New Jersey Institute of Technology Digital Commons @ NJIT

Civil and Environmental Engineering Syllabi

NJIT Syllabi

Fall 2024

ENE 262 - 001: INTRO TO ENVIRONMENTAL ENGR

Paul Schorr

Follow this and additional works at: https://digitalcommons.njit.edu/ce-syllabi

Recommended Citation

Schorr, Paul, "ENE 262 - 001: INTRO TO ENVIRONMENTAL ENGR" (2024). *Civil and Environmental Engineering Syllabi*. 801. https://digitalcommons.njit.edu/ce-syllabi/801

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Civil and Environmental Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

SYLLABUS ENE 262 – INTRODUCTION TO ENVIRONMENTAL ENGINEERING – rev.1-2-2024, 7-14-2024 Department of Civil and Environmental Engineering New Jersey Institute of Technology Fall 2024 – each Tuesday beginning September 3 to December 17 Section 001: CRN

Instructor: Adjunct Professor: Paul Schorr, PE, PP, BS ChE, MS CE, M ASCE; 609-933-3900 cell; schorr@njit.edu
Office hours, call cell, Tuesday 2:30-3 pm; Colton Hall
Class hours Thursday 10 AM to 2:20 PM, Class room CKB #315
Field Trips: wastewater and water treatment utilities during agreed upon hours:
Lab: Hardness, Alkalinity & Jar Testing, dates tbd, Colton Rm 420
Teaching & Laboratory Assistant: tbd

Prerequisites: Chemistry 125; Math 112, Physics 121

Required Text (T): Davis, M.I. and Cornwell, D.A., Introduction to Environmental Engineering, 5th Edition, McGraw Hill Companies, New York, N.Y., 2013, ISBN 978-0-07-340114-0, or digital

Analog tools to be provided: mason's level

Supplemental References to be provided: American Water Works Assn. OPFLOW Certification Corner

Internet References: Passaic Valley Water Commission Annual Water Quality Report; United States Geological Survey stream gage 01389005; New York City Division Water and Sewer Bond Prospectus; Rockaway Valley Regional Sewerage Authority; Water Power, C.C.Vermeule, 1894; Instream Aeration, 1970, Whipple.

Objectives:

- a. Provide **concepts and analytical tools** for equitable use of water, air and land resources during normal and extreme conditions, such as drought, floods, air inversions, heat waves, hazardous waste spills and pandemics that disrupt public health, safety and welfare;
- b. Encourage use of vetted, **open and affordable materials** from NOAA, USEPA, USGS, NJDEP, New York City, Trenton, Wickapedia, Utube, university libraries, professional societies ;
- c. Provide **educational credits** for exams for the Introductory License to Operate a Water or Wastewater Treatment Plant. See website (<u>https://www.state.nj.us/dep/watersupply/dws_train.html</u>) for the experience and educational requirements required by the State to take the exam.
- d. Provide an engineering approach to problem solving for written and oral presentations:
 - 1. provide a title page to identify prob. #, name, class, date; professor, university,
 - 2. restate the problem, define knowns, unknowns, and assumed terms and their units;
 - 3. draw to scale a representation of the problem and solution;
 - 4. propose a qualitative and quantitative mathematical or graphical solution procedure;
 - 5. substitute numerical values into the solution procedure to derive a suggested answer;
 - 6. **provide a quantitative error** based on statistics, instruments, data sources, mathematical formulas, graphical techniques, conversion and scaling factors, or alternative tests;
 - 7. provide a disclaimer based on your limitations of time, skill and experience;
 - 8. cite references by page and author and acknowledge contributions of individuals.
 - e. Provide each student with experience in giving oral presentations.

f. Compare design concepts of textbooks, lab work, field visits, contractors and operators

ASSIGNMENTS: Each student will have one assignment each week from a List of Assignments, to be posted before each class. Each student must use the **approach to problem solving** for oral and written assignments:

ABBREVIATIONS: **CC** = Certification Corner; **CS** = chap-sect; **D** = Discussion Questions; **E** = example; **Eq** = equation; **F**= Figure; **FE** = FE Exam Formatted problems; **NSPE** = National Society of Professional Engineers; **P** = problems; **R** = Chapter Review; **T** = Table.

Class Date Week # - month/day	Topics	Text to be read before class	List of assignments for following week	Concepts/Keywords
1- 9/3	Book organization, Instructor background, Approach to problem solving, Operator Testing	CS-Introduction 1-11 (pgs 1-18) List or Elements, Periodic Table, About the Authors, Preface, Acknowledgements, Contents, Index, Appendix A, B, C	F1,2 4; T 3,4,5,6 P1,2,3,4,5, 6,7,8, 9,10,11; D1,2,3,4,5,6,7; FE1,4 NSPE-BER 72-9	Ethics & transparency; Approach to Problem Solving; mass & energy; institutional vs hydrologic boundaries, water & air properties
2- 9/10	CS - Materials & Energy Balances : Unifying theories, Materials Balances, Time	CS 1,2,3, time, (pgs 25-37)	E 1,2,3,4,5 R 1,2,3,4,5 P 1,5,9 D 1,3 FE 1, 4	Dimensional homogeneity; loading = flow rate x concentration; kinetic+potential + internal energy= (Bernoulli's equation)
3- 9/17	CS – Materials & Energy Mixing, Reactions Losses Thermodynamics, Heat Transfer 2 nd Law Thermo	CS – plug flow, CSTR (pgs 37-53); units, conduction, convection, radiation (pgs 57-70)	E 6,7,8,9,12,13,14 F 2,3,4,7,8,9,15 T 4 (water) R 6,7,8 15,18; P 11,14, 19,22, 31,40 (Edinger) D 1	Steady vs Unsteady states; Material & Energy flows from high to low- temp., elev., voltage, concentration; change of state - e.g. vapor/ condensate/ precipitation/
	CS Risk Assessment, probability, data	CS 1, 2,3 (pgs 89-103)	R 1,2,4,7,8 ; Eq 2,9 ; R 1, 4; P 1,7	burden=concentration x exposure; mixing; toxicity acute-nitrate,

		collection, toxicity, exposure			secondary - MTBE, OSHA - formaldehyde
4-	9/24	CS Water Resources Engineering,	CS 1,2,3 (pgs124-126) CS 5 (pgs 131-150) CS 6,7 (pgs159-169, 177-181)	R 1 to 9, 11 to 14, 19 to 23, 31; P 1,6,14,21,25,33, 37, 43,54; D 2, FE 1,3,4	Recharge; Vermeule; Harry's Brook, flood plain & groundwater; mason's level-slope; starting condition; Manning formula; Reynold's number
5-	10/1	CS Water Chemistry Lab- alkalinity & hardness	CS 1 to 6 (pgs 216-241);	R 1 through 11 P 1 to 44 R 4, 7, 5	Water and wastewater treatment; East Palestine Ohio Hazardous wastes
6-	10/8	Water Chemistry continued	CS 5	R 2 through 45; P 1-11,	Volatility; density; solubility; diffusion
		Water Treatment -	CS 6 (pgs 250 to 282, 297 to 365);	P 30 to 66; D 1 to 6; FE 1 to 4 R 14,7,5	Residence time; mixing; effluent standards;
7-	10/15	Water Treatment Lab Jar tests	CS 6 continued	Clinton Bogert Engg & USEPA manuals	Scale up from lab bench/pilot/full; Concept to asbuilt;
8-	10/22	Field Trip		Passaic Valley Water Commission	
9-	10/29	Water Pollution	CS 7 (pgs 388-440);	R 1-35; P 1 to 16, P 7-19 to P 7-47; D 1 to 7 FE 1 to 4	Analog vs digital simulation of BOD/DO for Instream Aeration; ORSANCO, East Palestine water impact
10-	11/5	Wastewater Treatment	CS 8	RVRSA website California OWP;	Oxidation ditch, residence time / volume
11-	11/12	Wastewater Treatment	Chapter 8	Two Bridges field California OWP	Ultra Violet Radiation & DNA
12-	11/19	Air Pollution Hazardous Waste	Chapter 9 (pgs 455-557) Chapter 12	National Transportation Safety Board	East Palestine air dispersion by temp, wind, nomograph

13- 11/26	Air Pollution	Chapter 9; R8,9	USEPA	First Responder/
			Ohio EPA	Engg Operator/
				Bridge on River
				Kwai
14- 12/3	Noise Pollution	Chapter 10	Acapulco	Institutional/ Engg/
	Solid Waste Mgt	Chapter 11	Hurricane	Political Differences
15- 12/10	Sustainability and	Chapter 13	Climate Change	Carbon sequestration,
	Green Engineering	Ĩ		Transportation Engg
				Architectural Coor.
16 - 12/17	Final Presentations		Assignments TBD	
	Team Projects; Final			
	exam			
GRADING	(subject to revision)	% of total gra	de Raw Score	range for assignments
	· · · · · · · · · · · · · · · · · · ·			<u> </u>

Final Exam	15%	0-10; 1 point/step app. to problem solving
Team Field Trip Report	10%	0-10; 1 point/step app.to problem solving
Assigned 10 written problems	30%	0-10; 1 point/step app.to problem solving
Oral presentations no more than 8	20%	0-10; 1 point/step app.to problem solving
Team/Individual lab reports	15%	0-10; 1 point/step app.to problem solving
Certification Corner questions	10%	0-10; 1 point/step app.to problem solving

A = 4.0	90 to 100%
B+ =	87 to 89%
B = 3.0	80 to 86%
C+=	70 to 79%
C = 2.0	60 to 69%
D =	50 to 59%
F =	Below 50%

*The NJIT Honor Code will be upheld, and any violations will be brought to the immediate attention of the Dean of

Students.

The approach to problem solving requires that those individuals who have collaborated or contributed to assignments be acknowledged.

Plagiarism is defined as taking credit for work by others and will be considered a violation of the NJIT Honor Code. Use of AI must be specifically cited and answers independently verified

All disputes about points and grades must be written and specific to the exam, problem, report or presentation in question.

Changes to grades must be made with the approval of the Program Chair and within the University time frame for making changes.

WEBEX classes may be recorded to verify presence and participation. Chat may also be used to verify presence and participation.

The use of electronic devices that interferes with problem solving for individuals or teams is strictly prohibited.

Any reference obtained from an electronic device must be identified sufficiently to verify accuracy.

Written assigned problems or CC must be submitted electronically as WORD documents

Raw scores will be provided for assigments not letter grades

Field Trip reports and Lab reports must be submitted individually when specified.

ADDITIONAL REFERENCES

https://abcnews.go.com/US/toxic-chemicals-train-derailed-ohio-originally-reported-data/story?id=97080179

https://www.youtube.com/watch?v=EV2fKrRFGRE

CEE Mission, Program Educational Objectives and Student Outcomes

The mission of the Department of Civil and Environmental Engineering is:

- to educate a diverse student body to be employed in the engineering profession
- to encourage research and scholarship among our faculty and students
- to promote service to the engineering profession and society

Our program educational objectives are reflected in the achievements of our recent alumni:

<u>1 – Engineering Practice:</u> Alumni will successfully engage in the practice of civil engineering within industry, government, and private practice, working toward safe, practical, resilient, sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation, and water resources.

2 - Professional Growth: Alumni will advance their technical and interpersonal skills through professional growth and development activities such as graduate study in engineering, research and development, professional registration and continuing education; some graduates will transition into other professional fields such as business and law through further education.

<u>3 – Service:</u> Alumni will perform service to society and the engineering profession through membership and participation in professional societies, government, educational institutions, civic organizations, charitable

giving and other humanitarian endeavors.

Our student outcomes are what students are expected to know and be able to do by the time of their graduation:

- 1. an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
- 3. an ability to communicate effectively with a range of audiences
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusions
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Outcomes Course Matrix - Prepared By: Adjunct Professor Schorr

Strategies, Actions and Assignments	ABET Student Outcomes (1-7)	Program Educational Objectives	Assessment Measures
Student Learning Outcome 1: Describe and he driving forces behind environmental sci		0	, standards, ethics and
Define environmental science and engineering as practiced by agencies and ndividuals; read and rewrite problems in engineering terms. Listen to Operators and nanagers of systems that did not meet lesign expectations	1, 3	1, 3	Weekly assignments scored by use of Approach to Problem Solving.
Explain and discuss past, present and proposed environmental regulations, standards, techniques and ethics, in terms of environmental justice", equitable allocation of resources in average and in extreme situations. Listen to Operators and managers of systems that did not meet design expectations	1, 2, 3, 4	1, 2, 3	Weekly assignments scored by use of approach to problem solving and final exam.

Understand environmental and engineering parameters, unit, assumptions and conversion factors (physical and time dimensions). Listen to Operators and managers of systems that did not meet design expectations.	1, 2, 3	1, 2, 3	Weekly assignments and exams scored by use of approach to problem solving
Conduct laboratory tests for turbidity, hardness and for coagulation/flocculation by jar testing, explain assumptions (visual colors codes), apply those results to design and operation of water and wastewater systems and sensors .	1, 2, 5, 6	1, 2	Weekly assignments and exams and laboratory work.
Student Learning Outcome 3: Illustrate ma	ss balances in env	vironmental and	engineered systems
Draw problem to scale in 1,2 or 3 dimensions, to show the flux (rate of flow) of chemicals between air, water and land, through an engineered treatment, storage, and distribution systems and through a biological system.	2, 3	1	Weekly assignments, virtual or actual field trips and exams
Conceptualize mathematical models, equations and empirical formulas to calculate the rate (volume per unit time) and amount of chemicals (concentration per unit volume) in and through systems and the cycles or trends that may be occurring	2, 3	1, 2	Weekly assignments and exams
Student Learning Outcome 4: Apply basic s wastewater treatment, air pollution control			
	,	8	
Apply the standards to the design of water, wastewater, air pollution and hazardous waste facilities by using visual examples. Listen to Operators and managers of systems that did not meet expectations	1,	1	Weekly assignments, virtual or actual field trips and exams
Apply control technology to the operation of water, wastewater, air pollution, and hazardous waste facilities.	2	1	Weekly assignments, virtual or actual field trips and exams

Explain potential sources of error in design and operation of systems and equipment and techniques to monitor and respond to unexpected circumstances.	2, 3, 7	1, 2, 3	Weekly assignments, virtual or actual field trips and exams
Cite references and acknowledgement any assistance	1-7	1-7	Weekly assignments, field reports, exams