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ABSTRACT

ELECTROMAGNETIC AND ACOUSTIC PROPAGATION IN STRIP
LINES AND POROUS MEDIA

by
Lin Zhou

Wave propagation in two physical structures is described and analyzed in this disser-

tation. In the first problem, the propagation of a normally incident plane acoustic

wave through a three dimensional rigid slab with periodically placed holes is modeled

and analyzed. The spacing of the holes Α and B, the wavelength λ and the thickness of

the slab L are order one parameters compared to the characteristic size D of the holes,

which is a small quantity. Scattering matrix techniques are used to derive expressions

for the transmission and reflection coefficients of the lowest mode. These expressions

depend only on the transmission coefficient, τρ, of an infinitely long slab with the

same configuration. The determination of r o requires the solution of an infinite set of

algebraic equations. These equations are approximately solved by exploiting the small

parameter D/VAB. Remarkably, this structure is transparent at certain frequencies

which could prove useful in narrow band filters and resonators.

In the second problem, a systematic mathematical approach is given to find

the solutions of microstrips transmission lines. Specifically, we employ an asymptotic

method to determine an approximation to the field components and propagation

constant when the wavelength is much bigger than the thickness of the substrate. It

is found that the transverse electrical and magnetic fields can be expressed in terms

of two potential functions which are elliptic in character and are coupled through

the longitudinal electrical field boundary conditions. The solvability conditions for

the longitudinal magnetic field yield an approximation to the propagation constant.

Transmission line equations are also obtained for coupled microstrips transmission lines

and single microstrips with smoothly changing widths by using the same techniques.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Wave propagation through complex structures is an important topic in many scientific

and technological fields. In most cases, analytic solutions are not available. The

corresponding mathematical problems have to be solved approximately to understand

the propagation phenomena.

In this dissertation, wave propagation in two physical structures is described

and analyzed. The first problem is concerned with a normally incident acoustic wave

propagation through a periodically perforated rigid slab. This problem is a model of

wave propagation through porous media. The second problem is concerned with an

electromagnetic wave propagation in microstrip transmission lines, which arises from

microwave integrated circuits. Both of the geometries are complicated so that exact

solutions are not available. Therefore, we have developed new approaches to solve

these two problems approximately.

Specifically, for the first problem, scattering matrix theory is applied to find

the transmitted and the reflected acoustic waves of the slab structure. Two auxiliary

problems are analyzed to obtain the entries of the scattering matrix. By using the

unitary character of the scattering matrix of the first auxiliary problem, the problem

of the slab is greatly simplified. Numerical solutions are obtained for small holes.

Some interesting phenomena of complete transmission are found independent of the

shape of the holes, which make the structure useful in constructing narrow band filters

and resonators.

For the second problem, a perturbation analysis is directly applied to Maxwell

equations for microstrip transmission lines in the case when the wavelength is much

1
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bigger than the size of the strip. By solving each order of the fields' equations,

transmission line equations are derived and each term in the equation is interpreted

mathematically. The method can be generalized to the microstrip transmission lines

with different configurations. This systematic mathematical derivation also gives an

approximation to the propagation constant of the microstrip transmission lines.

1.2 Dissertation Overview

This dissertation is organized in the following way. Chapters 2 and 3 include the first

problem. In Chapter 2, a mathematical formulation of the first problem is presented

under certain assumptions. Two auxiliary problems are analyzed and are used to find

the scattering matrix S of the slab structure. By using this matrix S we are able to

describe the properties of the transmitted waves and the reflected waves of the slab.

It turns out that the transmission coefficient of the lowest mode of the slab structure

depends on only one parameter B0, which is the transmission coefficient of the first

auxiliary problem. All the results in this chapter are for holes of arbitrary shapes.

In Chapter 3, the transmission properties of the slab structure are discussed by

finding Bo . The determination of Bo requires the solution of an infinite set of algebraic

equations. Under the assumption that the size of the holes is much smaller than the

spacing of the holes, these equations are approximately solved by exploiting the small

parameter D/'/AB for circular and rectangular holes, respectively. The transmission

coefficients and the reflection coefficients are plotted as functions of frequency to

show the frequency selecting properties of the structure. This chapter ends with the

conclusion of the first problem.

Chapters 4, 5 and 6 contain the second problem of microstrip transmission

lines. In Chapter 4, the dispersive properties of a single microstrip transmission

line are analyzed by a perturbation method. Specifically, we find the asymptotic

expansions of the electromagnetic fields and the propagation constant for the case
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when the wavelength is much larger than the height of the substrate (low frequency

approximation). The first several terms of the electrical and magnetic fields and

the propagation constant are found in terms of potential functions. Some important

results are obtained through this systematic derivations. The Padre approximation is

used to derive the propagation constant as a function of frequencies.

In Chapter 5, the derived potential problems are solved numerically and the

propagation constant is found. Specifically, these potential problems are converted

into integral equations by applying the corresponding Green's functions, and these

integral equations are solved by Garlerkin's method. The results are compared with

those obtained by other authors.

In Chapter 6, we generalize our approach to analyze the case when the strip

width smoothly changes in the direction of propagation and the case of coupled

uniform microstrip transmission lines. For the variable width strip line, we obtain a

transmission line equation for the potential along the strip. For the coupled microstrip

transmission lines, coupled transmission line equations are derived for potentials and

currents along the two strips with each coefficient being properly defined through the

known potential functions. The chapter ends with the conclusion of the problem.

Some of the technical derivations are left out of the main chapters to preserve

the flow of ideas. These details are included in the six appendices, Appendix A

through Appendix F after Chapter 6, at the end of the dissertation.



CHAPTER 2

SCATTERING MATRIX METHOD

2.1 Introduction

The propagation of electromagnetic waves through metallic grating structures has

been studied both experimentally [9], [14] and theoretically [4], [31], [28], [30] in

recent years. Metallic grating structures have the properties of complete transmission

at certain frequencies, which make these structures useful in protonic and microwave

circuits. In [20], Kriegsmann addresses the problem of a TM polarized electromagnetic

wave through a 2-dimensional periodic structure. Resonant properties of the structure

are explained in [20] using the scattering matrix method.

The scattering matrix method is also suitable to study a similar acoustic problem.

The acoustic analog of the electromagnetic problem consists of investigating the

propagation of acoustic waves through porous media in which the pores are periodical-

ly distributed. In [25], Norris examines the frequency responses for an infinitely long,

rigid structure perforated with circular holes. Total reflection is found at certain

frequencies up to the first cut-off frequency.

In this dissertation, the acoustic transmission properties of a structure of finite

length, and otherwise similar to the one examined in [25], are considered by applying

the scattering matrix method. The scattering matrix of the structure, which depends

on only one parameter, is derived for arbitrarily shaped holes. Under the assumption

that the incident wavelength is of the same order as the spacing of the holes and is

much bigger than the hole size, the total transmission and total reflection properties

of the structure at certain frequencies are obtained for both circular and rectangular

holes. Some of the results obtained here are also found in [25] . However, the

derivations in this dissertation are more straight forward and the results are obtained

4



5

for general hole shapes. The frequency selection property of the structure makes itself

useful in constructing narrow band filters and resonators.

The problem is illustrated in Figure 2.1 and discussed in Chapters 2 and 3.

In Section 2.2, the mathematical formulation of the problem is presented and the

assumptions made are stated. This is followed by modal solutions to each part of

the structure. The solution outside the holes is explicit. The solution inside the

holes depends on the shape of the holes. However, the lowest eigenvalue and the

eigenfunction for different shapes are found to be the same. In Section 2.3, we describe

the scattering matrix method and deduce a scattering matrix S for the structure. This

allows both the transmission and the reflection coefficients to be obtained using S.

In deriving S, two auxiliary problems are introduced and discussed. It turns out

that the scattering matrix S depends on only one complex coefficient Το , which is the

transmission coefficient for the first auxiliary problem. The unitary character of S

forces B0 to lie on a circle in the complex plane.

2.2 Mathematical Formulation

A schematic diagram of the structure is shown in Figure 2.1. It is a rigid slab,

infinitely long in both Χ and Y directions. In the Z direction the thickness of the

slab is L. Holes are arranged periodically in the AY plane, and the cross section of

the hole is uniform along the Z direction. All the holes are of the same shape. Since

the structure is periodic, we consider a fundamental cell which is also shown in Figure

2.1. The length and the width of the fundamental cell are Α and B, respectively. For

an arbitrarily shaped hole, we define D, the square root of the hole's area, as the

characteristic size of the hole.

A plane acoustic wave with frequency w is normally incident on the rigid

material (in this problem, the wave is assumed to be of the form eat). The incident

wavelengh λ is of the same order as Α and B. We assume that the viscosity of



α

Figure 2.1 Schematic diagram of the periodic structure considered in problem 1.

air is small enough so that the boundary layer on the surface of the hole channel

can be neglected. Therefore, the acoustic pressure U satisfies Helmholtz equation,

ννΙ2 U + Κ2 U = 0 both inside the hole and outside the slab. The constant Κ in

the Helmholtz equation is the wavenumber defined as Κ = 2π/λ. The boundary

condition is aU/án = 0 on the rigid material, where n denotes the normal direction

to the rigid surfaces.

We assume that the hole is small compared to the size of the fundamental cell.

That is, D <z ‚/AB. Under this assumption, it is intuitive that most of the incident

wave will be reflected from the slab and only a small remnant of the wave will be able

to reach the region Z> D.

All upper case letters used so far are dimensional parameters and variables. We

will use lower case letters to denote the corresponding dimensionless quantities. We

scale all lengths by \/AB . Therefore, the fundamental cell has length a and width

b, and Bab = 1. The slab thickness l = D/VAB, which is an order one parameter

in our problem. The wavenumber k = VAB and the characteristic size of the

hole is d = D/VAB. The assumption D << BAB explained above, implies that
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d < < 1. The pressure U is scaled by the amplitude of the incident wave. After

nondimensionalization, the governing equation and the boundary condition become

Since the structure is periodic, with a normally incident wave, it is expected that

in regions z < 0 and z > 1, both u and its normal derivative are periodic functions of

x and y with period a and b, respectively. By applying the boundary conditions, the

solutions in regions z < 0 and z > l can be written as eigenfunctions expansions,

In the region z < 0, the solution consists of the incident wave Hui = eikz and reflected

waves. The unknowns Rmn  are the amplitudes of the month reflected modes and 3mn

are the corresponding propagation constants. In the region z > 1, the ninth mode of

the transmitted wave has an unknown amplitude T an . In (2.2a) and (2.2b) are

normalized eigenfunctions of the periodic structure. If we choose the origin of the

coordinate system to be at the center of the fundamental cell, these eigenfunctions

can be written explicitly as
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In the channel where 0 < z < 1, there are waves in both z and —z directions. If

we can find the eigenvalues and eigenfunctions corresponding to a particular shape, we

can write down the solution of the Helmholtz equation in terms of the eigenvalues and

eigenfunction in this region, just as we did for the regions outside the slab. We know

that for the Laplace operator with a Neumann boundary condition, all eigenvalues

are real and positive, therefore the eigenvalues can be ordered. Let λρ denote the

eigenvalues and Αρ denote the corresponding eigenfunctions, where p = 0, 1, 2, . • • ,

then the solution in the channel can be expressed as

In equation (2.5) the propagation constants kp are defined as kp = νk2 — λα, and

the amplitudes Αρ and Βρ of each mode are unknown. Although the eigenvalues

and eigenfunction depend on the shape of the hole, the smallest eigenvalue and its

corresponding normalized eigenfunctions are the same for all shapes. The smallest

eigenvalue is λο = 0 and its corresponding eigenfunctions is Φο = 1/d. Therefore, we

have

All the eigenvalues λρ for p > 1 are greater than 0 and of order 1/d. (The proof of

the preceding statement is detailed in Appendix A). If we choose k such that only

the lowest mode can propagate in the channel, then

d « 1, these eigenvalues λρ are much greater than k. Therefore, the propagation

constants kp can be approximated by
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with Αρ being order one quantities. This means that all the higher modes in the hole

channel are highly damped.

2.3 The Method

2.3.1 Scattering Matrix Method

In Section 2.2, we derived solutions of the slab problem in terms of eigenfunctions

expansions. By finding the unknown coefficients of each mode, the problem will be

solved completely. One way to find the unknown coefficients is by using the boundary

conditions that connect the three regions, z < 0, 0 < z < 1 and z > Ι. This can be

attained by using Green's function arguments to derive two integral equations, one at

z = 0 and the other at z = 1, and substituting these modal solutions in the integral

equations. Then, by exploiting the orthonormal properties of eigenfunctions, two

coupled infinite systems of algebraic equations can be derived and solved numerically

to obtain the transmission coefficients T, n,,,, and the reflection coefficients Rain

The other approach to solve the problem, as is illustrated in this dissertation,

is by the application of the scattering matrix method. In microwave circuit analysis

and design, the scattering matrix is widely used to characterize a component , such

as, an amplifier or a magic-T, in a circuit [12]. As shown in Figure 2.2, a two-part

component in a circuit has two inputs and two outputs with amplitudes α0 , b0 , co and

do . The outputs of this component are connected to the inputs through a matrix

Figure 2.2 A typical component of microwave circuits.

S, which is often obtained experimentally. That is, the inputs and the outputs are



Once the scattering matrix S of the device is known, and any two amplitudes, such

as ao and bo are known, the remaining two amplitudes c o and do can be found using

equation (2.8).

Therefore, we are going to construct a scattering matrix to the slab problem,

which connects the lowest mode of transmitted and reflected waves to the incident

waves. In order to do so, we will divide the slab into two parts at z = 1/2. A scattering

matrix for each part will be constructed individually. Then, by combining these two

matrices, the scattering matrix for the slab structure will be obtained.

are imaginary according to equation (2.7). The modes with imaginary propagation

constants damp exponentially. Thus, only one mode propagates in the channel. If we

assume that the channel is long enough so that at z = 1/2, all damping modes are

exponentially small and negligible, then at z = 1/2, the acoustic field can be written

as follows,

For this value of k, there is only one reflected mode in the region z < 0 which can

propagate. Hence, at a distance several wavelengths to the left of the aperture z = 0,

the field is

10

Similarly, in the region z> 1, only one mode is transmitted. The modal solution of

the transmitted wave can be simplified as



11

As we shall soon demonstrate, there exists a scattering matrix S1 which connects

the amplitudes of the outgoing waves R00 and Βρ with the amplitudes of the incident

waves 1 and Α0. The scattering matrix Sly can be considered to characterize the first

half of the structure (—ooh < z < 1/2).

Also, we shall show that, there exists another scattering matrix S2 which charac-

terizes the second half of the structure (1/2 < z < οο) and connects A0, Βρ and Too.

A combination of the two scattering matrices S ly and S2 yields the scattering matrix

S of the slab.

2.3.2 Two Auxiliary Problems

In order to determine matrices S 1 and S2, we consider two auxiliary problems. The

structure of these two auxiliary problems is the same as that of the fundamental cell,

except that the channel is infinitely long (l = οο).

In the first auxiliary problem, the wave is incident upon the periodic structure

and is transmitted to the channel, as shown in Figure 2.3. As before, we can write a
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in which υ 1 denotes the acoustic pressure in the first auxiliary problem. In the solution

given in equations (2.12), the first transmission coefficient Αρ and the first reflection

coefficient Tρρ are related by a simple equation (2.13), given below.

Equation (2.13) is derived in the following way. To the left of z = 0 (at z =

—δ), we differentiate υ 1 with respect to z, then multiply Dυ ι /áz by 0ρρ. After

integrating it over the area of the fundamental cell and using the orthonormality

of the eigenfunctions, we obtain

in which the double integral f ffH is over the area of the hole. Since at z = 0, function

αυ ί /αz is zero outside the hole and is continuous across the hole, and due to the fact

that Pρd = ψoο, it follows that the left hand side of equation (2.14) is d times the left

hand side of equation (2.15). Therefore, the right hand side of equation (2.14) is also

d times the right hand side of equation (2.15). Taking the limit as δ approaches 0

gives equation (2.13).

The second auxiliary problem has the same structure as the first one. However,

the wave is incident from the channel and is transmitted to the air region, as shown

in Figure 2.4. Therefore, the modal solution to this problem is
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Figure 2.4 Schematic diagram illustrating the structure and the incident, reflected
and transmitted waves considered in the second auxiliary problem.

Using the same argument as in the derivation of equation (2.13), it follows that the

first transmission coefficient Xoo and the first reflection coefficient po in the second

auxiliary problem are related by

The two auxiliary problems are not independent. Using the argument proved

in Appendix B, we obtain

Equations (2.13), (2.17) and (2.18) form a system of three equations in four

unknowns. Thereby, we are able to express any three parameters in terms of the

fourth. Thus, if any one of the four parameters is known, the other three parameters

can be easily found. Now, we let Bo be a known parameter and express the other

three parameters, 'Yoo, Too and ροζ in terms of Το.

The above result that any three of the four fundamental reflection and transmission

coefficients can be written in terms of the fourth coefficient, is also derived in [25], in
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which, a more complicated integral representation method is involved with the results

holding only for circular holes.

These two auxiliary problems and their simple results enable us to find the

scattering matrix of the slab which depends on only one parameter.

2.3.3 Scattering Matrix of the Slab Structure

Figure 2.5 Schematic diagram illustrating the structure and the incident, reflected
and transmitted waves considered in the slab structure.

Now we consider the slab problem. The scattering matrix for the first half

(-οο < z < 1/2) is derived by linearly combining the two auxiliary problems, since

both the Helmholtz equation and the boundary conditions are linear. From Figure

2.5 we observe that the first half of the structure can be viewed as having incident

modes with amplitudes 1 and Α0, and reflected modes with amplitudes RR00 and Β0.

Hence, the results of the two auxiliary problems imply that

Rewriting equation (2.20) in matrix notation and using the relations given in equation

(2.19) gives
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where the scattering matrix S i is

The scattering matrix S 1 represents the first half of the slab structure. We

proved in Appendix C that S 1 is a unitary matrix. Hence, 'ο satisfies the following

equation.

The locus of equation (2.23) is a circle in the complex 'Bo plane. Using a conformal

mapping, 'ρ is equivalently written as

where η is real and can take any value between —οο and οο.

We now derive the scattering matrix S2 which relates the amplitudes of incident

and reflected modes at the channel opening z = Ι. We introduce a new independent

variable z = 1 — z, which maps the second half of the structure into the first half.

Using the result of S i , we deduce that

where e2k1 and e-2ukd take into account the physical location of the channel at z = Ι.

Therefore, the amplitudes of outgoing waves Bolo and Αρ are related to the amplitudes

of the incoming waves Βρε by S2, as follows.
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One of the input wave amplitude is 0 because in the region z > 1, there is no incident

wave to the slab problem.

To determine a scattering matrix of the slab structure, we first solve for ΑΑ in

terms of Βρε from equation (2.21). Then we substitute Αo in equation (2.26) and find

Βo. The transmission coefficient Boo and the reflection coefficient R00 are determined

from (2.21) and (2.26), respectively. These results are summarized as

and Μ = 1 — (1 — τo /d) 2 e22k1 The scattering matrix S represents the slab structure

and connects the reflected and transmitted waves of the lowest mode to the incident

wave, if k is chosen such that only one mode propagates. In the matrix S, there

is only one parameter To which is the transmission coefficient of the first auxiliary

problem. Therefore, the reflection and transmission coefficients R oo and Boo are found

in terms of To . As in the two-dimensional case addressed in [20], the solution of the

three-dimensional problem is dependent on only one parameter 'T o . Coefficient 'To is a

function of a real number η (equation (2.24)). In Chapter 3, we will approximate η

numerically and find the transmission properties of the slab structure.



CHAPTER 3

NUMERICAL RESULTS AND TRANSPARENCY

In Chapter 2, the scattering matrix S for the slab structure was derived. Expressions

for the transmitted and the reflected coefficients were obtained using the scattering

matrix S. They are

These two coefficients are functions of only one parameter o from the first auxiliary

problem. Since the first auxiliary problem cannot be solved analytically, a numerical

approximation to the parameter o will be found using the characteristic size d of

the hole. Once the parameter B o is found, we are able to discuss the behavior of the

transmitted and the reflected waves of the slab structure.

This chapter is organized as follows. In Section 3.1, using an appropriate Green's

function we deduce an integral representation for the solution υ 1 (x, y , z) in the region

z < Ο. Then, by substituting the modal solutions in the integral equation and by using

the orthonormality of the eigenfunctions, we obtain an infinite system of algebraic

equations with unknowns tρ (p > 0). An expression for to is found explicitly through

these equations. It is observed that o follows the same constraint as the analytic

solution in Chapter 2. In Section 3.2, each coefficient Zaps in the infinite system of

algebraic equations is evaluated for circular holes and rectangular holes, respectively.

By employing the small parameter d, 'r0 is found approximately. In Section 3.3,

the transmission and the reflection coefficients are plotted as functions of k or 1 for

different cases. This is followed by a detailed discussion of the frequency selecting

properties of the structure. Lastly, the conclusion is included in Section 3.4.

17
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3.1 Numerical Expression of o

The diagram of the first auxiliary problem is shown in Figure 2.3. The wave is

normally incident upon the channel. A part of the incident wave is reflected and

the remaining is transmitted. The modal solution (equation (2.12)) was derived in

Chapter 2. In order to derive equations to solve for o, we introduce a Green's

function. This Green's function will be used to deduce an integral representation of

the solution to the first auxiliary problem. The Green's function satisfies

and is periodic in both x and y directions. This function G is solved explicitly as

Since υ 1 satisfies the Helmholtz equation, it follows from (3.2a) that

Integrating equation (3.4) over the region R^, (—οο < z < 0, χΙ < α/2 and y < b/2)

and applying the divergence theorem yields,

where the surface integral is over the six faces of the cube R. The surface integrals

over the four sides vanish because of periodic boundary conditions. The surface

integrals over the plane z = —οο and z = 0- remain. At z = —οο, since all the

higher order modes are damped, G behaves like cos (Ikz')e -ikz/ilk and u 1 behaves

like e ikzψoo + τoo e -ikΖψ The surface integration over the plane z = —οο gives
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2 cos (kkz')ψψoo . Therefore,

On the surface z = 0 - , the derivative 8υ 1 /áz vanishes outside the surface of the hole.

Thus, the double integral on the right hand side of equation (3.6) is over only the

surface of the hole. This implies that

Equation (3.7) is an integral representation of 'u 1 in the region z < Ο. The first term

in equation (3.7) is the sum of the normally incident wave eikz and its rigid reflection

e—ikz It is the field that would occur if no holes were present. In the second term,

the integration is over the surface of the hole. Since the hole is small, the second

term can be considered as a perturbation to the field in the region z < 0 due to the

existence of small holes in the structure.

Setting z = 0- in equation (3.7), we obtain the field at the interface z = 0,

Since both Qt 1 and &U i /dz are continuous across z = 0 on the surface of the hole, we

let z = 0± and substitute from equation (2.12b) to get

Multiplying both sides of the equation by a, integrating the resulting equation over

the surface of the hole and using the orthonormality of the eigenfunctions yields
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and δao is the Kronecker delta function. When d is small, there is only one mode

propagates in the hole channel, which implies that Ιν is imaginary for all p ? 1

((2.7)) . Hence kk can be written as i ^ lςρ (. Substituting i ^ lςρ ^ in the equations for 'Ta

gives

The equations in (3.12) form an infinite system of algebraic equations with unknowns

ρ . The quantities Za29 are defined in (3.11). If the eigenfunctions Φρρ are known, Zap

can be found either analytically or numerically for each p and q. Therefore, each Bτ

can be solved for approximately by truncating the infinite system.

Before truncating the algebraic system (3.12), we simplify it further, so as to

find an explicit representation for o which is comparable to (2.24). Setting 0 a =

Thus, τo can be found explicitly, provided 0a are known. Values for 0a are determined

using equation (3.13).

Expressions of quantities Zaρ depend on the shape of the hole. However, the

first eigenfunction Φο = 1/d is the same for all shapes. Therefore, we can determine



the first term in Zoo . From equation (3.11), Zoo is defined as
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Substituting Green's function in the expression for Ζoρ and integrating the first term,

implies that the first term is a for any shape of the hole. Hence, Ζoo can be rewritten

as,

Equation (3.18) shows that the approximation for o satisfies the same constraint as

the one derived in the Chapter 2, described in equation (2.24), with

Having found o explicitly, we now continue with truncating the system in equation

(3.13), in order to solve for ο a . Truncation inevitably introduces errors. However,

no matter how much error is introduced, the approximation for o always lies on the

circle defined by equation (2.23). This expression is valid regardless of the shape of

the hole.
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Since the transmission coefficient Toρ is a function depending only on the para-

meter o, and 'Τo cannot be found explicitly if the hole shape is not specified. In the

following sections, we will discuss the transmission properties of the slab structure

for holes with two kinds of shapes, namely, circular and rectangular.

3.2 An Approximation to o

In the expression for o in equation (3.18), the real number η needs to be computed.

Since η is a function of Zaρ and ίa (equation (3.19)), we shall first evaluate the

parameters Zaρ and OIa in order to determine η and hence determine Τo . In this

section, 7-o is determined for circular holes and rectangular holes.

3.2.1 Results of Circular Holes

If the hole is circular with dimensional radius R, then the characteristic size of the

hole is D = ν R. After nondimesionalization, we obtain that d = ‚/ τ. Therefore,

the eigenfunctions corresponding to the circular hole can be easily obtained as follows,

where Jo is the zeroth order Bessel function. The corresponding eigenvalues are found

where jlp is the nth root of the first order Bessel function. As

mentioned before, for d << 1, propagation constants

in the channel and can be approximated by
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Now, the quantities Zaρ can be found explicitly using the explicit expressions

of the Green's functions and the eigenfunctions. The integral in equation (3.11) is

computed by interchanging the order of integral and the summation (see Appendix

D). The results thus obtained are described below.

We observe that in equation (3.24), the quantities Zaρ are symmetric and hence

Sρa = Sap. Substituting the new notation in equations (3.13) and (3.18), respectively,

!Cl  T^C

The inhnite system of equations (i.26) cannot be solved unless the system is

truncated at p = q = A. Truncation yields an approximation for cia as the solution



where ^ (the hat) denotes an approximate value. Since only one mode propagates in

the channel, A is relatively small [20] . We recall the definition of kph and observe

that Imp  ti j ip'/π/d for p > 1 and d approaches 0. Hence, equation (3.28) can be

approximated by,

We will now employ the small parameter d to solve equation (3.29) approximately.

Before doing that, we first check the order of Sac as d approaches 0. Figures 3.1, 3.2

and 3.3 show this behavior for S00 , Soρ and Saps, respectively. In Figure 3.1, we

Figure 3.1 The behavior of S00 for small value of d.

observe that, as d approaches 0, S00 decreases and behaves like ln(d). In Figure

3.2 and Figure 3.3 we observe that Soρ and Sac are very small compared to S00 . In

particular as d approaches 0, Soρ become a constant and Sac approach 0 rapidly.

Thus, both Sop and Saps are order one quantities as d approaches 0.
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Figure 3.2 The behavior of Sρp for small value of d.

Using the fact that both Sρn , Saps are of 0(1) for small value of d and the fact

that d << 1, equation (3.28) is solved iteratively and yields

Substituting &a from above and truncating the infinite series at p = Ν in the

expression for η (equation (3.19)) gives the approximation,

As d approaches 0, the second term in curly brackets is much smaller than the first

term. This is because as d approaches 0, sρp is of 0(1) and S00 is of O (an d) . Therefore,

neglecting the second term gives an approximation of η,

Thus, the numerical approximation of o for the small value of d is
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Figure 3.3 The behavior of Sqp for small value of d.

We reiterate that, the numerical approximation of o in equation (3.33) follows the

same constraint as in equation (2.24).

3.2.2 Results of Rectangular Holes

Due to its symmetry, a rectangular hole allows the corresponding eigenvalues and

eigenfunctions to be stated explicitly. We assume that rectangular holes are placed

symmetrically about the x — and the y- axes. The length and the width of the

hole are D 1 and D2, respectively. The corresponding dimensionless length is d 1 =

Dl/'%/AB < < 1 and the dimensionless width is d 2 = D2 / ^/ΑΒ < < 1. Hence, the

characteristic size of the rectangular hole is, d = d1d2. The solution in the channel

in terms of eigenfunctions is written as,
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The eigenvalues and the eigenfunctions corresponding to the rectangular hole have

two indices p and q instead of one as in the circular case. However, since both d 1 and

d2 are very small, kpq can still be approximated by

which shows that the corresponding modes are highly damped in the channel.

For the rectangular hole, we still have the infinite system of equations for the

transmission coefficients Tpq. The only difference is that we have two indices now

instead of one. Therefore, we write down the representation for o o as,

where the double summation is for all p, q such that p 2 + q2 > Ο. Here cps are the

solutions of
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where the double summation is for all r, s such that r2 + s 2 > 0. We compute Spqrs

explicitly and the results are

with n 1 and n2 being integers. The power Ν in ( ‚/ )Ν is the number of nonzero terms

The propagation constants Bmn are

defined in equation (2.4).

Substituting from equation (3.40) in equations (3.38) and (3.39) yields

respectively. Sρqrs are order one parameters for p, q, r, s such that

As d approaches 0, if S0000 is the dominant term, then the approximation used for

circular holes can be used for rectangular holes as well.

The behaviors of S0000 are shown in Figure 3.4. For fixed d 1 , as d2 approaches

0, S0000 lies between In d and 1/d. In Figures 3.5 and 3.6, functions Spars approach

constants for small value of d. Although, we cannot graph functions Sρsrs for all
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Figure 3.4 The behavior of S0000 as d 1 and d2 approach 0 for a = b = 1.

values of p, q r and s, their behavior is the same for small value of d. As the indices

p, q, r and s become larger and as d approaches 0, functions Sρqrs approach smaller

constants. This is observed from Figure 3.5.

Figures 3.4, 3.5 and 3.6 demonstrate the dominant behavior of S0000 for small

value of d, and hence an approximation for oo can be written as

3.3 Transmission Properties of the Perforated Slab

Through the analysis in Sections 3.1 and 3.2, we obtained an approximation of o for

small values of d. We are now ready to approximate Too numerically. Function Too is

found to be



Substituting the approximation i-o from equation (3.33), we find that,

The result obtained in equation (3.46) is for circular holes. The result is the same for

the rectangular holes except that S00 is replaced by S0000 .

We first discuss the behavior of circular holes. If k1 is such that ν2 is an order

one quantity, then Teo is 0(d2), which is very small since d is small. In this case,

there is not much transmission into the region z > 1. This agrees with our intuition,

because when the holes are small, most of the acoustic waves reflect back into z < 0

and very little transmits. However, there exist values for kl such that ν2 = 0, that is,
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Figure 3.6 The behavior of Sρqrs as d2 approaches 0 for d 1 = 0.051 and a = b = 1.

then in this case,

where M is any positive integer. Using the values of kl thus obtained in equation

(3.48) , we deduce,

Therefore, for these values of kl, the slab is almost transparent. That is, for a fixed

frequency k, the thickness 1 of the slab determines its transmission properties.

Figure 3.7 is plotted using equation (3.46). It shows that, Boo is almost 0 for

all thicknesses 1 of the slab except at 1 1, 2, 3. • • , where Bolo 1. Actually, the

peaks occurs just to the left of these integers. The difference is 0.001, which agrees
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This agreement is also seen in Figure 3.8, where S 00 = —2.28 and d = 0.1. In this

figure, the peaks appear some distance to the left of 1 = 1, 2, 3. • • , and the difference

is 0.0456, which equals 2d2 S00 . Also, Figures 3.7 and 3.8 verify that, away from the

peaks, the values of B00 are 0(d2 ).

Similarly, we can fix the thickness of the slab and solve equation (3.47) for k to

find the frequency at which the structure is transparent. Since S00 is also a function of

k, it is not easy to find an explicit expression. However, it is easy to check numerically

that, when k < 2π/α, S00 is not a sensitive function of k. Thus from equation (3.49),

k can be approximated as,

For these k's, B00 	 1. The behaviors of (B00 ( as a function of k are illustrated in

Figures 3.9 and 3.10, where 1 = 1 and 2, respectively. The peaks occur just at the

position estimated by equation (3.51). The number of peaks increases as 1 increases

when the upper limit of k is fixed.

It is clear from these figures that the perforated rigid slab as considered in
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Figure 3.8 Transmission coefficient Too versus the thickness of the slab 1 for d = 0.1,
k = π and a = b = 1.

the problem, behaves like a narrow band filter. For certain frequencies, energy is

transmitted almost 100%; for other frequency bands, almost all the energy is reflected.

Also, the width of the passing band depends on the dimensionless radius of the holes.

If dimension is reintroduced, the width of the passing band depends on the porosity

of the rigid slab.

For rectangular holes, we have the same results as those for circular holes. In

Figure 3.11, the reflection coefficient Roo is shown for different values of 1 for a fixed

k. Most of the waves are reflected when the hole is small. However, for some values

of k1 the waves are completely transmitted.

3.4 Conclusion

In Chapters 2 and 3, we analyzed the problem of a normally incident acoustic wave

propagation through a periodically perforated rigid slab. We assumed that the

characteristic size of a hole is much smaller than the spacing of the holes, while

the incident wave length is of the same order as the spacing of the holes. We also

restricted the range of the incident wave frequency such that there is only one mode



34

propagates both outside the slab and inside the holes. The length of the slab in our

problem is long enough so that all the evanescent modes are negligible in the middle

of the hole channel. Under these assumptions, we considered two auxiliary problems.

Both of the auxiliary problems are of the same structures as the slab except that they

are infinitely long. In the first auxiliary problem, the wave is incident from the air; in

the second auxiliary problem, the wave is incident from the hole. The relationship of

the transmission and the reflection coefficients of the two problems were discussed in

detail. The linear combination of the two auxiliary problems gave a scattering matrix

S for the original structure. Through this matrix S, the transmission coefficient Bolo

and the reflection coefficient Roo of the slab were found explicitly. It turned out that,

for arbitrary shaped holes, coefficients Bolo and R00 depend only on one parameter o

which is the transmission coefficient of the first auxiliary problem. This o was found

lying on a circle of a complex plane.

The numerical value of o was found for both circular and rectangular holes.

Specifically, an infinite system of algebraic equations was derived from the integral
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Figure 3.10 Transmission coefficient Zoo versus wavenumber k for d = 0.1, 1 = 2
and a = b = 1.

representation of the solution of the first auxiliary problem. Coefficient Τ ο was solved

explicitly from these algebraic equations. By using the fact that the hole size is very

small comparing to the spacing of the holes, o was obtained numerically. The plots

of Boo were given for both circular and rectangular holes. The plots showed that

for fixed thickness of the slab, the function Tool is 0(d2 ) quantities except at certain

frequencies, at which the wave can transmit almost completely. On the other hand,

if the frequency of the incident wave is fixed, by adjusting the thickness of the slab,

we can have either completely transmitted wave or completely reflected wave. This

frequency selection properties of the structure make itself useful in constructing filters

or resonators.
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CHAPTER 4

PERTURBATION ANALYSIS ON MICROSTRIP

4.1 Introduction

In the 1950's, strip lines were introduced as substitutions for two-tier lines, to adapt

with the planar geometry of printed circuits [5] . Subsequently, these transmission

lines have been extensively used in microwave and millimeter wave integrated circuits.

They are used to build components and devices in circuits such as filters, couplers,

antennae and so on, and they are also used to connect varieties of networks. These

transmission lines have many advantages in microwave printed circuits: They are

small, simple, reliable and inexpensive with good electrical characteristics [12]. A

typical geometry of a microstrip transmission line is shown in Figure 4.1: Above the

metal ground plane, there is a dielectric substrate, on the top of which is a thin metal

strip.

There are many papers on the electrical characteristics of microstrip transmit-

Figured 4.1 A microstrip transmission line.

scion lines. One reason is because of its usefulness in printed circuits, so that a full

understanding of its behavior is very important; another reason is that there is no

exact solution of Maxwell equations for this geometry. Therefore, it is a very rich

problem to apply different techniques of mathematics. Among these papers, the

37
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dispersive properties of microstrip are especially interesting and important because

dispersion is one of the disadvantages of this transmission line.

A transmission line is dispersive means that the phase velocity of a signal is

a function of frequency. Microstrip belongs to this category because in a microstrip

transmission line two dielectrics, air and substrate, are not separated by a metal

strip completely, so the electrical field is not contained entirely in the substrate. The

mixed boundary of air and the substrate is the source of the dispersion. The accurate

description of this dispersive character is important when the microstrip is used to

guide pulses in various applications.

There are basically two approaches to study the electrical characteristics of a

microstrip transmission line, one is to find a full solution of Maxwell equations, the

other is to use a transverse electromagnetic wave (TEAM) approximation.

Full wave solutions of Maxwell equations can provide the dispersive properties

of microstrip as a function of frequencies. There exist several ways to find full wave

solutions, such as numerical method[16 combined conformal mapping and variational

method [32] and others. The most popular one among these is spectrum domain

approach. Itch and Mittra introduced the approach in 1973 [22] [23] . The idea of this

method is very close to the paper by Denlinger [8] but is implemented in the spectral

domain. In this approach a hybrid-mode solution is found by assuming two unknown

surface current distributions on the strip. Two coupled algebraic equations are

formulated by satisfying the boundary conditions in the spectral domain. These two

algebraic equations are then solved by Galerkin's method, that is, via expanding the

unknown current distributions in terms of known bases, a system of equations is found

for unknown coefficients. By setting the determinant of the corresponding matrix

equal to zero, the root is the propagation constant for each frequency. The advantage

of solving the problem in the spectral domain is that the solution can be improved by

increasing the number of the basis functions which are chosen to expand the surface
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currents, however, the more functions used, the larger the size of the matrix. Since

the speed of this method is highly dependent on the number of basis functions, the

modification of this method, in order to accelerate the computation, becomes an

important topic in many papers afterwards [17] [18] [35] [27] [3] [34]. Potential theory

is another approach to find a full wave solution of microstrip transmission line[21] [13]

[19] [7] . In this approach the electromagnetic field is expressed in terms of a vector

potential and a scalar potential. Instead of finding the field solution directly, the

solution for the two potentials is sought. Propagation constants are then determined

by the conservation of charges and currents on the strip.

The methods related to the TEAM approximation provide propagation constants

at low frequencies. At low frequencies, when the wavelength is much bigger than either

the height of the substrate or the width of the strip, physical reasoning is employed

to justify a ΕΜ approximation to the problem. Therefore, different approaches are

given to solve the corresponding potential equations such as conformal mapping [15],

variational methods [37] [36], numerical approach [33] [26] and some others [24] [6]

[10].

In this paper, a new clear systematic mathematical approach is employed directly

on the Maxwell equations to solve the microstrip problem. This approach belongs

to the ΕΜ approximation category. Specifically, we employ an asymptotic method

to determine an approximation to the field components and propagation constant

when the wavelength is much bigger than the thickness of the substrate. It is

found that the transverse electrical and magnetic fields can be expressed in terms

of two potential functions which are elliptic in character and are coupled through

boundary conditions of the longitudinal electrical field. The solvability conditions for

the longitudinal magnetic field yield an approximation to the propagation constant.

Therefore, although the longitudinal fields are much smaller than the corresponding

transverse fields, they are very important and cannot be neglected. None the less, the
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results we obtain do agree with the TEAM approximation. Higher order corrections to

the propagation constant are also given through our perturbation analysis. Then the

global behavior of the propagation constant for any wavelength is obtained by the

Padre approximation.

This mathematical approach can be generalized to deal with different configura-

tions of microstrip transmission lines. For example, a transmission line equation is

derived for the strip line with a smoothly changing width at low frequencies. The

potential on the strip can be solved numerically for each width which is a function

of z. For coupled microstrip transmission lines, coupled differential equations which

describe the currents and voltages on the strips are deduced; these give rise to the

equivalent circuit for these transmission lines. Each coefficient in these equations is

well defined through potential functions. This approach can be used to deal with n

coupled microstrip transmission lines.

Since the potential problems are solved numerically by using an integral formula-

tion involving Green's functions, solutions can also be applied to half-shielded or

shielded microstrip by changing the corresponding Green's functions. Therefore the

method is valid for a large variety of configurations.

Chapters 4, 5 and 6 illustrate the problem. Chapter 4 is organized in the

following way. Section 4.2 describes the mathematical formulation and assumptions

of the problem. A small parameter δ is found through the nondimensionalization of

the six scalar Maxwell equations. In Section 4.3, a regular perturbation analysis is

implemented to the six scalar equations, that is, we expand the fields and the propaga-

tion constant in terms of δ and substitute them into the governing equations. Each

order of equations is solved by introducing potential functions, then the propagation

constant of each order is deduced through solvability conditions of the problem.

Section 4.4 contains the Padre approximation which provides an approximation of

the propagation constant for all frequencies.
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4.2 Mathematical Formulation

The cross-section of the microstrip transmission line, which we consider, is sketched

in Figure 4.2. It is an open microstrip. The structure is infinite in the x' and z'

directions. Both the ground plane and the strip are assumed to be perfect conductors.

The substrate is a losses isotropic dielectric with permittivity and permeability being

€ and μο , respectively. The width of the strip w and the height of the substrate h

have the same length scale, while the thickness of the strip is neglected in the analysis.

For convenience we call the area above the dielectric as Region I and the area below

it as Region II.

Figure 4.2 The cross-section of a microstrip transmission line.

The electromagnetic fields which describe the microstrip transmission line satisfy

Maxwell's equations,

where ε is a step function in y', taking values € ι in the substrate, and €0 in the air.

On the perfect conductors the tangential components of the electric field are zero

and across the air-substrate interface the tangential components of the electric and

magnetic fields are continuous. The primes(') denote dimensional quantities.
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We shall investigate the solution of the equations in the limit as h/λ o approaches

0, when a potential is applied between the strip and the ground plane. Here λ ο  is

the wavelength equal to 2πcο /ω with w being the angular frequency and c o being

the velocity of light in vacuum. The solutions we are looking for have the form

that is, an electromagnetic wave propagating

in the z' direction with a propagation constant ^'.

The two vector equations (4.1) can be written in their components forms as six

scalar equations. We choose o to be the length scale of x' and y ' and λο/2π to be

the length scale of z'. The dimension of E' and H' are included in Ερ and Η0 and

they satisfy Η0/Ε0 = Vερ /μρ . To keep the exponential term —iγ'z' dimensionless,

the propagation constant is scaled by 2π/λ ρ . Thus, the six nondimensional scalar

equations are

In these six equations, Ε; and H; denote the x, y, z components of electromagnetic

fields, for j = 1, 2, 3, respectively. All the derivatives with respect to z are taken

explicitly by multiplying id to the corresponding field components. The index of

reflection Ν2 is defined as ε/εο , so that Ν 2 = Alb = e l /Αρ  in the substrate and Ν 2 = 1

in the air. The parameter δ is defined as δ = 2πh/λο , which is a small parameter

under the low frequency assumption. The width of the strip a = w/o is an order one

parameter and the height of the substrate is 1.
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4.3 Asymptotic Analysis

We shall solve equation (4.2) in an asymptotic manner. The small parameter δ enables

us to do the regular asymptotic expansions for ΕΕ , Hi (j = 1, 2, 3) and -y, that is,

in which the superscript denotes the order of a function. Substituting these expansions

in equation (4.2) and collecting terms with like orders of δ yield groups of differential

equations involving different order of electromagnetic fields and -γ . These groups of

equations will be addressed one by one in the following subsections until we obtain

an asymptotic expansion of η in the limiting case as δ approaches Ο.

4.3.1 Zeroth Order Equations

The coefficients of δ° yield the zeroth order equations,
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where the o(1) term approaches zero as D approaches οο, provided E1 1) and Ε 1  also

approach zero as D approaches οο. The truncated areas, Region I and Region II

have areas AI = 2D(D — 1) and A11 = 2D, respectively. Adding two equations (4.5)

together gives

From the boundary condition, Ε 1 is continuous across the air-dielectric interface and

zero on the strip, so the left hand side of equation (4.6) is 0, which implies that

If D approaches οο, then π 0 approaches 0. Hence, we deduce

4.3.2 First Order Equations

The first order equations consist of six equations. They are stated below.

Differentiating equation (4.7d) with respect to x and equation (4.7e) with respect to

y , adding the two equations thus obtained, and applying equation (4.7f), we obtain

Combining this with equation (6.2c) yields two equations
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for Εi0) and E2ο) ,

We now introduce a potential function Φ(x, y), such that

Substituting these potential representations in equation (4.8a) gives,

We note that, the potential representation also satisfies equation (4.8b). On the

perfect conductors Φ is a constant because Ε 0 = Ο. Without loss of generality,

we choose Φ = 1 on the strip and 0 on the ground plane. Across the air-dielectric

interface both Φ and Ν 2 Φy are continuous.

Applying the same procedure, we find two equations for

A new potential function ‚ 1 (Χ, y) is introduced such that Η 0 = y and B20) =

Substituting le) and Br ) in equation (4.10b) implies that'' satisfies Laplace

equation, V 2 'ι = Ο. The boundary conditions of can be derived in the following

manner from equation (4.7). Rewriting equations (4.7a) and (4.7b) in terms of Φ and

and integrating them with respect to x and y, respectively gives, Ε3 = i ('ϊ' — γ (0) Φ) .

Since E1) = 0 on the perfect conductors, substituting the values of Φ implies that

= 0 on the ground plane and ' (0) on the strip. The continuity of across

the air-dielectric interface is implied by the continuity of Ε1) and Φ. Also, 140) is

continuous implies that 'ϊι y is continuous across the air-dielectric interface.

is mentioned
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before, A satisfies the Laplace equation

and A = 1 on the strip, A = Ο on the ground plane, A and A are continuous across

the air-dielectric interface.

By comparing the equations and the boundary conditions governing Φ and A,

we observe that the potential problem for A is a special case of the potential problem

for Φ in which Ν2 equals 1 for both the regions.

Substituting Φ  and A into equation (4.7e) yields

We then integrate this equation with respect to x form —οο to +Mc at y = 1+ and

y = 1 - , respectively, which gives

Subtracting equation (4.12a) from equation (4.12b) and using the continuity conditions

of B3 and the potential functions with their derivatives across the air-dielectric

interface, we obtain

where f8 denotes the integration over the strip and square bracket [ ] denotes the

jump of a function across the strip. This is in essence a solvability or a compatibility

condition for the problem. Solving for ^(°) gives

This is the leading order nondimensionalized propagation constant.

The square of the leading order propagation constant ( .γ (°) ) 2 can take any value

between 1 and A?. This fact can be obtained mathematically using the potential
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representation in equation (4.14) and Cauchy-Schwarz inequality. The proof is in

Appendix E.

There are several ways to compute the potential functions Φ and A numerically,

so that d (Ο) can be found using equation (4.14). In Chapter 6, we will construct

integral equations to each of the potentials. Solving the integral equations numerically

gives the functions [Ν2 Φy ] and [A } on the strip directly, and thereby, giving a

numerical approximation for ( ΡΥ (Ο))2

We now conclude the findings of this subsection. The zeroth order transverse

electromagnetic fields are

The first order longitudinal electrical field is

and the first order longitudinal magnetic field is written in terms of its derivatives,

We observe that, the zeroth order transverse fields are nonzero, while the

zeroth order longitudinal fields are zero from Section 4.3.1. Therefore, the transverse

fields are order one quantities while the longitudinal fields have order δ. This is

consistent with the result that, at low frequencies, a microstrip transmission line has

a quasi-TEM wave. That is, at low frenquencies, although the longitudinal fields

are nonzero in the microstrip, their magnitudes are relatively small compared to the

magnitudes of the transverse fields. We have proved this result mathematically using

the asymptotic analysis.
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We also notice that, although the longitudinal fields are much smaller than

the corresponding transverse fields, they are very important and cannot be neglected.

Since the two potential functions Φ and A are coupled through the boundary conditions

of the longitudinal electrical field, and the solvability condition for the longitudinal

magnetic field yields the propagation constant.

4.3.3 Second Order Equations

We now consider the second order system
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also zeroes.

The system of second order equations does not give a nonzero higher order

correction term for 'y. Hence, we seek the correction term in the system of equations

of the third order.

4.3.4 Third Order Equations

We now consider the third order system. This system also comprises six equations,

stated as,

By applying the same method as was applied to the first and second order systems,

we obtain two equations in two unknowns Ε12) and Ε22) ,

Unlike equations (4.8), the two differential equations (4.21) have non-zero terms on

the right hand sides, which are the first order longitudinal electromagnetic fields.

We will solve for the two functions Ε12) and Ε22 ) again by introducing an

unknown potential function f . However, because the right hand sides of equations

(4.21) are non-zero, we will add an auxiliary function Ω to the transverse electric
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fields. Hence, we let

Differentiating

Ω with respect to y and applying the results for Baby ) from equation (4.17b) imply

that

Thus, we have found both

the x and y derivatives of the auxiliary function Ω. We observe that, function Ω is

continuous across the air-dielectric interface, but function Ω  is discontinuous across

the air-dielectric interface.

Substituting from equations (4.22) in equation (4.21a) gives the differential

equation

satisfied by f'. The second term on the right hand side of equation (4.24) has a

factor δ(y - 1) which denotes the Kronecker delta. The presence of the Kronecker

delta factor is attributed to the y derivative of the step function Ν 2 . The boundary

conditions of 1' are obtained from equations (4.22). Since Εi2) = 0 on the strip and on

the ground plane, 1' is a constant. We set 1' = 0 on the ground plane, and f' = α on

the strip, where α is an unknown real number. Later we will show that the value of α

will not affect the result of the second order propagation constant d(2) . Function f' is

continuous across the air-dielectric interface. The behavior of the normal derivative

of i' across the air-dielectric interface is governed by the equation (4.24).

Equation (4.24) prescribing 1' is nonhomogeneous and so is its boundary condition
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on the strip (Γ = α). Hence, we let f' = οΨ +Γ. The first term αφ takes into account

the homogeneous boundary condition, the second term Γ also satisfies equation

(4.24) but is subject to homogeneous boundary conditions. Therefore, the two field

components can now be written as

where Γ satisfies the equation

Function Γ is zero on both the strip and the ground plane, and continuous across the

air-dielectric interface.

The transverse magnetic fields Hi e) and H2 2) satisfy the following two equations.
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also continuous across the interface since both H1 2) and Ω are continuous.

Both the equation and the boundary conditions of f) 	nonhomogeneous. Now,

following the same procedure that was applied

to f'. Thus, the two nonhomogeneous terms in P are separated. Therefore, Be  2) and

H22) can be written as

where P satisfies

and P = 0 on both the ground plane and the strip.

Applying the same argument, as was used in deriving γ(°), an expression for

^ (2) from equation (4.20e) is obtained.

Substituting the potential representations of Hi e) and Ε22) from equations (4.25b)

In the representation for -v (2) in ecuation (4.31l. the unknown parameter α doesn't

which equals Ο. Hence,

the value of the potential Γ on the strip doesn't contribute to the expression for (2 ) .
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4.4 Propagation Constant d

4.4.1 An Approximation of d at Low Frequencies

The asymptotic analysis in Section 4.3 can be carried out for the fourth order system

and gives d (3) = Ο. Hence, when δ is very small, the propagation constant is

approximated by

After we recover the dimension, the dimensional propagation constant d' =  ((Ο) +

The phase velocity N , and the group velocity Ng of the transmission

line can now be written approximately as

Hence, at low frequencies, the second order and higher order corrections to η' describe

the dispersion properties of a microstrip transmission line quantitatively.

Another parameter €e f f , the effective dielectric constant, is often used to describe

the dispersion of microstrip transmission lines instead of the propagation constant 7.

These two parameters are related by ' 2 = €e f f . Therefore, at low frequencies the

effective dielectric constant can be approximated as,

where f is the frequency.

4.4.2 The Limit of d at High Frequencies

Until now, we considered the case when the wavelength λοκ is much greater than the

height o of the substrate. In this section, we will find d in the other limit, that is,
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when the wavelength λοκ is much smaller than the height o of the substrate (o/λ ο

approaches Mob).

We nondimensionalize the problem as before. The equations obtained are

exactly as equations (4.2). Since δ = 2πo/λο , now we consider the case when δ

is much greater than 1. We divide these six equations by δ and do the regular

asymptotic expansions to the field components and the propagation constant. The

first order equations are

Simple algebraic operations yield,

In this limit, A2 is not a step function any more. Since when λ οκ is fixed, as o

approaches οο, we have A2 = A?. Therefore, = Al . This result is known [29], and

can be explained intuitively as follows. When λ0 is fixed and o approaches οο, signals

propagate within the dielectric. The effective dielectric constant Be f f =  = A?,

which is just the index of reflection of the dielectric.

4.4.3 Pad Approximation

To obtain the propagation constant d as a function of frequency, we will use the

behavior of d in the two limiting cases (low frequencies and high frequencies) and the

asymptotic expansion of 7 at low frequencies.

Padre approximation is carried out for ·γ2 by writing 02 as a quotient of two

polynomials
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We choose 72 to be an even function of f because the low frequency expansion of 72 is

an even function. There are three parameters á, b and d which need to be determined.

It is known that

which implies that ά = (7 (Ο) ) 2 and b/d = A?. The Taylor expansion of equation

(4.37) for small value of f compared to equation (4.34) gives,

1 '1 	 \ 1' "I

Therefore, 72 is approximated as

where d is defined in equation (4.39). In Chapter 5, we will compute 72 numerically.



CHAPTER 5

NUMERICAL RESULTS OF PROPAGATION CONSTANT

In Chapter 4, we used asymptotic analysis to deduce expressions for . (Ο) and (2) .

These expressions are determined by four integrals on the strip (equations (4.14) and

(4.31)). Each of these integrals is related to a potential function. In this chapter, we

will compute these integrals numerically.

One way to solve Laplace equations or Poisson equations for each potential is

by using the finite difference method. The jumps of the normal derivatives of these

potential functions across the strip can then be obtained approximately using finite

difference approximation. After that, the integrals of these jumps over the strip can be

computed by Trapezoidal Rule or Simpson's Rule . This method is easy to implement

but time consuming, if a reasonably accurate result is desired. Therefore, we choose

to employ Green's functions to find integral equations of the unknown potentials and

then solve the integral equations numerically. In this way, we can directly obtain the

jumps of the normal derivative of the potential functions across the strip.

This chapter contains two sections. The first section contains the numerical

solution of . (Ο) and the second section contains the results of d for all frequencies.

5.1 Numerical Results of (Ο)

The square of the leading order propagation constant (r( Ο))2 is the quotient of two

In Chapter 4, we saw

that both Φ and A satisfy Laplace equation and take the value 1 on the strip and

0 on the ground plane. Also, both Φ and A are continuos across the air-dielectric

interface. We also observed that function A is just a special case of function Φ, when

A2 is constant and equals 1 in both regions, Region I and Region II. Therefore, if we

can construct an integral representation for the unknown function Φ, then a similar

56
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integral representation of A will be obtained in a straightforward manner by setting

by applying the divergence theorem and the boundary conditions for Φ and G: at

y = Ο both Φ and G are zero; at infinity, both Φ and G are of order 1/r. Similarity,

integrating equation (5.2) over Region I and applying the divergence theorem and

boundary conditions gives,

Adding equations (5.3) and (5.4) and using the boundary conditions across the air-

dielectric interface, gives an integral representation for the function Φ.
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In equation (5.5), the point source (x', y') is Region II. If we set (x', y') in Region I,

we obtain the same equation. Therefore, equation (5.5) is an integral representation

of Φ for y' > 0 in terms of the unknown function [A 2 Φy ] across the strip.

Given the condition that Φ = 1 on the strip, we set y' = 1. Equation (5.5) can

now be written as

which is an integral equation for the unknown [A 2 Φy ].

When A 2 equals 1 in both regions, we obtain an integral representation of A

and an integral equation for [Aye] . That is,

In these two equations the Green's function G also has A 2 = 1 for y' > 0.

Equations (5.6) and (5.8) will be solved numerically by Galerkin's method, and

the distributions of [A 2 Φy ] and [A ] over the strip will be given. The value of (. (Ο) ) 2

is found consequently by integrating these two functions over the strip numerically.

The Green's function that we use to solve for [N2Φy] is found using Fourier

integral transformation (the details are shown in Appendix F). It is,

Function G can be simplified as
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This Green's function in (5.10) is then used in equation (5.8) to solve for the unknown

existing results [19] yields a very good agreement. From Figure 5.3 we observe that

for the same substrate, the leading order propagation constant γ (Ο) is increasing as

the width of the strip a becomes larger, and (^ (Ο) ) 2 approaches Alb as a approaches

infinity.

We solve the potential problems by using the half space Green's function (equation

(5.9)) in the integral equations. This Green's function approaches 0 at infinity. More

specifically, the Green's function behaves like 1/r at infinity. In the next step, we

will construct integral equations for [A 2 Γy ] and [Ρυ ] to compute (2). If we still use

the same Green's function, we will run into computational problems, since the source
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Figure 5.3 The leading order propagation constant for A1 = 12.9 versus the width
of the strip. Dashed line denotes our results, and solid line denotes the results from
[19] .
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terms in the Poisson equations for Γ and Ρ do not have compact supports. Therefore,

we introduce a new Green's function with two boundaries at x = +D/2, where D is a

large number and G = Ο at these two boundaries. We call this new function as half

shielded Green's function and find it through separation of variables.

even functions of x. So in numerical computations, we will use only the cosine part of

this Green's function. The contribution from the sine part is zero. By setting Al = 1,

function Gh is used to solve integral equation (5.8)

The results of (ργ (Ο) ) 2 by applying half space Green's function and half shielded

Green's function are compared in Figure 5.4. From Figure 5.4, we observe that the

difference of the results are not distinct, and the larger the D gets, the smaller is the

difference between (^(Ο)) 2 from the two kinds of Green's functions. Therefore, we will

use this half shielded Green's function instead of the half space Green's function in

the next section.

5.2 Numerical Implementation of 
. (2)

In this section, we will obtain a numerical approximation to dί2) . From equation

(4.31) we observe that the jumps of four functions [A 2 Γυ ], [ΡΡ ], [A2 Ω]and [Ω] across

the strip need to be computed in order to compute ,(2)• In the following sections we

will show how to find each of them.

5.2.1 The Auxiliary Function Ω

Function Ω was introduced when we solved nonhomogeneous equations (4.21) and

(4.27) for the transverse electromagnetic fields. Its i derivative and y derivative are
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Figure 5.4 The leading order propagation constant (η .γ (°) ) 2 for different Green'
functions when Alb = 12.9. Solid line denotes the result from free space Green's
function; Dashed line denotes the result from half shielded Green's function for
D = 30; Dotted line denotes the result from the half shielded Green's function for
D= 60.

defined as

respectively, from Section 4.3.4. If we take x derivative to equation (5.12a) and

y derivative to equation (5.12b) and add them, we obtain a Laplace equation for

Ω. This Laplace equation is not easy to solve because of the Neumann boundary

conditions of Ω. However, since we only need the values of [A 2 Ω] and [Ω] across the

strip, we will obtain them directly. Integrating equation (5.12a) with respect to x

. spectively, gives



Now, we substitute equation (5.14) in equation (5.13). After interchanging the order

of integration, we find

We didn't include the sine parts of the Green's functions Gh(x', 1 1x, y) in (5.17)

because the sine parts don't contribute anything to the integral. By knowing this

Gh (x', 11x, y ), the integral in equation (5.16) can be evaluated numerically and we
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5.2.2 Solutions of the Two Poisson Equations

The same Green's function argument is applied to equation (4.26). Hence, the integral

equation for [N2Γυ] is

where fo f f denotes an integral off strip on y = 1.

The double integral over the half plane is obtained in the following way. We

substitute the integral representation of Φ (equation (5.5)) in the double integral 1 ι

and interchange the order of integration, then Ι becomes,

Since the Green's function Eh is in terms of Fourier series, when they are multiplied

and integrated with respect to x, most terms vanish. Therefore, the integral in the big

parentheses in equation (5.19) are simplified as a single Fourier series. In this way the

numerical computation time is dramatically reduced and the accuracy is increased.

In integral 12 the values of Ω on the line y = 1 is computed in Section 5.2.1.

Similarly, The integral equation for [Ρ ,, ] is,

The double integral in the right hand side of this equation is computed using the

same way as was done to the previous equation (5.18).
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5.3 Numerical Results

In Section 5.2, we discussed the method to obtain ' ί2) numerically. By substituting

both 7 ( ) and (2) in the equation (4.46), the effective dielectric constant €e f f = Υ2

is shown in Figure 5.5. In Figure 5.5, we choose Alb = 12.9 when the dimensionless

strip width a = w/h are 6.5, 1, 2, respectively.

In Figure 5.6 we compare the values of the effective dielectric constant by using

different approximations for Alb = 12.9 and w/h = 1.6. The dashed line is the leading

order approximation, that is, function 72 is a constant (.γ(°) ) 2 for all frequencies. If we

consider the solid line from paper [19] as an exact solution, then the errors between

two lines increase as frequency increases. The relative error is up to 16% when

f = 16GHz. The dotted line with stars is the quadratic approximation by using

equation (4.34) . This is a good approximation when f is small. From the plot, we

observe that the relative error is less than 2% when f is less than 16GHz. When

f = 16Ehz, parameter δ is 6.2. Therefore, the quadratic approximation is a good

approximation when δ is small comparing to 1. However, when f is big enough so
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Figure 5.7 The plot of function '72 for different approximations, A1 = 12.9, a = 2.
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that δ cannot be considered as a small parameter, the quadratic approximation is not

appropriate any more. The dash-dot line is the result by using Padre approximation. It

corrects the behavior of the quadratic approximation at high frequencies and reduces

the relative error to 3% at f = 16GHz. In Figure 5.7, same results are shown for

w/o = 2.6.

In computing ^ί2>, we used half shielded Green's function because the half space

Greens' function does not work. Therefore, we cannot compare the results obtained

through these two Green's functions. However, we showed that this half shielded

Green's function yields satisfying results by comparing our output with the existing

ones. Therefore, it indirectly proves the validity of the half shielded Green's function

in our approach.



CHAPTER 6

PERTURBATION ANALYSIS TO OTHER CONFIGURATIONS

In Chapter 4, we observe that by using perturbation analysis, it is natural to derive

a quasi-TEM wave in a microstrip transmission line. Because of the existence of

this quasi-TEM wave, microstip can be described by capacitance, inductance and

transmission line equations in microwave engineering. In this chapter, we will use

the same analysis to derive transmission line equations for microstip with smoothly

changed width and coupled microstrip transmission lines. We will see that without

using the equivalent circuit, the transmission line equations which describe the voltages

and the currents of microstip transmission lines are able to be deduced mathematically

and each term of capacitances and inductances in the equations is well defined.

6.1 A microstip Transmission Line with a Smoothly Changing Width

We have applied perturbation analysis to a microstip transmission line with a uniform

strip width. This analysis can be generalized to the case when the width of the strip

changes along the propagation direction. The results are very useful in the microstrip

matching networks.

When the width a is a function of z, the propagation constant 7 is a function

of z as well. Therefore, the z dependence of the solutions to the Maxwell equations

is not simply eV, as what we did in Chapter 4. When we take the derivative in

equations (4.2) with respect to z, it cannot be simply written as a function multiplied

68
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Therefore, equations (4.2) are written in their general forms as

The regular asymptotic expansions of the electromagnetic fields Ε and B in (4.3a)

and (4.3b) are substituted in these six equations. For each order of δ, we obtain a

system of equations. The zeroth order equations yield Ε = B - Ο by the same

reasoning as we did for a uniform strip line.

The first order equations are stated as

In this representation Φ is defined the same way as before for

fixed z, that is, Φ satisfies Laplace equation and takes the value 1 on the strip and Ο

on the ground plane. However, since the strip width is a function of z, the solution

of Φ also depends on z. The unknown function Φ 0 takes into account the changing

of the potential on the strip along the z direction.



Since Ε 1) is 6 on both the strip and the ground plane and Φ equals 1 on the strip al

6 on the ground plane, equation (6.3) determines that function i is —iΦ οz on the strip

and takes the value 0 on the ground plane. Therefore, we let ' = —ίΦ οz A, where

function A is defined in the same way as in Chanter 4. This changing of variable

employing the same argument as we used to deduce (' (°) ) 2 yields a differential

equation for 4)0(z),

In equation (6.5), f8(z) denotes the integral over the strip (the width of the strip is

a function of z). Integrals [A2 Φυ ] and [Ψν ] also depend on the width of the strip.

When the strip has uniform width, the equation for Φ 0 becomes

Equation (6.4) is a transmission line equation for the potentials on the strip with
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arbitrary width. The integrals in (6.5) are known functions of the strip width (see

Figure 5.3). Hence, if we prescribe the width as a function of z, the 1 and C are

known al the equation (6.4) can be solved numerically. However, if we assume that

the with of the strip changes slowly comparing with the wavelength, then the KB

method can be applied to find an approximation solution of Φ 0 , that is,

In this solution, € is a small parameter defined by D/λ o , where D is the characteristic

length on which the strip width changes in the z direction. Unknown coefficients Αρ

and Β0 are chosen according to the boundary colitions at the source and the load.

For a matching network, we need a maximum power delivered into the network al

no reflection at the load [12] . If the source impedance and the load impedance are Rs

6.2 The Derivation of Coupled Microstrip Transmission Line Equations

Figure 6.1 Coupled microstrip transmission lines.

The perturbation analysis that we have applied to a single microstrip, can be

naturally exteled to deal with coupled microstrip transmission lines.
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Figure 6.1 is a diagram of coupled microstrip transmission lines. Two strips are

uniform along the z direction. The same nondimensionalization is done as we did

for single microstrip, al the six scalar Maxwell equations are (6.1) with different

boulary colitions. When we do the same perturbation analysis, the zeroth order

which means a quasi-TEM wave is supported by

this structure.

The first order equations are (6.2). So the equations for Ε 0 al Ε20 are

follows,

al equals Φ 1 on the left strip al Φ2 on the right strip. Both Φ 1 al Φ2 are unknown

potentials. Across the air-dielectric interface, both Φ and Ν 2 Φυ are continuous. In

order to find the equations for Φ ι al Φ2, we write Φ as an linear combination of two

functions, that is,

In this equation (6.16), both functions Φιρί al Ποι satisfy (6.9) al continuous across

the interface. Function Παιρ takes the value 1 on the left strip al 6 on the right strip,

while function Ποια takes the value 6 on the left strip al 1 on the right strip. Both

of the functions are 6 on the groul plane. In brief, the subscripts of the Ποια and

Παιρ stand for the values of the potentials on each strip. These two functions are

considered as basis functions to the problem. Their values can be found numerically.

Potentials Φ 1 and Φ2 are constants for fixed z on the strips and are functions of z
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only. By this decomposition of Φ, the Ε components can be written as

Thus, if we determine Φ 1 al Φ2, then the transverse electrical fields are given by

these two equations.

Functions B° al B satisfy equations

Then, from these two equations al the boulary

conditions, Ψ satisfies Laplace equation al is continuous across the air-dielectric

interface. The values of Ψ on two strips and the groul plane can be derived from

Ε 1) which connects function Ψ to the unknown potentials Φ ι and Φ2. Substituting

potential representations of the electromagnetic fields in equations (6.2a) and (6.2b)

yields two equations for Ε3 1) , which are integrated to give

Since Ε3 is 6 on metal surfaces, by applying the values of φίο al Αφοί on the strips

al on the groul plane, the values of Ψ on these surfaces are then deduced as:

on the left strip, Ψ = —iΦ 2z on the right strip al Ψ = 6 on the groul

plane. Doing the same decomposition to Ψ as we did for Φ, we take

in which 010 al 0O1 are two basis functions similar as Π10 and Π01. They satisfy

Laplace equations and are continuous across the air-dielectric interface. On the
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ground plane, both of them are 6; on the strips, Q10 takes the value 1 al 6, while

0O1 takes the value 6 and 1. Although functions 010 al Ψάρι do not have analytical

solutions, they can be accurately approximated by many numerical methods. In terms

of potential functions, the transverse magnetic fields can be written as

In the remainder of this section, we will deduce transmission line equations for the

coupled microstrip transmission lines.

Since the leading order Maxwell equations (6.2) describe a quasi-TEM wave,

we can define current for this case. If the current along the left strip is 1 ι (z) al

the current along the right strip is 2 (z), then they are related to the H field in the

following way:

where f8t al f8t denote the integration over the left al the right strips, respectively.

Substituting (6.15a) in these two current equations al applying the continuity

colitions of Βιο al 0O1 across the air-dielectric interface, we obtain
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We define: 1 11 = 1/ fat [(ψ1o)υ]dx , 121 = 1 / fail [(ψο1)υ] dx, 112 = 1 / fat [(ψ1ο)υ]dx al

122 = 1 / fat [(ψοι)υ]dx, then equations (6.17) for the currents are simplified as

ΙΙ = (6.18α)
1 11 121

Ι2
2

1 12 Φ1z
2

122
 Φ2χ• (6.18b)

The unknown functions Φ ι ,z al Φ2 are then solved from these two equations,

i111 	2112
Φ 1χ = 	

11
 + 	 Ι2

ν^ 	 ν2
Φ2z= 2121 Ι1+2122Ι2,

ν2 	 ν1

(6.19α)

(6.19b)

where ν1 = 1 — 111122/112 121 al ν2 = 1 — 121112/111122 are dimensionless quantities

which are not zero. In addition, if the strips are symmetric, then 111 = 122 and

1 12 = 121, that is, the coefficient matrix in equations (6.19) is symmetric.

Equations (6.19) have four unknowns, Φ 1 i Φ2, Ι1 al 12 . In order to fil another

two equations involving these four unknowns, we consider the leading order equation

(6.2e), which is

B10) = Ι1

(Ι) - 2A 2 Ε2ο ) . (6.26)

Integrating this equation from —οο to 0 at y=1+ and y=1 - yields respectively,

ο
Be) Ιυ=ι+dχ = B1 ( —οο, 1+ ) — B3ο ) (6, 1+)

ο
BeΖΟ) Ιυ=ι- dχ = Η 1 (—οο, 1 - ) — BΗο^ (6, 1- )

ο
—i 

- 

Ν2 Ε2ο) Ι υ= ι+dχ, 	 (6.21α)
φ

ο
— ? 

-

A2 Ε2ο) Ι y=1- dB. 	 (6.21b)
φ

Changing the order of z derivative and the integration on the left hand sides of these

two equations al subtracting one from the other, we obtain

.9 

[Biο) ]dx = —i
.5 [A

2 Ε2ο) ]dx, 	 (6.22)
dz 1 	 1
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where we applied the continuity colitions of functions π 0 al A2 Ε2Ο) across the

air-dielectric interface. Substituting equations (6.16a), (6.11b) in equation (6.22)

dives

Equations (6.19a), (6.19b), (6.24), (6.25) are first order differential equations

for the currents and the voltages on the two strips. They are the same equations as

those derived by using equivalent circuits [2] [38] .

The coefficients of the four coupled first order differential equations are functions

of 1 and C's. These l and C's are depelent on the basis functions with which we

chose to express the potential functions Φ and Ψ. Therefore, if we change the basis

functions, for example, if we choose cρeven al Ποdd as the basis functions for Φ, (that

is, for Φρeven both the strips have constant 1 and for ΦPodd left strip equals 1 and right

strip equals —1), then we will have different combinations of different 1 and C's in the

coefficient matrix. However, the two coefficient matrices that are obtained through

different bases are identical since the solutions of the voltages and the currents on the

strips are unique.



77

6.3 Conclusion

In Chapters 4, 5 al 6, we discussed the problem of a microstrip transmission line

by applying a perturbation analysis. We assumed that the thickness of the strip is

negligible, al the substrate is an isotropic dielectric. We considered the case when

the wavelength is much larger than the height of the substrate, al the width of

the strip is the same order as the height of the substrate. Under these assumptions,

we nondimensionalized Maxwell's equations and introduced a small parameter δ

2πh/λο . Then the components of the electromagnetic fields al the propagation

constant d were expaled in a regular asymptotic expansion. Groups of differential

equations with the same order of δ were solved mathematically by introducing proper

potential functions. These potential functions are elliptic in character and are coupled

through boulary colitions of the longitudinal electrical field. The solvability

colitions for the longitudinal magnetic field yield the propagation constant of each

order. The perturbation analysis was carried out until the third order propagation

constant was found. It turned out that the propagation constant is an even function

of f at low frequencies. For arbitrary f, the behavior of the propagation constant

was derived by using the Padre approximation al the information from both the low

frequency expansion and the high frequency limit.

Through the derivation, we mathematically verified that at low frequencies,

microstrip transmission line supports a quasi-TEM wave. That is, the longitudinal

electromagnetic fields are very small comparing to the transverse electromagnetic

fields. However, the longitudinal fields are very important al cannot be neglected

in deriving boulary colitions of potential problems al in deriving the expression

of the propagation constant.

All derived potentials have been solved numerically by converting the Laplace

equations into integral equations through appropriate Green's function representations.

Both the half space Green's function and the half shielded Green's function were used



78

to give the results of the leading order propagation constant. The differences are not

distinct. Therefore, in filing ·y (2) we used a half shielded Green's function instead of

a half space Green's function to overcome the numerical difficulty in dealing with an

unbouled domain. The results showed satisfactory agreement with other existing

solutions.

The same perturbation analysis was generalized to deal with a single strip

with changing widths and with coupled microstrip transmission lines. In both cases,

transmission line equations were derived al each coefficient in the equations were

well defined through potential functions. For the single microstrip transmission line

with slowly changed widths, the potential on the strip was solved by the KB method

and results are applicable to microwave matching network. For coupled microstrip

transmission lines, the transmission line equations were derived without using the

equivalent circuits. The same analysis can be modified to deal with transmission

lines with more than two strips and with other configurations.



APPENDIX A

THE ORDER OF EIGENVALUES AND EIGENFUNCTIONS

In this appelix we will find the order of eigenvalues al eigenfunctions of a general

hole shape. The characteristic size of the hole is d which is defined as the square root

of the area of the hole. We assume that the eigenvalues and the eigenfunctions are

λρalφρrespectively, withp = 0,1, 2 • • • . It is known that for eachp



APPENDIX B

THE PROOF OF THE RECIPROCAL PROPERTY

where the double integral is over the six surfaces of the cube al n is the normal

direction of each surface. The integrals over four surfaces cancel off with each other

because of the periodic boulary colitions. Therefore, only the surface integrals

over the top and the bottom remain, which gives

which yields the result Υοο = το
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THE COMPUTATION OF SEAN
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APPENDIX E

THE RANGE OF )
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Therefore, by applying these four equations (E.3) al (E.5) al the Cauchy-Schwarz

inequality, we have the following derivation:



APPENDIX F

A DERIVATION OF THE HALF-SPACE GREEN'S FUNCTION

WITH DIELECTRIC

This appelix shows how to derive Green's function G(x, 1 B', 1) defined in equation

(5.1). Let's take the Fourier integral transform of E:

85
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Therefore,



equation and initial colitions:
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