is called which reads the end

conditions of the earlier simulation, and sets them as the initial conditions of the current

simulation. The initial configuration is completed after the findrad is executed. The

inter-particle forces are calculated, using the Walton-Braun model [19], in the function

forces. The forces are utilized to determine displacements and velocities by integrating

the equations of motion in the function integ.

In the following, salient features of the simulation code and the model are

described.

2.2 Initial Condition Generation

After the simulation parameters are read in the function datain, the particles are assigned

center coordinates using a random number generator in the function initl. For this

purpose, the hopper space is divided into a number of layers which equal the number of

types of particles in the granular mixture being used for simulation. In case of a binary

system, as used in the present work, the hopper space is divided into two layers. The

center positions of the bigger particles are generated in the bottom layer and those of the

smaller particles in the upper layer. Once the positions of the particles are defined, the

function findrad is called which finds an allowable radius for each particle. This function

gives an allowable radius equal to a fraction of the distance between two particles. Then

the particle radii are adjusted by expanding in such a way that there is no overlapping

between particles and that the particle radii are in a close range of the particle radii



11

inputted earlier as simulation parameter. In the process of expansion of the particles,

contact forces are calculated (using Walton-Braun model) between overlapping particle,

and the subsequent motions are determined through the equations of motion using

functions integ1 and integ2. This radii expansion procedure continues for several cycles

till the aforesaid geometric constrains are satisfied.

It may be noted that in the radii expansion process a virtual environment of

collision of particles is created, however, there is external disturbance, and therefore, the

particles are finally set in static equilibrium. Also, the algorithm actually sets the particle

radii in a range similar to the actual size distribution.

2.3 Zones Mapping

As the simulation of a physical system may involve a very large number of particles,

efficient management of computation and the available memory is of utmost importance

in the development of the computer code. For this purpose, the entire space of the hopper

is divided into several computational zones. These zones are first mapped; this is done by

the function zonesmapping where each zone is given a 'zone index' and also each zone

has the details of surrounding zones in an array. This function along with other functions,

described in the next section, plays an important role in achieving the objectives of

memory management and computation time reduction.

2.4 Zones Updating and Neighbor List

The concept of linked lists in the programming languages provides an efficient way to

handle the details of a particle and its neighbor. A linked list is a list of similar items

linked to each other in a meaningful way for an easy access. First the particles are placed
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in different zones which are indexed using the function zoneindex. Once the details of

the particles in the different zones are known, the function checks the distance between

two particles in a particular zone and its adjacent 26 zones. Avoiding the calculation of

the distance between each and every particle of the system of particles results in a

considerable saving of computational time. The parameter search radius is used by the

function to put the particles within this radius in the linked list. This is done by

comparing the search distance with the above computed particle distances. Thus the list is

minimized to allowable limit to maximize the simulation speed. They are mentioned in

detail in APPENDIX B.

2.5 Force Model

Walton and Braun [19] and Walton [20] have developed two separate models for the

calculation of normal and tangential forces between two colliding soft spheres. These

models are described briefly in the following.

2.5.1 Normal Force Model

This model for normal force calculations, termed as "partially latching-spring model" by

Wanton and Braun [19] is shown in Figure 2.1. The collision between the particles is

considered to be in the loading and unloading stages. Compression occurs during loading

stage and continues until the relative velocity between the particles is reduced to zero and

a maximum value of overlap is reached. This is followed by the unloading stage or

restitution stage in which separation occurs between the particles. At the end of this stage,
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the two particles will either have regained their original shape or have some residual

deformation before loading again. No permanent deformation of the spheres is allowed

and if the particle does not suffer another collision during the unloading period, any

residual deformation is set to zero for the next collision.

Figure 2.1 Partial latching spring	 Figure 2.2 Inelastic normal
model of Walton and Braun [20]	 force-deflection curve

Figure 2.3 Normal force for Case 1 	 Figure 2.4 Normal force for Case2



Figure 2.5 Normal force for Case3

As shown in. Figure 2.2, the normal force (F 1 or F 2 ) is expressed as

where K 1 and K.) are the stiffness of two springs in Figure 2.1, and are the slopes of the

loading/unloading lines in the Figure 2.2. Also, a is the instantaneous overlap and αo is

the overlap value where the loading/unloading curve goes to zero along the slope K2. In

this model, the initial loading follows the slope K 1 from point a to b. If unloading occurs

at point b, it will take place along the steeper slope of I1, from point b to c, until the

normal force is reduced to zero with a remaining overlap αo. Reloading from any point

between b and c will follow the path c-b-d. Unloading from a different point d will be

along a different path but at the same slope of K-).

14
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During the simulation, the code calculates the value ofF 1 and F, at each time step,

and chooses the smaller one to be the normal force between the particles, which results in

the loading, unloading, and reloading paths as described above. A detailed explanation is

as follows.

Case 1:

Loading from zero remaining overlap a = 0), Figure 2.3:

Since K1 <1(7, F 1 = K1a <K7(-0) = F7, so that F1 is the normal force in this case.

This means loading follows the path having a smaller slope K 1 .

Case 2:

Unloading:

Unloading from point b will follow the path b-c (Figure 2.4). Here F2 will always be

less than F 1 .

Case 3:

Reloading from a0 # 0:

From Figure 2.5, it is clear that F7 <F 1 when reloading from c to b. Choosing F2 as

the normal force is equivalent to reloading along path c-b (slope I(7). After reaching

point b, F2 will be larger than F1. So F1 will be used as the normal force, ensuring

further loading along b to d.
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Although the normal force model discussed above is a simple empirical model,

Walton and Braun[20] had shown that it could effectively approximate the behavior

observed in experiments and finite element calculations. In this study, this model had

been used to simulate the behavior of vibrating Hoppers. Results compared with

experimental data also demonstrate the effectiveness of this model.

The force model produces binary collisions with a constant oefficient of

restitution give by e = 	 K2 .

2.5.2 Tangential Force Model

The tangential force model according to Walton [20] is a two-dimensional (surface)

extension to Walton and Braun's one-dimension approximation to elastic frictional

sphere contact force model of Mindlin [31]. In the tangential force model, the effective

tangential stiffness of a contact decreases with tangential displacement until it is zero

when full sliding occurs. In the present two-dimensional surface model the tangential

displacement parallel to the current friction force and the displacement perpendicular to

the existing friction force are considered separately. They are later combined vectorially

and their sum is checked against the total friction force limit, uFN

The effective tangential stiffness in the direction parallel to the existing friction

force is given by:
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T—T  

, for T decreasing. 

where K0 is the initial tangential stiffness; T is the current tangential force magnitude; T *

starts as zero and is subsequently set to the value of the total tangential force, T,

whenever the magnitude changes from increasing to decreasing, or vice versa; y is a fixed

parameter often set to 1/3 to make the model resemble Mindlin's elastic frictional sphere

theory, and p, is the coefficient of friction. A value of 1 or 2 for v more closely mimics

the behavior of frictional contacts involving plastic deformation in the contact region.

This implementation involves some algebraic and vector manipulation since the

direction the surface normal at contact changes continuously during a typical contact. The

assumption in the model is the time difference between two steps is relatively small.

Hence for two spheres in contact if the unit vector normal at the contact point between

the two spheres is k. The tangential force in the previous time step is projected on the

current tangent plane,

T0 = kJ,/ x To ld x kij

= To ld — (kij.Toid
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This projected friction force is normalized to the old magnitude to obtain a new

starting value for friction force, before adding in the effects of displacements during the

last tume step,

T Tom / To I To

A unit vector in the direction of this vector is used in the subsequent steps

i=T/ITI

The relative surface displacement of the last time step projected on to the contact tangent

plane is give by,

As n -I / 2 ( 	 m-1 /[Z./ x 1) n - I 2 	 2 ) x 	±	 „I! 2 	 1
— 	 X )IA1

=	 ij —kij(kif .Arij)± [( ;itI2 xf +r	 ' 2 X /CT 11A t
0'	 .1

where Aro. =	 — r/I 1 is the change in the relative position vector during the last time

step. For a sphere I and J the subscripts i and j are given, v is the velocity vector co is

the angular velocity and r is the sphere radius and At is the time step.

2.6 Boundary Conditions

Boundary conditions need to be applied to check the distance of a particle in the vicintiy

of hopper wall. If rpw is the shortest distance between a particle and hopper wall, then

overlapping occurs when r 1)„. 5_ r, where r is the radius of the particle. In Figure 2.6, two
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situations, when a particle is close to the vertical side and slant side walls of the hopper,

are shown. Particles are initially deposited and then they are vibrated. In the first case of

deposition the plane boundary condition is applicable. Where as the case where the

hopper vibrates then the walls are not stationary hence plane boundary conditions

cannot be applied. The walls of the hopper is allowed to oscillate based on the applied

vibration.

Consider Figure 2.6.a The distance r pw is given by

rpw = )1 1113X Y

For the case when the particle is close to the slant side, Figure 2.6.b

rpw = [Ymx -yI-(H-zI) tan α] cos a.

The above equations apply in case of a vibrating hopper as well with z replaced by

z = z + a sin cot where a and w are the amplitude and angular frequency of vibration. t is

the time.

Figure 2.6.a Particle	 Figure 2 6 b Particle
interaction with side wall 	 interaction with the slant wall


