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CHAPTER 1

INTRODUCTION

The performance of functional brain mapping on the neural processing of odorants has

posed difficulties to the imaging community [1]. Task-related signal change in regions has

shown unreliable results across experiments. This behavior could result from differences

in experiments or habituating neuronal responses to repeated odorant stimulation [2]. In

relation to our everyday life, this would occur when we smell a perfume when we first put

it on, but then the scent quickly fades. Upon return from work however, the perfume is still

detectable to one's spouse. The perfume did not entirely dissipate, leaving the alternate

explanation that we just no longer detect it.

The work by Wilson 1998, showed this behavior through the implantation of electrodes

in rats in a cortical location which processes odorants, the piriform, and the main olfactory

bulb in the nose [2]. This work demonstrated that the cortical neurons actually did decrease

their firing after repeated stimulation with the same odorant. This is contrasted by lack of

firing decrease to a sequence of different odorants.

In the context of functional magnetic resonance imaging (fMRI) this issue of habitu-

ation has been addressed [3][4][5]. These researchers either modeled the habituation [3] [5]

to the response or simply described it[4]. Other authors have tried to avoid the effect by

employing sequences of different odorants [6].

The work presented in this experiment combines experimental manipulation to limit

the effects of habituation, along with a relatively novel approach to the analysis of fMRI

data, the Kalman filter [7][8][9]. The Kalman filter is an adaptive filtering technique that

does not analyze data as a complete block, but on a time point by time point basis. This

sort of analysis truly takes advantage of fMRI's advancement over PET in terms of temporal

resolution.
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The application of the Kalman filter to fMRI data is relatively new [10][11][12];

therefore, some form of verification is required. The first part of this work, focuses on this.

In terms of validating the method, instead of creating simulated data for testing, data was

collected from each subject while they engaged in visual stimulation experiments. These

experiments collected data that shows robust task related signal change in predictable brain

regions. The two visual stimuli were a 12 second and a 2 second flashing checkerboard.

This data provided a testing ground for the Kalman filter.

The two experimental manipulations elicited two forms of task related signal change,

a wide response of at least 12 seconds and a narrow response of at least 2 seconds. The

Kalman filter was applied to this data to extract the response. This response is the task

related signal change to each stimulus block, where every experimental manipulation con-

sisted of five stimulus blocks. The advantage of the Kalman filter is that this response is

extracted for every experimental time point, thus providing results that track the underlying

signal.

This approach to testing the method is preferred over simulation, for it accurately

captures all the unaccountable physiological effects taking place in real data. Simulated

data makes attempts at physiological effects, such as respiration, cardiac and 1/f noise [13],

but it will never be as good as the real thing. Therefore, this experimental manipulation is

thought of as a simulation of the expected results from the olfaction experiment. Through

the analysis of this visual data it is determinable whether this method is appropriate for use

with fMRI data.

The next step in this project was to analyze data from an olfaction experiment. From

this data, the responses to the odorant stimulation were extracted to test whether they differ

across regions involved in the processing of odorant stimuli. The advantage of the Kalman

filter approach to this problem, is that it makes no assumptions on the expected results.

The only information it requires is that "something" happened at certain points in time.
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Differences in the width of the extracted responses provide evidence that within odorant

presentation time habituation is occurring.

From the results of these analyses the presence of cross experimental habituation is

investigated. The peak amplitude of the estimated response is modeled to locate regions

exhibiting habituation [2, 3]. This analysis takes advantage of the Kalman filter's adaptive

nature.

The operation of the Kalman filter is to make a prediction of the next data point

by using all the data up to it. Once the new data point is available, the prediction is

refined. This logic is used to test whether the results from one experimental session of

visual or olfaction data will predict the next session of data better than standard statistical

models [14][15][16][17]. The expectation was that using a subject's own information from

one session will improve statistical analysis of the subsequent session, while engaged in

the same experimental manipulation. The comparisons are made between the Kalman filter

informed model, and six others, and evaluated based on the percentage of variance in the

data they account for.

The Kalman filter is employed in this study through training on one session of data

and then testing on a subsequent data set. The question arises as to how reliant is the filter

on the training data. The filter's reliance on accurate training data was validated through

cross modality comparison, between the visual data and the olfaction. This tested whether

the filter predicted olfaction data better when trained on olfaction data or whether there was

no reliance on the training data.

These points are addressed through the following chapters. Chapter 2 focuses on

the physiology underlying the signal measured. This discusses the effects the external

magnetic field has on the human body and what physiological effects take place to create

a measurable fMRI signal. Through this discussion the concept of the hemodynamic

response function (HRF) is presented, which is the measured response to neuronal activity.

Chapter 3 focuses on how this HRF has been modeled in the literature. The importance
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of this chapter is in its discussion of the different models that have been proposed to

better understand the fMRI signal and to increase the sensitivity of statistical models. The

models discussed in this chapter are the same models which are compared to the predictions

generated by the Kalman filter analysis to the data.

Chapter 4 gives the complete derivation of the Kalman filter and its application to

fMRI. This chapter is of interest because it addresses special topics that are unique to

fMRI data and how to deal with them. Chapter 5 presents the six specific aims of this

work and the methods employed to address them. Chapter 6 describes the methods of

this experiment. This chapter describes the experimental setup for conducting an olfactory

experiment in addition to the programs that were required for control of the olfactometer

and the behavioral data collection. The concept of paced breathing for the olfactory exper-

iment is presented here. The image preprocessing is also discussed along with the creation

of the regions of interest, with results presented in Chapter 7. Chapter 8 is the discussion

and the work is concluded in Chapter 9.

In addition to an appendix of extra results, there are three other appendices. The

first, Appendix A is a list of linear algebra equations that were used in the derivation of the

Kalman filter. The second, Appendix C includes images of each of the regions of interest.

Finally, Appendix D includes the main MatLab and LabView programs used to perform

this experiment.

1.1 Contributions of this Work

This project has made significant contributions to the field of brain imaging and in particular

olfactory experiments. The application of the Kalman filter to the study of fMRI is relatively

new, and has not previously been done in the manner performed here. The work done

here deconvolved out the underlying response to a stimulus at every time point in an

experiment. This ability to extract time varying signals from fMRI data allows researchers


