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ABSTRACT

FLUID-PHASE THERMODYNAMICS FROM MOLECULAR-LEVEL
PROPERTIES AND INTERACTIONS BASED IN QUANTUM THEORY

by
Steven G. Arturo

A methodology to predict the thermodynamics of macroscopic fluid systems from

quantum chemistry and statistical thermodynamics has been developed. This work

extends the group-contribution concepts most utilized in chemical engineering.

Computational chemistry software is used to define the geometries and electron density

profiles of target molecules. Atoms in Molecules theory and associated software

packages are used to calculate rigorous properties of the functional groups within

molecules of interest. These properties are incorporated into an intermolecular potential

energy function which describes interactions between entire molecules as a set of

interactions between functional groups. This information is applied to a lattice-fluid

model with the capability to predict volumetric properties of pure fluids and vapor/liquid

equilibrium properties of mixture systems. This work develops a bridge from chemistry

at the molecular level to the statistical mechanics at the macroscopic system level.

The rigorous properties of functional groups lead to the application of first-

principles mathematical models that qualitatively agree with volumetric properties of

pure fluids and predict vapor/liquid equilibrium behavior for near-ambient mixtures of

alkanes, alcohols and ethers. The theoretical and computational efforts developed in this

work offer engineers the ability to determine molecular-level modeling parameters within

engineering models without the use of experiment.
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CHAPTER 1

INTRODUCTION

1.1 Objective

This work lays out an algorithm that achieves thermodynamic properties of fluids from

rigorous properties at the molecular and functional group level. The fluid properties of

interest include conditions and compositions for vaporIliquid equilibrium of binary

mixtures, pure species volumetric behavior and heats of formation. The fimctional group

properties calculated in this work include structural, electrostatic and energetic

characteristics. The modeling results are geared toward application to systems of interest

to chemical engineers, while the fimdamental approach and the molecular-level concepts

studied are geared toward models of interest to physical chemists.

The layout of this work is separable into four topics: chemical engineering

science; computational chemistry; quantum chemistry of interactions between closed-

shell molecules; and statistical mechanics of lattice-fluid systems. Chapters 2 and 3

review the fimdamental expressions within classical and statistical thermodynamics to

theoretically describe macroscopic and molecular systems. Chapters 4 and 5 review the

statistical methods chemists and engineers have formulated for describing fluid systems,

namely lattice-fluid models and the modifications made by engineers to describe real

systems. Chapters 6 and 7 review the theory and methods behind quantum chemistry that

predict energies and electron density profiles of molecules numerically, and Chapter 8

presents results of computations for molecules of interest to this work. Chapter 9 reviews

the concept of the fimctional group in modeling molecular behavior, and Chapter 10

1
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presents functional group property calculations using a rigorous method based in

quantum chemical theory. Chapter 11 reviews classical and modern approaches to the

problem of interacting closed-shell molecules. Chapter 12 presents novel models for

interactions between molecules and functional groups utilizing calculations of Chapters 8

and 10 with the theoretical expressions of Chapter 11. Chapters 13 and 14 describe novel

applications of both the molecular-level properties and interaction energies to lattice-fluid

theory towards a first-principles description of the thermodynamics of pure and mixture

systems. Chapters 1 through 7, 9 and 11 review prior work, while the remaining chapters

document the efforts of the author.

1.2 Background Information

Engineers are responsible for large scale processes important to the health and well-being

of people in today's society. The chemicals that engineers assist in manufacturing lead to

a higher standard of living for people by producing food for a more stable food supply,

detergents for a cleaner lifestyle and medicines for a longer and healthier life. Today's

chemical engineer must devise safe, economical and efficient processes to bring large

amounts of advanced products to those who can benefit.

The science of chemical thermodynamics solves a variety of problems for

chemical engineers who oversee large-scale operations of fluid systems, the systems

within which most of today's mass-produced chemicals are created. Knowledge of fluid

properties is used to accurately build the reactors and plants where manufacturing is

centered. The processes may also be optimized after models of heat and work effects on

the system are derived from thermodynamics. All stages of the process, from the initial
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streams to intermediate properties to output flows, are able to be incorporated into

thermodynamic models of the process, thus allowing for a full characterization of the

product at several stages.

In all levels of processing, properties of the fluid phase are essential. Engineers

must know properties at various temperatures and pressures, two thermodynamic

variables readily controlled and monitored. Engineers must be able to predict the

response of fluids to changing heat and work effects, therefore properties of pure fluids

and mixtures must be known for relevant temperatures and pressures. For mixture

systems, which are the majority of systems in practice, properties must be known for

varying compositions of species as well. These properties are achievable with knowledge

of the volumetric behavior and heat capacity of the fluid, which are mathematical

relations available to the engineer.

Of particular importance to engineers is the process of separating chemicals.

Reactions that form the target compoimd rarely go to completion, resulting in a complex

mixture of reactants, by-products, solvents and the desired species. The compoimd of

interest usually needs to be separated from the remaining species, and sometimes this

must be done on a large scale. The classic approach is to use a distillation process, which

takes advantage of the different vapor pressures of the species at different conditions and

compositions.

The solubility of a trace compoimd within solvents is another thermodynamic

concept used in separations. Whether it be the solubility of a gaseous species within a

liquid or a solid, or the solubility of a solid or liquid species within a gas, a range of
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separation techniques exist by taking advantage of the affinity a compoimd has to a

different phase or solvent.

In all systems studied by chemical engineers, the behavior of fluids at the various

conditions is representable either through tables and graphs, or analytically using

correlations or first-principles approaches. For the former, experiments have to be

conducted to amass volumetric data for pure systems and phase behavior data for mixture

systems at different conditions and compositions. A large number of experiments have to

be conducted to get a fine representation of all the states of interest, and states between

experimental results are then interpolated. To get such information, a great amount of

time and money must be invested. As an alternative, a limited number of experiments

may be used to correlate parameters within a mathematical expression. Analytical

expressions result from such a treatment, although the correlation is usually only good

within the range of conditions within the experiments. Analytical expressions with a

predictive capability over a full range of conditions are possible if the fimdamental

driving forces of the system are defined. These mathematical expressions are usable by

scientists and engineers to give more timely results of an unknown system than by

methods that involve experiment. Having such expressions available makes engineers

more efficient and effective at predicting the behaviors of fluids in a process.



CHAPTER 2

CLASSICAL THERMODYNAMICS

Equilibrium thermodynamics is the study of natural laws that describe the state of

material at given conditions (e.g. temperature and pressure) and composition. The study

of such laws commenced with the study of steam engines to determine how much energy

can be extracted in the form of work and how much energy is wasted in the form of heat.

Scientists continue striving to imderstand the imderlying principles of energy and how it

drives processes. Beginning as an applied science, the framework has matured into

abstract mathematical concepts and now is used by chemical engineers and scientists to

make all kinds of quantitative assessments, on systems from the molecular level to

systems on the scale of astronomical bodies.

This chapter reviews concepts familiar to those who have learned undergraduate

chemical engineering thermodynamics. The state fimction formalism is reviewed, and

notation conventions are established; these may differ from those with which chemists

are familiar. The quantification of nonidealities, namely through defining residual and

excess properties, and the utilization of equations of state and activity coefficients within

these expressions are shown. The gamma-phi formulation, a set of equations used by

engineers to calculate vaporIliquid equilibrium conditions, and the algorithms using these

equations are introduced. Those who wish for a more in depth discussion are referred to

a standard textbook in the area (Smith, Van Ness, & Abbott, 1996).

5
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2.1 The State Function Formalism

The state fimction formalism of equilibrium thermodynamics simplifies the description of

systems so that engineers need only be concerned with the initial and final conditions of a

process. The change in energy of the system is independent of the path the process takes.

Different external effects change the path off the system. Such concepts fall within the

study of kinetics and reactor design. Thermodynamics is used by engineers when they

need to establish the initial and final conditions, any intermediate states, and limits of

heat and work effects on the system. Such effects can then be applied to create the

desired output.

The most important state fimction within all of thermodynamics is the Gibbs

energy. By the Second Law of Thermodynamics, a pure species system that has achieved

equilibrium has reached a state that minimizes the Gibbs energy at the given temperature

and pressure. The Gibbs energy expresses a balance between the internal energy U of

the system, the entropy S at the system temperature T, and the pressure-volume effect

that the system encoimters to exist with volume V at a thermodynamic pressure p

(Levenspiel, 1996)

A state fimction of theoretical interest is the Helmholtz energy of the system, which is

expressed here through the Gibbs energy

In processes, the enthalpy of the system is important to determine heat effects and phase

changes of flow systems. This state function is given by
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The Gibbs energy is most important to engineers because of the natural variables

of the state function. Changes are wholly describable through changes in the pressure,

temperature and composition of the system, conditions engineers control and measure

using a thermometer, barometer and species-measuring device. In differential form, a

change in the total Gibbs energy of a system with multiple species is given by

where the extensive properties here are given as total quantities, denoted by the

superscript t , n, is the number of moles of species i , and where the partial derivative is

taken while holding T , p , and ni„ constant. A more usable form of the above

differential is given by the dimensionless form of the equation, foimd to be

where R is the ideal gas constant. The total entropy term is replaced by an equivalent

expression including total enthalpy, a quantity more accessible to engineers.

A differential change equation for the Helmholtz energy is similarly expressed,

but with different natural variables

where the change in A t is expressed in terms of changes in volume, temperature and

species amoimts. The differential expression for a change in enthalpy is not as practical,

since the change in entropy of the system needs to be known



8

Equations (2.4) through (2.7) are called the fundamental property relations (FPR) for the

respective energies.

In each of the above FPRs, the change in the energy with respect to the amount of

species i is called the chemical potential of species i . The chemical potential p, is

given by

This quantity measures the affinity of a given species to a given phase. If two phases are

in contact and molecules are able to move between phases, a molecule of type i moves

from the phase with higher chemical potential to the phase with lower chemical potential.

This flux of molecules continues imtil the chemical potential of both phases are equal.

Equality of p, for each species in all phases defines the equilibrium of the system.

2.2 Real versus Ideal Systems

The study of the change in energy of a real system begins with the study of change in an

idealized system. Expressions developed for idealized systems are almost always simpler

and are used as first-order approximations. Gas-phase systems are related to the ideal gas

state, where molecules neither interact nor displace any volume. Real gases tend toward

ideal gases at low pressure, high temperature, and large molar volumes. The

nonidealities of real gases develop from the volumes taken up by molecules and the

forces of attraction and repulsion between them. Liquid-mixture systems are similarly
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related to ideal solutions. Properties of ideal solutions of a given composition are the

weighted average of pure liquid properties added to an idealized entropic effect. Ideal

solutions are good approximations to mixture systems with species whose molecules

have similar sizes and interactions. The nonidealities arise when molecules with different

structures and/or imlike polarities are mixed.

Engineers relate the deviation of system properties of a real gas from the ideal

state by considering residual properties. Only the equation of state (EoS) of the fluid is

needed to calculate these properties. To see this, consider the definition of the molar

residual Gibbs energy of the system

where each system exists at the same temperature and pressure. The FPR in Equation

(2.5) is used for the pure species ideal gas and residual property

Finding the changes in the Gibbs energy is straightforward for an ideal gas with

knowledge of the ideal gas heat capacity and the ideal gas EoS. For a constant-

temperature process, the change in the residual Gibbs energy is calculated by integrating

the differential change from the ideal gas pressure, p = 0 , to the pressure of interest

where Z is the compressibility factor is found through the real gas EoS and is dependent

on temperature and pressure



Similarly, the residual enthalpy in a constant temperature process is foimd to be

It is therefore shown how an EoS in the form of the compressibility factor Z is used

within the residual property formulation to determine the thermodynamic properties of a

pure species. An analytical EoS makes the job of an engineer more efficient by allowing

for the quantitative assessment of thermodynamic properties of real fluids through the use

of Equations (2.12) through (2.14).

The excess properties of a liquid quantify the deviation of real liquid mixture

behavior from ideal solution behavior. For instance, the molar Gibbs energy of an ideal

solution is the weighted sum of energies from the pure liquids added to an entropic

contribution

where x, is the mole fraction of species i in the liquid phase. The excess molar Gibbs

energy of a mixture is defined as follows

where each system is at the same temperature, pressure, and composition x . To develop

mathematical expressions usable by engineers, it is necessary to consider the FPR of the

total Gibbs energy, similar to Equation (2.5). For an ideal solution,

10
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where the chemical potential of species i in an ideal solution is denoted as

Subtracting this expression from the FPR for a real mixture system gives the total excess

Gibbs energy

Within this expression, define the natural log of the activity coefficient of species i , In y, ,

as proportional to the difference in chemical potentials of the real and ideal mixture

systems

This relation quantitatively describes the different way a species behaves in a real

mixture as opposed to an ideal solution and is used to determine what phase is preferable

to a species. By inserting Equation (2.20) into Equation (2.19) and taking the derivative

with respect to amount of species, n, the activity coefficient is related to the total excess

Gibbs energy

Inserting the original expressions for the total excess Gibbs energy and the total Gibbs

energy of an ideal solution, the activity coefficient is found
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where G: is the total Gibbs energy of pure species i .

With development of models of the Gibbs energy for pure liquids and liquid

mixtures, expressions are attainable for the activity coefficients of species within the

system and, therefore, the thermodynamic behavior of those species in solution.

2.3 Classical Treatment of VLE Behavior

The activity coefficient plays a very important role in determining the vaporIliquid

equilibrium (VLE) curves of mixture systems of interest to engineers. At low to

moderate pressures, the engineering expressions relating the liquid and vapor

compositions to the system temperature and pressure are called the gamma-phi

formulation

where yid is the mole fraction of species i in the vapor phase, pr' is the saturated vapor

pressure of species i at the system temperature and 4), contains factors that describe the

nonidealities of species i within the system. These include vapor phase nonidealities

accounted for by the virial EoS and liquid volume corrections accounted for by the

Poynting factor. This quantity is given by
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where B, is the pure species second virial coefficient, V,' is the molar liquid volume, and

(5„,,, is a difference of pure and mixture second virial coefficients

For a binary mixture, Equation (2.24) reduces to

for species 1, and the expression for species 2 is foimd by exchanging subscripts. In

practice, the thermodynamic variables for VLE systems are temperature, pressure and

composition. The dependence of the terms in the gamma-phi formulation is as follows

Iterative procedures have been developed to determine full VLE tables and graphs

with limited information by using the fimctionalities above. The following procedures

are documented (Smith, et al. 1996), therefore the algorithms are not presented here.

There is a slight discrepancy, since here y, is considered dependent on pressure. The

documented procedure approximates 7, as only dependent on temperature and liquid

composition. The general dependence can be worked into the documented procedures by

evaluating the activity coefficients with each iterated pressure.

The bubble point (BUBO procedures calculate the composition of the vapor

phase within the first bubble that forms within the liquid phase, while the dew point

(DEW) procedures calculate the liquid composition of the first liquid drop that forms
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from the vapor phase. The most common information is the liquid composition and

either temperature (for an isothermal VLE graph) or pressure (for an isobaric VLE graph).

The BUBL p procedure allows for pressure and vapor composition to be foimd with

knowledge of the liquid composition and temperature. The BUBL T procedure allows

for temperature and vapor composition to be foimd with knowledge of the liquid

composition and pressure. The implementation of the DEW procedures is less common,

since experimental data rarely includes only vapor phase compositions. Difficulty is

encountered when trying to keep the entire headspace at imiform conditions to avoid

fluctuations in density or concentrations. The DEW p procedure calculates the liquid

composition and pressure with knowledge of the vapor composition and temperature.

The DEW T procedure calculates the liquid phase composition and the temperature with

knowledge of the vapor compositions and pressure.

2.4 Notes on the Critical Point of a Fluid

Most pure fluids and fluid mixtures have a particular set of conditions where classical

mathematical formulations of thermodynamic properties break down. The critical point

for a pure species is a set of conditions, usually given as the critical temperature and

pressure, Tc and pc , that denote the highest temperature and pressure where the liquid

phase and the gas phase of a fluid have a distinct interface. Below such conditions, VLE

may exist. Experimentally properties for a pure species EoS at the critical point have

been found, namely
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To get a sense of the difficulties around the critical point, consider that the

isothermal compressibility of a fluid, the change in volume when applying a pressure at

constant temperature, is mathematically expressed as

This expression is thereby infinite at the critical point, given by the conditions stated in

Equation (2.30), meaning that one can theoretically apply pressure to a fluid without

resistance. This is counterintuitive, since real world experience shows that a fluid resists

occupying a smaller space by applying a force outward on the container. At the critical

point, this is not the case.

Molecular-level characteristics of a species do not determine the thermodynamics

around the critical point, since all fluids and fluid mixtures have critical points. Nor do

the molecular properties affect the way the fluid approaches the critical point, either

isothermally or isobarically. Such species-specific and composition-specific

characteristics do determine the actual values of the critical temperature and pressure.

Mathematical treatments for an EoS and a Gibbs energy expression do exist, but these are

arduous to use and are high in theory. Systems far from the critical point are subject to

the classical treatments described above and throughout this work. Introductory

information of critical phenomena and its relation to phase transitions is explained

(Stanley, 1971), and nonclassical approaches resolving some issues with the critical

region are offered (Anisimov and Sengers, 2000).
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2.5 Summary

Engineers benefit when the thermodynamic behavior of fluids and fluid mixtures are

reduced to mathematical formulations. Equations of state can be used to determine real

gas properties. Gibbs energy expressions can be used to determine the behavior of liquid

mixtures. Although these expressions are more difficult to determine around the critical

region, methods do exist and offer a quantitative description of the thermodynamics there.

If one is able to determine the Gibbs energy for a generalized fluid system at any

temperature, pressure and composition, it is foimd that both the EoS and activity

coefficients are available for use in calculations. Theoretical frameworks that attempt to

relate fimdamental molecular behavior to macroscopic system properties exist. Statistical

thermodynamics, an interpretation of molecular behavior that results in macroscopic

thermodynamic properties, is the bridge between the very small entities and the large

properties with which engineers are familiar.



CHAPTER 3

STATISTICAL THERMODYNAMICS

Statistical thermodynamics allows for the information at the molecular level to be

translated into the macroscopic thermodynamics that engineers are interested in. The

focus of macroscopic property prediction is to find the most probable energy levels of the

system using a statistical analysis of the myriad combinations of molecular energy states,

since the sheer number of molecules in a typical engineering system includes Avogadro's

number of molecules, NA , and a system degeneracy (the combinations of molecular

states that result in the same system energy) of order 10 N4 . Knowledge of these most

probable states leads to the macroscopic system properties engineers use in practice.

This chapter reviews concepts within physical chemistry and molecular physics

that are not usually taught to imdergraduate chemical engineers. The derivation of

Boltzmann's distribution of quantized energy states available to a system is discussed,

and expressions relating these distributions to macroscopic thermodynamics are

established. The maximum term approximation for the summation within the partition

function is expressed, as it will serve an important role in the calculation of

thermodynamic properties. The origin of the virial equation of state, a theoretically

rigorous equation of state, is noted, and the role of intermolecular potentials within

gaseous systems is presented. Classical physics expressions for the interaction of

molecules and statistical simplifications of these expressions are reviewed. The

derivations and notation of the statistical thermodynamics in this chapter is a restatement

17
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of work within a standard textbook (McQuarrie, 2000), as too are the expressions of the

intermolecular potential functions (Hirschfelder, Curtiss, & Bird, 1964).

3.1 Boltzmann's Distribution

To start, consider the classical example of determining the thermodynamic properties of a

system given the temperature, total volume and total number of molecules, N . With

these conditions, the theory of quantum mechanics ensures that the states available to the

system are defined. If the most probable states are foimd, then the properties of the

system at these states are calculated, as they are assumed to reflect the equilibrium

properties of the real system.

In time, the macroscopic state cycles through its available quantum states. Let the

time-dependent motion of states be represented as an ensemble, a large collection of

systems under the same thermodynamic conditions, where each system represents a state

visited by the real system. Analysis thereby begins with gathering all the information

about the ensemble. Each system in this ensemble is in a state j with a total system

energy Eq. . The number of systems that occupy the same energy state is given by a1 .

The total energy of the ensemble is therefore

The number of systems in the ensemble must be very large, given the number of

degeneracies discussed above. This quantity is
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Given system conditions and the above constraints, the most probable energy state is able

to be found.

The most probable state is directly related to the distribution of states in the

ensemble. The number of ways the systems in the ensemble can be distributed is a

reflection of how often a distribution of states is encoimtered upon analysis. This number

is given by the combinatorial formula

where a = (al , a 2 , . . .) . If the number of systems in the ensemble is sufficiently large,

which is prescribed above, the distribution of systems corresponding to the largest

number of ways effectively represents the distribution of systems. One can assume the

existence of this distribution, labeled a* . Of course, the distribution a* must be

constrained by Equations (3.1) and (3.2).

The task now is to quantify a* . This is accomplished by maximizing the ways

fimction (or here, the natural log of the ways function, which is entirely equivalent due to

the monotonic nature of the natural log operator) using the constraints above and the

method of Lagrange undetermined multipliers. Maximizing In n involves taking the

derivatives of all a j and constraining the distribution to Equations (3.1) and (3.2). The

result is given as

for each j . In this treatment, the undetermined multipliers are a and 18 , and the task

will be to find what these quantities are. Solving for the elements of the most probable
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distribution, a; , gives a relationship between the multipliers and the energy state E., .

The result follows, for each j

We can further evaluate by summing Equation (3.5) over all j and utilizing

Equation (3.2). This gives an expression isolating a

The probability of finding a system in state j, given by the occupation number of state j

in the most probable distribution, is foimd by combining Equations (3.5) and (3.6)

k

This is the relationship that leads to the probability distribution of quantum states.

The function in the denominator of Equation (3.7) is a common relation within

statistical mechanics and is called the canonical ensemble partition function, Q. It is

defined as

The partition function may also be expressed by grouping energy states with the same

energy and summing through the available energy levels

where Lk  is the degeneracy of energy level k



Probabilities in the form of Equation (3.11) and the canonical partition function, Equation

(3.10), are central quantities when relating the molecular quantum states to the

macroscopic properties.

3.2 Relationships between Partition Functions and Macroscopic Properties

With the expressions for the most probable energy level, the macroscopic system

properties desired by engineers are nearly calculable. The last hurdle is to relate the

probabilities to macroscopic properties and, in the process, to determine the second

multiplier # . One must begin by considering the average energy of a system, the

weighted average of all the energy states in the ensemble. This is expressed as

Recall that the total internal energy of a system, U' , is the energy of the molecules within

a system: the kinetic energy of translation; internal rotations and vibrations; and the

potential energy they experience through interactions. These effects are exactly

described in the quantum state, therefore Equation (3.12) is exactly the internal energy of

the macroscopic system.
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Another relation between statistical thermodynamics and macroscopic

thermodynamics reveals the definition of /3. First, recall that the differential change in

energy needed to reversibly expand a volume at a given pressure

For a system within the ensemble, this relation is given by

The subscript exists on the pressure here because the pressure for a given differential

volume change is dependent on the system quantum state. Rearrangement isolates this

pressure

The pressure familiar to engineers is the thermodynamic pressure, and this quantity is

given as the ensemble average of the system pressures, similar to Equation (3.12)

Consider now the derivative of the average energy, Equation (3.12), with respect to the

volume, holding N and /1 constant
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Equation (3.19) inserted into Equation (3.18) results in

Relating this to a similar expression derived from the FPR of the internal energy

suggests that /3 = constant/T . This constant is universal for all systems considered, and

it is called Boltzmann's constant, named after a founding contributor to statistical

thermodynamics. The undetermined multiplier is therefore

I ne natural variables or tine canonical partition fimction suggest a relationship

between Q and the Helmholtz energy A . Development of the statistics and relations of

the FPR in classical thermodynamics result in a straightforward relationship

The pressure of a system describable by a canonical ensemble is foimd using the FPR of

the Helmholtz energy, Equation (2.6)

The chemical potential for a given species i , utilized within engineering models, is given

by
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For the other macroscopic thermodynamic fimctions of interest, one must sum

over the Boltzmann-like factor of interest to achieve the appropriate variables. For

instance, if one wished to have the partition function depend on p instead of V I , one

finds

where A is called the isothermal/isobaric, or Gibbs, ensemble partition fimction. The

summations here are over all possible system volumes and energy levels. Also of interest

is the partition fimction the grand canonical ensemble, E , where N is exchanged with

the chemical potential, p

One is able to go backwards from the canonical ensemble and remove the summation

over energies, thus having the thermodynamic variables N , V I , and E t . This function is

the degeneracy of the system of energy E t and is related to the entropy of the system

through Boltzmann's formula

Since the focus of this work is around the Gibbs function and its associated

partition function A , thermodynamic fimctions found using Equation (3.27) and the FPR

in Equation (2.4) are of interest. The total volume of the system, important in research of

an EoS, is given by
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where N; is the number of molecules of species i in the system.

To facilitate calculation of properties using the partition function approach, the

maximum term within the summation is used to represent the entire partition fimction.

For instance, consider writing the canonical partition fimction as

where

It is assumed that the terms in the summation are dominated by a single term, similar to

the assumption made with the occupancy of states and Equation (3.3). The fimction

representing the summand, To , is maximized with respect to energy to find this

maximum term. The partition fimction, Equation (3.32), is therefore assumed to be

where E l* maximizes r Similarly with the Gibbs ensemble, the summation within the

partition fimction is expressible as the maximum term. Considering the partition function
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The maximum of 1-G is foimd by taking the derivatives with respect to E' and V I and

setting those to zero

The partition fimction is therefore expressible as

thereby giving the most probable energy state and volume when considering an ensemble

of systems at a given temperature, pressure and composition.

3.3 Virial Equation of State

The virial equation of state is a Taylor's series expansion of system pressure in terms of

system density aroimd the low density limit. This expansion is the only theoretically

correct representation of the gas state that exists in thermodynamics. The macroscopic

thermodynamic representation is given by

where B, C , and D are virial coefficients dependent on temperature. At subcritical

temperatures, the series converges only for gas-like volumes. At supercritical

temperatures, the series converges for all volumes. The number of terms necessary for an

accurate representation of a system depends on the pressure and on the substance. For

systems with pressures up to 20 bar, an accurate volume can usually be calculated with

the inclusion of the B/V term. For system with pressures up to 50 bar, terms up to

C/V 2 must be included.
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To derive the virial coefficients, one must consider the grand canonical ensemble,

Equation (3.28). A series expansion of the ensemble and relation to Equation (3.38)

yields rigorous definitions in terms of intermolecular potentials. These definitions relate

the coefficient of order (—n) to the molecular interactions of systems involving n and

fewer molecules. The result for B involves expressions for molecular interactions in

systems with two molecules, given by

is the intermolecular potential depending on the distance between

molecule 1 and 2 and a12 = In — r2 1 is the distance between molecules 1 and 2 . The third

virial coefficient, C , involves interactions within systems up to three molecules. This

expression is somewhat more involved, since there are three binary interaction terms and

one three-body interaction term. If one neglects the three-body interaction term, the

expression for the third virial coefficient is simply

Here, the integrals are taken over all possible positions of the three molecules in the

system. If the three-body interaction is included in the formulation, C is then given by

where 6 (an  , /13, a23) describes the energetics evolved from the three molecules given their

binary distances. These expressions reflect that, up to pressure of 20 bar, two-body
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interactions play a significant role in the gas phase thermodynamics. Up to 50 bar, three-

body interactions are significant influences on the properties of the gas system.

3.4 Intermolecular Interactions

Statistical thermodynamics and lattice-fluid theory reduce the problem of finding the

quantum states of a system into the problem of molecular interactions. Interactions

change the system state by stabilizing or destabilizing the configurational energy.

Intermolecular potentials are necessary for the calculation of virial coefficients of real

fluids and in approximating the system quantum states within partition function

expressions. Such forces are modeled by separating the effects into the Coulombic

effects, the effects at short interaction distances and the effects at long interaction

distances.

Coulombic effects dominate the interactions between molecules that have a non-

zero electronic charge, e.g. systems with ionic species. The energy between two

molecules with charges is given by the Coulombic potential

where q, represents the charge of molecule i. If the charges are of opposite sign, the

molecules attract one another due to a greater reduction of system energy at shorter

interaction distance. If the charges are of the same sign, the interaction energy is positive,

and the molecules will repel one another due to a more stable interaction energy at larger

distances.

Short-range interactions between neutral molecules are repulsive. This is a

manifestation of the Pauli exclusion principle, which states that quantum particles (here,
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electrons) cannot occupy the same quantum state. For closed-shell molecules, the

electron clouds aroimd the nuclei overlap, thereby occupying the same space and

attempting to occupy the same quantum state. This is energetically imfavorable,

therefore the molecules repel. However when the electron clouds overlap, electrons

have more space to occupy, which energetically is favorable. This results in an attractive

force, albeit small. This is called the exchange contribution and cannot be described

classically, since such an effect has no analogue in the particle description of electrons.

The combined attractive and repulsive effects at short-range is sometimes called the

exchange-repulsion effect.

Long-range interactions between neutral molecules are attractive. These effects

are further separable into the electrostatic, induction and dispersion contributions. The

electrostatic contribution involves the interactions of multipole moments (charge, dipole,

quadrupole and higher moments), which arise from the asymmetrical distribution of the

negatively charged electron cloud and the positively charged nuclei. Induction is when

the multipole moments of one molecule induce a shift in the electron cloud of the second

molecule, thus causing a short-lived attraction similar to the interaction between dipoles.

Dispersion arises when one electron cloud induces another to shift, and in response, the

shifted electron cloud causes the originating cloud to shift, thus creating an alternating

motion that leads to short-lived dipole moments of opposite orientation. The latter two

contributions are influenced by the polarizability of the molecule, which is the measure of

how easily swayed the electron cloud is when under the influence of an external electric

field.
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The electrostatic interactions are calculated using Coulomb's law, Equation (3.42).

Partial charges are placed within the molecule to reproduce the multipole moments. This

results in orientation-dependent expressions for intermolecular interaction energies. For

instance, the charge-dipole interaction is given by

where p, is the magnitude of the dipole moment of molecule i , and (fibs measures the

angle of the dipole off the line connecting the partial charge and the center of the dipole

vector. The dipole-dipole interaction is given by

where 0 is the angle of the dipole moment off the plane perpendicular to the line

connecting the centers of the dipole moments.

For long-range interactions, molecules can rotate without being influenced by the

potential wells of certain stable orientations between molecules. These interactions may

be considered as orientation-averaged interactions. This is done by integrating

Boltzmann factors over all orientations to determine a partition fimction for the system,

and then dividing the partition function weighted by the energy, similar to Equation

(3.12). In general, the orientation-averaged interaction energy for an intermolecular

potential uxy is given by
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For large enough distances or high enough temperatures, the

Boltzmann factors can be expanded in terms of 1/kBT

The result when applying the charge-dipole interaction of Equation (3.43) into Equation

(3.45) yields

The induction contribution is dependent on the magnitude of the electric

multipoles and the polarizability of the electron cloud of the affected molecule. All

orders of multipole moments can induce a dipole in an electron cloud. Induction caused

by a charge results in the intermolecular potential describable by

where a, is the polarizability of molecule i with the induced moment. Induction caused

by a dipole moment is given by

The orientation-averaged expression is foimd by applying Equation (3.45). The result of

this is
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Dispersion interactions are significant because they are the main force of

attraction between non-polar molecules. Spherically symmetric molecules do condense

into a liquid phase; therefore they do have an interaction that results in attraction. These

interactions have been deemed London-type dispersive interactions and are named after

the scientist who applied quantum mechanical treatments to explain this phenomenon

(Gray and Gubbins, 1984). The interaction is described by

where h is Planck's constant and v01 is a characteristic groimd-state electronic frequency

of molecule i . If one assumes that hv01 is roughly described by the ionization potential,

/0 , , then the relation becomes

To calculate the interaction energy between two molecules, the effects described

above are summed together

where the Coulombic interaction is included in the electrostatic contributions and, in

general, the orientation-dependent expressions are used.
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3.5 Summary

Statistical thermodynamics offers engineers a bridge between the molecular description

of matter and the macroscopic description of systems. The partition fimction and the

probability distribution of quantum states allows for a fuller understanding of how

molecular-level properties, such as state distributions and interaction energies, affect

volumetric properties and chemical potentials.

The volumetric behavior of a gaseous system is shown to be directly influenced

by the characteristics of interaction potentials involving only a few molecules. Molecular

properties used in these interaction formulas, such as the multipoles and polarizabilities,

have in the past been foimd through experiment. More recently, these properties can be

calculated numerically by utilizing quantum chemistry from its first principles to give

electron density profiles of molecules and how they may be influenced by electric fields.

These properties are becoming accurately represented through quantum chemistry, in turn

making such information more readily accessible to engineers for use in these interaction

formulas and within partition functions.



CHAPTER 4

LATTICE-FLUID THEORY

The amount of information necessary to use the general partition fimction approach in the

description of fluid systems is immense. Even for the system in the gas phase, the ease of

the virial equation series solution is lost as one considers multiple body interactions.

Ideally, the partition function approach would describe all states available to a fluid,

whether in the gas phase or the liquid phase. To accomplish this, assumptions must be

made to consider a smaller number of dominant molecular effects most important to the

macroscopic description of the system.

One method for describing fluids within a system space is to imagine them

occupying a lattice. Lattice statistics make available closed-form, analytical equations

describing the dominant effects within the partition fimction formulation. The details of

the lattice need not be explicit, as long as the sites are imiformly distributed throughout

the space, whether on fixed coordinates or not. Methods applied within lattice-fluid

theory make the description of fluids more tractable and result in qualitative descriptions

of vapor-liquid equilibrium for pure species and mixture systems. These theoretical

methods are also flexible enough to incorporate properties of real molecules, thus making

the models useful in the description of real systems.

This chapter focuses on lattice-fluid concepts and current approaches to the fluid

problem. Fluids on lattices have been modeled both by fully occupying the lattice and by

occupying a lattice also occupied by vacancies. Basic assumptions to simplify the

partition fimctions for use within the theory are presented for a system with a fully

34
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occupied lattice. A combinatorial approach to the entropy neglecting contributions from

the interaction energies, thus describing the random state of the fluid, is formulated. The

interaction energies are then included and adjustments are made to describe the system in

the more realistic, nonrandom state. The same process is followed for systems where

vacancies are included in the lattice, and the volumetric properties of lattice fluids are

considered.

Lattice-fluid theory is the foimdation for the application of the molecular-level

structural and energetic properties later in this work. It is here that both the pure species

equation of state and the activity coefficient of species in solution are able to be

calculated using the same model. The goal is to make available a single set on modeling

equations that engineers can employ in the study of pure and mixture fluid systems.

4.1 Partition Functions of Lattice-Fluid Theory

The initial systems considered involve fully occupied lattices, since it is thought that such

systems serve as reasonable approximations to the liquid state. Since the number of

lattice sites is known from the beginning, the volume of the system (a liquid-like volume)

is thereby known also. These models attempt to evaluate the terms within Equation (3.9),

the canonical partition fimction.

The lattice-fluid partition function is assumed to be simpler than the general

canonical partition fimction. Consider a lattice-fluid system where only two different

species exist, molecules of species A and molecules of species B . Instead of being

interested in the entire system energy, only the total configurational energy Tr is

considered within the partition sum (Hill, 1960)



where Qtntemar represents the contribution of the energy modes internal to the molecule

and assumed separable from configurational effects. The total configurational energy W t

is given by the interaction of nearest neighbors. For a binary system,

where Ay  is the number of nearest-neighbor interactions between molecules i and j ,

and where Du  is the corresponding interaction energy. Although separated explicitly, it is

When the maximum term method described in

Equation (3.34) is applied, the notation within the partition fimction reduces

where the * associated with the maximum term approximation is henceforth omitted.

The systems later considered are those lattice fluids that include vacancies. The

number of vacancies is considered a variable that is to be determined by system

temperature and pressure, as well as implicitly by the nature of molecules mixed.

Thereby, the Gibbs ensemble in Equation (3.27) is used, and the maximum term

approximation is taken as above

The total volume of the system is given by the volumes of the molecules and imoccupied

lattice sites
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where b, is the volume of molecule i , Ao is the number of vacancies on the lattice, and

k is the volume of a vacant lattice site.

These interpretations of the partition fimctions allow the problem to be reduced to

determining the most favorable set of interaction numbers Au , the number of vacancies

Ao and the degeneracy of the system given that interaction profile. The latter problem is

now addressed.

4.2 The Ideal Solution and the Athermal Mixture

The first attempt to determine the degeneracy is to consider systems where the interaction

energies have no bearing on the thermodynamics. These systems are called athermal,

where either Br = 0 or the configurational energies of the pure systems being mixed and

the resulting mixture systems are the same (Guggenheim, 1944a), as in the case of mixing

two alcohol species of similar sizes. The only contributions to the partition fimction in

Equation (4.3) here are the internal term and the degeneracy term

Since the internal contributions will cancel upon mixing, they will be left out of

subsequent expressions.

An ideal solution describable by Equation (2.15) considers a system where the

geometries of the molecules are so similar that size and shape effects have a negligible

contribution to the system entropy. Therefore, simple mixing is considered in the

degeneracy, and the partition function is given by (Hill, 1960)
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This formula is the same as a model problem in the field of combinatorial analysis. This

is the value of the number of ways one can draw A =NA-I-NB  balls from an urn with

two different color balls, AA balls of one color and AB balls of the other. The system is

said to possibly exist in L ways, since this is the number of ways the molecules can exist

in the system while yielding an equivalent system energy.

For polymer systems where the size and shape differences between the

macromolecule and the solvent are large, the degeneracy described by Equation (4.7)

does not adequately depict the thermodynamics of the athermal mixture. This problem

must be approached by considering the probabilities of placing a polymer onto a lattice

systematically. These probabilities are then computed as a function of lattice-site

occupation, assuming the other species on the lattice is a monomer (or nonexistent,

therefore considered to be vacancies). An original assumption in this treatment is that the

probability of placing the next segment of a polymer on a lattice is assumed to be the

fraction of imoccupied sites within the entire system, without consideration as to whether

an adjacent site is available for a monomer to be placed (Flory, 1942). The number of

ways AA monomers and AB polymers occupying /AB segments is placed on the lattice is

given by

number of lattice sites in the system.

A more general treatment of the mixture of a macromolecular species and

monomers has been conducted (Guggenheim, 1944a). The approach analyzes the
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mixture of molecules composed of segments of different sizes as they occupy a lattice

The ways fimction for any number of different species on a lattice is given by

where vi, is a symmetry factor for molecule i , a is related to the total number of

nearest-neighbor interactions in the system

and q, is such that zoq = z, is the number of external contacts for molecule i . Within

the original derivation, q, is defined through the relation

Equation (4.9) has been considered as a generalization of Equation (4.8), where the Flory

expression is recovered from the Guggenheim expression by allowing for the lattice

coordination number to approach infinity, zoo -3 co (Sanchez and Lacombe, 1976). This

is the case because of the placement probabilities assumption described above (Sayegh

and Vera, 1980); to guarantee that there is always an adjacent lattice site available when

placing a polymer onto a lattice, that site must be a nearest neighbor to all the sites on the

lattice. Also, Equation (4.8) has been shown to be recovered from Equation (4.9) at the

low volume fraction occupancy of a given species in the presence of vacant lattice sites

(Martinez, 1995).

The relationship between the number of external contacts and the number of

occupied lattice sites, here given by Equation (4.11), assumes that each monomer of the

polymer occupies a single lattice site, that exactly two contact (one from each monomer)
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is used to connect the monomers, and that the molecules are not cyclic. A factor is

included into Equation (4.11) that allows for the description of molecules that violate the

assumptions above (Staverman, 1950). This more general expression is

where 1, quantifies the bulkiness of the molecule. The revised degeneracy of the system

described with Equation (4.12) is

A review of expressions that describe an athermal mixture (Sayegh and Vera,

1980) suggest the use of Equation (4.13) over the expressions given by Equations (4.8),

(4.9), and others (Tompa, 1956; Donohue and Prausnitz, 1975). It is shown that Equation

(4.13) offers an accurate description of systems describable by more complicated

methods, such as those based within computational thermodynamics, while still retaining

a simple form. Furthermore, it has been shown that Equation (4.13) improves the

calculation of cavity formation free energies in liquid systems (Lin and Sandler, 1999a,

Lin and Sandler, 1999b), and has been chosen to represent the athermal contributions

within COSMO-based models (Lin and Sandler, 2002; Kiamt, et al. 2002).

A generalized derivation of Equation (4.9) without assuming Equations (4.11) or

(4.12) is offered in Appendix A. The motivation is to make available an expression

without defining an arbitrary value such as /, which usually becomes a correlating

parameter in engineering models of real fluids.
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4.3 The Nonathermal Mixture

The nonathermal mixture considers the interaction energies between the molecules in the

above statistics. However, to determine the maximum term as given by Equation (4.3),

one must determine the interaction numbers that gives the maximum of the expression

Oe -wf ikB T . This is not straightforward because of the difficulties of describing the

entropy of a real system, even though the athermal configurational energy is explicit.

Although the only closed-form representation of the entropy term up to this point is that

of the athermal case, this is enough to determine the entropy of the nonathermal mixture.

The original statements of the entropy consider the degeneracy strictly a fimction

of the number of molecules. For the binary system

It is assumed that the degeneracy is a function of the interaction numbers also

(Guggenheim, 1944b)

This assumption makes the athermal degeneracy, as it stands, not adequate to incorporate

interaction effects.

Here, a guess at the form of S) (N Nu ) is made. Consider a binary mixture

system describable by the canonical ensemble. Consider also a fully occupied lattice.

There exists a number of interactions that will occur on this lattice, dependent on the

number of molecules A and B , the size and bulkiness of the molecules, and the number

of interactions that A and B participate in. Let I represent the total number of

interactions, given by



These I interactions may be depicted as a lattice that is superimposed on the lattice that

molecules occupy. These interaction lattice points thereby are occupied by interactions

denoted AA , AB , BA , and BB . A first assumption is to state that these interaction

points are distributable as molecules are on a lattice. The number of ways by this

assumption is given by an expression similar to Equation (4.7), which is

A descriptive argument as to why this method overcoimts the number of ways is

documented (Hill, 1960).

Another assumption on the form of S/ (N i , ) must be made. It is assumed that

the degeneracy is separable into two contributions: one strictly in terms of the numbers of

molecules, the other in terms of the first assumption described above (Hill, 1960)

The proportionality factor K is foimd by normalizing the sum over all possible sets of

N which should equate to the athermal contribution above

This process is generally described for molecules (Guggenheim, 1944b) and interacting

surface segments (Kehiaian, et al. 1978). The proportionality factor K , for any number

of molecules in the system, is found explicitly using Lagrange imdetermined multipliers

(Knox, et al. 1984). The expression is given by



where I is expressible through the numbers of molecules and their numbers of

interactions z,

and where the number of interactions attributable to species i is given by

Therefore, the partition function that describes the lattice fluid where any number of

species occupies all sites is given by (Knox, et al. 1984)

With this partition fimction, the problem of maximizing the term within the

summation is considered. The objective is to find the set of Nu (for a binary system, the

that maximizes the term. These numbers are under the

constraints given by Equations (4.2), (4.16), (4.22) and by the equality

This problem has been solved indirectly (Guggenheim, 1944b; Kehiaian, 1978) and

through the using Lagrange imdetermined multipliers (Knox, et al. 1984; Knox, 1987). It

is foimd that the numbers of interactions in the nonathermal system must satisfy what is

called the quasi-chemical relationship



where the quantity within the exponential is referred to as the interchange energy. Once

this has been established, all unknowns within the system of equations can be solved for.

The derivation for the quasi-chemical equations in its most general form is offered in

Appendix B. The solution to these equations then gives thermodynamic properties of the

lattice-fluid system through the techniques described in Section 3.2.

4.4 Vacancies on a Lattice and Equations of State

The premise imder most of the early work within lattice-fluid theory centers on the

description of polymer fluids. The polymer is modeled as a large number of segments,

each occupying one lattice site, while another, monomer-sized species, occupied the

remaining sites. Since these models consider the athermal solution, the energies of

interaction between monomer-polymer segments are treated as equivalent to polymer-

polymer interactions. Therefore, these monomers have been considered vacancies or

small solvent molecules by those developing the theories. Assuming these monomers are

vacancies, it has been shown that statistics involving the surface area contacts

(Guggenheim, 1944a; Staverman, 1950) are a general theoretical treatment of this

problem, while earlier works (Flory, 1942; Huggins, 1942) are approximations at low

polymer density (Martinez, 1995).

Use of the Gibbs partition fimction, Equation (4.4), allows for the effect of

vacancies on a lattice to be explicit. The difference to the canonical partition fimction

approach is that, to eliminate the summation over all volumes as given in Equation (3.35),
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the number of vacancies No must also maximize the term. It turns out that this process

reveals the relation between the pressure, volume, and temperature of the system, thus

gives an equation of state. Recall that using the Gibbs partition function allows for a

description of the volumetric properties of the fluid, given by Equation (3.30).

Allowing vacancies on a lattice has become an interesting technique in modeling

volumetric properties for pure species and mixture systems. One way is to consider the

vacancies randomly distributed throughout the lattice (Sanchez and Lacombe, 1976).

This approach begins with the athermal statistics given by Equation (4.9) and considers a

binary system of molecules and vacancies

where tub , N , a , and q are quantities of the pure species in the system. Using Stirling's

approximation and taking the coordination number zooooh , a simplified form of the

degeneracy emerges

where 0 is the volume fraction of the species on the lattice

Equation (4.27) corresponds to the ways given by the Flory degeneracy in Equation (4.8).

Inserting Equations (4.2), (4.5), and (4.27) into Equation (4.4) and maximizing with

respect to N0 gives the EoS (Sanchez and Lacombe, 1976)
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where E is the interaction energy between two molecules.

Further work of including vacancies in the lattice includes them in a nonrandom

manner (Smirnova and Victorov, 1987; Taimoori and Panayiotou, 2001; Panayiotou,

2003b), where the notation in the subsequent expressions reflects the latter references.

The vacancies recently have been considered a separate species in the lattice-fluid

mixture, occupying space and interacting with nearest neighbors. These interactions

contribute no energy to the configuration of the lattice. The resulting EoS when the

entropy of Equation (4.27) is applied is given by

where the reduced variables are the same as above, s is the average number of contacts

for a lattice site, and F00 is a nonrandomness factor foimd by solving the following

equations (Taimoori and Panayiotou, 2001)



When Food =1, the vacancies are said to be distributed randomly, as in the case described

above. For the case where Equation (4.26) describes the entropy, the EoS is given by

(Smirnova and Victorov, 1987; Panayiotou, 2003b)

4.5 Summary

Lattice-fluid theory allows for the simplification of the fluid problem. The assumption

that the internal molecular modes are independent of the other molecules in the system

allows for focus to be applied on the numbers and types of interactions in the partition

fimction. The reduced problem of the athermal system gives the foundation for

expressions that describe the nonathermal system. Vacancies are included in the lattice in

the attempt to describe both liquid and gas phases with the same model.

Lattice-fluid theory includes molecular properties, such as volumes and surface

area (reflected in a and q) that can be evaluated approximately through correlation or

rigorously calculated from quantum chemistry. Also, the energetics of the system

depends primarily on nearest-neighbor binary interactions, which allows again for

descriptions ranging from empirical to theoretical. Structural, electrostatic and energetics

quantities will be the focus of a large majority of this work, after an assessment of the

ways these properties have been formulated in engineering models.



CHAPTER 5

ENGINEERING SOLUTIONS TO THE
VAPOR/LIQUID EQUILIBRIUM PROBLEM

To make the classical and statistical theory useful for applications, engineers elucidate

concepts to bridge the molecular level and the macroscopic system level. Engineers need

not know the absolute values of internal energy and entropy, but how these properties

behave when a system changes temperature and pressure. Approximations must be made

at the molecular level to separate the dominating effects from the incidental effects that

most affect changes at the macroscopic level.

To accomplish this, engineers have developed phenomenological models to

accoimt for the most important molecular-level effects. The VLE problem has served as

a measure of how well a model encapsulates the dominant effects, mainly because errors

may cancel out in the application of Equation (2.22).

Assumptions are made to find a closed-form expression for the excess Gibbs

energy. Firstly, although encoimtered in practice and explicit in the mathematical

framework described above, engineers have assumed that the excess volume is negligible

in a mixing process. This allows for the for the excess Gibbs energy to be approximated

by the excess Helmholtz energy

'therefore, the total (iibbs energy is approximately the total Helmholtz energy and its

corresponding partition function

48
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Secondly, the quantum energy levels within the isolated molecules of the system are

assumed to not change through the mixing process, as per the assumption made within

Section 4.1. This allows for the separation of the partition fimction as mentioned by

Equation (4.3).

The engineering models presented in the chapter take these assumptions and

describe the entropic and energetic effects of mixing, which in turn yields VLE behavior.

Lattice-fluid modeling is employed due to the ease with which system level properties are

described using statistics. The first part of this chapter involves the combinatorial

entropy contribution to the excess Gibbs energy formulas. The local composition

concepts are introduced, and early attempts to include contributions of interaction

energies are presented. Theoretical problems within these approaches have arisen as

these methods have been studied, and these are reviewed here. The more rigorous lattice-

fluid theory in Chapter 4, the quasi-chemical method, has been developed in response to

these criticisms, and both molecular and fimctional group models that utilize the theory

are presented. Finally, the COSMO-based methods are introduced due to their recent

acceptance by the engineering community. The identity between the quasi-chemical

statistics and the COSMO-based statistics is established.

5.1 Athermal Effects and Engineering GE Equations

For the simplest case, consider a mixture resulting in an ideal solution. The sizes and

geometries of the species are the same, and Brit for the mixture system and for the pure

systems are the same. A mixture system that is not affected by changes in Br upon
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mixing is called an athermal mixture. The difference between the Gibbs energy of the

mixture system and the weighted averages of the pure systems is foimd to be

This is, of course, the identical expression given for an ideal solution, given by Equation

(2.15).

For mixtures of molecules that are of different sizes, the composition is not

considered the greatest factor in determining the entropy. The occupancy of the lattice is

considered more important, and the entropy of mixing is determined to be the number of

ways the lattice sites are occupied (Flory, 1942; Huggins, 1942). Assuming an athermal

mixture, the difference in mixture and pure Gibbs energies is foimd to be

where 0, is the volume fraction of species i in the system. Equation (5.4) reduces to the

ideal solution expression in Equation (5.3) if all the sizes of the molecules are the same;

mathematically, this means that a, = ad for all the molecules in the system.

A more rigorous approach in determining the entropy from a mixing process for

an athermal mixture is accomplished by analyzing the mixture of molecules composed of

segments of different sizes as they occupy a lattice (Guggenheim, 1944a). The resulting

difference in mixture and pure Gibbs energies of the athermal mixture system is

where u, is tine surtace area traction or species 1 in the system, given by
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Note the first term of Equation (5.5) is identical to that of the Flory expression, while the

last term contains effects due to surface area differences.

5.2 Residual Effects and Engineering GE Equations

The athermal system expressions above give idealized descriptions on which the effects

within a real system, namely the interaction energies, are built. The ideal basis considers

fluids existing in a random state, while the influence of interaction energies brings the

fluid into a nonrandom state. It is assumed in the following models that the interaction

energies from nearest-neighbor interactions are the only significant contributions to W' ,

and these may be described by Equation (4.2). This affects the local composition of

molecules around a particular molecule, which is different than the bulk composition and

depends on magnitudes and signs of interaction energies.

The first widely used equation that exploits the local composition concept is the

Wilson equation (Wilson, 1964). Here, the ideal solution relation of Equation (5.3) is

used as a basis, where the latter composition is replaced by the local composition

where xi./ represents the local composition of j molecules surroimding i molecules.

The local compositions are assumed to be related to the actual composition by the

following relation
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This equation has been used by engineers to correlate VLE data with the n (n —1)

parameters, where n is the number of species in a system. Each parameter contains the

exponential in Equation (5.8). Therefore, for a binary system, the two parameters are

For a ternary mixture, there are six parameters: 1-2; 1-3; 2-1; 2-3; 3-1; 3-2 .

The Universal Quasi-Chemical (UNIQUAC) equation (Abrams and Prausnitz,

1975) is an oft-used model that combines the athermal contribution from Guggenheim,

Equation (5.5), and a residual contribution, modeled by a modified Wilson equation

where	 is the local surface area fraction of j molecules around i molecules. This

quantity is given in an expression similar to the local composition, Equation (5.8), except

for the factor of z0 /2 within the exponential fimction

Similar to Wilson's equation, there are n (n —1) parameters that are correlated to

experimental data.

In conjimction with the development of UNIQUAC, a group-contribution method

called the UNIQUAC Functional-group Activity Coefficients (UNIFAC) method

(Fredenslund, et al. 1975) takes most of the same features as UNIQUAC except that the

residual contribution focuses on the interactions between fimctional groups. These

fimctional group interaction parameters, similar to those in Wilson and UNIQUAC, are
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correlated to known experimental systems and used in systems that lack experimental

data. The expression for the difference in Gibbs energies is given by

where k cycles through the different groups in the system, Qk is the surface area

parameter of a group analogous to q, Lk  is the composition of group k in the system,

Lid is the local composition of group 1 aroimd group k, and the superscript (1) denotes

the quantity as it exists in pure species i. The local composition in this functional group

framework is foimd by Equation (5.11), which is similar to the UNIQUAC model

The parameters within UNIFAC the form of those in Equation (5.9). These are found

through correlation of known experimental results and are assumed to be transferable,

which then allows the model to be applied to systems with no experimental VLE data.

The UNIFAC model has been the most widely used predictive tool for VLE and

other engineering systems involving phase equilibrium. The number of groups within the

method grows as experimental data for new systems are made available. The Dortmund

Data Bank has been employed to fit parameters for 45 major group definitions with

temperature dependence within a modified UNIFAC method (Gmehling, et al. 1993).

The modification increases the number of energetic parameters for each pairing of

functional groups to six, where it is two in the original UNIFAC method. A recent
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assessment reveals that the total numbers of parameters for the UNIFAC and modified

UNIFAC methods are 168 and 612, respectively (Lin and Sandler, 2002).

5.3 Criticisms of the UNIQUAC/UNIFAC Method

The local composition concept employed within the LTNIQUACIUNIFAC method and its

various implementations have been scrutinized. Of foremost concern within these

models has been the violation of a basic mass-balance constraint (McDermott and Ashton,

1977), which resides within the definition of the local composition. When it is related to

Nu , the number of interactions between molecule i and molecule j , Cy  is foimd to be

The mass-balance constraint requires that the number of id interactions equal the number

of ji interactions as in Equation (4.24). This links the local compositions by the relation

Instead of relating the local compositions in this manner, engineers have related them

through the energetics in Equations (5.8), (5.11) and (5.13). The errors arising from the

lack of a mass-balance constraint are not explicit in the correlations, as they are contained

within the regressed parameters.

The UNIQUAC relation originally is derived using the concept of one-fluid

theory (Abrams and Prausnitz, 1975), where the statistics of the mixture system were

derived as the molecules existed in the same fluid. A second derivation of UNIQUAC

(Maurer and Prausnitz, 1978) offers a consistent derivation imder the above stated
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criticism by employing the two-fluid theory. The two-fluid theory supposes that the

changes in the external energy, A W 1 , evolved from a binary mixture process is given by

denote an interaction energy between i and j in the mixture state,

in fluid 1 and fluid 2 , respectively. These latter fluids do not necessarily represent pure

fluid states. It is further assumed that the homogeneous interactions are equivalent

while the inhomogeneous interaction is not

This assumption leads to the two different energetic parameters for a single id interaction.

This adds to the capability of the model, yet it renders the description theoretically

incorrect and empirical (Kehiaian, et al. 1978; Klamt, et al. 2002).

The mass-balance constraint and a reinterpretation of the factor multiplying the

residual contribution have been applied to the UNIQUAC expression (Knox, 1982). The

resulting expression for the local surface area fraction from (5.11) is now given by

and the full expression for the Gibbs energy from (5.10) is now

which simpl
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It has been shown that this expression fits VLE data about as well as the original

UNIQUE model (Knox, 1982).

5.4 The Quasi-Chemical Approach

Local composition models exist where the mass-balance constraint has been built into the

derivation, thus alleviating the criticisms noted above. This approach corresponds to the

quasi-chemical approach described in Section 4.3. Initial theoretical exercises on fluid

systems are given for polysegmented molecules (Guggenheim, 1944b; Guggenheim,

1952). This approach has been applied for real systems where the interaction energies

are correlated to reproduce data (Barker and Smith, 1954). A derivation of the approach

has been offered to include a relation between random and nonrandom effects within the

entropy term for any number of components in the system (Kehiaian et at, 1978). The

nonrandom entropy is assumed to be a proportion of the random entropy, and an iterative

solution to the nonlinear set of equations has been foimd (Knox, et al. 1984). The

derivation of the same nonlinear set of equations is accomplished using surface segments

within a Conductor-Like Screening Model (COSMO) (Lin and Sandler, 2002; Klamt, et

al. 2002). Throughout this work, the partition fimction derivation and accompanying

notation of Knox and coworkers is employed. A generalized derivation of this method is

offered in Appendix B.

The expression for the excess molar Gibbs energy of a system describable through

the quasi-chemical approach is similar to that given in Equation (5.18) combined with

Equations (2.15) and (2.16)
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where z, = zoo, is the number of contacts on molecule i. In this expression, the local

compositions Cub cannot be found explicitly. These values are a solution to the set of

nonlinear equations given by

where the area fraction of the molecule is foimd in a similar manner to Equation (5.6)

and where the interactions are implicit within the D u expression

The athermal contribution in the above model is given by Equation (5.5). This quasi-

chemical model has n(n —10 parameters for a mixture of n species, a reduction by a

factor of 2 due to the recognition of the mass-balance constraint. The interaction

parameters within this engineering method are the Dub. This model has been shown to

perform comparably to the UNIQUAC expression while only needing half the number of

interaction parameters, although difficulty is encountered when attempting to correlate

highly non-ideal mixtures, such as alcohol/alkane mixtures (Knox, et al. 1984).

The excess molar Gibbs energy model of Equation (5.19) also exists as a group-

contribution method (Knox, 1987). The excess Gibbs energy for that model is given by
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where m is the number of different group types in the system, Zk is the number of

contacts on group k, vi k denotes the number of group k within molecule i, eke is the

surface area fraction of group k. The molecular surface area fraction is given through

group quantities by

The molecular volume fractions 0, are found using volume properties of the groups by

where Rk is the number of lattice sites occupied by group k. The surface area fraction

of group k is given by

The local compositions ykk in the excess Gibbs expression in Equation (5.25) also cannot

be included explicitly. The system of equations that yield the local compositions are

given by



The resulting expression for the activity coefficient of species i in the mixture is given

by

where Kith is the activity coefficient of molecule i in an athermal solution and

traditionally holds the contribution of the first two terms within Equation (5.25). Again,

this system of equations yields m (m —1)/2 interaction parameters for the m fimctional

groups within the system. This method is able to predict VLE data for systems without

experimental data, similar to the use of UNIFE, although the number of correlated

interaction parameters is not large. Correlated interaction parameters between fimctional

groups show physical significance by trending monotonically with the number of

hydrogen atoms within a CH„ group (Knox, 1987).

5.5 Defining Functional Groups using Computational Chemistry

In order to minimize the number of experiments in the evaluation of interaction

parameters within group-contribution methods, the complete transferability of groups has

to date almost always been assumed. By definition, a group that is transferable has the

same intermolecular and intramolecular properties in all applications. Thus the

individual group properties are presumed to be independent of the other groups that exist
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in the system, as well as independent of the other groups constituting the molecule.

Within activity coefficient models, where interaction effects are important, group-group

interaction energies have been considered transferable, just as with all other group

properties.

The development of a group-contribution method for evaluation of system

properties must first begin with a search for the proper group definitions. A group can be

as small as a single atom, or it can be a combination of several atoms, or it can consist of

an entire molecule. A successful additivity scheme that predicts thermophysical property

data (Benson, 1976) defines a group as a heavy (non-hydrogen atom) atom of a linear or

cyclic molecule and all the atoms whose only bond or bonds are with the heavy atom

(mainly hydrogen atoms). Other heavy atoms bonded to the group heavy atom are

included in the definition for nominal purposes.

The defining of groups has been arbitrary, usually resulting in definitions that suit

particular systems and allow for the best predictive results. Where groups in certain

molecules are clearly not transferable, they are replaced by larger, more specific groups

that do not occur in as many molecules. These definitions then become somewhat

particular to the molecules investigated, and the advantage of adopting a group-

contribution technique is lost. However, the problem for smaller group definitions, that

the group properties vary between molecules, remains (Wu and Sandler, 1991a). Thus it

is impractical to rely upon a group-contribution method that relies upon universal

properties for small functional groups.

The use of computational chemistry has been proposed as a tool for ending the

arbitrary methods for defining groups within engineering models (Wu and Sandler,
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1991a). It is suggested that, to expect the transferability of a group, the geometry of the

constituent atoms should be equivalent amongst all species when occurring. Also,

Mulliken population analysis (Muiliken, 1955) is used to examine charge distributions

within molecules by assigning effective partial charges to atoms. Groups are defined as

collections of atoms with a near neutral Mulliken charge. More recently, the neutrality

criterion has been revised to one that accepts a consistent distribution of charge over the

atoms as indicative of transferability (Lin and Sandler, 2000). Some groups satisfying

the criteria are the same as those for UNIFAC, while new group definitions, usually a

combination of smaller groups, are employed to satisfy the Mulliken charge criterion. A

result of this study states that methylene ( CH 2 ) groups should be included with highly

electronegative groups ( OH , NH 2 , NO 2 , CHO) to create an approximately transferable

group.

5.6 An Overview of COSMO-based Methods

A successful attempt to evaluate VLE with computational methods and correlated model

parameters has been proposed (Klamt, 1995; Klamt et al 1998). The COSMO for Real

Solvent (COSMO-RS) approach avoids the problems of past group-contribution methods

by avoiding the need to define fimctional groups altogether. A molecule within a

condensed state is assumed to be solvated within a dielectric continuum. A surface-

charge distribution, referred to as the a -profile, is calculated for each molecule using

computational chemistry. The surface-charge distribution is partitioned into segments,

and molecular interactions are accoimted for by the juxtaposition of these segments. The

types of binary surface segment interactions are assigned in a similar manner of
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minimizing the partition function with respect to Nu , and properties such as vapor

pressure, partition coefficients and energy of hydration become available.

The parameterization of the original COSMO-RS scheme involves two structural

parameters for each of three elements ( H , C , and O) and eight global model parameters.

The structural parameters for the elements N and Ci were determined after fixing the

parameters of the other elements. Therefore, for molecules containing the above

elements, the model requires 18 global parameters, much less than the himdreds of

parameters necessary in the UNIFAC methods.

The procedure of parameterizing and optimizing the model has led to some

compromising of the basic model premises. Although claimed that the model parameters

are close to their theoretical estimate, a pair of parameters, ra%, and Jeff , which are

equivalent in theory, differ after optimization by a factor of three (Klamt, et al. 1998).

The sampling of properties aroimd a molecule, such as for the screening charge density in

the COSMO-RS model, has been criticized as being dependent on the distance from the

nuclei and on the distribution of sampling points (Sigfridsson and Ryde, 1998).

Theoretical problems also result from the choice of radii for the elements. It had been

found that charge density outside the approximating sphere for an atom distorts the

screening charge density. Also, the interaction distance described by the radii of the two

interacting components may not correspond to the actual interaction distance in the real

fluids, especially in instances of hydrogen bonding.

It is noted that the COSMO-RS method does not satisfy the Gibbs-Duhem relation,

a basic requirement for expressions that calculate activity coefficients y, (Lin and

Sandler, 2002). This relation states, for a binary mixture,
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To satisfy this relation, the activity coefficient for molecule i in a mixture is proposed to

be

where v, k here denotes the number of segments of type k within molecule i , thereby

giving the total number of segments contributed by molecule i by the inner summation,

1 ) is the probability of finding a segment of type k within pure species i , and Lk  is

deemed the activity coefficient of surface segment k . The activity coefficient of segment

k is found by solving the nonlinear system of equations, given by

This methodology, combining the concept of interacting surface segments with

thermodynamically consistency of Equation (5.33) is called the COSMO Segment

Activity Coefficient (COSMO-SAC) model (Lin and Sandler, 2002). Soon after, the

COSMO Surface-Pair Activity Coefficient Equation (COSMOSPEE) method (Klamt,

et al. 2002), which utilizes the same statistics, has been proposed.

5.7 The Statistics of Interacting Surface Segments

The interacting surface segment model is the contribution to the residual partition

fimction within the COSMO-based models. However, the link between functional group

interaction schemes and surface segment interactions (Kehiaian, et al. 1978) seems to be
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made far earlier than the development of COSMO-SE and COSMOSPEE. The more

recent derivation of the surface segment statistics is presented here (Klamt, et al. 2002).

Consider a set of surface segments, where there are m different types of segments.

Let M, be the number of segments of type i . The goal here is to determine the activity

coefficient of a general segment type i imder the influence of the interactions of other

segments while the macroscopic system is in the liquid phase. The molecular activity

coefficient will then be available by summing the functional group contributions, as in

other excess Gibbs energy models.

The chemical potential for a surface segment of type i is found through the

canonical partition fimction of Equation (3.26). Since the number of segments of the

system is so large (on the order of the number of molecules within the system), the

derivative in the chemical potential relation is approximated by a finite difference

where the subscript (-1) denotes the system with one less segment of type i . Also

removing a segment of type j follows the procedure in Equation (5.36)

Now the goal is to clarify the ratio of partition fimctions given here.

Consider a similar system as above, except where the surface segments are

distinguishable. The partition fimction for this new system of segments is very similar to

that above, except for a familiar factor that includes indistinguishability in the above case.

The partition fimction of this new case, Q' , in terms of the earlier partition fimction is
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objects is called a . The removal of a from the system of distinguishable objects is

implicit within the chemical potential p , and this must be determined.

The partition fimction of the distinguishable system includes terms involving

segment a and all the interacting segments. It is presumed that these effects are

separable from the partition function in such a way as to relate the whole partition

fimction with that where a is removed (Klamt, et al. 2002). This is given by

and the M/2 interaction sites where the interaction may take place, respectively, and

where earl is the interaction energy between the segments. Inserting Equation (5.37) with

primed notation into Equation (5.40) and simplifying yields
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Here, the model notation must revert back to the original ensemble, where the

surface segments of a given type are indistinguishable. This is accomplished by inserting

the relationship between pa and ,u, foimd in Equation (5.39) and allowing the

summation to run over all types with the appropriate Ma multiplying the summand, since

there are M ., terms in the summation within Equation (5.42) that contribute effects from

type j . These manipulations result in the following

The definition of the activity of surface segment i , given by F. closely

resembles that for molecules, given by Equation (2.20), except that the reference system

here is not an ideal solution but a solution fully occupied by segments i

where pi„ is the chemical potential of segment i in a system of pure segments i , and

where the final term is included due to the composition difference in the real and

reference states (a problem not encoimtered in Equation (2.20)). By Equation (5.44), it

follows that



To find the relation for the activity coefficient of the segments, Equations (5.44) through

(5.46) are combined to yield the final result

The segment activity coefficients within Equations (5.47) are used to calculate the

activity of the molecule in a way similar to the engineering excess Gibbs energy

formulations in Section 5.4. The activity for the molecule is given by

where v, j is the number of segments of type j in molecule i , and the superscript (i)

denotes the quantity as it exists in pure species i . This relation is quite similar to that

given by Equation (5.32) where the quasi-chemical equations and the local composition

model are considered.

5.8 Surface Segment Statistics and the Quasi -Chemical Equations

The relationship between the result of the surface segment statistics, given by Equation

(5.48) and that of the quasi-chemical equations, given by Equation (5.32) suggests a

strong resemblance in concepts. If one were to consider that each contact on the external

surface area of a fimctional group is equivalent to a surface segment, and that all the

contacts on a particular functional group are the same surface segment type, then it

follows that
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It now seems plausible that if one were to relate the local composition fractions and areas

within the functional group argument to the activity coefficient of a surface segment by

the relation

then Equations (5.48) and (5.32) are exactly equivalent. The activity coefficient for a

species through the quasi-chemical approach is given by

This conclusion is also achieved when the nonlinear equations within the quasi-

chemical model, Equations (5.29) through (5.31), are simplified. What one finds is that

these m 2 equations are reducible to the m equations necessary to find the surface

segment activity coefficients in Equation (5.47), as long as the relationship within

Equation (5.50) is used. This simplification results in the following nonlinear system

This is accomplished for a system with a limited number of fimctional groups in

Appendix B. A different derivation that relates the quasi-chemical approach to the

statistics within COSMO-based models has also been offered (Panayiotou, 2003a).
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5.9 Summary

Engineers have taken large steps in the past 30 years in formulating a workable

description of the liquid state. These efforts have yielded strong fimdamental work in the

nature of entropy in a fluid system and how the interactions between molecules bring a

level of order to the system arrangements.

The methods based on local compositions, namely the UNIQUE and UNIFAC

methods, have given engineers a very powerful tool in the prediction of mixture system

behavior. These tools are still referenced today, even though the criticisms of the method

have rendered the theoretical framework incorrect. Enough flexibility has been built into

the model to allow engineers to predict the thermodynamics of a large number of fluid

systems.

The faults of these methods, however, render them imusable if a rational approach

is taken to build more predictive capabilities into the methods. The physical reasoning

behind the number of contacts and the number of lattice sites of a group, as well as the

energetics within the model, is compromised by the lack of mathematical consistency in

the derivation of the methods. There is no guarantee that these quantities, if calculated at

a more fundamental level, would improve the predictive capabilities of the method since

their physical significance is lost.

The quasi-chemical approach offers the consistency that the early local-

composition models are lacking. Since no compromises had been made during the

derivation of the expressions, it is at least possible to rationalize the improvement of

these models by the use of physically-significant structural and electrostatic properties of

the functional groups. The success of the COSMO-based methods shows the power of
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the quasi-chemical method in the application of information from computational

chemistry.

Quantum and computational chemistry is explored further to find first-principle

quantities similar to the surface segment information in COMSO-based methods.

However, the information of interest in this work is related to the information commonly

used within past group-contribution methods: structural and electrostatic properties of

molecules that lead to the interaction energies of fimctional groups.



CHAPTER 6

QUANTUM CHEMISTRY

Application of quantum chemistry allows for the determination of atomic and molecular

properties from first principles. Insightful information about molecules is available, even

when starting from the basic concepts of subatomic particles and a very simplistic

interaction law, Coulomb's Law. Such information is more accessible now through the

explosive growth of computational power and the refinement of computational

algorithms. The theory of quantum chemistry also leads to insights in statistical

mechanics, such as the quantized states of system and the manifestations of interacting

electron clouds.

In this chapter, the most basic problems of quantum chemistry, the hydrogen atom

and the molecular Hamiltonian, are outlined. Of specific interest are the functions used

to represent the electron density within an atomic system, since these will be employed in

an engineering model that approximates electron densities for fimctional groups. A

classical solution method for the molecular Hamiltonian, called the Hartree-Fock Self

Consistent Field method, is presented in its pedagogical form. Also, mathematical

methods on how to extract information from the solution of the Hamiltonian are reviewed.

The more complete presentation of these derivations and solution methods are

documented in standard textbooks (Levine, 2000; Szabo and Ostlund, 1982). A more

contemporary interpretation of molecular properties through Atoms in Molecules theory

(Bader, 1990) is also reviewed.

71
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6.1 Hamiltonian for the Hydrogen Atom and Its Solution

The hydrogen atom is one of the simplest problems within quantum chemistry, and one

of the few real systems that is completely soluble. The problem is to determine the

energy states of a single electron existing aroimd a single proton. The only force between

the two is the force of attraction arising from the Coulombic expression, Equation (3.42).

In quantum chemistry, the solution of problems begins with the formulation of the

Hamiltonian of the system. The Hamiltonian is the sum of the kinetic and potential

energies, K and V , thereby accoimting for all the energy within a system

The notation includes the A symbol to signify the use of operators that act upon the

wavefimction of the system T . The Hamiltonian is important because the energy of the

system is revealed by this eigenvalue equation

When expanded, this relation is either expressible as a partial differential equation where

H contains derivatives acting on the fimction T , or a linear algebra equation where H

is a matrix acting on the vector T . In this work, Equation (6.2) is considered a partial

differential equation. The goals for all problems expressed in the form of Equation (6.2)

are to determine the Hamiltonian of the system using classical mechanical arguments and

to solve for the wavefimction analytically or numerically.

The wavefimction 'P is the most important description of the system and its

behavior in space and time. It holds all the information about all the measurable

properties of that system over all time. However, in this work the wavefunctions of

equilibrium systems are independent of time and describe stationary states. The
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wavefimction within the framework of quantum chemistry require it to be a well-behaved,

mathematical fimction. Firstly, the fimction must be continuous and differentiable over

all the variables within the system. Secondly, the function must be quadratically

integrable, where ST sTdD integrated over the entire variable ranges must be finite. The

integrand here is the complex conjugate of the wavefimction Ts multiplying the

wavefimction itself T . The product is integrated over the space within the boimds of the

variables, a differential element of which is given by dD . When integrated over all space,

the wavefunction of one particle is not only finite but also normalized, satisfying the

relationship

A normalization constant is usually included in the wavefimction to ensure this.

The Hamiltonian and wavefunction for the hydrogen atom is a classical problem

offering insight to the solution of the molecular Hamiltonian. The general Hamiltonian

keeps track of the kinetic energies of both the proton and the electron, and the potential

energy of the system due to their Coulombic interaction. In a reduced problem, the only

coordinates of interest are those that express the position of the electron relative to the

proton. This Hamiltonian thereby only considers the kinetic energy of the electron

aroimd a motionless proton and the potential energy from the Coulombic interaction
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proton, and V 2 is the Laplacian operator, given in Cartesian coordinates by

The proton is assumed to exist at the origin, and the Cartesian coordinates describe the

position of the electron about the origin.

Two more simplifications are made before solving Equation (6.4). Firstly, atomic

imits are defined to simplify the notation. Multiplying through by ,1u/h2 gives

The reduced energy and distance are now in atomic imits. These imits have been deemed

hartrees and bohrs, respectively, named after significant contributors to the field. The

conversion factors for hartrees are

The main conversion factor for the bohr is
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Secondly, the symmetry of the problem suggests an approach on the PDE in spherical

coordinates. The Laplacian in Equation (6.5) in spherical coordinates is given by

This simplification allows for the wavefunction to be solved in a more natural coordinate

system for this problem.

The problem when posed in spherical coordinates allows for the technique of

separation of variables to be used. Using Equation (6.12) with Equation (6.9) and

separating variables, the solution to the hydrogen atom is given as a product of radial and

angular portions

where Yin' is the spherical harmonic function, and the integers n , 1 , and m are quantum

numbers that denote the quantum state of the electron. Ranges for these numbers are

determined in the solution, and these are given by
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Each combination of quantum numbers within Equation (6.14) yields an energy

state. The reduced energy for a set of quantum numbers is given by

The degeneracy of the energy level is reflected in the number of combinations of 1 and

m possible for a given n .

Each combination of quantum numbers in Equation (6.14) also yields a fimction

called an atomic orbital, a fimction in space that reflects the energy state of the electron.

The simplest of these orbitals is the groimd state of the hydrogen atom, the is orbital

This fimction does not have angular dependencies, since the spherical harmonic for

1= m = 0 is constant with respect to the angles. The only series coefficient within the

radial contribution is boa , and this is used solely to normalize the wavefimction as

necessary by Equation (6.3).

Here are several examples of atomic orbitals with m =0 . The following

wavefunctions include the depiction through the quantum numbers and through the

commonly used alphanumeric names of the orbitals. The 2s orbital is
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For the cases when m # 0 , the spherical harmonics contain imaginary numbers.

Real-valued wavefunctions are attainable from these expressions by determining the

correct linear combination that eliminates the imaginary parts. Two real orbitals, 2p,

and 2p), , are found in this manner

Orbitals are also expressible in Cartesian coordinates, which are helpful within

computational schemes. The s-type orbitals are expressed in Cartesian form by

replacing F with the definition of distance

The directionality of the orbitals for those where / # 0 becomes more obvious when

portions of the spherical expressions are expressed in Cartesian coordinates

The motivation behind the common names of the above orbitals becomes apparent when

Cartesian factors are included:



6.2 Molecular Hamiltonian and Its Solution

The molecular system is of interest in this work, since nearly all of the compoimds

encountered in practice are not constructed from a single atom, especially not a single

hydrogen atom. The molecular Hamiltonian is the generalization of the atomic

Hamiltonian expressed in Equation (6.9)

where a and /3 range over the nuclei, Via is the Laplacian operator with respect to

coordinates of nucleus a , Zap, represents the atomic number of nucleus a , Fide is the

reduced interaction distance between entities k and 1, and i and j range over the

electrons. From left to right, this equation holds the mathematical expressions for the

kinetic energy of the nuclei, the kinetic energy of the electrons, and the potential energies

from nucleus-nucleus interactions, from nucleus-electron interactions and from electron-

electron interactions. The nuclei and electrons are here treated as point masses.
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The solution of the problem expressed in the molecular Hamiltonian is extremely

complicated, since the wavefimction of the system involves the location of a large

number of electrons that are imder the influence of a complex field dependent on the

location of the nuclei. A classical assumption, called the Born-Oppenheimer

approximation, is made to simplify Equation (6.31) by decoupling the problem of the

nuclei positions from the problem of the electron positions. The Born-Oppenheimer

approximation comes from the concept that the mass of an electron is several orders of

magnitude less than the mass of any nucleus, even a single proton. Therefore, since

me << ma for all a , the magnitude of first term of Equation (6.31), which contributes the

kinetic energy of the movement of the nuclei, vanishes. This leaves

where the nucleus-nucleus interactions are foimd in the latter term, and the positions of

the electrons relative to one another and the nuclei contribute to the electronic

Hamiltonian

Equation (6.9) is recovered from Equation (6.34) if one nucleus with atomic number

Z1 =1 and one electron exists in the system.

The separation in Equation (6.33) allows for the solution of the wavefunction

solely describing electron position, while the locations of atomic nuclei are considered
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parameters in the problem. This approach is intuitively correct because of the differences

in velocities of electrons and nuclei in regular molecular motion. The speed with which

electrons move is so much faster than nuclei that for normal nuclear movements due to

vibration or rotation, electrons nearly instantaneously react and alter their state at all

points in time to accommodate the nuclei locations.

Of specific importance is the location of the ground-state positions of the nuclei.

This equilibrium geometry is the configuration that allows for the lowest energy

configuration of all the possible geometric configurations of the nuclei and the electrons.

This geometry reveals the energy minima around which molecular vibrational modes act

and from which rotational modes depart. This configuration serves as the most probable

configuration for the isolated molecule within the gas phase.

Solving the wavefunction for the Hamiltonian given in Equation (6.34) gives the

electronic energy of the molecular system and the electron density profile around the

nuclei. This information yields molecular properties of use within the statistical

frameworks described above.

6.3 Calculation of Properties within Quantum Chemistry

Determining the wavefimction is the most powerful objective when one desires the

properties of a system. The wavefunction holds all the measurable information of the

system. Quantum chemistry includes methods to extract this information.

Every operator within quantum chemistry is directly related to a property within

classical physics. For instance, the Hamiltonian operator H is related to the total system

energy. When the operator acts upon the wavefimction describing the stationary state of
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a system, as in Equation (6.2), the energy of the system is found. Another way of

extracting this information is by taking the average value of that property within the

system. For a general operator A' , the mean value of the corresponding classical

property is given by

The integration is taken over all the values of the coordinates. With regards to the system

energy, the mean value described by the stationary state T is given by

Replacing ilk with ET is a consequence of Equation (6.2). Another example is the

position operator. Assume one wants to know the average C -coordinate of the particle of

the system. This is given by

No further simplification is possible in this example, since the wavefimction is not

necessarily an eigenfimction of the C -position operator, i , and since the functionality of

T is not explicit here. Any operator can be included in Equation (6.35) to determine an

average property value for the system.

A different notation is commonly used to express the integration of an operator in

the form of Equation (6.35). The bracket notation is given by

If T is an eigenfimction of the operator F , the eigenvalue is factored out of the integral,

and the notation is reduced
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The last simplification is because the normalization property of Equation (6.3), which

yields ('P h) =1. In bracket notation, the calculation described in Equation (6.36) is

depicted by

For parameterized functions that approximate real wavefunctions, the variation

theorem is used to determine the how good the approximation is. For example, if the task

is to find the groimd-state energy eigenvalue for a given Hamiltonian, the following

inequality holds

where ' represents an approximation to the real wavefunction, and E0 is the lowest

possible energy eigenvalue. The theorem also states that the wavefunction form and

parameters that come closest to the groimd-state energy, of course from above, yields the

best approximation to the actual wavefunction. The parameters within the wavefunctions

are thereby found by minimizing the variation integral, the left side of Equation (6.41),

with respect to the parameters.

6.4 The Hartree-Fock Self-Consistent Field Method

The problem posed in the molecular Hamiltonian is considerably simpler to solve if the

Coulombic interactions between electrons are omitted. Equation (6.34) is reduced to

and the solution is simply the product of hydrogen-like orbitals given by Equation (6.13)



Of course the Coulombic interaction between the electrons is a very strong influence on

the molecular system and, thereby, the molecular Hamiltonian. The solution given by

Equation (6.43) still serves as a workable first-order approximation to the real

wavefimction.

To gain a more precise solution, changes to this approximation must be applied.

The form of an improved solution to the molecular Hamiltonian retains the product of a

radial portion multiplying the spherical harmonic

where the functional form of s, is not necessarily the same as the explicit function given

by Equations (6.13) and (6.15). The function does retain the exponential function in

distance Berl" and parameters that are able to change to accommodate physical effects,

such as the Coulombic effects between electrons and nuclear charge screening. To find

the best values for the parameters within Equation (6.44), the variation theorem described

above is used.

The Hartree-Fock Self-Consistent Field (HF) method is an iterative algorithm that

guesses the wavefimctions to Equation (6.34) by attempting to adjust the wavefunction

description of one electron while the other electron wavefunctions are not changing.

Consider Equation (6.44) the guess for the system wavefunction. The wavefimction of

electron 1, given as s l (FI , 8,, 01 ) is subjected to a potential field VI created by remaining

nee —1 electrons and the nuclei
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Here, let the charges of all electrons except for that of electron 1 be represented with their

wavefunctions. This is accomplished by representing the electrons as clouds of electron

density p, the square of their wavefunctions. An integral over all space of the electron

cloud will represent the total charge o, of the electron in (6.45), thus leading to the

relation

where dv1, is the differential volume element of electron i , and the chary on electron 1

is unity. The potential field becomes

The result of this transformation is that the Hamiltonian representing the state of electron

1 is represented as a PDE similar to Equation (6.9), except for the dependence on the

potential field

where the wavefunction representing electron 1 has a superscript 111 to denote the itch

iterated solution to the wavefunctions, and where E l denotes the energy eigenvalue of

electron 1 in the PDE. It is advantageous to have the potential in Equation (6.48) be a

spherically symmetric potential field. This allows for the wavefunction 	 (Fi,A,A) to
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be rigorously separable into a radial portion and a spherical harmonic, as in Equation

(6.13). To achieve this, VI is averaged over all angles

Now, the iterated solution can be separated into a radial portion and a spherical harmonic.

To continue toward the solution, the wavefunction of the second electron is

iterated under influence of the field of the remaining nee—1 electrons, including the new

wavefimction for electron 1. The field is described by

The central field approximation is used here to get a PDE of the form of Equation (6.50).

Once the iterated solution of electron 2 , 4 1 (F2 , 02 , 02 ) , is found, electron 3 is considered,

and so on and so forth.

This process continues until a first iterated solution for each electron is found.

Once this occurs, the process begins again at electron 1 to achieve a second iterated

solution, 42} (n, 91 , A ) . All wavefunctions of the electrons are considered again.

Additional iterations are performed until convergence of each wavefimction to a solution.

The solution method to find the wavefunction described in Equation (6.44) offers

a pedagogical example for the HF method. Although a reasonable choice, the product of
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purely radial fimctions with spherical harmonics, deemed spatial orbitals, does not

account for spin effects of electrons. The proper wavefunction guess is actually an

asymmetric product of spin orbitals, spatial orbitals multiplied by the spin wavefunction

(either up-spin or down-spin) to achieve the proper description of the orbitals within

which electrons occupy.

The energy of the system, the original eigenvalue of Equation (6.42), in the HF

method is found to be

J, is called the Coulomb integral between electrons i and j , given by

The Coulomb integral is called such because it is the quantum mechanical equivalent to

the Coulombic interaction between two electrons, except in quantum mechanics the

electrons are treated as probability densities and not particles. The exchange integral is

called such because it reflects the existence of the electrons partly in their own orbitals

and party in the other electron's orbital, thus seemingly exchanging positions. The
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summations containing the Coulomb and exchange integrals are taken over the different

spatial orbitals the electrons occupy. The contribution of the Coulomb integral is doubled

to reflect the occupancy of two electrons in each spatial orbital, one with up-spin and one

with down-spin.

The integrals given in Equations (6.54) and (6.55) are encountered frequently

within computational chemistry. These are called two-electron integrals, and multitudes

of these are calculated within the computer routines that employ the HF and other

solution methods. This work mainly deals with spatial orbitals. Therefore, the above

integrals acting on spatial orbitals are typically denoted by

This notation is sometimes called the 1212 (one-two-one-two) notation, since the orbital

labels alternate between electrons, beginning with electron 1. In 1212 notation, the

Coulomb integral and the exchange integral are expressed as

Another two-electron integral encountered in computations and this work is called

quantum-hybrid integrals. An examples of one such integral is

Since the orbitals are real functions describing spatial orbitals, the complex conjugate of

the orbital function is equal to the orbital fimction. Different permutations within the

integrals, and therefore within the parenthesis correspond to equivalent integrals. The
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equivalence relations for the Coulombic, exchange, and hybrid integrals, respectively, are

given by

Note here that within the quantum-hybrid integral notation, switching subscripts does not

imply equality in the expressions, as in the Coulomb and exchange integrals

An important quality of the HF method is that the Hamiltonian of the system and

the wavefunction that is foimd to best approximate the solution satisfy the assumptions of

the variation theorem, Equation (6.41). The HF energy therefore is always greater than

the actual energy of the system, imless when the energies are equal and the

approximating wavefunction of the system is exactly the real wavefunction. A

wavefunction approximation that gives a lower energy than previous approximations

implies an improved description.

6.5 Partitioning of the Electron Density using Atoms in Molecules Theory

It has been theoretically proven that all the properties of a molecule can be found through

the electron density p of a molecule (Hohenberg and Kohn, 1964). This is helpful, since

concepts like an atom within a molecule or bonds between these atoms are not obvious

from the wavefimction, which is dependent on six variables (three position, three
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momentum) for each particle in the system and exists in complex space. Atoms and

bonds do have meaning in real space and are reflected in the electron density.

For a system with multiple electrons, p is expressed as the integration of the

square of the wavefunction of the system over all electron spins and coordinates except

one

The electron density is a real-valued function over all space and describes the probability

of finding an electron at the differential space around the position r .

For example, the positions of the nuclei are able to be foimd through the electron

density by the existence of local maxima. The type of atomic nucleus at a particular

position is related to the electron density of the position by (Bader, 1990)

The existence of bonds within a molecule is also seen within the electron density. A

bond exists on a line between two atoms if there exists a saddle point in the electron

density. This point is a local minimum on the line connecting the two nuclei, while it is a

local maximum along the two directions perpendicular to the bond.

The electron density also holds information on how to partition a molecule into

representative constituents. In theory, any partitioning is allowable. Within a partition,

the average value for a classical property is calculable using Equation (6.35) where the

space of integration is the partition. However, there is no guarantee that the properties

found within an arbitrary partition yields physically significant properties. Atoms in
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Molecules (AIM) theory (Bader, 1990) establishes that surfaces that define physically-

significant partitions of the molecule satisfy the zero-flux condition

where Bp is the gradient of the electron density and n(r) is the vector normal to the

boimding surface at r. A system that is bound by a surface or surfaces that satisfies

Equation (6.66) is called a proper open system. Boundary conditions satisfying Equation

(6.66) yield the same mathematical consequences as the boimdary conditions of isolated

quantum mechanical systems. Therefore, one can expect the same physical significance

in an average property calculation within a proper open system as for any general

quantum system. Also, the properties within a proper open system are said to be

transferable from one quantum system to another if the electron density functionality is

preserved.

Partitioning the electron density of a molecule with zero-flux surfaces results in a

set of subsystems each containing one nucleus. Under AIM theory, these quantum atoms

are thereby defined to be the electron density within the partitioned space and the nucleus

that resides within the boimdaries. Quantum atoms are the objects that, when assembled,

create molecules. These atoms have properties that, when combined appropriately, yield

the property of the molecule.

The properties for a quantum atom defined in AIM theory are calculated in the

same manner as the properties of any isolated quantum system, by Equation (6.35),

except that the integration is taken over the partition of the atom in real space
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where ADA  is a differential element within atom A. These properties are additive; the

sum of a given property over all the atoms in a molecule gives the molecular property.

For atoms not wholly boimded by a surface satisfying Equation (6.66), as most atoms are,

the integration bounds would be infinite on some rays. For computational purposes, the

boundary is taken to be a distance at which the electron density is negligible. However,

for structural properties, a boimding isodensity surface of somewhat more significant

density, e.g. the 0.001 au surface, is included to create a finite space for the atom.

Atomic properties of interest in engineering applications are separated into

structural and electrostatic properties. The volume of the atom is the space boimded by

zero-flux boundaries and the isodensity surface. The total surface area is the size of the

zero-flux boundaries and the isodensity surface. The exposed surface area is solely the

area of the bounding isodensity surface. The partial charge of the atom is the amount of

electron density with the boimding surfaces. The dipole and quadrupole moments detail

the displacement of the center of negative charge off the nucleus.

The energy of an atomic basin is not as straightforward as above. It is not

possible to separate the Hamiltonian of the system into parts that reveal the contributions

of atomic basins without violating the indistinguishability of the electrons in the molecule.

An intermediate fimction, the energy density, is defined, and this quantity is integrated

within Equation (6.67) to give the energy of an atom within AIM theory. This energy, as

with the other properties of atoms, is additive and gives the energy of the molecule when

added together.
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6.6 Summary

First-principles knowledge of molecules and electron densities allows for the detailed

study of molecules at very basic levels. Although the rigorous orbital information given

by the solution of the hydrogen atom is not available for a molecular system, such

functional forms are applicable to the solutions of molecular wavefimctions and, later, to

the approximations of electron densities involved in intermolecular interactions.

The HF method is an example of how complex problems of a finite number of

discrete entities can be iteratively solved. This method offers a first look of what orbitals

within a molecule may look like, and it serves as a first approximation to more

contemporary and complete solutions to the molecular Hamiltonian: the Moller-Plesset

methods described later. Frequently used integrals, such as the two-electron integrals,

have been defined within the context of the HF derivations, as these will be used

extensively in the study of molecular interactions.

AIM theory offers a concise way of describing portions of molecules through the

electron density, rather than the wavefimction or orbital description. Rigorous definitions

of the structural and electrostatic properties, and the subsequent calculations of such

properties, are usable by engineers through the group-contribution methodology, where

portions of molecules are assembled and their contributions are added to give an

approximation to the macroscopic property. AIM theory states that the summation for

the fimctional group properties, when foimd rigorously, exactly gives the molecular

property. This is developed further in this work to give thermodynamic properties for

macroscopic systems.



CHAPTER 7

COMPUTATIONAL CHEMISTRY

User-friendly software packages employing computational chemistry algorithms are

allowing scientists and engineers to use powerful numerical routines without being fully

knowledge of quantum theory. The software computes approximations of the solution to

the molecular Hamiltonian, thereby giving a numerical solution to the wavefimction. The

approximated wavefunction is assumed to be the product of molecular orbitals, and each

of these orbitals is approximated as a series of fimctional forms similar to orbitals within

a hydrogen atom. All these methods are made available by Gaussian 98W (Gaussian Inc.,

1998), a program that holds most of the contemporary techniques for the calculation of a

molecular wavefimction. The full wavefunction is also made available from the program,

making molecular and functional group properties calculable using more specific

software.

This chapter reviews theoretical methods used within contemporary

computational chemistry. Density functional theories are considered and compared to

classical ab inito methods and perturbation theories. The fimctions that are used to

approximate wavefunctions are reviewed, as these functional forms are important to the

analysis of the resulting wavefimction. How Gaussian 98W is used within this work,

including a list of important keywords and sample input files, is presented.

93



94

7.1 ab initio versus Density Functional Theory

As of now, methods that offer a solution or solution algorithm to the problem of

determining the absolute energy of a molecule and the form of the electron density are

separable into three categories. The fastest and least rigorous methods are called semi-

empirical methods, since the Hamiltonian is not treated in its original terms and two-

electron integrals are not calculated at every step. Modern schemes in this category

include the AM (Dewar, et al. 1985) and PM3 schemes (Stewart, 1989). The other two

methods are more strongly rooted in theory. Methods based on density-fimctional theory

(DFT) look to determine the electron density from first principles, while ab initio

methods attempt to calculate the system wavefunction from first principles.

The motivation behind the study of DFT methods is that the electron density

holds all the information necessary to determine the properties of a molecule (Hohenberg

and Kohn, 1964). This eliminates the need to determine the wavefunction and its

numerous degrees of freedom. In contrast, the electron density is merely a fimction in the

three spatial coordinates. A theorem within DFT states that, if one knows the ground-

state electron density, p 0  , of a quantum system, the number of electrons within the

system, lie , is calculable

Also, one may determine the position of the nuclei in a molecular system imiquely using

p0 , as shown in Section 6.5.

An algorithm to find the groimd-state electron density of a molecular system has

been proposed (Kohn and Sham, 1965). The method separates the properties of a real
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system into the properties of non-interacting electrons and non-ideal effects. The groimd-

state energy of the molecule is thereby separated into four contributions

where E0 [p0 is the ground state energy and is a fimctional of po  , the first term is the

electron density interacting with the field v created by the nuclei, the second term is the

mean kinetic energy of the non-interacting system, Km , the third term is the classical

expression of electron-electron repulsion in terms of the smeared out electron clouds, and

the last term is the exchange-correlation functional, Exec, which holds the nonidealities of

the kinetic energy and the electron-electron repulsion within the real, interacting system.

All the terms in the energy expression are foimd rigorously, except for Ex,.

The problem within DFT is reduced to finding the form of Exec. The first

approximation offered is the local-density approximation (Hohenberg and Kohn, 1964)

given by

where Exit jc,EG is the exchange-correlation within a imiform electron gas and depends on the

magnitude of the electron density. This expression is shown to be a good approximation

for slowly varying electron densities within real systems. A more general form of

Equation (7.3) attempts to incorporate more complicated electron densities by including

the gradient of the electron density explicitly in the integrand
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A more modern approach is to separate the exchange contribution from the correlation

contribution and assume that the exchange within DFT contributes the same energy

within the Hartree-Fock energy of Equation (6.52). Fimctionals using this concept are

called hybrid functionals, and the most commonly used DFT methods today, such as

B3LYP (Becke, 1992) and B3PW91 (Perdew, et al. 1996) employ hybrid functionals.

The above approximations to Ex, usually contain parameters foimds empirically, whether

correlated to experimental data or high level ab initio calculations.

A review of modern computational methods summarizes the strengths and

weaknesses of DFT approaches (Head-Gordon, 1996). Since DFT strives for the electron

density directly rather than the wavefimction representation, fewer functions (smaller

basis sets, discussed in subsequent sections) are needed to reproduce solutions (Johnson,

et al. 1993). Also, the calculation method employed is similar to that of the HF methods,

and this is faster than methods that employ perturbation or correlation corrections (such

as MP2, which is addressed in the following section). For a given amoimt of

computational power and time, this allows for calculations on molecules similar in size to

those available for the HF method and larger than those available to more accurate ab

initio methods. The results for groimd-state geometries and energies are similar to that of

the MP2 method, which are better than those found with the HF method.

The downsides of the DFT theory lie in the exchange-correlation terms

approximated by Equations (7.3) and (7.4). Since arbitrary forms of these equations are

introduced into the theory, questions arise as to whether this is a method still based on

first principles (Levine, 2000). The variation theorem, a version of which exists for DFT,

cannot be employed in DFT due to the use of arbitrary forms. Also, improvements
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within the expression for Ex, cannot be made in a systematic manner as in perturbation

methods. New fimctionals are introduced and must be tested with calculation, since no

theoretical framework exists to assess the benefits of one fimctional over others.

For these reasons, perturbation methods are used in this work instead of DFT

methods. With increased computational power and refined algorithms, higher

perturbations are able to be made on current, already quite accurate, results of molecular

properties.

7.2 Perturbation Theory and the Moller-Plesset Expansion

Some basic assumptions made to facilitate calculation within the HF method in Section

6.4 render the results somewhat undesirable. In the above presentation, there had been no

mention of the HF energy, Equation (6.42), being exactly the eigenenergy in the

molecular Hamiltonian. Errors arise from the central-field approximation in Equation

(6.49) and in the treatment of each electron separately in the iterative process. Electron-

electron repulsions are included in the central-field approximation, but only in an average

way.

Methods have been developed to alleviate some of the error from the averaging

procedure in the HF method. Most methods use the HF energy as a first-order

approximation to the real energy, and small correcting factors are then added to gradually

reduce the errors. Perturbation treatments of the groimd-state wavefunction and the

ground-state energy for the electronic Hamiltonian in Equation (6.34) aim to express T o

and Eo as a series expansion in 2. First, the Hamiltonian of the system is separated into

an imperturbed portion iH and a perturbation H' whose effect on the system is smaller
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in magnitude. The latter is thereby multiplied by the perturbing parameter to denote this.

The electronic Hamiltonian for the molecule, expressed henceforth as I/ , becomes

and the Hamiltonian equation for the system in its groimd state is

Next, the assumption is made that the wavefunction and energy are functions of 2

These functions are expanded as a Taylor's series aroimd 2= 0

Inserting these expansions into Equation (7.6) and expressing the fimctions out to the

second order gives the following relationship

This method allows for the systematic solution to the terms in the Taylor's expansions by

equating like powers of 2 . Equating the terms multiplied by 2, o on the left with those on

the right gives

This reduced problem states that the first-order approximation to the ground-state

wavefimction and groimd-state energy evolve from the unperturbed Hamiltonian. Notice
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this is the expression when the perturbation parameter 2 is set to zero. This means that

all perturbations are excluded, thus revealing the imperturbed problem.

Equating terms multiplied by A l gives the relation

This is soluble once the unperturbed problem is solved. Expressions for the zeroth-order

wavefunction and energy are inserted into Equation (7.11) to yield a soluble problem for

The derivations for these general expressions are not shown here, but the

results are

where the change in subscripts denotes system states with energies higher than that of the

groimd state.

It is seen within Equation (7.9) how the problems containing the higher-order

corrections are posed. As suggested by the solution to the first-order problem in

Equation (7.12), knowledge of both the lower-order solutions of the groimd state and of

all possible excited states are necessary. This complexity continues to increase for all

higher-order solutions, making the determination of further corrections difficult.

The Moller-Plesset (MP) Perturbation Theory (Moller and Plesset, 1932)

expresses the molecular Hamiltonian as an imperturbed portion and a perturbation in

order to apply the method described above. The unperturbed portion is chosen to be
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Applying the perturbation theory, the zeroth-order problem has the same form as

Equation (7.10). Once the zeroth-order problem is solved, the first-order correction is

found using Equation (7.12). The application of MP perturbation theory states that the

energy of the system taken to the first-order correction is exactly the Hartree-Fock energy

Any improvement over the result from the HF method is made beginning with the

calculation of the second-order correction to the energy and the system wavefunction.

Such a treatment is called a calculation at the MP2 (Moller-Plesset, 2 nd order) level of

theory. Calculations at higher levels are possible, and the theoretical levels are called the

MPn levels of theory.

Calculations of energies and wavefimctions for molecular systems using the MPn

methods give a better representation of the environment electrons encounter. Not only

are the electrons subject to the normal Coulombic interactions, the excited states of the



101

molecule are also included in the solution and interact with the groimd-state configuration.

Necessary in the calculation of higher approximations of the wavefimction and energy are

the wavefunctions of the excited states within lower approximations, as shown in

Equation (7.12). This added information changes the states of the electrons by bringing

in quantum effects that excited levels bear on the system in the groimd state.

For whatever level of theory applied, a HF solution must be calculated to

assemble the first-order wavefimction for MPn . The most common calculations are the

MP2 levels, and they require more computational effort than HF and DFT methods.

Further improvements can be made with MP3 and MP4 calculations. MP5 and further

calculations can be done, but these are extremely expensive with present day

computational resources.

7.3 Basis Sets

Up to this point, the theory behind calculating the energy and wavefimction of a

molecular system has been the focus. Approximate solution methods exist that give a

good representation of the molecular structure and the electron density profile upon

solving the molecular Hamiltonian. General statements about wavefimctions have been

used in the derivations of these methods. Actual guesses of the form of these

wavefunctions are needed to facilitate calculations and to express the electron density for

further use in molecular modeling. Two main types of fimctional forms are used in the

expression of the wavefunction: Slater-type orbitals (STOs) and Gaussian-type fimctions

(GTFs). Also, these expressions are used in two types of representations of the orbitals

within which electrons reside: atomic orbitals (A0s) and molecular orbitals (MOs).
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As in the first wavefunction guess in the HF method, Equation (6.44), a product of

hydrogen-like orbitals gives a possible fimctional form for orbitals within the molecular

system. The hydrogen-like wavefimctions take the form of Equation (6.13) with the

radial contribution being a product of a polynomial and exponential in terms of F . A

ST0 closely resembles a hydrogen-like orbital by taking a simplified form

where 4- is the ST0 exponent that determines the spatial extent of the wavefimction, and

the prefactor normalizes the wavefunction. Like the hydrogen-like atom, n , 1 , and m

are quantum numbers that determine the state of the orbital. The radial portion of

Equation (7.18) takes the form of a gamma distribution regularly used in statistics and

probability theory. The orbital exponents are used as a parameter either to minimize the

variation integral (and thus minimize the system energy) or to represent a single orbital

by a linear combination of ST0s with judiciously chosen exponents.

An orbital of the form of Equation (7.18) give a very good function representation

of real orbitals. However, calculations of the above numerical methods using ST0s are

computationally intense. Specifically, the calculation of two-electron integrals of

Equation (6.56) is quite complicated for the non-spherical ST0s. To alleviate the

computational time issue with ST0s, fimctions containing a normal distribution rather

than a gamma distribution are used (Boys, 1950). These GTFs take the form
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where is the GTF exponent that determines the spatial extent of the wavefunction,

where all the coordinates are distances from the nucleus on which the orbital resides, and

where the prefactor normalizes the wavefunction. The integers i , j, and k are chosen

so the GTF has the same functionality as the orbital it represents. For the case

i + j+ k = 0 , the orbital takes a spherically symmetric form and thus represents an s-type

orbital. For the case i + j + k =1, the GTF has one of the three Cartesian coordinates

multiplying the radial factor. This function has the form of the orbitals in Equations

(6.26) through (6.29), and therefore this GTF represents a p-type orbital. Similarly for

the case i + j+ k = 2 , where there will be either two Cartesian coordinates or a power of

two on one of the coordinates. This represents a A-type orbital not imlike the function in

(6.30). Integers that sum to three represent an f-type orbital and so on.

A comparison between the fimctionalities of a STO and a GTF are shown in

Figure 7.1. The STO reflects the functionality of a hydrogen-like orbital, with the

discontinuous first derivative at the nucleus (r = 0) , while the GTF reflects the

functionality of a normal distribution. Of more importance than the behavior at the origin

is the behavior at the tail (larger r) of the wavefimction and the electron densities. At

these distances, the differences between the fimctions become small, and with the

addition of more GTFs as a description of a STO, this difference vanishes.

The utility of GTFs to represent orbitals lies in the ease with which a two-electron

integral like Equation (6.56) is computed. This is due to the mathematical identity which

allows a product of two normal distributions to be rewritten as a single normal

distribution
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compares the wavefunctions, while the lower graph compares the radial distribution
functions.



1 AG

where CA and CB contain normalization constants and axial factors for the uncombined

GTFs, RA and RB are the location of the orbital centers, CAB is a prefactor that emerges

from the combination and is given by

and where the location of the intermediate center Rp is given by

An important integral encoimtered throughout this work is the overlap integral, S ,

between two is-type orbitals. This expression is given by Equation (7.20) integrated

through all space. For non-normalized GTFs

where rAB is the distance between the centers of the orbitals. Another important integral

in this work is the electron-nucleus integral. For non-normalized is-type GTFs, this

expression is given by

where rpc is the distance between the nucleus center and the point described by Equation

(7.22), and where Fo contains the error fimction and is a fimction defined as
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A product of four different GTFs in the two-electron integral given by Equation

(6.56) is reducible to one GTF with an exponent containing contributions of the original

four exponents. The integrals reduce to concise mathematical expressions readily

available for calculation. The general expression for a two-electron integral for four

different non-normalized is-type GTFs is given by

where the center R Q is defined in (7.22) where A and B are replaced by C and D .

The above integrals are the basis for computations of integrals with any type of

orbital considered. For integrals with higher orbitals, a derivative is taken with respect to

the position of the orbital center (Boys, 1960). For example, the overlap integral (7.23)

of an s-type orbital with a 13z -type orbital is given by

where is the z -coordinate for the center of the /3, -type orbital, and the fimction upon

which the differential is taken is given by Equation (7.23). The direction of the p-type

orbital is altered by changing the axis along which the derivative is taken. To determine

the overlap of two p-type orbitals, another derivative is taken with respect to the center

location of the orbital labeled A in the given direction. In general, integrals with higher

orbitals are found by applying the proper derivatives to Equations (7.23), (7.24) and
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(7.26). A generalized set of integral equations with any type of GTF-representation of

orbitals has been compiled for use within numerical methods (Browne and Poshusta,

1962).

Wavefimctions containing ST0s do not have such a simplified treatment when the

above integrals are calculated. This complication has eliminated the use of ST0s in most

modern calculations of HF, DFT and MPn energies and wavefunctions, except for the

small molecules. However, the functionality of a STO is very important and is attempted

to be preserved. Within calculations of wavefimctions the exponents of a linear

combination of GTFs are selected to approximate the functional form of a STO. An

example is the STO-3G basis set, where a is STO is approximated with the form

where z, is a GTF called a primitive and has a different exponent . The coefficients c,

allows the approximate representation of theoretically appealing ST0s with more

efficient GTFs.

The sum of functions in Equation (7.28) is considered a series representation of

the orbital. In this view, a better representation can be made if more fimctions are

included. For example, if an orbital on a hydrogen atom within a molecule is desired, the

reasonable starting point for representation of that orbital is a sum of three primitives, as

in Equation (7.28). A better representation of orbitals about the hydrogen includes six

primitives. And although not clearly suggested by the problem, a more exhaustive

representation is to include primitives in the form of higher orbitals, such as a set of
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p-type primitives, a set of A-type primitives and so on. These add-ons to the original

set of orbital fimctions give a more complete description of the space and energy levels

an electron may occupy aroimd the hydrogen atom. It is readily accepted that the more

fimctions included in the orbital description, the better the approximation to the real

system.

The number and types of primitive Gaussian functions used to describe orbitals

around atoms within molecules is called the basis set. A large number of examples have

been developed for use in present computational chemistry methods (Hehre, et al. 1986).

Common basis sets used in calculations are abbreviated to define how large these

functions are. For example, a common basis set called 3-21G uses a linear combination

of three primitives for non-valence, or inner-shell, orbitals (one is orbital for the row Li-

Ne; one is , one 2s , and three 2p orbitals for the row Na-Ar; etc.), and a combination of

a single GTF with a linear combination of two primitives for the valence orbitals (one is

orbital for H and He; one 2s and three 2p orbitals for the row Li-Ne; etc.). A similarly

defined basis set is the 6-31G, where a larger number of primitives are included in the

inner-shell and valence orbital descriptions.

Additions to these basis sets can better describe specific physical effects that

electrons encounter within a molecular environment. Polarization functions are added to

expand the space in which an electron resides and accommodate for the field imposed by

other atoms in the molecule. The inclusion of polarization fimctions in the above basis

sets is denoted by a * after the G. The basis set 6-31G* adds six A-type GTFs on the

rows Li-Ne and Na-Ar. A second star, as in the 6-31G** basis set, adds also three

p-type functions to H and He. This basis fimction is also called 6-31G(d,p) to explicitly
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show the types of polarization functions. Also made available in calculations are further

polarization orbitals of the f-type on the rows Li-Ne and Na-Ar and A-type for H and

He. Such a basis set is denoted by 6-31G(f,d).

Advantages are found when very diffuse orbitals (GTF5 with small exponents) are

added to the description. This addition to the above basis sets is denoted by a + in the

name. Therefore, 6-31+G includes one s-type and three p-type GTFs with small

exponents on all non-hydrogen atoms. The 6-31++G basis set also adds a diffuse s-type

orbital on the hydrogen atoms.

A more systematic approach to a series-like description of an orbital exists in the

correlation-consistent, polarized valence, n zeta (cc-pVnZ) basis sets (Dunning, 1989),

where n=D,T,Q,5,6 describes the multiplicity of the valence shell (double, triple,

quadruple, etc.). The statement correlation-consistent means that the basis set is useful in

theoretical treatments that describe the interactions of excited states, such as the MPn

methods. The polarized functions described above, previously denoted by ** or (d,p), are

included in this basis set without denotation. The cc-pVnZ set has available diffuse

functions similar to the + and ++ notation above. To include these, an AUG- is added as

a prefix in the basis set name. Thus, a double zeta basis set with polarization fimctions is

denoted as the AUG-cc-pVDZ basis set.

The multiplicity of the valence shell, or the zeta, is where the systematic addition

of functions can be examined. As calculations with higher zeta multiplicities are

performed, inferences can be made on the greater multiplicities, such as an infinite

multiplicity that would exhaust all possible wavefimction descriptions and give the actual
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wavefunction behavior. The number of functions in the cc-pVnZ sets dwarfs that of the

6-31G set, so a large computational effort is necessary to proceed along such a track.

7.4 Computational Chemistry Software: Gaussian 98W

Gaussian 98W (G98W) (Gaussian Inc., 1998) is a software package that links programs

that calculate myriad properties of molecules within the gas phase or solution. The

package is a user-friendly tool that can predict properties of an isolated molecule, such as

absolute molecular energies, molecular structure, orbital occupancies, atomic charges,

multipole moments, polarizabilities, and electrostatic potentials surroimding molecules.

Coupled with a closely associated graphical user interface (GUI) called GaussView

(Gaussian Inc., 2000), the package serves as a user-friendly tool to implement the

theoretical and numerical methods mentioned above.

To conduct a calculation on a molecule, one must become familiar with the

format of the input files necessary to direct G98W. For this work, the instructions are

separable into five different groupings: the header statements, the route section with

associated keywords, the title of the calculation, the Z-matrix, and a filename to end the

input file. A full description of a typical input file for G98W is available with the

software package and on the Internet, and examples of input files used in this work are

offered in Appendix C.

The header statements declare hardware information to G98W. The amount of

random-access memory (RAM) available for calculation is declared beginning with the

Yomem=' command. For instance, a computer with 512 megabytes (MB) of RAM may

have about 400 MB available for a calculation. To utilize this memory, a header
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statement should read mem=400MB'. A file called a checkpoint file is created to store

molecular system information during and at the end of a calculation. A file is created

when using the Yochk=' header. For systems with multiple processors, the header

Vonproc=' is stated to utilize the hardware.

The route section includes the level of theory (HF, MP2, MP4, B3LYP, etc...),

the basis set, and any other secondary calculations to be performed. Each line in the

route section must begin with a '4' symbol. For instance, a common calculation is to

invoke the HF level of theory with a 6-31+G* basis set. The first statement within the

route section reads '6-31+G*' followed by keywords. An oft-used calculation within

this work invokes a restricted MP2 level of theory where electron correlation is applied to

all electrons and using the AUG-cc-pVDZ basis set. The keyword line therefore begins

with 'MP2(full)/AUG-cc-pVDZ' followed by keywords. A number of keywords most

utilized in this work are outlined within the following paragraphs.

A line is devoted to the title of the calculation is usually included for bookkeeping

purposes and does not influence the calculation procedure.

The Z-matrix is a set of coordinates that inputs the locations, or initial guess to the

locations, of the nuclei in the molecule. The first line of the Z-matrix states the

multiplicity (a value of 1 for closed-shell molecules) and the overall charge of the

molecule. The following matrix describing nuclear positions can be stated in two forms:

Cartesian coordinates or internal coordinates. A description of the matrix in internal

coordinates is not given here, since it is somewhat involved and necessitates the use of

numerous images and graphs, and since GUIs such as GaussView allow for the

construction of the Z-matrix without actual knowledge of how to write one from scratch.
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A Z-matrix can be omitted from the input file when a checkpoint file exists for the

molecule. The guess of the structure is thereby read from the checkpoint file using a

keyword detailed later. Descriptions of how to create Z-matrices exist in the literature

(Levine, 2000) as well as on the Internet.

A filename is necessary at the end of the input file to store information requested

by the keywords. Of use in this work is the wavefunction resulting from the calculation.

Therefore, a filename with the extension `.wan' ends some of the input files. If this

keyword or any other that requests a filename is not used, then the filename is not

necessary.

When looking for the ground-state energy, ground-state wavefunction and

associated electron density of an isolated molecule (as is done in this work), several steps

must be taken to achieve this goal. Firstly, an initial guess to the locations of the nuclei

must be determined. This task involves determining rotational conformers of molecules

and their relative energies at low theoretical levels, so that the lowest conformer can be

used for more intense calculation. Secondly, the geometry of the nuclei must be

optimized at a higher theoretical level to achieve representative bond lengths and angles

for the low energy conformer. This calculation is called a geometry optimization (OPT)

and is performed by G98W in an iterative manner. For this reason, OPTs are typically

performed at an intermediate level of theory or with moderately-sized basis sets, or both.

Thirdly, the calculation that achieves the energy for this optimized structure is performed

with higher theory and larger basis sets. This calculation is called the single point energy

(SPE) calculation for the ground-state structure of the molecule. Finally, multiple SPE

calculations are performed to determine effect electric fields have on the electron density,
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thus determining the polarizability of the molecule. A more detailed algorithm of the

methods utilized in this work is offered in Section 8.1.

A list of keywords available within G98W that are related to portions of this work

is included in Table 7.1. The levels of theory applied within this work are the 'HF' level

The execution of the conformer search and OPT calculations described in Section

8.3 are made easier with use of the GaussView program. The software offers a molecule

builder for the user to connect atoms, alter angles and twist dihedral angles to achieve the

desired initial guess of a geometry optimization. Given this graphical representation of

the molecule, the user is then able to access an input file creator and change the

calculation type and keywords. The most popular options are readily available, and users

can supplement other keywords in an input box found within the input file creator. Some

options used in this work are not included in GaussView, so the software is mostly seen

as a convenient way to create the Z-matrices for geometry optimizations.

7.5 Wavefunction Output of Gaussian 98W

Gaussian 98W outputs the wavefunction solution to a molecular system when the

output=wfn' keyword is used. This command outputs a PROAIMV wavefimction file

that is subsequently used within AIM property calculators (discussed in Chapters 9 and

10). Instructions on what the layout of the .wfn file is, how to extract the wavefimction

of the molecular system and how to calculate the electron density are given in Appendix

D.
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7.6 Summary

The theoretical methods and basis sets described in this chapter offers backgroimd on the

fimdamental nature of the choices made for calculations of this work. Although offering

advantages in computational time and accuracy, DFT methods are not used in this work

because of the lack of a theoretical basis by which one can increase its effectiveness.

Perturbation methods are employed with the goal of devising a series of calculation

results that may extrapolate to results offered at greater levels of theory or sizes of basis

sets.

The computational chemistry software now available to engineers allows for an

easy application of these high levels of theory. Gaussian 98W used on a Microsoft

Windows-based personal computer is employed in this work to determine a wide variety

of properties for a particular molecule. Some of this information is sufficiently close to

experimental results that the predicted results will be used to determine the

thermodynamic properties of macroscopic systems. Since the full wavefunction

approximation is also made available by this software, AIM properties of the molecule

can be calculated as molecular information becomes necessary.



CHAPTER 8

PROPERTIES CALCULATION OF ORGANIC MOLECULES

Computational chemistry in this work is employed to determine information about

molecular species without the use of experiment. This information is then used within

interaction models and statistical fluid models (presented in subsequent chapters) that

attempt to determine macroscopic system behavior from the molecular properties. This

begins with the computation of approximations of the molecular wavefunctions available

through the techniques reviewed in Chapters 6 and 7.

This chapter details the molecular computations on over 130 molecules analyzed

within this work. The levels of theory and basis sets are given. The search for the low

energy conformer, important in determining the most probable structure of the molecule,

is explained. The method to determine the polarizability of molecules, an important

property in intermolecular interaction theory previous foimd experimentally, is outlined.

The computational results of the dipole moment and the polarizability are then compared

to experiment, and the utility of several DFT and ab initio methods and basis sets at

predicting experimental properties is tabulated and compared.

8.1 Calculation Method

Whenever computational chemistry is employed, one must take care in choosing the

theoretical method and basis set that will best predict the properties of interest. Of

interest in this work is the electron density profile of the molecule and the systematic

methods with which to get better representations of the electron density as more

116
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computational power arises. The former, of course, is the goal for all of computational

chemistry, and methods are continually being refined to approach this goal. The latter

states the need to use perturbation methods (MP2) rather than density functional theory

methods. Also, the use of the correlation consistent, polarized valence basis sets (AUG-

cc-pVDZ etc...) allows for this by making available the systematic increase of space-

filling fimctions for the approximating wavefunction.

The computational chemistry methods employed in this work are used to

determine the ground-state geometry of a molecule, the wavefunction (and thereby the

electron density) of the molecular system, and how this wavefunction is affected by

imiform electric fields in three perpendicular directions. The algorithm used to determine

this information is as follows:

• The initial guess for the groimd-state geometry is determined using a rotational

conformer search. This is done by performing multiple geometry optimizations

(OPTs) at a very low theoretical level and basis set (HF/6-3 1G) for timely results.

More about this procedure and results are presented in Section 8.3.

• An OPT is performed with the initial guess of the ground-state geometry. This is

performed at an intermediate level of theory and with a moderately-sized basis set

(MP2(full)/6-31++G**). 	 This calculation is meant to achieve a better

representation of the bond lengths and angles than the conformer search had

provided. An example OPT input file for G98W used in this work is made

available in Appendix C.

• A single point energy (SPE) calculation is performed on the molecule with a high

level of theory and large basis set (MP2(full)/AUG-cc-pVDZ) to achieve as good
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a representation of the electron density as possible. The output from this

calculation also includes the wavefunction description (using the output=wfn'

keyword in G98W) and the critical points within the electron density (using the

aim=cp' keyword in G98W). The wavefunction is made available in a

separate .wfn file, and the critical points are found near the end of the standard

G98W output file. Example SPE input and output file for G98W are made

available in Appendix C of this work. A description of the .wfn file is available in

Appendix D of this work.

• Three more SPE calculations are employed to determine the response of the

electron density to electric fields in the C, y, and z directions. These calculations

are used to determine the polarizability of the electron density. The level of

theory and size of the basis set correspond to that of the SPE calculation of the

ground-state wavefunction (MP2(full)/AUG-cc-pVDZ). Similar to the ground-

state calculation, the outputs from this calculation include the wavefunction

description of this system and the critical points within the electron density.

These four steps yield a total of eight output files that contain information

necessary for further steps in this work. These include four .wfn files, one for the ground

state and three for the polarized states, as well as four G98W output files that hold the

critical points of the electron density. These files and the critical point information are

used in AIM integration routines that determine properties for atoms and functional

groups within the molecule. Also of importance is the .chk file that is used for the

geometry in OPT and SPE calculations. However, the information on the geometry is

also included in the G98W output file, so this file is seen as extraneous.
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Also of importance to the application of computational chemistry is the level of

hardware resources available to the software (here, G98W). The molecular-level

calculations for this work are all performed on a single personal computer. This

computer runs on a 1.8 Gigahertz Pentium 4 processor, 512 MB of RAM, and runs the

Microsoft Windows 2000 Professional operating system. The total hard drive space is 32

GB, of which 20 GB is left free for the G98W program to utilize during calculation. The

header line mem=400MB' is written to utilize the RAM available on the computer

system. The computational methods chosen for the SPE calculations above are the most

rigorous ab initio methods allowable with the computational resources listed.

8.2 Choice of Molecules

The molecules chosen for analysis in this work have several constraints. Firstly, as noted

above, the computational resources available dictate the theoretical method and basis set

that are attainable over the range of molecules considered. Also, the methods are affected

by the number of electrons within the system; therefore only first-row heavy (non-

hydrogen) atoms, specifically C, N, O, and F, are used to build molecules. The available

analysis techniques of functional groups also dictate whether certain molecules can be

pursued in this work.

The list of molecules calculated for this work is motivated by work that explored

use of computational chemistry within models of the excess Gibbs energy (Wu and

Sandler, 1991a). The main size constraint is to restrict the number of first-row heavy

atoms to six. This size constraint is relaxed in groupings where more molecules are

needed for analyzing purposes and where mixture systems of interest contain these larger



120

molecules. The list of molecular grouping with the molecule names and CAS registry

numbers in parenthesis are as follows:
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propanol (78-83-1); 2-methyl-2-propanol (75-65-0); 1-pentanol (71-41-0); 2-

methy1-2-butanol (75-85-4); 3-methyl- 1 -butanol (123-51-3); 1,2-propanediol (57-

55-6); 1,3-propanediol (504-63-2); 1-methoxy-2-propanol (107-98-2)

• Ethers: dimethylether (115-10-6); methylethylether (540-67-0); diethylether (60-

29-7); methyipropylether (557-17-5); methyl isopropylether (598-53-8); methyl

tert-butyl ether (1634-04-4); ethyl tert-butyl ether (637-92-3)

• Aldehydes: methanal (50-00-0); ethanal (75-07-0); propanal (123-38-6); butanal

(123-72-8); 2-methyipropanal (78-84-2)

• Ketones: propanone (67-64-1); butanone (78-93-3); 2-pentanone (107-87-9); 3-

pentanone (96-22-0); methy1-2-butanol (563-80-4); methyl vinyl ketone (78-

94-3)

• Carboxylic Acids: methanoic acid (64-18-6); ethanoic acid (64-19-7); propanoic

acid (79-09-4); butanoic acid (107-92-6); 2-methyipropanoic acid (79-31-2)

• Esters: methyl methanoate (107-31-3); methyl ethanoate (79-20-9); ethyl

methanoate (109-94-4); methyl propanoae (554-12-1); ethyl ethanoate (141-78-

6); propyl methanoate (110-74-7); methyl acrylate (96-33-3); vinyl ethanoate

(108-05-4); methyl butanoate (623-42-7); ethyl butanoate (105-37-3); butyl

methanoate (592-84-7)

• Fluorides: fluoromethane (593-53-3); fluoroethane (353-36-6); 1-fluoropropane

(460-13-9); 2-fluoropropane (420-26-8); 1-fluorobutane (2366-52-1); 2-

fluorobutane; 2-methyl- 1 -fluoropropanel; 2-methyl-2-fluoropropane (353-61-7)

• Amides: methanamide (75-12-7); etanamide (60-35-5); propanamine (79-05-0);

butanamide (541-35-5); 2-methylpropanamide (563-83-7)



Also, rotational conformers for several linear molecules with electronegative

atoms within the terminal functional groups are considered. These are included to

analyze the effects of electronegative atoms on the properties of other functional groups

within the molecule. The description of these molecules is given in the following section.

8.3 Search for Low Energy Conformer

Molecules exist in constant motion. While a molecule in the fluid phase translates along

trajectories within a system, internal vibrations and rotations cause the nuclei to travel in

varied directions and speeds allowable by the chemical bonds. This internal motion is

not only influenced by intramolecular forces, such as bond strengths and steric effects,

but they are also influenced significantly by the molecules around them, especially in the

liquid phase.

Every single conformation of a molecule cannot be accounted for within a

computational chemistry algorithm meant to predict molecular properties. The

description of effects that other molecules have on a molecule is available within

computational chemistry, but this involves study into solvation models that average these

effects. The first filtering criterion when guessing a conformer of interest is that the
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geometry of the molecule must occur within a local energy minimum, where

perturbations of any of the nuclei locations would result in a higher energy. These local

minima are relatively easy to find, since it is a well-studied subject within organic and

physical chemistry. This set of geometries offers a finite number of conformations of the

isolated molecule from which one can choose a ground-state geometry.

Figure 8.1 depicts the local minima of the molecule 1-propanol. The local

minima can be separated into two major groups: the oxygen atom in a trans position

relative to the terminal carbon atom, and the oxygen atom in a gauche position relative to

the terminal carbon atom. Each of these groups has within them another three

conformers, of which two are distinct in the trans conformer (two are identical) and three

exist in the gauche conformer. The energy for the conformer (calculated at the HF/6-31G

Figure 8.1 Rotational conformers of 1-propanol. All five local minima are shown.
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level) is given under the image. The a -gauche conformer, where the hydrogen atom is

most distant from the remainder of the molecule, is predicted to be the most stable

structure. The a -trans conformer with the hydrogen most distant from the molecule is

found as second most stable. This ordering agrees with experiment, where the gauche

conformer is found to be more stable than the trans conformer by 1.21± 0.63 kJ/mol

(Abdurahmonov, et al. 1970).

Within linear molecules with four or more heavy atoms, the lowest two

conformers found in the conformational analysis are a gauche conformer and a trans

conformer, depicted in general in Figure 8.2. Calculation results that compare the

conformer energies are given in Table 8.1.

Figure 8.2 Lowest energy gauche and trans conformers for linear molecules. These are
depicted here for a three carbon molecule.
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Table 8.1 Absolute Energies of Linear Molecules in Different Conformations 

molecule

energy (au)

HF
6-31++G**

MP2(full)
6-31++G**

HF
AUG-cc-pVDZ

MP2(full)/
AUG-cc-pVDZ

butane
trans

gauche

-157.3149

-157.3133

-157.9347

-157.9335

-157.3151

-157.3135

-157.9377

-157.9368

trans -196.3529 -197.1237 -196.3539 -197.1285
pentane

gauche -196.3511 -197.1226 -196.3522 -197.1277

trans -235.3908 -236.3127 -235.3927 -236.3194
hexane

gauche -235.3890 -236.3117 -235.3910 -236.3187

trans -173.3050 -173.9493 -173.3112 -173.9623
1-propanamine

gauche -173.3045 -173.9492 -173.3105 -173.9623

trans -212.3429 -213.1381 -212.3499 -213.1529
1-butanamine

gauche -212.3423 -213.1382 -212.3492 -213.1530

trans -193.1330 -193.7844 -193.1443 -193.8121
1-propanol

gauche -193.1329 -193.7849 -193.1440 -193.8124

trans -232.1709 -232.9732 -232.1830 -233.0026
1-butanol

gauche -232.1707 -232.9738 -232.1827 -233.0031

trans -271.2089 -272.1623 -271.2218 -272.1935
1-pentanol

gauche -271.2087 -272.1630 -271.2215 -272.1940

trans -217.1316 -217.7680 -217.1420 -217.8078
1-fluoropropane

gauche -217.1317 -217.7685 -217.1421 -217.8083

trans -256.1694 -256.9567 -256.1807 -256.9983
1-fluorobutane

gauche -256.1696 -256.9573 -256.1809 -256.9989
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8.4 Calculation of Molecular Polarizability

The molecular polarizability attempts to quantify the response of the electron density to

an applied electric field. It is a proportionality factor that describes the linear response of

the dipole moment to a small electric field. Greater field strengths induce nonlinear

responses, called hyper-polarizabilities. The general formula for the polarizability is

given by

where the dipole vector Et changes under the influence of the electric field, here

expressed as the vector quantity E . The polarizability here is expressed as the tensor a ,

and the elements of the tensor are found through the calculation methods described above.

The polarizability tensor reflects the specific directional responses of the electron

density to the electric fields. The density may respond in any of the three perpendicular

directions (e.g. the C, y, and z directions) to a field in a particular direction, either the

C, y, or z direction. These yield nine responses the electron density may show, therefore

the nine elements a .

The most significant responses are those in the same direction as the electric field.

Therefore one can expect that the diagonal of the polarizability tensor contains the largest

contributions. Table 8.2 presents the results of the calculations of the dipole moment

vector of 1-propanol in the ground state and with electric fields applied in the x, y, and z

directions. The largest changes in the dipole moment vector are in fact in the directions

of the electric field. This, in turn, yields polarizabilities an order of magnitude larger on

the diagonal than for the other elements. Also note that the polarizability tensor is

required to be symmetric. The tensor in Table 8.2 approximately obeys this.



The polarizabilities of this work are presented as scalar quantities and thus

describe the polarizability of the molecule as a spherically symmetric property. To

achieve this, the trace of the tensor (the average of the elements of the diagonal) is

considered the polarizability of the molecule.

A similar algorithm is followed for the calculation of the polarizabilities of

functional groups, presented in Chapter 10. However, there the change in the dipole

moment of the group is more detailed, taking into account the charge transfer possible

within a molecule influenced by an electric field.

8.5 Results

The results of the calculations and their relation to experimental molecular properties are

accomplished in this work by analyzing the difference between the experimental dipole

moments and polarizabilities with those predicted by the computational techniques.

Comparisons for each individual molecule are listed in Appendix E.
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To simplify the analysis between predicted and experimental results, the

groupings of molecules are subgrouped by their constituent atoms:

• Hydrocarbons contain Alkanes and Alkenes

• Amines contain molecules with singly-bonded nitrogen atoms

• Alcohols & Ethers contain molecules with singly-bonded oxygen atoms

• Fluorides contain molecules that contain a fluorine atom

• Aldehydes & Ketones contain molecules with a doubly-bonded oxygen atom

• Esters & Acids contain molecules with a carboxylic group ( OC=0 )

• Inorganics contain smaller molecules

• Amides, Nitriles & Nitros contain less-encountered species with a single

electronegative atoms or a group of nitrogen and oxygen atoms

The difference between the experimental dipole moments and the calculated

results from both the OPT and SPE methods used in this work are presented in Table 8.3.

The difference between the calculated polarizabilities from the SPE calculations is

considered in Table 8.4. Also within these tables are results from both ab initio and DFT

methods with various size basis sets. This information is made available from the

Computational Chemistry Comparison and Benchmark Database (CCCBDB) online

("Computational Chemistry...", 2004). This selection of methods and basis sets has been

made because calculations on a majority of molecules in this work have been completed

by the CCCBDB with these methods. The theoretical methods include the DFT methods

referenced in Section 7.1, the B3LYP method and the B3PW91 method. Also included

for comparison is the MP2 perturbation with correlation only included for the valence

electrons, hence the lc' (frozen core) notation. The basis sets included from the



129

set, and the correlation-consistent

sets, AUG-cc-pVDZ and cc-pVTZ sets. Note that the second and the fourth basis sets on

this list do not include diffuse functions.

The absolute percent error of calculated dipole moments over the range of

methods is presented in Table 8.3. Both the OPT values and the SPE values are

represented here, and a large improvement is seen when using the larger basis set. The

SPE calculation performs better than those of the DFT methods with smaller basis sets,

which is surprising noting that an advantage to DFT methods is that a smaller basis set

can be used with comparable accuracy. The method employing the next larger

correlation-consistent basis set does incrementally better than the SPE calculation over

most of the groupings.
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The DFT method with the same size basis set also performs better than the SPE

calculation, although the SPE calculation yields competitive numbers.

A question exists in the performance of the B3LYP/AUG-cc-pvDZ methods for

the Esters & Acids grouping. The geometries considered by the CCCBDB may not

correspond to those geometries considered in this work.

Also, all methods do poorly in predicting the small molecule dipole moments

within the Inorganics grouping. This may be so because the dipole is more influenced by

the actual electron density of the system, while the dipole for larger molecules are more

influenced by the positions of the more numerous nuclei. Also, the magnitudes of the

dipole in this group are smaller, so absolute error may be a better measure on how well

the dipoles are predicted. These values are also included within the table, depicting the

best results from the SPE method and the DFT method with the large basis set, and

reasonable results for the majority of methods.

The absolute percent error of calculated polarizabilities over the range of methods

is presented in Table 8.4. One can immediately note the success that basis sets with

diffuse functions have over those without. The SPE calculations do a better job than the

calculation with the cc-pVTZ basis, mainly due to the lack of the diffuse functions in the

latter. This is also seen with the two DFT methods with the 6-31G sets; the calculations

with the diffuse functions perform better. Again, when the diffuse basis set is coupled

with the DFT method, the numbers are most near that of the experiment.



8.6 Conclusions

Computational chemistry offers methods with which one may analyze a large number of

molecules without the use of complex and expensive experimental apparatuses.

Although no method has ended the search to makes experiments completely obsolete,

enough information is available to establish the accuracy and predictive capability of

such methods.

The methods utilized in this work allow for a timely prediction of the electrostatic

properties of molecules of interest to chemical engineers. The results of these methods

can also be improved in a systematic manner as the need arises. The molecular

wavefunctions may now be analyzed to determine functional group properties for

application within predictive group-contribution methods. The algorithm has been

applied to a large number of species, making available molecular-level properties that
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may aid in evaluating pure and mixture system properties with techniques described later

in the work.

All this information comes from modest computational resources. With the

application of more powerful tools, the results in theory will approach those of

experimental results. Due to the greater acceptance of such computational techniques,

such solution methodologies will become regularly used tools for chemical engineers

willing to approach problems from a more fundamental standpoint.



CHAPTER 9

GROUP-CONTRIBUTION METHODS AND
THE CONCEPT OF THE FUNCTIONAL GROUP

Thousands of chemicals are of interest to engineers, and more are added every year. It is

impossible to expect that all the relevant properties of these molecules and their mixtures

can be readily available to engineers for use in process design. Group-contribution

methods (GCMs) have been developed to aid engineers approximate molecular properties

through a smaller set of entities called functional groups.

Functional groups are the atoms and collections of atoms that are used to

approximate the properties for molecules of interest. The problem of finding all the

properties of molecules and their mixtures is reduced to finding the definitions of

functional groups, the functional group properties and the models used to assemble

molecular properties.

The transferability concept alluded to in Section 5.5 has made the finding of

universal and well-defined properties for a group a goal in the advancement of GCMs.

The problem is, of course, that the properties of a given group of atoms are affected by

what other groups constitute both the molecule and system. This means that the group is

almost never transferable (Fresendelund and Prausnitz, 1975; Bader and Becker, 1988;

Sandler, 1994), and thus GCMs that assume transferability will have a limited scope of

success.

A related problem with current GCMs involves isomers (Fresendelund, et al.

1975). Molecules that consist of geometric rearrangements of the same set of groups are

indistinguishable by current models that rely on the assumption of transferability.

133
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Atoms in Molecules (AIM) theory (Bader, 1990) offers a rigorous method to find

properties of functional groups in molecular environments. Such information is

calculable once the numerical approximation to the wavefunction is found using methods

described in Chapter 6. Two main bodies of work on this subject exist: by the Bader

group, on the theoretical basis of AIM and initial studies of alkanes (Bader, et al. 1987;

Bader and Becker, 1988; Bader, 1990; Bader et at, 1992; Bader and Bayles, 2000; Cortés-

Guzman and Bader, 2003); and another by the Mosquera group, on the calculation of

properties for a wide range of molecule types (Grafla and Mosquera, 1999; Carballo and

Mosquera, 2000; Graila and Mosquera, 2000; Vila and Mosquera, 2001; Lorenzo and

Mosquera, 2002; Mandado, et al. 2002; Mandado, et al. 2003; QuiflOnez, et al. 2003).

Since the number of references is numerous, the general body of work from each group

within this chapter will not be rewritten, except when a particular piece of work is

referenced due to the focus of that work.

This chapter offers an overview of GCMs and the tasks in determining definitions

and contributions to the properties of a molecule. Focus is then placed on the role that

AIM theory has in alleviating the past problems with definitions and properties. Several

numerical routines exist to determine AIM properties; these are considered. Finally, an

argument against the full transferability of a functional group definition over molecules is

discussed, but on a quantitative scale offered by AIM theory.
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9.1 Group-Contribution Methods for Thermophysical Properties

Thermophysical property prediction continues to be a significant research area. The

importance of readily available and accurate properties of known and yet unknown

species is evident by their use in powerful engineering process simulations. Properties

such as heats of formation, boiling points, and heat capacities for all participating species

need to be readily available for a robust simulation. Also, costly, time consuming

experiments on rare compounds are avoidable if a predictive model of sufficient accuracy

can be used within these simulations.

Group-contribution methods are regularly used to predict thermophysical

properties. Methods exist that make this information available simply with knowledge of

the numbers and types of groups occurring in a molecule. Each functional group

contributes a value to the property of interest. In the past, these contributions have been

correlated to a large set of data for the property of interest. For simpler schemes, a

contribution from a particular group is assumed to be the transferable, the same in

whichever molecule the group exists.

To calculate macroscopic properties, GCMs assume that each contribution from a

group can be summed linearly to give the property of interest. For a given

thermophysical property F, , the contributions of the functional groups j; are added to

give the result

where v,, 1 is the number of j functional groups in molecule i . Each of the functional

group properties is assumed to be independent of the contributions by other groups in the
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molecule. Also, these properties are assumed to be transferable, thereby usable for the

functional group within any molecular environment.

Recently, this subject matter has been studied within the framework of quantum

mechanics and AIM theory. Linear additivity, demonstrated by Equation (9.1), has been

shown to exist for structural properties of alkanes (Bader et al. 1987), the polarizability of

linear alkanes (Bader et al. 1992), and the HF energies of linear alkanes and oligosilanes

(Bader and Bayles, 2000).

Group-contribution methods widely used by engineers have had success assuming

linear additivity without a rigorous theoretical framework. A successful additivity

scheme (Benson, 1976) establishes a large number of functional groups and their

associated properties with which to construct many molecules. The properties made

available allow for the calculation of common properties necessary for process design,

such as heats of formation, entropies, and heat capacities. The application of this method

is rather straightforward, since one only needs to add one contribution from each group.

The complexity of GCMs has grown recently in order to predict larger molecules

not previously included in correlation schemes. These methods have multiple

contributions from groups of differing scales, usually in a scheme resembling a

perturbation expansion

where the superscripts denote the order of the functional group contribution (first-order,

second-order, etc.), and 2 and x are perturbation parameters that assume the values of

0 or 1. A first-order approximation can be applied for a quick estimation of properties.

For better accuracy, the higher-order contributions are added to finely adjust the first
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result. A scheme has been proposed where a second-order contribution is based on the

numbers and types of conjugate structures possible within a molecule (Constantinou and

0ani, 1994). These second-order contributions were based, in part, on the enthalpy of

reaction of the bond conjugation. Another scheme proposes first-order group

contributions on par with the simplicity of Benson, and second-order contributions given

by larger groups containing two adjacent, first-order groups (Marrero-Morejon and

Pardillo-Fontdevila, 1999). These contributions are then to be summed in global

equations containing two correlated parameters. This concept is built on by adding as

third-order contribution groups the size of aromatic rings and larger (Marrero and 0ani,

2001). This method is geared toward including the prediction of large, polycyclic

molecules.

Each of these schemes employs definitions of functional groups that are not

necessarily similar to that of prior work. These definitions have been chosen arbitrarily

and must be reconsidered when developing or studying any new method.

9.2 Research into Functional-Group Definitions

For a palatable 0CM, the definition of a functional group must balance between ease of

use and complexity of description. A fimctional group with fewer atoms/bonds will

satisfy the desire for a simple method, but will sacrifice the accuracy necessary in a

robust model. A simple functional group will occur in a large variety of molecules, each

likely with a different surrounding environment of atoms and electron densities. A group

reflects these differences with changes in their electron density profile, and thus, a change

in their functional group properties. A method that applies large functional group



138

definitions serves the purpose of accounting for these environmental effects. Yet these

groups tend to occur in fewer molecules, therefore the database of functional groups must

be very large to include more unique groups. These larger definitions may also be

confusing because molecules are able to be built using different functional groups in this

larger database.

The Benson additivity scheme employs a simple group definition that includes a

central, polyvalent atom (an atom bonded to two or more other atoms) and its ligands.

The notation in that work considers the central atom as a first-order definition and defines

further orders with the ligands. For example, ethanamine is defined using four groups

stated in the following way: one C-(H) 3 (C) , one C- (H) 2 (C) 2 , one C- (H) 2 (C)(N) ,

and one N- (H) 2 (C) . An atom can exist in several group definitions, but only as ligands

to other central atoms. Larger cyclic groups, composed of combinations of smaller

groups, are defined to allow for small corrections to the values found using the polyvalent

atoms. This group definition scheme is likely the simplest that employs information

beyond only atoms and bonds.

The work of Marrero and 0ani (2001) employs a range of functional group

definitions, from simple to complex, to encompass a larger array of molecules. The

groups are in general more specific and do not follow as simple a definition as with the

Benson method, thereby eliminating the uniqueness of a group definition. For example,

it seems plausible to build ethanamine in several different ways under the Marrero and

0ani definitions. One way is similar to the definition above: one CH 3 , two CH 2 , and

one NH 2 . Another way, which is advised by the authors, is the following: one CH 3 , one

CH 2 , and one CH 2NH 2 . When considering the second-order corrections to the result
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from the above groups, the second-order groups are allowed to overlap. Although the

second-order groups CH 3CH 2 CH 2 and CH 2CH 2NH 2 do not exist in the method, if they

did, these would both serve as necessary second-order corrections to the first-order result.

Second-order group definitions are allowed to not overlap, partially overlap (as above),

and completely overlap (where one definition is a subset of atoms within a larger

definition). Third-order group definitions involve rings to incorporate polycyclic

compounds into the predictive method and are not related to this work.

Although UNIFAC (Fredenslund, et al. 1975) and modified UNIFE (Gmehling,

et al. 1993) methods do not attempt to predict thermophysical properties, these methods

employ a definition as complex as that of Marrero and 0ani. Since these methods

attempt to correlate VLE data, interaction energies between groups are important. The

group definition includes a main grouping and a subgrouping to eliminate fitting

parameters to every element of the interaction matrix. Interactions between groups

within the same main group vanish. Like the definitions proposed by Marrero and Gani,

a similar complication pertaining to the non-unique breakdown of a molecule into

functional groups arises.

Attempts have been made to incorporate computational chemistry methods to

alleviate some of the concerns of group definitions within the UNIFAC methods (Wu and

Sandler, 1991a; Lin and Sandler, 2000), as alluded to in Section 5.5. But these

improvements do not eliminate the non-unique definitions for molecules.

Functional groups are incorporated within molecular dynamics simulations to

allow for more efficient computations by considering fewer entities within the system

space. A functional group definition scheme that has been successful in the correlation
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and prediction of alkane system properties (Jorgensen, et al. 1984; Martin and Siepmann,

1998) is called the United-Atom (UA) definition. The definitions for alkanes, alkenes

and cyclic hydrocarbons include bonded hydrogen atoms onto the heavy carbon atom,

similar to Benson definitions. Further works with alcohols (Chen, et al. 2001) and other

oxygen-containing compounds (Stubbs, et al. 2004) include ligands within the group

definition, thus returning to the Benson definition of functional groups. Also of note in

the UA definitions, hydrogen atoms are separated from oxygen atoms, thus exposing the

large partial charge on the hydrogen atom and allowing for the simulated system to

represent hydrogen bonding.

The more rigorous routines that find functional group properties, those employing

a theoretical framework such as AIM theory, utilize functional group definitions near the

simplicity to the Benson and UA schemes: a heavy atom and the attached hydrogen

atoms. This is possible since the molecular environment affecting a particular functional

group is reflected in the rigorously determined functional group properties. Therefore,

subgroupings of the functional group CH 2 are seen purely through the partial charge the

group has when attached to electronegative atoms F, 0, N , etc...

9.3 Functional Group Properties

In the past, engineers have used correlation to find functional group properties. They

would assemble a database of a large number of experiments that measure the system

property of interest for a wide array of molecules. Then the database is separated into a

training set, used mainly to find the functional group properties, and a validation set,

which is used to compare the predicted results of the correlation to the experimental data.
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Engineers at this point hope the functional properties can be used in a model that predicts

experimental behavior for molecules where data is not available. This makes the finding

of universal functional group properties valuable.

The problem of estimating molecular properties reduces to finding the

contributions of the functional groups to the molecular properties in relations such as

Equations (9.1) and (9.2). The properties of interest to engineers and chemists include

the size and shape properties (structural), the contribution to molecular energies

(energetics), and partial charges and dipole moments for use in interaction energy

schemes (electrostatics). These properties can be found in several different ways: full

correlation of experiment on macroscopic systems; correlation of computational chemical

properties; approximation from theoretical concepts; or fully rigorous theoretical results.

The methods employing AIM theory have not been developed for use in engineering

models as have the others, and special focus is placed on these due to their application

within this work.

Structural group properties reflect the amount of excluded space a group occupies

and the surface area available for interactions with other functional groups. Such

properties are important within the lattice-fluid models which account for system entropy

of randomly and nonrandomly mixed systems, as described in Chapters 4 and 5. A

simple set of formulas exist that approximate the volume and surface area using

overlapping spheres with radii that correspond to the van der Wails radii (Bondi, 1964).

The UNIQUAC method (Abrams and Prausnitz, 1975), an empirical model, relates the

size and area parameters of a molecule, r, and Doi, to the Bondi size and surface area of a
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methylene group in an infinitely long polymer composed of methylene groups. The

parameters for a general molecule are found using the formulas

where the volume and area for the methylene group in the infinite polymer, VcH2 . and

The COSMO-based methods (Klamt, 1995; Klamt, et al. 1998; Lin and Sandler, 2002;

Klamt, et al. 2002) utilize approximately 120% of the van der Waals radius to construct

the surface surrounding a molecule in a continuum solvent, although these radii have

been correlated in the more recent works. Since functional group volumes are not

actually needed within lattice-fluid models (the molecular volume is needed), the

functional group volumes may be inferred from liquid volumes (Knox, 1987).

Models that use overlapping spheres formed from van der Waals radii have

encountered problems at the intersections of those spheres, where crevices form and

create errors in calculations of properties on these surfaces (Klamt, et al. 1998). Fixes

have to be implemented to smooth out the crevices.

A concise way to determine structural properties of functional groups without

approximations or fixes is achievable using AIM theory. Calculated molecular volumes

of alkanes are shown to be additive in the sense of Equation (9.1) (Bader, et al. 1987).

This result agrees with the well-accepted notion that system volumes of linear alkanes

beyond hexane increase by a constant factor. The surfaces partitioning molecules and an

arbitrarily chosen isodensity surface, usually the 0.001 au isodensity surface, enclose a
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functional group volume. The area of this isodensity surface also corresponds

conceptually to the surface area utilized in lattice-fluid models: the exposed surface area

available for interactions with other functional groups. Novel calculations of these

surface areas are presented in Chapter 10.

Energetic properties of a functional group reflect the contribution made to the

molecule's absolute energy (found in computational chemistry) and heat of formation

(mainly found through experiment). The engineering GCMs correlate these functional

group properties to experimental data. AIM theory allows for the calculation of the

energies of atoms, which are thereby added to get the energies of functional groups.

These properties are found to be additive in the sense of Equation (9.1) (Bader and

Becker, 1988). A large database of energy values for functional groups within

hydrocarbons and oxygen-containing compounds has been made available by the

Mosquera group (Grafia and Mosquera, 1999; Graft and Mosquera, 2000; Carballo and

Mosquera, 2000; Vila and Mosquera, 2001; Lorenzo and Mosquera, 2002; Mandado, et al.

2002; Mandado, et al. 2003; Quiriónez, et al. 2003).

Electrostatic properties, such as partial charges and dipole moments, originally

have served as higher-order descriptors that distinguish similar functional group

definitions between molecules (Wu and Sandler, 1991a). A large number of methods

have been developed to determine the distribution of partial charges amongst atoms

within a molecule, mainly due to the importance of such information within molecular

dynamics simulations. However, because partial charges are not measurable quantities

within the quantum mechanical sense (measurable meaning they can be calculated by an
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integral such as Equation (6.35)), partial charges do not exist and must serve as

approximations of the electron density profile (Cox and Williams, 1981).

Partial charges have been determined for molecules in numerous ways. An

approximation is found by enumerating electrons within orbitals wholly attributable to an

atom and equally splitting electrons shared by atoms (Mulliken, 1955). This yields a

number reflecting the topological occupation of electrons within the available orbitals.

Empirical charge fitting schemes grew out of a motivation to fix some well-documented

problems of Mulliken charges: charges are not measurable; the shared electrons are

arbitrarily distributed evenly to the nuclei; and in general the Mulliken charges do not

appeal to trends that are chemically realistic (Cox and Williams, 1981). A solution is to

assign charges to atoms within a molecule by empirically fitting them to the electrostatic

potential around the molecule, a measurable quantity with quantum chemistry (Momany,

1978). Since interactions at relatively high energies occur outside the space where

electron densities are high, points in this region can be sampled to fit charges on atoms to

reflect intermolecular interaction tendencies. Several charge fitting procedures exist

within the Gaussian 98W package by evoking the 'pop' keyword: Merz-Kollman (MK)

(Besler, et al. 1990); Charges from Electrostatic Potentials (CHeip) (Chirlian and Franci,

1987); and Charges from Electrostatic Potentials using a Grid (CHelpG) (Breneman and

Wiberg, 1990). Each of these routines samples the electrostatic potential around the

molecule and fits charges accordingly.

While charges fit to the electrostatic potential offer a computationally efficient

way to determine partial negative and partial positive fragments of a molecule, charges

on nuclei alone cannot fully describe the complex functionality of the electrostatic
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potential. Comparisons have been made between the major charge fitting procedures

available with quantum chemical calculation software (Sigfreddson and Ryde, 1998). All

the well-known charge fitting procedures use a grid of points to sample the electrostatic

potential. The procedures available in the 098W software package have been found to

be dependent on the orientation of the molecule in the calculations. Since the grid is

predetermined within the software, the orientation of the molecule dictates where these

points fall. The minimum distance from nuclei at which points are sampled also is an

arbitrary choice. The authors suggest that newer methods should employ the higher

electrostatic moments for the charge fit or weightings of sampled points.

Another method of determining partial charges on functional groups is to select

them according to results within molecular simulations (Martin and Siepmann, 1998;

Chen, et al. 2001; Stubbs, et al. 2004). They are attributed to the centers of the UAs, and

serve to simplify the Coulombic interactions between polar portions of molecules.

According to J. J. Potoff (personal communication, November 7, 2004), the selection of

charges at this point is more of an art.

Atoms in Molecules theory, through the partitioning of the electron density of the

molecule, allows for the calculation of a partial charge of a functional group, as well as

other electrostatic properties such as the dipole moment, quadrupole tensor and the

polarizability (Bader, 1990; Bader, et al. 1992). The partial charge of a functional group

is given by integrating the electron density within the boundaries of the group found

through AIM theory

The dipole moment vector is found by finding the first moment of the electron density
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where rr  is the distance with respect to the nucleus. The quadrupole tensor is also given

by integration with the appropriate operator, but this quantity is not utilized within this

work.

The calculation to determine the polarizability is a somewhat more involved

calculation, due to the necessity of molecular calculations in the ground-state

configuration as well as on configurations with electric fields being applied. The

polarizability of a molecule or a functional group is given by the linear response of the

electron density to an electric field. This is expressible through the change in the dipole

moment given by Equation (8.1). The change in the dipole moment for an entire

molecule can be separated into atomic or functional group quantities (Bader, et al. 1992),

which are then used to determine the polarizability for functional groups within Equation

(8.1). This relation is give by

where Rn  represents the location of the center of atom or functional group Q .

Determining the latter term within Equation (9.7) involves calculating the dipole

moments of a fimctional group with Equation (9.6) and determining the change in this

value after applying electric fields in the C , L , and z directions.

Determining the former contribution within Equation (9.7) involves determining

the shift of electrons within a functional group and determining the shift of electrons from

the group of interest to and from the remainder of the molecule. For a functional group
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with attached hydrogen atoms, such as CH 3 , CH 2 , and CH , the formula for contribution

to the change in Alt is given by (Bader, et al. 1992)

where no  represents the number of hydrogen atoms within the group, nBcp represents the

number of bond critical points the functional group has with other functional groups

within the molecule, R, is the location of bond critical point i , and AIR, represents the

change in the partial charge of the molecule beyond the bond critical point i . For

functional groups with no attached hydrogen atoms, or for functional group computations

where the bounding surfaces between the carbon atom and the hydrogen atoms are

ignored, only the second term of Equation (9.8) is necessary. The effects of the

intragroup charge transfer in this latter case are quantified in the change of the dipole

moment of the group, Ape .

The polarizabilities of atoms and functional groups given by Equations (8.1) and

(9.7) are found to be linearly additive in the sense of Equation (9.1). When computed at

the HF level of theory with correlation corrections, the sum of the group polarizabilities

within linear alkanes are found to be exactly the same as the calculated polarizabilities for

the entire molecule and are about 11% less than experimental values for the molecule

(Bader, et al. 1992).
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9.4 The Quantitative Reasoning Against Transferability

Transferability of a functional group over a large number of molecules is considered by

most an idealization that has proven difficult to achieve. The properties of a functional

group depend on many things, such as group definition, group boundaries and

surrounding groups within a molecule. The smaller group definitions, the chances of

transferability become less because of the more immediate effect different environments

have on its properties. The larger the group definitions, the chances of achieving

transferability are better, but mainly because the functional group would occur in fewer

molecules. This becomes less useful and complicates the GCMs employing such

definitions.

The application of AIM theory to molecular studies has furnished proof of the

slight chance of transferability in a 0CM. Work on defining the AIM properties of

carbon atoms within alkyl groups in aldehydes and ketones (Graria and Mosquera, 2000),

in monoethers (Vila and Mosquera, 2001) and in linear alcohols (Mondado, et al. 2002)

shows the sensitivity of alkyl groups, the most common functional groups in organic

compounds, to an electronegative atom like the oxygen atom.

The number of transferable group definitions within the studies above suggests

that a chemist's viewpoint of transferability is extremely sensitive and demands a large

number of subgroupings to be of use. Table 9.1 shows the number of subgroupings

within the molecules mentioned above. First note that the number of different carbon

atoms within these groups of molecules number 47. The main deciding factor within

separating functional group definitions is found to be the distance from the

electronegative atom. The range of partial charges within the ethers and alcohols is due



to the difference between a carbon atom bonded directly to an oxygen atom, which makes

the partial charge on carbon become largely negative, and a carbon atom far away from

the electronegative atom, which makes the partial charge only slightly negative.

Such a demonstration on the way AIM charges are affected by electronegative

atoms within relatively simple molecules eliminates the validity of the transferability

assumption from any engineering model that uses AIM properties. There is a possibility

that transferability exists approximately, as shown in alkyl groups in alkanes (Cortés-

Guzman and Bader, 2003), or shown by the groups in linear alcohols approaching the

properties of the alkyl groups in alkanes (Mandado, et al. 2002). Such conclusions are

used in limited cases within the AIM properties of functional groups calculated for this

work. These are presented in the next chapter.

9.5 AIM Property Calculators

Three software packages are available to calculate AIM properties: PROAIMV (Siegler-

Honig, et al. 1982); a subroutine within Gaussian 98W evoked by the 'aim' keyword

(Stefanov and Cioslowski, 1995); and AIM2000 (Biegler-Konig, et al. 2000). The most



150

computationally intensive portion of an AIM calculation is determining the partitioning

surfaces. The first two routines do this, albeit in different manners, while the third,

AIM2000, attempts to proceed integrating without such information. The user interfaces,

the necessary user input and the routine outputs are described.

The earliest and probably most widely used software is the PROAIMV routine

available within the AIMPAC suite. This suite is made available by the Bader research

group. The partitioning surface is found by walking along gradient paths that begin at a

bond critical point. An array of points on the surface is determined, and triangles are

used to connect the points and represent the surface. The program is run on a PC from a

DOS prompt after compiling in a FORTRAN 77 compiler. The user input for this routine

is the most involved of all the routines; the user needs the .wfn file made available within

098W and the location of the bond critical points. Also necessary for calculation are the

numbers of bond, cage and critical points (the latter two not discussed in this work), the

number of planes and radial points used for the three dimensional integration within the

atomic space, and an array of values that allow for customized calculations. The output

of the routine is a formatted text file with all the calculable properties within AIM theory,

except the external surface area and polarizability. Since the interface is a DOS prompt,

it is possible to write scripts that allow for multiple integrations to be run without user

intervention. Also, if one or more bond critical points are omitted from the input file, the

routine will integrate as though the surface is not there. This is helpful for functional

group property calculation, where the user may omit the bond critical points between the

hydrogen atoms and the carbon atom in a methyl group to achieve a single integration of

the alkyl group properties.
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A method that attempts finding of the partitioning surface more elegantly is made

available within 098W by using the 'aim' keyword (Stefanov and Cioslowski, 1995).

An analytic function is used to fit the partitioning surfaces between two atoms. This

program is easily executed from a 098W input file and needs no further input from the

user. The AIM properties for all the atoms are calculated when the routine is executed.

The output of this routine is a section within the formatted output regularly available after

a 098W calculation. The properties calculated include the partial charges, the dipole

moments relative to the attractor in the basin (the maximum of the electron density), the

quadrupole moment, and a variety of atomic energies and forces. An example of the

output for this routine is given in Appendix C.

A method that attempts to avoid calculating the partitioning surface altogether is

with the free software called AIM2000, Version 1.0. This package numerically integrates

by finding the points within the atomic space using a technique within differential

equations. Each of these points is found by beginning at the attractor within an atomic

basin and walking downhill along a gradient path. By theory, all these points on the

gradient path belong to the attractor on which the path begins. The interface of this

program is a Windows-based GUI with a three dimensional representation of the

molecule, the bonds, and the bond critical points. The inputs from the user involve

mostly integration parameters and are set within menus available in the software.

Calculation routines with AIM2000 are utilized to determine the attractor centers and

bond critical points. The output of the calculations includes all the information available

from PROAIMV, but within a table that is inaccessible to outside software. No text-

based output is available with AIM2000.
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Two different integration techniques are made available within AIM2000. The

first choice is similar to the PROAIMV, where a beta sphere around the atom center is

formed. A two step integration is then performed: one inside the beta sphere and one

outside the beta sphere. The second choice is called a radial integration, which is a one

part integration of the entire atomic space using the atom center as the starting point.

The coarseness of the partitioning surface finder within PROAIMV motivates the

creation of the routine that finds the analytical representation of the surface (Stefanov and

Cioslowski, 1995). Although elegant, this routine is prone to crashing when attempting

to find surfaces with sharp curvatures (Biegler-Honig, 2000). Since the AIM properties

of all the molecules are found together using the 'aim' keyword, if one surface fails in the

process, the entire calculation fails and no output of AIM properties for any atom is

offered. The AIM2000 routine is also elegant, but its methods have been criticized as

numerically expensive and too time consuming (Stefanov and Cioslowski, 1995).

Due to the nature of numerical calculation, the values determined by the software

are subject to some variability. A measure of the numerical error by the AIM integrators,

L (a) , is proportional to the Laplacian of the electron density integrated within the

volume. If the properties of the atoms and the partitioning surfaces are determined

exactly, this quantity theoretically vanishes for each atom (Bader, 1990; Cortés-Guzman,

and Bader, 2003). To achieve an error of less than 0.0022e in the number of electrons

integrated within a basin, the value of L (0) is to be less than 1.0 x10 -3 au and

1.0x 10-4 au for a hydrogen atom and carbon atom, respectively (Bader, et al. 1992).

When calculating the magnitude of the dipole moment vector, Gaussian 98W and

AIM2000 use different conventions than the PROAIMV routine. In AIM2000, the dipole
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moment needs to be multiplied by a factor of negative one to alleviate the difference in

sign convention. In 0aussian 98W, the centers of the attractors, maxima of the electron

density at or near the location of the nuclei, are the centers of positive charge used when

determining the dipole moments.

9.6 Summary

Group-contribution methods have a successful record at modeling many thermodynamic

properties of fluid systems. However, with so many models in existence, there are as

many definitions for functional groups as there are methods. New definitions have been

created to best correlate the data for that particular model.

The emergence of computational power and a theoretical method, AIM theory,

now may eliminate the arbitrary practice of defining functional groups. Instead of

striving for transferable group properties, deemed impossible in its classical

conceptualization, group definitions can be given less attention as long as the

accompanying properties are defined. It is these functional group properties that are

physically significant and can be related directly to macroscopic system behavior.

Information on the structural, electrostatic and energetic properties of functional groups

had previously been unavailable, and new techniques to describe thermochemistry and

thermodynamics can utilize this information for more fundamentally sound GCMs. With

the availability of software to calculate AIM properties, such information can be

disseminated as more molecular calculations are performed.
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This work progresses along this path by taking the molecular calculation results

and analyzing them using AIM theory. This information becomes the basis for newly

conceived physical parameters within interaction and statistical models.



CHAPTER 10

FUNCTIONAL GROUP PROPERTIES USING AIM THEORY

The statistical models that depict macroscopic system thermodynamics have a number of

parameters that are related to the structure and energetic behavior at the molecular level.

In the past, engineers used approximations or correlation techniques to determine these

properties. These correlations, especially those within quasi-chemical models, yield

parameters with physical significance.

This work uses the computational results from Chapter 8 to determine functional

group properties using Atoms in Molecules (AIM) theory. To simplify the often

confusing range of definitions of functional groups, a straightforward definition is used

within this work. The transferability assumption will not be assumed, eliminating the

need for complicated rules-based methods that have governed past definitions. This also

allows for unique definitions of molecules. The AIM properties serve as the higher-order

distinguishing characteristics, thus eliminating the problem with isomers.

The algorithm to calculate functional group properties results from computational

chemistry methods is outlined. The calculation method determines the exposed surface

area of a group, an important property within quasi-chemical group-contribution methods

(GCMs), is presented. Tables of AIM properties for molecules of interest in this work

are also presented, and these are referenced back to macroscopic properties in the attempt

to validate the properties. Since most of the properties are additive, the comparison of

the functional group property results to experimental data are found within the

comparisons to experimental data in Chapter 8 and Appendix E.

155
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10.1 Working Definition of a Functional Group

The wealth of information available within the AIM property calculations allows for very

simple definitions of functional groups. The scheme employed in this work is motivated

by the success of the United-Atom (UA) schemes in molecular dynamics and by the ease

of application of the Benson method for thermophysical properties.

The molecules in this work contain functional groups that are classified in one of

eight definitions: CH3; CH2; CH; C; H; N; 0; and F. The only qualifier in this list is that

the H functional group must be attached to a non-carbon heavy atom, namely an N, 0 or

F. This reasoning follows that of the UA approaches, where the H atom has a relatively

large positive charge (q > 0.1) as compared to the H atoms within the alkyl functional

groups (q < 0.1).

The simplicity of this scheme becomes apparent when one considers the

suggestion by past GCMs that employ quantum mechanics: to attach alkyl groups or

H atoms to adjacent groups that contain electronegative atoms. If this suggestion were

employed for this work, the list of groups would be very large. For a start, the following

basic functional group definitions make the list: CH3; CH2; CH; C; NH2; NH; OH; O; and

F. Attaching the adjacent alkyl group to the electronegative group would add 24 more

definitions (take one from the first four groups and combine with one from the last six

groups). This would bring the total up to 34 definitions. If one were to add other

combinations, such as the NO 2 group for nitro-containing molecules and COOH for

carboxylic acids, as well as other qualifiers such as doubly-bonded atoms and aromatic

groups, the number grows such that there is nearly an order of magnitude more

definitions than the original eight proposed for this work.
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To distinguish the myriad environments within which the eight functional groups

can exist, the AIM properties for the functional group serve as descriptors. These

properties include one energetic parameter (the energy of the group E), three structural

parameters (the volume V , the exposed surface area A , and the average distance rang to

the 0.001 au isodensity surface), and three electrostatic parameters (the partial charge q ,

the magnitude and direction of the dipole moment p , and the polarizability a). Such

rigorously calculable functional group properties have not been used within engineering

group-contribution methods in the past, as they are in this work.

10.2 The Lack of Transferability

If the transferability assumption were to hold for such group definitions as above, then

one must expect that all the information available for the transferable groups must be

identical. This includes not only the topological definition, but also the seven properties

in the AIM analysis. Past experience has shown this to be unachievable. The view that

transferability is unattainable is absolutely acceptable now because of quantitative

evidence presented in Section 9.4 and the results of this work.

As noted in Section 9.4, there are a few instances where transferability strictly

exists. From an engineer's point of view, many of the differences that a chemist may cite

are too small to eliminate transferability as a first approximation. Such schemes that

employ a looser definition of transferability can be created, albeit with arbitrary bounds

of what is considered transferable.

For the majority of this work, the transferability assumption is not made. There

are a few instances when, attempting to calculate the AIM properties of functional groups,
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problems within the computational routine arise and give inaccurate results. Past

experience is used to determine these functional group properties, specifically through the

consideration of instances of transferability from prior calculated results. Details of this

are explained in a later section. But for the majority of the cases, the computational

power and availability of AIM properties allows one to disregard the transferability

assumption, which was made to simplify and make more efficient the estimation of

thermophysical properties when such computational power did not exist.

10.3 Calculation of Group Properties

The algorithm for the calculation of functional group properties is an extension to the

algorithm in Section 8.1 that obtains the molecular wavefunction from ab initio methods.

Integrations for a particular functional group must be run four times: once for the ground-

state molecular wavefunctions, and once each for the wavefunction under the influence of

the three electric fields. To perform an AIM integration using the PROAIMV routine, the

critical points within the 098W output file and the .wfn files are needed. Also needed are

input files and the executable file that runs the PROAIMV code.

The algorithm to achieve the seven functional group properties follows. Example

input files and executable calls referenced within each step are presented in Appendix F.

• The PROAIMV routine is called to determine the energies, volumes, partial

charges and dipole moments for each of the functional groups within the ground

state of the molecule. The critical points from the 098W output file are used

within the input files of PROAIMV, and the ground-state wavefunction is utilized

in the routine. Integration options must be set within the PROAIMV input file.
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• The PROAIMV routine is called to determine the partial charges and dipole

moments for each group within the molecule under the influence of the three

electric fields. The bond critical points have to be rewritten into new input files,

since they are different for the molecule under the electric field. The

wavefunctions from the molecular calculations with the applied electric fields are

utilized in this step. To balance the computational time, the integration

parameters for this step are changed so to offer a slightly rougher integration.

• A series of routines has been created in this work to determine the exposed

surface area, the average distance to the exposed surface area, and the volume of

the group using a Monte Carlo calculation. An input file similar to that of the

PROAIMV routines is necessary here, with a few added values to set more

numerical parameters. The critical points of the functional groups are also

necessary for this step, as well as the ground-state wavefunction of the molecule.

More details on the routines that determine structural parameters are offered in the

next section.

• The results of the calculations on all the functional groups are tabulated. The

energy, integrated volume, partial charge and dipole moment are found directly

from the integrations of the ground-state wavefunction. The polarizability must

be calculated from the integration results for the ground-state system and the

systems influenced by the electric field. Equation (8.1) is used to determine the

polarizability of the group, where Equation (9.7) is used to determine the change

in the dipole moment. The exposed surface area and the distance to the isodensity

surface are accepted as successful computations upon comparison of the Monte
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Carlo volume with the integrated volume. Examples of successful and

unsuccessful computations are detailed in the next section.

The computations of AIM properties of functional groups are the most time-

intensive task in this work. The integration routines usually involve determining the

bounding zero-flux surfaces that partition a molecule. This task is approached in several

different ways, each referenced in Section 9.4, and none of the routines researched offers

a combination of elegance, correctness and timeliness. Also, there are numerous such

integrations necessary to extract the information for this work, particularly the

polarizability. For each functional group, there are four AIM integrations and one routine

to determine the external surface area. This task can made somewhat easier to

accomplish by creating a batch file to run multiple tasks in series from a DOS prompt.

10.4 Exposed Surface Area of a Functional Group

To determine AIM properties, the integrators referenced above perform three-

dimensional integrations on the space that constitutes the functional group. In directions

where no zero-flux boundary surface (and thusly no adjacent functional group) exists, the

integration ray extends out to points where the electron density is deemed negligible.

However, for structural properties, such as the volume, an isodensity surface must be

defined to enclose the space. This isodensity surface can therefore be considered the

exposed surface area of the functional group, and its size aids in the application of AIM

properties to engineering models of fluid behavior.

Models that employ functional group interactions attempt to approximate the

external surface area of functional groups. This property, in turn, approximates the
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number of intermolecular interactions available to that portion of the molecule. Models

such as UNIFAC use the van der Waals radius of atoms to determine how large this

surface is. The COSMO-based models use a value slightly larger than the van der Waals

radius that is correlated to experimental data. This work employs the 0.001 au isodensity

surface, due to its significance in small molecule interactions. The various surfaces

surrounding a trans- 1 -propanol molecule and how they relate to the electron topology of

this molecule are shown in Figure 10.1. As one can see, the surfaces corresponding to

the van der Waals radii or some multiple of it do not correspond to any one isodensity

surface.
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The use of a consistent surface across all molecules, whether it be the 0.001 au

surface or the 0.002 au surface (another important surface in the study of AIM theory)

allows for a non-arbitrary standard across all molecules. The surface determined within

the COSMO-based schemes here roughly corresponds to the 0.001 au isodensity surface

in this plane, but this surface contains crevices that have needed to be fixed in subsequent

works.

The calculation of the size of the 0.001 au isodensity surface and its average

distance from the functional group center motivates the creation of numerical routines

that employ the PROAIMV zero-flux boundary method. Three separate steps are taken

for the determination of the exposed surface area: determination of the set of points

(r,0,0) that bound the integrated volume in the PROAIMV routine; determination of the

points that correspond to p(ri AO= 0.001 au ; and the summation of the area that is

created by the points with p(r',0,0). 0.001 au . The three steps correspond to the

images within Figure 10.2.

The first step in the routines collects the extent of the integration, r , for each 0

and 0 , where the origin of the coordinate system exists on the nucleus. For the rays that

end on the zero-flux boundaries partitioning the molecule (depicted in Figure 10.2 as the

red surfaces), the points are given as the location of zero-flux surfaces (these points are

not depicted in the figure to avoid confusion). The important points for the exposed

surface area calculation are those that extend toward infinity beyond the 0.001 au

isodensity surface (in gray). These points are shown in Figure 10.2a, and their

coordinates are tabulated.
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Figure 10.2 Three step routine to determine the location and size of the exposed surface
area of an atom.

The second step in the routines is to make sure the points found in the first step

either lies on a zero-flux surface or the 0.001 au isodensity surface, depicted in Figure

10.2b. The integration points that extend beyond the surface are now assigned a new r'

on the same 8 and 0 so that p(r 1,0,0)= 0.001 au . A depiction of the set of points that

enclose a hydrogen atom and an oxygen atom within a water molecule are shown in

Figure 10.3. Once these points are tabulated, the distances are averaged to determine the

distance of the exposed isodensity surface from the central nuclei of the functional group.

The third step in the routines is to determine the exposed surface area from the

points found in the second step. As depicted in Figures 10.2c and 10.4a, triangles are

drawn between adjacent 0 (longitudinal) lines at each intersecting 8 (latitudinal) line. In
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Figure 10.3 Points on the exposed and zero-flux surfaces of water. Structure of a
hydrogen atom (above) and an oxygen atom (below) is shown from three different
perspectives.

the cases where not all the 0 exist for a given 0-line , triangles such as those drawn in

Figure 10.4b approximate the surface area in that vicinity. The areas of all the triangles

are thereby added to give the exposed surface area of the functional group.

In conjunction with the calculated surface area of the third step is a Monte Carlo

calculation of the functional group volume. It is sometimes the case that the reduction in

length of the rays (the step from Figure 10.2a to Figure 10.2b) fails to place the points on

to the 0.001 au isodensity surface. The MC volume is used to verify that the surface area

summed from the triangles offers the surface area of the group. Table 10.1 shows various



calculations of the integrated volumes, MC volumes, errors attributable to the MC

volumes, and surface area of the functional groups. Note here that two factors can trigger

suspicion in the calculated area. First, if the MC volume does not correspond to the

integrated volume, as in the methylene group within 1-butanol, the points amassed by the

above routines do not correspond with the isodensity surface. Also, if the MC volume is

close to the integrated volume, but the error in the MC volume is larger than 1.0 au, as in

the methylene group in 1-propanol, then the area calculations are off the actual values.

The demonstration also shows what can happen to groups with very few exposed surface

points, as in the carbon atom in various molecules. A very small error in the routines

above can lead to a gross error in the calculation of a small surface area.



The properties of functional groups within most of the molecules listed in Section 8.2 are

presented in Appendix G. The molecule name, CAS registry number and an image of the

conformer is included to ease reference to other works that have calculated AIM

properties. The functional group properties included in the tables are the following:

group name; the number of protons in the group; the partial charge; the energy of the

group; the numerical error associated with the PROAIMV integration; the magnitude and

direction of the dipole moment; the polarizability; the volume; the exposed surface area;

and the average distance from the nucleus denoting the group center to the exposed

surface area. More details on how to read and use the tables are offered in Appendix 0.

The tables include group definitions that have been used within past 0CMs.

Properties for the full hydroxyl group, OH , and the amine groups, NH 2 and NH , have

been calculated for those who wish to devise a 0CM based around these group

definitions. Also, these calculations serve as checks to the more refined calculations on

the separate atoms in the group.



167

The rigorous nature of the partitioning of the electron density into functional

groups allows for an analysis of a particular functional group over a series of molecules.

As generally seen within the tables in Appendix G, the alkyl groups are those that are

most influenced by the environment within the molecule, while the properties of the

electronegative groups tend to fluctuate less.

The extent of how the electron density is affected by an electronegative functional

group is seen in the effects on the electron density topology in Figure 10.5. Over the

series of molecules CH 3X , where XCH3, NH 2 , OH, F , the bond critical point tends

more toward the methyl group as the electronegativity of the bonded group increases

(shown in Figure 10.5a). The proximity of the bonded group shows its influence directly

on the electron density profile of the methyl group, namely by occupying more electron

density situated between the groups. If the electronegative group exists on the other end

of a long molecule, as in the series CH 3 (CH 2 ) ,, X , where 3 and X = CH 3 , NH 2 ,

OH , F , the effect on the methyl group electron density is nearly negligible however

electronegative the opposite terminal end is (shown in Figure 10.5b). This is also seen

when the partial charge of the methyl group is plotted against the distance from the

terminal electronegative group, shown in Figure 10.6. The charges for groups within

amines, alcohols and fluorides all approach the charge of the alkane, —0.015e , as the

chain length increases. Also, a terminal oxygen or fluorine atom affects the charge of the

methyl group when it is two groups away from the atoms, while the effect of the nitrogen

atom approaches that of a carbon atom. The effect of the terminal electronegative group

is nearly negligible at a distance of three groups and greater.
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Figure 10.5 Topological Depictions of Methyl and Methylene Groups along Linear Organic Molecules



Figure 10.6 Partial charge of a methyl group as a function of the distance from a terminal
group with an electronegative atom.

The effect of the terminal electronegative group along the length of the molecule

is seen when inspecting the topology of methylene groups in linear molecules, presented

in Figure 10.5c. The methylene closest to the electronegative group, shown in the left

column, responds to the increased electronegativity of the terminal group ( C, N, O, F

going top to bottom) by yielding more space and electron density to the terminal group.

A large positive partial charge results, as expressed in the tables in Appendix 0. As the

methylene groups tend farther away from the terminal group, the influence diminishes.

The farthest methylene group in these linear molecules, all attached to the terminal

methyl group, all are very much similar to one another. These differ slightly from the

other methylene groups by the boundary they make with the methyl group in this plane.
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The effect on the partial charge of the methylene groups is shown more

quantitatively in Figure 10.7. Here, one can note the direct influence on the partial

charge that the adjacent electronegative group has, while this effect becomes negligible

(assumes the same value as in an alkane) as one proceeds further away. The more

electronegative groups do have an effect on the second-bonded methylene, as seen in the

topology of these groups in Figure 10.5c. In Figure 10.7, the partial charges of the

second-bonded methylenes are affected by the oxygen atom and the fluorine atom. Table

10.2 shows the difference of these partial charges over all of the molecules considered;

there is a distinct difference between the second-bonded methylenes in alkanes and

amines and those within alcohols and fluorides.
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Also of note within the tables in Appendix G is the distribution of charges for

hydrogen, oxygen and nitrogen atoms. These quantities are presented in Table 10.3, as is

the molecule within which these groups occur in and, for the hydrogen atoms, what the

atom is attached to. The distribution for the hydrogen atom is large: from showing a

slightly negative charge in methane to being stripped of electron density by atoms of

increasing electronegativity. The charge on the oxygen atoms in this study is a more

stable quantity since it is mostly attached to carbon atoms (singly- or doubly-bonded) or

hydrogen atoms. The charges mainly fall between —1.0e and about —1.2e . A large

deviation from this is seen in 1-nitropropane, where the oxygen atoms are directly bonded

to a nitrogen atom. The nitrogen atoms within this study also show similar variability,

mainly between —1.0e and about —1.3e . Again, a difference is seen when the atom is

attached to another highly electronegative atom, where oxygen atoms tend to pull charge

away from the nitrogen atoms.

As noted earlier in Section 9.4, the numbers within the AIM property calculations

are subject to error associated with the numerical nature of the integrations. The majority

of the calculations within this study fell within the error tolerance stated earlier, where an

error of IL (L)1 < 0.001 au assures a maximum error in the electron density of 0.0022e .



The calculations on some larger molecules, such as methyldiethylamine and 3-

methylpentane, have larger errors in the integrations. Therefore, the group properties of

these molecules have been left out of the database for the time being. A different type of

error existed for cis-2-butene, where the electron density shows a local minimum

between the two terminal methyl groups. This results in what AIM theory calls a ring

point, a local minimum that occurs between non-bonded atoms or groups within a

molecule. Studies into this molecule, as for other molecules with ring points (such as

benzene or cycloalkanes) have not been conducted due to the existence of ring points and

due to the inability of the surface area routine to account for such points.
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10.6 Comparisons with Prior Calculations and Experiment

The calculations of the functional groups properties within this work offers a wealth of

new information not made available previously in such a large and varied scale.

However, to test the validity of these quantities, one must relate these results to

measurable quantities found through experiment. Unfortunately, no experiments at this

point can measure the properties of a portion of a molecule. Also, the functional group

definition, however theoretical, must be viewed at a point in the motion of a molecule

that only serves as an average depiction of its nature.

Some AIM properties can be assembled in such ways as to return full molecular

properties found in the original 098W computations or even experiment. As noted in the

previous sections on AIM theory, the functional group energies, partial charges,

polarizabilities, volumes and areas must add up directly to the appropriate molecular

quantities.

The dipole moments presented for the functional groups are magnitudes and

general directions of dipoles and do not obey additivity as the other quantities. The sign

of the number only depicts whether the dipole is pointing outward toward the center of

the exposed surface area (p > 0 ), or inward away from that point (p < 0 ). One can

combine the vector quantities and return back to the molecular, and possibly

experimental, dipole moments when one assembles the locations of the positive and

negative charge centers of the atoms. The water molecule arrangement and the

distribution of partial charges within the space of the molecule are presented in Figure

10.8. The partial charges are calculated from the integrations through spaces of the atoms,

and the locations of the centers of negative charge are found by using the calculated



Figure 10.8 Distribution of point charges determined by AIM partial charge and dipole
moment calculations on water. The green points are the locations of the centers of
negative charge.

dipole moment vectors relative to the atom center. By using the formula for the dipole

moment in a given direction, e.g. the z-direction ,

the dipole for the entire molecule is found. Here, q represents the partial charge at a

charge center, z is the distance relative to the origin of the system (which can be any

point in a neutral molecule, unlike a non-neutral system), and the superscripts + and -

denote the positive and negative centers, respectively, in atom i . The calculation of the

molecular dipole moment for water using the quantities in Figure 10.8 is 1.854 D ,
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whereas the full molecule calculation gives, from Table E.16, 1.857 D and the

experimental value is 1.855 D .

Comparisons of structural properties are able to be made with values of past

engineering GCMs, namely the Bondi scheme for UNIFAC and the COSMO-based

surfaces. The volumes and surface areas from these schemes are compared with results

from this work in Table 10.4. Note that the documented values do not include the single
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atoms, such as the nitrogen atom within an amine group. For groups of atoms, similar

trends can be seen throughout the methods, but those used in UNIFAC and COSMO-

based models tend to attribute more volume to the carbon atom than the AIM integrations.

This is predictable because the separation of space within the former schemes is

arbitrarily equal. The AIM treatment reflects the electronegativity by yielding more

space to the more electronegative atoms (as seen in the analysis of alkyl groups in linear

molecules in Figure 10.5). It must be noted that COSMO-based methods are not

sensitive to which functional group a piece of surface area belongs to, as is the case with

UNIFAC and this work.

As noted earlier, group polarizabilities are linearly additive and result in the value

of the molecular polarizability calculated for the molecules in this work. The comparison

of the molecular polarizabilities, and thusly the group polarizabilities, with that from

experiment is given in Section 8.5. Prior calculations of the polarizability for methyl and

methylene groups (Bader, et al. 1992) are comparable to those from alkyl methyl and

methylene groups from this work. The past results (approximately acH3 =13.5 au and

aCH2 = 11.3 au ) correspond with the calculated results from this work (approximately

acH =14.4 au and acH2 =11.8 au ). The difference is likely due to the larger basis set

used in this work.

10.7 The Spherical Gaussian Approximation

A property of interest within the quasi-chemical equations is the exposed surface area,

since this depicts the number of interactions a functional group may participate in. As

suggested by AIM theory and by of COSMO-based interactions, molecules within the



177

liquid phase tend to interact by having these exposed surface areas overlapping

tangentially. Thus, the calculation of the quantity raw , the average distance from the

center of the functional group to the exposed surface area, is conducted to give

information on the interaction distances between functional groups within such models.

Within this work, rang is found using the electron density of a functional group at

the 0.001 au isodensity surface. It is assumed that, at these interaction distances, the sum

of the raw between the two groups, enough electron density overlap occurs to develop a

significant repulsion effect. 	 A spherically symmetric wavefunction is used to

approximate the electron density around rang , thus allowing for a doubly-occupied orbital

representation of the electron density of the functional group at these distances.

Observations on the functional group interactions using this information are presented in

the next two chapters.

Two types of spherically-symmetric functions may be used to approximate an

atomic orbital: a Slater-type orbital (STO) and a 0aussian-type function (GTF). The STO

is given by Equation (7.18), where a normalized is-type function is given by

The 0TF is given by Equation (7.19), where a normalized is-type function is given by

These functions, as depicted in Figure 7.1, offer different functionalities as they approach

the center of the orbital, but offer similar nature near the tail of the wavefunctions.
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Both of these functions contain orbital exponents, 4- and , that determine the

extent of the space within which an eiectron exists. In this work, these exponents are

used to reproduce the extent of the electron density of a functional group to correspond to

an electron density of 0.001 au at the distance of raw . To accomplish this, it is assumed

that doubly-occupied orbital represent the functional groups. For STOs, the exponent 4 -

is found by solving

Figure 10.9 depicts the functionality of the exponents with respect to raw . One may

notice how smaller exponents are necessary to depict more diffuse electron densities.

Of particular interest in this work is how GTFs reproduce the electron densities of

small molecules and functional groups. This is important because these functions, called

spherical 0aussian approximations (SGA) to the electron density profile, are used within

a binary interaction function in Chapter 12 which, with other AIM properties, determines

interaction energies and distances. For smail molecules, the SGA serves as the spherical

average of the electron density, while for a functional group, the SGA serves as the extent

to the electron density in directions important in the development of a repulsive

interaction. Figure 10.10 depicts the SGA against the electron density profiles of a

methane molecuie and a nitrogen moiecule. It is shown how the 0.001 au isodensity

surface of the SGA, depicted by the blue line, corresponds to this surface on the
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Figure 10.9 Spherically-symmetric orbital exponents as functions of rang .

molecules, depicted by the outermost isodensity line. As these molecules vibrate and

rotate in the gas phase, the SGA depicts approximately how these molecules behave,

since the rotational and vibrational motions are so fast at ambient temperatures that the

electron densities of these molecules may be assumed spherically symmetric.

Figure 10.11 depicts the electron density profiles of the SGA against three rays

from the center of a methane molecule. Ray 1 samples the electron density along a C-H

bond and continues beyond the H-atom. Ray 2 bisects two C-H bonds. Ray 3 trisects

three C-H bonds. As expected, the magnitude of the electron densities along the rays

always shows ray 1 greatest, followed by ray 2 and ray 3. The SGA predicts that the

spherical average at the 0.001 au isodensity surface falls neariy on ray 2, and between ail

three rays. The density of the SGA tends to not rise as quickly as it approaches the center



180

Figure 10.11 Electron density profile of the spherical Gaussian approximation compared
to three rays originating from the center of a methane molecule.
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of the molecule. This is true because the orbital depicted by the 0TF oniy contains two

electrons, while the electron density within the molecule accounts for 10 eiectrons.

Figure 10.12 shows how the SGA reproduces the external surface area of the alkyl

functional groups CH 3 and CH 2 . In both graphs, the SGA, depicted by the blue line,

reproduces the exposed surface areas well (for the latter, the surface near the top for the

CH 2 group). The expected bulging of the group electron density exists near the

hydrogen atoms and the sunken portions exist between hydrogen atoms.

Figure 10.13 relates the electron density profile of the SGA against three rays

within the methyl group. The rays here sample density on similar paths as those in

Figure 10.11. A similar fimctionality exists between the SGA and the electron densities

at the tail. Again, the SGA predicts the location of the 0.001 au surface in the middle of

the three rays.

The importance of Figures 10.11 and 10.13 is that the SGA approximates the

functionaiity of the electron density tails rather well. This is important due to the overlap

effects that these portions of the electron densities experience in intermolecular

interactions. The need to use ST0s to reproduce the electron density may give better

behavior as one approaches the centers of the molecules and the functional group, but use

of these results in a much more compiicated interaction function. The use of GTFs to

approximate the electron densities is adequate for this work.



182

Figure 10.13 Electron density profile of the spherical Gaussian approximation compared
to three rays originating from the carbon atom of a methyl group.
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10.8 Conclusions

Models used by chemists and engineers have in the past either approximated or correlated

functional group properties. These quantities have contributed to useful group-

contribution methods for the thermochemistry of macroscopic systems. However, with

the development of functionai property determination methods within the last two

chapters, such correlations shouid be unnecessary in the future.

The ability to caiculate rigorous functional group properties allows for a

significant amount of simplicity when building a group-contribution method. Functional

group definitions are allowed to be smaller due to the use of rigorous properties as

higher-order descriptors. Transferability can be eliminated completely as an assumption,

except for use to estimate functional group properties in those cases when it may be

quantitatively appiicable. The structural and electrostatic properties presented in this

chapter serve as physically significant characteristics that can serve as the basis for future

modeling efforts. With further computations into functional group properties, especially

at higher levels of ab initio theory, a database of properties can be formed and powerful

modeis can be created to take advantage of such information.

This work utilizes electrostatics and the SGA for interaction energies, and

structural parameters for statistical modeling to determine macroscopic system behavior

from first principles. With the structural properties having been calculated,

intermoiecular interaction theory is expiored to determine how the eiectrostatic properties

of a functionai group can reflect the nature of an interaction.



CHAPTER 11

INTERACTIONS BETWEEN CLOSED SHELL MOLECULES

The study of the interactions of closed-shell molecules continues to be a hurdle in the

development of theoretical treatments of fluids in the iiquid phase. In the gas phase,

molecules exist at large distances from one another, allowing for descriptions using

classical methods. The functional forms presented in Section 3.4 combined with a simple

repulsive term, such as a hard-sphere repulsion, offers an adequate model of molecular

behavior of real gases near the ideal gas limit. Such a simplification does not exist in the

liquid phase, where molecuies are always close together and where the form of the

repulsive term of any interaction model takes on importance.

The goal of this research is to find an intermolecular potential energy function

within which the functional group properties presented in Chapter 10 may be applied.

This wili serve as a simplification of an interaction between two molecules, where it wili

be assumed that a functional group interaction is the significant contribution. It is

presumed that functional groups offer the defining properties that cause a favorable or

unfavorable interaction, an assumption made in all group-contribution methods

employing group interactions (Fredenslund, et al. 1975; Hehiaian, et al. 1978; Hnox,

1987). Three contributions are found to be important within an interaction potential

energy function for functionai groups: short-range repulsion; long-range attraction;

Coulombic interaction for partial charges. These terms are explored at the molecular

level.

184
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This chapter reviews the current state of intermolecular interaction theory,

including the use of perturbation theory on the Hamiltonian of the system, the application

of computationai chemistry on binary and ciuster systems, and the functionai forms most

utilized in empiricai potentials. Molecular-level concepts are explored as possible

simplifications for use in a functional group interaction scheme. Ciassic work of the

interaction of doubly-occupied orbitals is presented. Appiications of contemporary

techniques are presented for hydrogen-bonding systems, as weil as for calculation of

macroscopic system properties. Here, the use of effective functional group interactions

within molecular dynamics simulations is seen to yield promising results.

11.1 Results from Perturbation Treatments

When one considers a quantum system of two interacting molecules, the Hamiltonian of

the system must be defined. An approach to solving the problem is thereby similar to

that of an isolated molecule; one writes the Hamiltonian of the system as in Equation

(6.31) and attempts to soive for the wavefunction as in Equation (6.2). The Hamiltonian

of the system includes all the interactions between electrons of molecuie A and eiectrons

of molecule B , nuclei of molecule A and electrons of molecule B , nuclei of molecuie B

and electrons of molecule A , nuclei of molecule A and nuclei of molecule B , as well as

the interactions within the two isoiated moiecular systems. This is shown to be

where i and a cycle through the electrons and nuclei of molecule A , respectively, and

where j and f3 cycle through the electrons and nuclei of molecule B , respectiveiy. The
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energy of interest within the study of interactions between moiecuies is the difference

between the total system and the isolated molecular systems

This interaction energy is found by appiying Equation (11.1) and subtracting the isolated

molecular Hamiltonians from the system Hamiltonian

This problem is as difficult as that given by the molecular Hamiltonian, although

some points can be made about the nature of the solution. A binary interaction energy is

a very small change from the absolute molecular energies found in quantum chemistry, so

£ AB is considered a perturbation. Also, in a number of solution methods, the totai

wavefunction of the system is assumed to be a perturbation of the product of the isolated

molecuiar wavefunctions. This latter treatment of the problem is called the Heitier-

London (HL) soiution method.

For interactions between molecules at long-range, it is correct to assume that the

unperturbed portion of the wavefunction is a simple product of the isolated molecular

wavefunctions. Regular Rayleigh-Schrödinger (RS) perturbation theory (Buckingham,

1967) is employed using Equation (11.4) as the perturbing Hamiltonian. The resulting

intermolecular potential, if one truncates after the second-order terms, is summarized as

three notable effects: electrostatic; induction; and dispersion (Engkvist, et al. 2000)
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where the Coulombic interactions are inciuded in the electrostatic term, and where the

last three terms usually stabilize the system. This treatment offers rigor to the attractive

long-range interaction terms offered in Section 3.4.

The only difference between Equations (11.5) and (3.54) is the exchange-

repulsion contribution. Because RS perturbation theory applies only at long-range, the

electron densities of the two molecules do not significantly overlap. Therefore, the

densities do not have a chance to experience the repulsive effects due to Pauli exclusion

or an exchange-attraction at short distances. In fact, the RS theory does not work at short

distances because of this omission. Several short-range perturbation theories have been

created (Hayes and Stone, 1984; Jeziorski, et al. 1994) with such a contribution in mind.

The main differences are that the unperturbed wavefunction is an asymmetric product of

the molecular wavefunctions (a change that accounts for the exchange contribution), and

that more care is taken to determine the perturbing portion of the Hamiltonian.

Perturbation theories that use the asymmetric wavefunction, called Symmetry-Adapted

Perturbation Theories (SAPT), have a similar exchange-repulsion contribution to the

interaction energy (Stone, 1996). The exchange contribution is given by

where the orbitals here are spin-orbitals, and where a and b denote the orbitals on

molecule A and B , respectively. The repulsion term is given by
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where, again, the orbitais are spin-orbitals and the summations cycle through aii the

occupied spin-orbitals in the system, whether they are on molecule A or moiecule B .

Here, Sty  the Hronecker deita

and T represents the inverse of the matrix where the element in row i , coiumn j is the

overlap integral Sy

Although predominantly affecting the interaction at long-range, induction and

dispersion have corresponding short-range contributions. Damping fimctions are used to

modify these effects for systems involving small molecuies (Hnowles and Meath, 1986a;

Hnowles and Meath, 1986b; Hnowles and Meath, 1987). These functions approach unity

at long-range, while they tend toward zero at short-range.

11.2 Interactions Using Quantum Calculations

Interaction energies and orientations are concepts that can be studied within

computational chemistry. As opposed to an isolated molecule calculation, two or more

moiecules can be placed within close proximity for analysis. The software packages

availabie for geometry optimizations and single point energy calculations, one being

Gaussian 98W, are used to determine favorable orientations for interactions between

molecules and the quantitative energy change given that orientation.

A calculation involving muitiple molecules within the proximity of one another is

sometimes called a supermolecule calculation. Calcuiations of this type have become
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extremely common, as they have been geared toward solving specific problems involving

a smail number of species. A review of the use of computational chemistry for non-

bonded interaction energies for small molecules outlines the methods (ab inito and DFT)

and challenges of using such techniques (Rappe and Bernstein, 2000).

Supermolecule calculations have been conducted from systems containing small

molecules, such as argon and formic acid (Wawrzyniak, et al. 2004), to systems

considering the aqueous effects on biomolecules (Yeganegi, et al. 2003) to systems

dominated by hydrogen-bonding effects (Estrin, et al. 1996; Bartha, et ai. 2003;

Hozmutza, et al. 2003; Hryachko and Schooner, 2004). Each of these studies considers

the possible interaction arrangements, calculated interaction energies and how they

compare to past work.

In the liquid phase and within the gas phase of strongly associating molecules,

clusters of two or more molecules form and exist within the system for a time longer than

a normal intermolecular interaction. Calculations on clusters of small alcohols (Wu and

Sandler, 2000) reveal possible orientations for up to six molecules at close range. The

binding energies of these clusters are calculated at the HF and MP2 levels of theory, and

these energies are shown not to behave linearly, i.e. the binding energy of a trimer of

methanol molecules does not equal three times the binding energy of a binary methanol

system. This offers quantitative evidence of the need to include ternary interaction

potentiais within models for higher density molecuiar system, such as those describable

using the third virial coefficients in Equation (3.41).

A non-intuitive problem with supermolecule calculations is the evolution of a

stabilization energy from what is called basis set superposition error (BSSE). A naïve
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way of caicuiating the interaction energy using the supermolecuie methods involves the

calculation of each isolated molecule with its basis sets (molecule A with basis A and

molecule B with basis B ), and the supermolecule with the combined basis sets

(supermoiecuie AB with basis set AB ). This interaction energy is given by

This leads to an interaction energy that, for an orientation that yields a favorable

interaction energy, is too negative. The eiectrons within the supermoiecule have a more

complete basis set, which usuaily leads to a lower absoiute energy, than they have in the

respective isolated molecule calculations. To alleviate this, it is assumed that as long as

the same basis set is used in all three calculations in Equation (11.10), then the interaction

energy for the system will be properly represented. This is accomplished by making the

supermolecule basis set AB available to the isolated molecules. The interaction energy

is now represented by

This correction is usually called the counterpoise correction, and the process involved to

alleviate BSSE is given within the user manual of Gaussian 98W.

It has been noted that the problems with BSSE may have more to do with the

incomplete basis sets used in supermolecule calculations (Stone, 1996), and that

calculations with a large BSSE have more fault in the original choice of basis set. This

viewpoint is supported by the reduction of BSSE seen in supermolecule calculations

appiying systematicaiiy iarger basis sets (Rapped and Bernstein, 2000).
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11.3 Empirical Potentials

Several intermolecular potentials serve mainly as functional forms that represent the

gross repulsion and attraction effects within an interaction. The utility of such

expressions is mainly found within computer simuiations of fluids, where numerous

evaluations of the potential functions are necessary to determine trajectories and positions

of molecules at the next time step. Potentiais with a simple functional form are

inexpensive computationally and are favored in large-scale calculations. Since somewhat

accurate results arise when using the simpler empirical equations, they continue to be

used.

Such functions tend to consist of terms that account for major effects in an

interaction and fitting parameters to model the specific molecules of interest. The

parameters within the expression have been found in several ways: fitted to experimental

data, such as second virial coefficient or viscosity data; approximated using theoretical

concepts, such as use of the van der Waais radius as a size parameter; or fitted to

reproduce the potentials from the more rigorous perturbation or supermolecule methods.

Empirical potentials vary in their functional forms and the number of parameters.

All try to combine a repulsive interaction at short distances and an attractive interaction at

intermediate and long distances. The equations presented in the following paragraphs

have similar features, and the notation is shared. Let a be the distance at which the

energy of interaction vanishes. For single-well potentials, this point is on the repulsive

wali and represents the effective radius of the molecule. Let e represent the magnitude

of the potential weil. This quantity reflects the strength of the attraction between the two
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molecules at its most probable interaction distance. This position reflects the most

probable distance of interaction.

A primitive interaction potential is the hard sphere potential. This potential takes

the P fnrm

The hard sphere potential mimics the behavior of non-polar species in the gas phase, and

viscosity data is sometimes used to correlate a- . The stepwise nature of this potentiai is

very easy to impiement in molecular simulation routines.

A modification to the hard sphere potential is the square well potential. 0iven by

the square well potential adds an attractive interaction to the infinite repulsion. Here, 6'

is a parameter that represents the length of the square well. Again a stepwise function,

this form is easy to implement within molecular simulations. Modifications of this

functional form have appeared recentiy as a transferable potential that contains multiple

steps (Uniu, et al. 2004).

Probably the most widely used potential functional forms arose more than 70

years ago. This function is called Mie's potential and takes the form

where n > m . This form is a continuous function through all interaction distances, and as

long as n > m , the function has the characteristic interaction energy well. The exponent
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within the attraction term usually takes on a value of m= 6 , due to the attraction terms

derived in classical work, Equations (3.48), (3.51) and (3.53). When n=12 , Equation

(11.14) is called the Lennard-Aones (11) potential. This function is best known with a

and £ explicit

This function, although not as easy to implement into computer routines as the stepwise

functions, is likely the easiest functional form that is altogether continuous, differentiable

and physically meaningfui.

A more flexibie potentiai than the LA potentiai with simiiar computational

simplicity is available (Hihara, 1978). This form is given by

Here, a is called the hard-core radius and offers extra flexibility with the added

parameter.

For those criticai of the arbitrary repulsion term, a modification is offered that

reflects the exponential nature of the repulsion due to electron overlap (Born and Mayer,

1932)

This expression has also been modified to inciude a Cir8 term to inciude higher-order

attractive effects (Buckingham and Corner, 1947). These expressions have the correct

functional form for the repulsive wall, yet the LA potential has become the more popular
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in time. This may be so because of the difficulty of computing the exponential function

before the time of fast microprocessors (Stone, 1996). An issue with the exponential-6

potential is that it does not yield an infinitely positive result at interaction distances near

zero. It has been noted that such interaction schemes with an exponential repulsion term

may include a r -2 ' term to avoid such inconsistencies (Brdarski and Karlström, 1998).

11.4 Approximations to Short-Range Interactions

Long-range interactions are well-studied phenomena and have as soiutions the

expressions given in Section 3.4, the RS Perturbation theory and a powerful technique

not presented in this work, the distributed multiple analysis (Stone, 1996). As stated

earlier, these expressions break down as the electron densities begin to overlap at smali

interaction distances. The energy developed at such a short range is of interest not only

to those in the theoretical community, but to those in molecular dynamics who desire a

rigorous reasoning behind the empirical potentials in Equations (11.15) through (11.17).

One of the simpler and more descriptive interaction systems in quantum

chemistry is the interaction between a pair of s-type orbitals. When these orbitals are

doubly-occupied, the resulting non-bonded interaction is that experienced by a pair of

helium atoms. The HL interaction energy for molecules with s-type orbitals outside

inner closed-shelis has been studied (Rosen, 1931). The HL energy is caiculated by

assuming the system wavefunction is an unperturbed, asymmetric product of the isolated

molecular wavefunctions. The study includes the interaction between two singly-

occupied orbitals, a singly- and doubly-occupied orbital, and two doubly-occupied

orbitais, with long-range effects being excluded from the study. For molecuies A and B
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each with a doubly-occupied s-type orbital as their outer shell, the short-range

where a and b are the orbitals for molecules on A and B , respectively. This readily

gives the interaction energy between two helium atoms by setting ZA ZB = 2 .

A more recent derivation of the HL energy of a system of interacting molecules

offers a simplified expression of the total overlap repulsion energy at short-range (Hazma

and Mayer, 2001a). The simplification is due to the application of Löwdin' s pairing

theorem (Amos and Hall, 1961; Lowdin, 1962; Mayer, 1997). Application of this

theorem allows for a transformation of the orbitals within the two interacting molecules

A and B that retains the orthogonal nature of the orbitals

whiie pairing one orbital in A with one orbital in B

where a and b within Equations (11.19) and (11.20) represent transformed orbitals, and

S represents the overlap integral, similar to Equation (7.23). This allows for a great

simplification in the computation of the energy of interaction. In an interaction where the
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molecules each have 10 orbitals, one may only consider effects depending on the overlap

of 10 paired orbitals instead of the original 10 2 =100 pairings.

These transformed wavefunctions are then applied to an expression yielding the

HL energy. The resulting interaction energy is separated into physically meaningful

terms

where the first two terms are the ciassicai electrostatic term and the exchange term, and

the final term holds all the effects evolved from the overlap of the wavefunctions. The

overiap effects can by further separated

where the first term arises from a description using an incomplete basis set (similar to

BSSE), the second term is the overlap effects on the intramolecuiar energy, the third term

holds the effect that eiectron overiap has on the electrostatic and exchange terms, and the

final and most significant term hold the so-called direct overlap effects that dominate the

short-range repulsion.

A work that compares the above interaction energy terms to computations of

hydrogen-bonding systems shows that the interaction of one pair of orbitais, cail them

orbital pair k , contributes to the interaction energy an order of magnitude more than the

other orbital pairs (Hazma and Mayer, 2001b). Therefore, it is shown that the overlap of

the kith pair of orbitals is the only significant overlap. The expressions presented in the

original paper are modified mathematicaily by applying
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thus further simplifying the expressions. Within the following two-electron integral

statements, an orbital name without a subscript is assumed to be the k th orbital, and aii

overlap integrais S = Sk in (11.23). The finite basis contribution is given by

where f is the Fockian of molecule i . The intramolecular effect is given by

The effect of small intermolecular overlap on the originai wavefunctions is said to be

insignificant due to the S 4 dependence of Equation (11.25). The overiap effects on the

exchange and the electrostatic contribution are given by
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The calculations assuming the significant contribution from one overlapping pair give an

interaction energy that is different from the original interaction energy by less than one

millihartree over ali interaction distances.

At near ambient temperatures, the interaction energy between closed-shell

molecules results from a relatively small overlap in the electron density, as encountered

in the numerous theoretical and computational studies of intermolecular interactions.

Also, at distances where this overlap occurs, the electron density begins to resemble a

sphericai wavefunction that decays exponentially with distance. These concepts have

been combined to assume that intermolecular interaction overlaps are describable by the

interaction of two sphericaily symmetric Gaussian-type wavefunctions (Aensen, 1996),

similar to the SGA wavefunctions of section 10.7. The spherical Gaussian overiap

(SGO) approximation considers the interaction of two is GTF orbitais, both with the

same orbital exponent The overlap of these two orbitals is given by Equation (7.23)

and is simplified when using equal orbital exponents and the normalization constant
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The orbital exponent is therefore found by rearranging this expression

This effective orbitai exponent varies with distance and with the actuai exponents of the

orbitals, impiicit within Su . For instance, if the exchange integral is calculated for

0.r.1 	 ir;fl 4-11,,m min1-; 	 17 14'1 ;0 110.A

When the SGO approximation is applied, inserting Equation (11.29) into Equation

(11.30) yields

This approximation yields two-electron integrals as functions of electron density overlap,

which can be found within supermolecule calculations. The SGO approximation has also

been applied to electron-electron and eiectron-nucleus interactions, resulting in similar

simpiifications of the one- and two-electron integrais (Kairys and Aensen, 1999).

11.5 Hydrogen Bonding

Hydrogen-bonding interactions are long-lived, attractive interactions between a highiy

electronegative atom in one moiecuie and an exposed hydrogen atom within the other.

The interaction energies are usuaiiy an order of magnitude greater than non-bonded

interactions between neutral molecules. The interaction distances are small, and

complexes of many molecules hydrogen-bonded to one another have a profound effect on

the macroscopic system thermodynamics of a fluid.
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The role of hydrogen bonding within biological systems is very important.

Deoxyribonucleic Acid (DNA), the fundamentai molecule hoiding the genetic code of

bioiogical species, is held together by hydrogen bonding. Biomolecule-receptor

complexes are important for the transfer of important material into and out of cells.

Multiple hydrogen-bonding sites on moiecules, as well as their relative positioning, yield

a lock and key relationship to the ceil in this case.

Hydrogen bonding in the past has been determined experimentaliy (Curtiss, et ai.

1979), while more recently theoretical and computational studies have been undertaken

(Estrin, et al. 1996; Kairys and Aensen, 1999; Hazma and Mayer, 2001b; Bartha, et al.

2003; Kozmutza, et al. 2003; Kryachko and Schooner, 2004). Classically, such

interactions have included an electronegative atom interacting with a hydrogen atom that

has a large positive partiai charge, while more recentiy studies have inciuded systems

where the hydrogen atom has a near neutral charge, as in methane.

Comparisons have been made between the experimental hydrogen-bonding

interaction energy ( s = —2740 ± 350 K ) and oxygen-hydrogen interaction distance

( rob = 2.01 A) (Curtiss, et ai. 1979) with ab initio and DFT methods for the water dimer

(Estrin, et al. 1996). This interaction is depicted within Figure 11.1. The computational

results show that theoretical methods predict interaction energies within experimental

error, with the ab initio methods tending to be more accurate. Interaction distances are

predicted better with the DFT methods.

Simplifications have been attempted using the theoretical approximations at short-

range (Hazma and Mayer, 2000b). Within that work, it is assumed that the short-range

interaction is dominated by one orbital on each of the water molecules. The topological
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Figure 11.1 Depiction of a hydrogen-bonding interaction between water molecules
(Bartha, et al. 2003). The surface depicted is the 0.01 au isodensity surface.

11.6 Appiications of Potentiai Functions

The energies of interaction that molecules experience have a direct impact on the

thermodynamics of the macroscopic system. If it were the case that molecules did not

interact, or only interacted as hard spheres, then all matter would exist as ideal gases with

no attractive forces to condense groups of molecules into liquid and solid phases. The

existence of these attractive forces is the main cause of this condensation. The magnitude
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Figure 11.2 Orbitals within water moiecuies after application of Löwdin's pairing
theorem (Hazma and Mayer, 2001b). The outermost solid line is the 0.05 au isodensity

surface.

of these forces at the molecular level, as well as orientation effects, causes species to

behave very differently in condensed phases. These differences grow out of the

difference within the electronic structure at the molecular level.

A direct measure of how multiple-body interaction effects at the molecuiar ievel

dictate the macroscopic thermodynamics at the system level is shown in the viriai

equation of state, Equation (3.38). If binary interaction potentials presented above are

inserted into Equation (3.39), the theoretical result can be compared to second virial

coefficient data of reai fluids.

The study of potential energy functions has grown as the need for them in

molecular simulation studies has grown. Specifically, site-site potentials are used to
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approximate the whole interaction between molecules as a set of interactions between the

sites of the different molecules. Not only does the interaction function need to be of

proper form, but they should be computationaily efficient for use in large-scale

computational methods.

A vast majority of the contemporary force fields used in molecular dynamics and

Monte Carlo simulations, such as Chemistry at Harvard Molecuiar Mechanics

(CHARMM) (Brooks, et al. 1983), Optimized Potentials for Liquid Simulations (OPLS)

(Aorgensen, et al. 1984), Transferable Potentials for Phase Equilibrium (TraPPE) (Martin

and Siepmann, 1998), and Anisotropic United-Atoms (AUA) (Ungerer, et al. 2000),

utilize the LAB potential of Equation (11.15) with the inclusion of a Coulombic interaction

term

sometimes referred to jointiy as the Lorentz-Berthelot combining rules. The partial

charges are found by one of the theoreticai or semi-empirical routines considered in

Section 7.3. Most of the major, accessible molecular dynamics programs ask for the site-
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site potential parameters for the functional form in Equation (11.32). It is a

computationally efficient function, although it exists only as an effective potential that

considers the baiance between the repulsive short-range effects, the attractive van der

Waals effects and the Coulombic interaction from the effective partial charges.

Up to this point, there is no straightforward way of determining parameters for

Equation (11.32) in moiecuiar dynamics simulations. It is common to set parameters for

groups within linear alkanes before extending the modei parameters to groups with heavy

atoms other than carbon. Within OPLS, the alkyi group parameters are optimized to

reproduce the densities and heats of vaporizations of 15 liquids. Within TraPPE, these

parameters are found to reproduce criticai temperatures and saturated iiquid densities for

alkanes between methane and dodecane. For AUA, which contains another parameter

that moves the interaction center off the nucleus of the heavy atom, the parameters are

optimized by reproducing the vapor pressures, heats of vaporization and liquid densities

of ethane, pentane and dodecane. Further parameters for non-alkyi functional groups are

found in a trial-and-error manner to reproduce system properties like those above. Tabie

11.1 lists the alkyl group LAB parameters for the three methods described above, and

expresses how different fitting criteria can alter the functional group properties.

According to J. I. Siepmann (personal communication, August 25, 2004), methods that

employ statistical thermodynamics wouid aid in this process since they may offer initial

guesses to the parameters.

Some criticism of the LJ functional form has arisen. As stated above, the

repulsive contribution is better represented as a decaying exponential, rather than the

arbitrary r - ' 2 contribution (Knowles and Meath, 1986a). This reasoning has lead to the
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attractive contribution may not be weli represented as a r -6 function (Hart and Rapped,

1992). That study considers the overiap of singly-occupied s-type ST0s, as in the work

of Rosen (1931), and creates a relativeiy simple potential. It contains a repulsive term

similar to the exponential-6 potential, and an attraction term that contains polynomials in

interaction distance multipiied by damping functions. Aithough not neariy as simpie a

functional form as the empirical potentials, the theoretically-motivated model is shown to

be more capable in describing the interactions between small diatomic molecules.

11.7 Summary

Several approaches exist that attempt to model the interactions of closed-shell molecules.

These methods range in complexity, from the fuli consideration of molecular orbitals

within perturbation treatments, to a consideration of selected orbitals with significant

overlap, to empirical expressions where the details of the interaction are found within

correlation parameters. Very specific results can be attained through the use of

computational chemistry software. The method one chooses depends entirely on how

accurate one wishes to be with predicting interaction energies and distances.
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Several key points within this research are carried through to the interaction

model developed in this work. Due to the theoretical examinations of the hydrogen-

bonding schemes, considering the overlap of one pair of orbitals that obey the SGO

approximation simplifies the description of functional group interactions. Aiso, since the

helium dimer interaction modei fits best with the information availabie from AIM theory,

namely the SGA and the extent of the eiectron density, this becomes the basis for the

short-range repulsions within this work. This model will not be as simple as the

empiricai functions used in molecuiar simulation, but it may be useful as a force field

with parameters that are entirely definabie using first-principies methods.



CHAPTER 12

MODELING SMALL MOLECULE AND FUNCTIONAL GROUP
INTERACTIONS

Interaction theory iays a descriptive reasoning for the nature of intermolecular

interactions. The most rigorous solutions invoive theoretical frameworks within

perturbation theory, usually resulting in expressions that account for overlaps between all

the orbitais in one molecule with aii the orbitals in the other. Simpler interaction models

exist, either by reducing the number of significant overlaps considered in a short-range

interaction, or by assuming an empiricai form to the potential and fitting parameters to

known experimental data. Within the range of expressions considered, an engineering

model can be developed with predictive capabilities of the more complicated expressions

while wielding relatively simple concepts.

This chapter describes novei work towards an interaction potentiai energy modei

usabie for smail molecules and functional groups. This work begins by applying the

concept of the Spherical 0aussian Overlap (SGO) approximation in Section 11.4 to

molecules and functional groups whose wavefunctions are approximated by the Spherical

0aussian Approximation (SGA) in Section 10.7. These orbitals are then applied to the

heiium dimer expression in an attempt to describe short-range interactions. The iong-

range interactions are described using the Atoms in Molecules (AIM) properties with

classical electrostatic interaction expressions from Section 3.4.

Smail molecule intermoiecular potentiais are predicted and compared to second

virial coefficients through theory presented in Section 3.3. Interactions between larger

molecuies are considered as a set of possible functionai group interactions and compared

207
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to United-Atom (UA) interaction potentials, namely TraPPE. A study is conducted to

account for the long-range effects of highiy electronegative atoms and groups in these

functional group interaction models. Finally, an interaction matrix is assembled toward

the prediction of fluid properties using the statisticai models offered in Section 5.4.

12.1 Overlap of Spherical Gaussian Wavefunctions

Eiectron density overlap using the SGO approximation (Jensen, 1996; Kairys and Jensen,

1999) as described in Section 11.4 allows for a simplified representation of the overlap of

eiectron density between two closed-shell molecules at close-range. It has been argued

that this is accurate due to the large repulsive energy generated by a relatively small

overlap between the electron densities.

Also, as demonstrated by the work of Hazma and Mayer (2001a, 2001b), the

interaction between two closed-shell molecuies may be rigorousiy represented by the

overiap of one pair of orbitals, given that the proper transformation of the molecuiar

orbitals is conducted.

These works suggest that molecular interactions may be approximated by the

overiap of two spherical GTFs, iike those presented Section 10.7. Since a smaii overiap

results in a large repuision, the GTFs need only represent the taiis of the electron

densities.

Figure 12.1 depicts the approximations made in this work toward a simplification

of the interactions between two ciosed-shell moiecules. On the left, the p-type orbitals

within the neon atom and methanol molecuie are explicit and overiap with the p-type

orbital of another neon atom or the s-type orbital of the hydrogen atom with another
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Figure 12.1 Binary interactions between neon atoms and methanol molecules, depicted
by real orbital overlap and spherical Gaussian overlap.

methanol molecule. With the SGO approximation, these overlaps can be approximated

with those of spherical GTFs, depicted on the right. Of note is the loss of information on

the angular nature of the hydrogen-bonding scheme depicted between the two methanol

moiecules. Considering partial charges placed on the nuclei, an orientation unlike that

depicted in Figure 12.1b may be more favorable energetically.

12.2 Fuii Expression of Dimer Interaction

With SGAs of the interacting functional groups, the interaction model is considered.

Within Sections 11.1 and 11.4, several expressions that describe the short-range

interaction energy have been reviewed. Within the theoretically rigorous expressions

given by perturbation methods (Hayes and Stone, 1984) in Equations (11.6) and (11.7)
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and by the application of Löwdin's pairing theorem (Hamm and Mayer, 2001b) in

Equations (11.21) through (11.27), information on all the orbitais within the molecule is

necessary for an accurate calculation. 0iven that this work attempts to determine

interaction potentials with only one GTF on each interacting entity, the above expressions

are not used and may be revisited in future work.

The expression of the helium dimer in Equation (11.18) by Rosen (1931) offers a

concise description of the short-range interaction effects evolved from a pair of doubly-

occupied orbitais. Also an advantage is the lack of a long-range contribution to the

potential, which is to be considered using the classical expressions within Section 3.4.

The integrals involved in Equation (11.18) are given in general, thereby ST0s or

GTFs may be used. If the latter are used, the quantum integrais resuit in relatively simple

expressions that combine the orbital exponents, a and b , and the interaction distance r .

Assuming the use of normalized GTFs of the form
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where erf is the error function. Slater-type orbitais may aiso be used to determine the

integrals necessary for Equation (11.18), but they are not used in this work due to the

complexity of the resulting two-electron integrals.

The helium dimer interaction model includes the Coulombic effects between

nuciei and electrons. The nucieus-nucieus interaction is explicit in Equation (11.18),

whiie the eiectron-eiectron interaction is implicit within Equation (12.3) and the nucleus-

electron interactions are implicit in Equations (12.7) and (12.8). In this work, this effect

is considered through the interactions between partial charges and dipole moments found

in AIM theory. Therefore, these effects are removed, and the expression describing

short-ranged interactions for this work is given by
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This expression serves as the short-range exchange-repulsion term in interactions

between closed-sheli moiecules. Its effectiveness is considered in the intermoiecular

potentiai function between small moiecules and molecules where hydrogen bonding plays

an important role.

12.3 Small Molecule Interactions

The statisticai mechanics presented within Chapter 3, and more specificaliy the viriai

equation of state within Section 3.3, offers a window between the behavior of interacting

molecules and the experimentally determinable virial coefficients. Any model that

attempts to predict small molecule interactions can be assessed by how well it predicts

second virial coefficients using Equation (3.39).

The modei to describe interactions between small molecules is given by Equation

(3.54), where the exchange-repulsion contribution is considered through the helium dimer

expression in Equation (12.11), and where the long-ranged electrostatic effects are given

by the averaged expressions in Section 3.4. In total, the smail moiecuie interaction model

is given by
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No pure Coulombic interaction is necessary here, since the molecules are neutral and no

partial charge distributions are considered explicitly. To make sure the validity of the

helium dimer interaction is the focus of the analysis, the experimental values for the

dipole moment ,u and the polarizability a are used instead of the calculated values

(presented in Appendix E).

To use the helium dimer interaction, the molecule must be approximated as the

SGA around a nuclear center. Figure 12.2 outlines the process for the nitrogen molecule,

a spherically asymmetric molecule. First, the AIM volume is calculated for the entire

molecule, which is given by the sum of its constituent functional groups within Appendix

G and is depicted in Figure 12.2a. Next, this volume is used to create an SGA, where the

0.001 au surface of the SGA and the bounding surface of the moiecule create the same

Figure 12.2 Algorithm followed to allow for a nonspherical small molecule to be used
within the helium dimer interaction model.
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volume, which is shown in Figure 12.2b. Then this orbital is assumed to be surrounding

a helium nucleus, thereby allowing for the use of Equation (12.11) with nuclear centers of

charge +2 . How the SGA corresponds to the bounding surface of methane and nitrogen

can be seen in Figures 10.10 and 10.11.

Figure 12.3 shows the resulting interaction potential model between two methane

molecules after applying the procedure described above. Both a curve with the

experimental u and a (in blue) and with calculated ,u and a (in red) are shown to

reveai slightly different interaction wells. They also show the characteristic repulsive

walls at short distances, the interaction well where energies are favorable, and the tail

where the interaction energy vanishes as the interaction distance increases. Not shown in

this figure is the interaction energy function at distances around 1 A. There,

Figure 12.3 Binary interaction energy for the methane dimer system.
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the SGO approximation breaks down, as an unreaiistic negative interaction energy resuits.

Since these interaction distances are unattainable at the thermodynamic conditions

considered in this work, the results at these extremely short ranges are ignored. Fixes

applied to the exponentiai-6 interaction potential presented at the end of Section 11.3 are

needed here if this interaction potentiai were to be applied numerically.

With analytical interaction curves such as that presented for methane, the second

virial coefficient is able to be calculated for any nearly spherically symmetric molecule

that has undergone an AIM anaiysis. Equation (3.39) is used for this caiculation, with a

modification made to alleviate the problem of the interaction model at extremely short

interaction distances. Therefore, the modified formula to determine the virial coefficient

is given by

where Tcutoff is chosen to correspond to a very large repulsive interaction energy. Also,

since the statistical average for the dipole-dipole interaction is utilized, the temperature

dependence in this term is considered and must be included within the functionality of u .

The caicuiations of the second viriai coefficients for seven smail molecuies and

how they compare to experiment is presented in Figure 12.4. The upper figure presents

the species, namely methane, nitrogen and fluorine, whose intermolecular potential is

represented well enough to give a reasonable description of the second virial coefficient.

The iower figure shows poor predictions for the species carbon dioxide, nitrous oxide,

carbon monoxide and oxygen, aithough the model performs somewhat well for oxygen.
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Figure 12.4 Caicuiated second virial coefficients for smail molecules compared to
experiment.



217

A predictive model such as the one outlined in this work simplifies the description

of intermolecular interactions by eliminating assumptions about cross interactions. In

presently used empirical potentials, arbitrary combining rules such as those within

Equations (11.33) and (11.34) are used to determine model parameters for interactions

between unlike species. Figure 12.5 shows a close up of the predicted interaction curves

involving methane and nitrogen. As suggested by the arithmetic rule of Equation (11.33),

the point at which the cross interaction crosses the C-axis (corresponding to au ) should

lie exactly between the points for the homogeneous interactions. In the predicted model,

this is not the case. Also, the geometric rule for s suggests a deeper interaction well for

the cross interaction than is predicted. A model such as this offers a simpler description

by eliminating the need for combining rules.

Figure 12.5 Predicted interaction energies for methane and nitrogen.
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The sporadic results in the predictions of second virial coefficients suggest that

the interaction modei within Equation (12.12) offers too simple of a description of the

nature of interactions between smaii molecules. Higher-order attraction effects may be

necessary, such as the quadrupole moments or effects that lead to terms that are not

dependent on r -6 (Hart and Rapped, 1992). Also, the use of STOs and p-type functions

within Equation (12.11) would offer a description of short-range effects that resemble

real systems more closely.

12.4 Large Molecule Interactions through Functional Group Interactions

The interactions between large moiecuies can not be anaiyzed in as straightforward a

manner as the interactions between smaii moiecuies. The approximation that the

molecule is spherically symmetric is not a good assumption for non-cyclic molecules

with more than three heavy atoms. The electronegativities of particular atoms within the

iarger molecuies may result in a distribution of eiectron density that, for modeiing

interactions, is best describable through partial charges rather than the overall moiecular

dipole moment. Steric effects play a role in interactions also, since not all portions of the

molecule are availabie to electron density overlap.

The roie of functionai groups within the analysis of interactions between iarge

moiecules is to offer an entity the size of a small molecule that serves as the interaction

site. The functional group becomes the interacting entity, and its group properties are the

main properties considered in the interaction model. The remainder of the molecuie and

its set of group properties aiso contribute to the interaction, but in a way that is secondary

to the interacting functionai groups. Steric effects are considered in functional group
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interactions, since a group is available to interact only if it has the available external

surface area. Through functional groups, the interaction between two large molecules

can be reduced into a set of functionai group interactions.

The functional group interaction model is similar to that of the small molecule

interaction model in Equation (12.12), except that the non-averaged electrostatic

expressions are utilized. The functional groups within a molecule do not have the

freedom to rotate as entire moiecules do in the gas phase, therefore the direction of the

dipoie moment (given by the sign of p in Appendix 0) is also important to the kinds of

interactions functional groups have. The interaction model between functionai groups is

describable through the following expression

Again, the helium dimer interaction serves as the short-range repulsion, while the

Coulombic interaction term is inciuded so as to characterize the partiai charge

distribution of the molecuie for that particular orientation. As is seen shortly, the

Couiombic effects from surrounding functional groups play an important part in

determining the interaction characteristics between the molecules at the specified

orientation.

Like the analysis of the smail moiecuie interaction, assumptions must be made to

achieve a spherically symmetric description of the eiectron density of a functionai group.

Figure 12.6 demonstrates the algorithm followed to accomplish this. Initially, the

functionai group, a methyl group in Figure 12.6a, is reduced to the UA in Figure 12.6b.

Then, the SGA is used to reproduce the distance between the center of the UA and the



bounding surface. This spherical orbital, depicted in Figure 12.6c, reproduces this

distance instead of reproducing the voiume of the functional group. As before, this

spherical functional group then takes on the nucleus of a helium atom, so as to use a

nuclear charge of +2 in Equation (12.11). Figures 10.12 and 10.13 demonstrate how the

SGA reproduces the bounding surface of alkyl functional groups.

The first set of interactions considered in this work is that between two propane

molecules. The functional groups within propane molecules have relatively small partial

charges, sizeabie dipole moments pointing inward, and few enough functional groups that

orientations between the two molecules can be considered concisely. For this study,

three types of interactions exist: methyl-methyl; methyl-methylene; methylene-methylene.

Figure 12.7 presents the three interactions with four models that attempt to describe the
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interaction energy: a model based on GCM concepts, where only the properties of the

functional group contribute to the interaction; a GCM model including the partial charges

on the remainder of the moiecule; a GCM model including partial charges and dipoie

moments on the remainder of the molecule; and the TraPPE model, described in Equation

(11.32), where the LAB parameters are correlated to reproduce phase equiiibrium, and

where no partial charges are attributed to the groups.

Figure 12.7 suggests that the most general description of the functional group

interactions cannot be reproduced appropriateiy by considering simple modeis that ignore

the compiete Couiombic contribution from surrounding functionai groups. These long-

range Couiombic effects allow for more favorable interactions, appropriate considering

propane is a non-polar molecule that should interact somewhat favorably due to van der

Waals forces. The AIM partial charges on the functional groups, however smail, and the

dipole moments cause the molecuies to have unfavorable or neutral interactions if only

the 0CM model is considered. The inclusion of other partial charges and opposite-

pointing dipole moments in the molecule causes a modification in this originai interaction,

thereby resuiting in the more favorable interaction regimes.

The interactions given by the TraPPE potential assumes an attraction regime in aii

the group interactions in propane through the use of LAB potentials and no partial charges.

The TraPPE potential would not be able to produce a cross interaction like the full model

in this work, since the combining ruie for the weli depths must resuit in a cross

interaction depth that is between the pure interaction depths. The cross interaction weii

depth of the modei in this work is deeper than either of the interactions, mainly due to the



Figure 12.7 Aikyl group interactions between propane molecules (methyl-methyl,
methylene-methylene, and methyl-methylene).
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opposing partial charges of the functional groups, and thus a strongly favorable

interaction scheme from the Coulombic effect.

Interactions between water molecules are well-studied, as presented in Section

11.5, and the hydrogen-bonding scheme between two water molecules serves as a good

measure at how well an interaction model performs. Figure 12.8 shows the interaction

potentiais between the hydrogen atom and oxygen atom using AIM properties and the

interaction model presented in Equation (12.14). Here, it is quite ciear that the partial

charges and the dipoles within the remainder of the molecule are necessary to predict an

attraction between the two molecules. This is plausible, given that all the information

about the electrostatics within the water molecule is necessary to predict the molecular

dipole moment (discussed in Section 10.6). The interaction modei used by the TraPPE

force field is also presented, assuming that the partial charge on the hydrogen atom

Figure 12.8 Hydrogen-bonding interaction energies between water molecules.
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within an aicohoi is the same as the partiai charge within a water molecuie. The lack of a

repuisive wall is an artifact of the modei description for hydrogen.

The sensitivity of the hydrogen-bonding scheme between water moiecules is aiso

presented in Figure 12.8. Here, instead of the 0aussian coefficient corresponding to raw

in the AIM property tabie, a Gaussian coefficient is used that corresponds to the actual

extent of the electron density along the interaction axis. 	 These new values

correspond to siightly different exponents on the GTF

['hese alternate values cause a slightly iess repulsive

short-range interaction and result in a hydrogen-bonding distance closer to experimental

values. The interaction weil is aiso deeper by about 25% of the vaiue predicted using raw .

12.5 Interaction Matrices

To account for the possible interactions between two molecules, one may begin to reduce

the problem by finding aii the possible interactions between the functional groups in one

and the functional groups in the other. This would result in a matrix of interaction curves

that describe a finite number of possibie intermoiecuiar interactions. This is exactiy the

matrix of quantities that engineering models in Section 5.2 use in excess 0ibbs relations

in the mixture of fluids. The functional group interactions of this work are applicable

within such engineering models.

Problems arise in the creation of such a matrix from the interaction model of this

work. The analysis of the interaction model for functional groups, given by Equation

(12.14), suggests that to use AIM properties of functionai groups to describe interactions

between molecules, one must consider ail the functional groups in each molecule and
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their influence on the interaction. Although this conclusion is directly contrary to the

ciassical view within GCMs, where oniy the interacting groups influence the energy, the

GCM approach is much more computationaiiy efficient than the approach derived in this

work. Due to the necessity of inciuding the iong-range Coulombic effects of non-

interacting functional groups, creating a matrix of values for any molecule with more

than three functional groups involves accounting for the locations of ali functional groups.

The computations of such interaction curves are quite involved and necessitate the

creation of specific software that can handle minimizing interaction energies while not

altering interior angles and bond lengths. No such software has been created to calculate

such curves for the interaction model of this work.

A similarly conceived interaction model to that of this work is the UA model,

TraPPE. This model considers effective potentials in the form of a LJ interaction

equation and a Coulombic interaction term. The Coulombic interaction between

functional groups is greatly simplified since partiai charges are placed only on selected

UAs and since no dipole moments of functional groups are considered. Table 12.1

presents the parameters from the TraPPE potential that are used to determine the

interaction energies between functional groups of interest in this work.

Motivated by the study of mixtures between alkanes, alcohols and ethers, an

interaction matrix considering the possible functional group interactions in these systems

is presented in Table 12.2 and Figure 12.9. The vaiues given within the table represent

the energies of interaction either at the minimum of the interaction curve (for favorable

interactions), at a distance corresponding to the sum of the rag values (for repulsive

interactions), or at a
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Figure 12.9 Interaction matrix for alkane, alcohol and ether systems: orientation.s
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distance corresponding to a hydrogen-bonding interaction (r = 2.01 A for oxygen atom-

hydrogen atom interactions). Coulombic effects between interacting and neighboring

functional groups are considered only when both interacting functional groups have

partial charges. This condition is achieved in all interactions except those including a

CH3 alkyi or CH2 alkyl functionai group. For all others, the partial charges of the nearby

groups are considered in the orientations given by the images within Figure 12.9. An

attempt was made to choose orientations that would result in the most favorable

interactions.

12.6 Conclusions

Information caiculated using AIM theory offers rigorous information about molecuies

and portions of molecules. This information, in turn, is usable within first-principles

interaction energy functions between closed-shell molecules. In combination with the

helium dimer short-range interaction term and the classical long-range interaction terms,

the AIM properties are usable in approximating second virial coefficients of smaii

molecules and functional group interactions within iarger molecules. Of particular

importance is the prediction of the interaction energy in the water dimer system that is

comparable to experimentaily measured energies.

The simplicity of the GCM modeis and the TraPPE potentiais make them

advantageous. The more rigorous expression using AIM properties within functional

group interactions necessitates the use of a model that describes the position and

orientation of the entire molecule. Even in the case where the partial charges are near

neutral, they have a significant effect on interactions between moiecules. The appropriate
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tool to account for all the information, namely the magnitude and position of the partial

charges with the interacting moiecuies, is the next hurdie toward the validation of such an

approach.

The interaction matrix used in this work is created from TraPPE, an interaction

model that contains concepts similar to that of the model developed in this work. The

idea of using particular orientations to describe most of the functional group interactions

exists in both methods. This methodoiogy wiii be carried further in this work when a tool

to determine interaction energies in various orientations is deveioped accordingiy. Until

then, the interaction matrix using TraPPE gives a sense of what is possible when first-

principles properties and energies are used within a lattice-fluid model.



CHAPTER 13

PURE SPECIES THERMODYNAMIC BEHAVIOR
AND LATTICE-FLUID THEORY

The use of vacancies within lattice-fluid theory has the interesting prospect of predicting

both pure and mixture system behavior. In the past, the most successful models predict

either the former (through empirical equations of state) or the latter (though models of

lattice fluids that do not inciude vacancies). This has hindered the development of a fully

predictive model for the entire fluid phase, since the different modeiing techniques need

unrelated correlations and different modeling parameters.

The lattice-fluid models described in Chapters 4 and 5 are shown to describe

either the pure state or a mixture system. Since lattice fluids have more established

success at predicting mixture behavior, efforts are made to develop their abiiity to predict

volumetric behavior. This chapter develops a pure species iattice-fluid model intended to

describe both pure and mixture systems. A more generalized athermal ways expression is

applied to the quasi-chemicai equation to give a generai model for use in any fluid system.

A pure species is modeled as a mixture of molecules and vacancies, and an engineering

EoS emerges from this study. Parameters are correlated to reproduce the critical point of

pure fluids, and the physical significance of these quantities is evaluated. The

methodology is extended to the EoS description of larger molecules through the use of

the functionai group properties and interaction matrix of Section 12.5. Their capabilities

are evaiuated by how well these models predict the criticai point of fluids without any

experimental data.

230
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13.1 Use of the Generalized Guggenheim Expression

To determine the volumetric properties of a lattice fluid, one must maximize the partition

function given by Equation (4.4) with respect to the number of vacancies, N o . This is

simiiar to the procedure taken to achieve the equations of state in Section 4.4 and in the

general derivation of the quasi-chemical statistics presented in Appendix B. The general

expression is given by

where the reduced notation within Equation (5.52) is used and where it is assumed that

the interaction volume and energy between two vacancies and between a vacancy and a

molecule in adjacent lattice sites vanishes.

The Guggenheim expression in Equation (4.9) allows for the inclusion of

vacancies on the lattice as if they were a distinct species. The application of this

expression yields results that are equivalent to prior work (Smirnova and Victorov, 1987;

Panayiotou, 2003b).

An athermal ways expression that is derived using the same procedure as that of

Equation (4.9) is offered in Appendix A. This derivation assumes a mixture of two

molecular species with vacancies on the lattice, and the result for any number of species

is inferred by the new results and the 0uggenheim expression presented earlier. The

generalized result is given by

where



If the previously assumed relation between the surface area and the molecule is taken,

given by Equation (4.11), then one recovers the original 0uggenheim athermal ways

function given by Equation (4.9).

The derivative of this expression with respect to No must be taken to utilize the

EoS framework in Equation (13.1). This is given by

To make this expression explicit in the moiar volume of the system, a generai form of the

reiationship between the number of vacancies and the total volume of the system,

Equation (4.5) is used. The resulting expressions for N1 /No and AIN, are found and

inserted into Equation (13.7) to yieid
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and where 19: , the surface area fraction of species i in a system with no vacancies, is

given by Equation (5.6). This quantity is not considered a variable of the system, since

the system composition and the associated structural properties of the species allows for

the exact calculation of these quantities. A collection of volume and surface area

characteristics is found in c, which is given by

This quantity serves as an important bridge to relating this work to past works in the

literature.

13.2 Vacancies within the Quasi-Chemical Equations

The next step in completing the EoS is to find the solution to the model variable F a ,

which is based within quasi-chemical theory and is a solution to Equation (5.52). To

show how vacancies fit within the lattice-fluid system, the nonlinear system is rewritten

to include vacancies as a separate species. The system becomes the following



234

Separating the term with the vacancies from the remainder of the summation yields

To better see how this system reduces to the system with no vacancies, one can

manipulate Equation (13.12) to result in

Inserting this expression into the summation in Equation (13.13) gives the more explicit

reiationship showing the roie of vacancies on the lattice

13.3 Pure Species: A Binary Mixture of Molecules and Vacancies

The simpiest lattice-fluid system that exhibits volumetric properties is where one species

with muitiple interaction sites of the same type inhabits a iattice with vacancies.

Conceptuaiiy, this is a mixture system of a species with size r, and number of

interactions z, with vacancies occupying one lattice site and number of interactions zoo .

This is aiso a generalization to the Ising-iike fluids (Staniey, 1971), where the molecuiar

or magnetic species usually occupies one site aiso, iike a vacancy.
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The convenience of studying such a system is because one can achieve an analytic

solution to the EoS explored in the previous section. For the case where n =1, the

system of equations reduces to the EoS of the form

solution to the polynomial

After finding the proper root from Equation (13.18) and substituting in Equation (13.17),

Equation (13.16) yields an analytical relationship between the temperature, pressure and

molar volume of the iattice-fiuid system.

The equation in this form serves as a generalization for the lattice-fluid equations

within Section 4.4. The quasi-chemical equations are used in ali these methods, and

various forms of the 0uggenheim athermai ways contribution are appiied. Equation

(13.16) uses the most general athermal ways function, given by Equation (13.2). This

EoS shouid reduce to the past expressions once one applies the relevant assumptions.

This equation has two lattice-specific parameters, boa and zoo , and three moiecuie-

specific parameters, b , c and en (within 1-01 ). Each of the molecuie-specific parameters

may be evaluated theoretically from the first-principles methods to determine AIM

structural properties of molecules (for b and c) and energetics between molecules (for
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En ). However, these structural properties are dependent on the characteristics of the

lattice, since b depends on the size of a lattice site and c depends on this and the

coordination number of the iattice.

The first attempt at evaiuating the iattice parameters is made through correlation

of the equation to reproduce the experimental criticai point of the pure fluid. To

eliminate one of the lattice parameters from consideration, it is assumed that the

Guggenheim reiation between the size of the molecule r and the surface area parameter

This allows for the coordination number of the lattice to be describable by the fitted

parameters in the equation. For the other iattice parameter, it is assumed that all the

iattices on which the molecules reside is given the volume of b oa=10.0 cm3/mol ,

approximateiy the AIM volume of neon.

The correlation procedure to find b , c and en consists of forcing the EoS of

Equation (13.16) to reproduce the critical point ( C c  , pc and Cc  ) and the conditions of

Equation (2.30). The correlation is performed on a number of small molecules that

contain less than four heavy atoms. Table 13.1 shows the results of the correlation, and

several trends within the parameters can be noted. Within the noble gases, appropriate

trends are seen within the size of the molecules and the bulkiness of the molecule, given

by c . Within the small molecuies, those with no dipoie moments have an interaction

energy of about —200 K , whiie carbon dioxide has a larger interaction energy likely due

to the quadrupoie moment. For those small moiecules with dipole moments, the
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interaction energies become larger as the magnitude of the dipole increases (from top to

bottom). Within the remaining three sections, the voiumes and the interaction energies

foliow appropriate trends.

Figures 13.1 and 13.2 show how the correlated structural EoS parameters relate to

the critical volumes and structurai parameters found in AIM calculations. Firstly, criticai

voiumes and AIM volume show a strong iinear dependence to the correlated parameter,

thus quaiifying its physical significance in the fluid model. With regards to the parameter

c , recail its definition in Equation (13.10). The numerator contains the factor z, , which

reflects the amount of external surface area a molecule has to interact with other

molecules. The denominator contains the factor r, , which signifies the number of lattice

sites a molecule occupies and is related to the volume of the molecuie. Therefore, it is

expected that the ratio of the AIM external surface area and the AIM volume of the

molecule is related to the correlated parameter c . As Figure 13.2 suggests, there is a

monotonic linear trend in the correlation.

Figure 13.3 depicts the ability of the equation of state with correiated parameters to

reproduce liquid-like and vapor-like volumes of nitrogen on the critical isotherm. As

required, the EoS reproduces the critical point, depicted as a red diamond near the center

of the figure. It also reproduces the gas-like densities quite well except for the small

error in the intermediate region between ideal gas densities and the criticai density. The

equation does poorly for liquid-like volumes, where the equation predicts smaller

densities than experiment at a given pressure. The shortcomings with this EoS are

common for those equations that are analytic through the critical region, as mentioned in



Figure 13.2 Ratio of AIM area to AIM volume related to correlated EOS structural
parameter c.
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Figure 13.3 Predicted critical isotherm behavior of nitrogen compared to experiment.

Section 2.4. The equation needs to be flat for a larger range of densities in the region

around the critical point, therefore accommodating all the data nearby and reaching the

gas-like and liquid-like behavior. Of issue is the fact that far from the critical point, the

EoS must behave as a cubic equation, while at the critical point, the function must have a

power that is found to asymptotically approach 4.4 for carbon dioxide (Staniey, 1971).

13.4 Equation of State for Larger Molecules

To attain a simple expression for the volumetric behavior of small molecules, it is

assumed that the interaction energies between two molecules are equivalent for all the

possible combinations of interaction sites. This assumption begins to break down as

molecules become larger and as the atoms that make up the molecule become more
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varied. Even for a relatively small molecule like ethanol, it is difficult to accept that all

the interactions between two ethanol molecules aiways results in an energy of —1400 K ,

(as suggested by Table 13.1) since these interactions are highly dependent on orientation

effects (as depicted in the interaction matrix of Table 12.2).

The logical step in determining the volumetric properties of these larger

molecules is to consider the entire matrix of interactions in the quasi-chemical approach

within Equation (13.15). The structural parameters of the molecules, also necessary in

the nonlinear system of equations, are availabie through the use of the AIM properties

within Appendix G. This treatment results in a iarger number of noniinear equations to

solve, and a closed-form solution such as that for small molecules is not possible. For a

given isotherm, it is necessary to soive the system of equations for each fluid density to

yieid pressures at those conditions, and therefore a graph of continuous curves to show

the volumetric behavior of the fluid.

The determination of the volumetric properties of a fluid with the use of the

energetics from Chapter 12 and the AIM properties of Chapter 10 can be considered a

fully theoreticai prediction of macroscopic system properties from first principles. No

parameters within the model are fitted to experimental data. All are found using

computational techniques described in this work.

Like the small moiecuie EoS, two lattice parameters need to be determined to

perform caicuiations with the iattice-fluid model. These parameters, b oaandzoo,

determine the lattice on which the fluids are modeied. For the modeling of the iarger

molecules, the methane molecuie is chosen as the reference species. The volume of a

lattice site boa is therefore 287.6 au ( 25.66 cm'imol ), and the totai surface area of a
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lattice site is 213.28 au ( 0.5972 nm 2 ). This latter value combined with the interaction

area corresponding to those used in COSMO-based models, 25.0 au ( 0.070 nm 2 ), yieids

the number of interactions for a vacant lattice site, zoo = 8.53 .

Tabie 13.2 lists an analysis of the predicted critical points of a range of molecules

considered iater in mixture systems. The EoS does a poor job in reproducing the criticai

points for all the fluids considered. The model also is unable to correctly predict the

trends with the critical temperature. Also noted with the smali molecule EoS described

above, this EoS is anaiytical, and therefore suffers the same problems in the critical

region as those of cubic and ail other analyticai equations of state.

Figure 13.4 shows the isotherms of propane compared to experimental data at

various reduced temperatures. The reduced quantities within the model predictions are

related to the critical point predicted by the model, while the reduced quantities within

the experimental data are related to the experimental critical point. The structural
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Figure 13.4 Comparisons of isotherms of propane with experimental data.

parameters for the functional groups of propane are given in Appendix G, and the

energetics between functional groups are given in the interaction matrix in Table 12.2.

Seen here is the characteristic volumetric behavior of a fluid at the supercritical region,

the critical isotherm, and at subcritical regions where liquids and gases may coexist. The

statistical model shows the ability to create such descriptions of fluids with quantities

found independently of experiment. However, the model predictions of the isotherm data

are poor. These can be attributed to the failure of the model around the critical region.

The issues with the first-principles predictions of the critical point of these fluids

reside within the partition function. It has been an extremely difficult task to formulate a

realistic EoS, mainly because of the lack of understanding of correlation effects with

liquids and near-critical fluids. The low critical temperatures within the alkanes suggest a

correlation effect that is not accounted for within the statistical model, an effect that
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allows for greater cohesion between molecules within the liquid phase. Also, the

partition function approach leaves out any description of the transiational motion of the

molecules, instead inciuding molecular partition functions that describe the vibrationai

and rotational motion of molecuies around their lattice sites. This molecuiar partition

function is independent of the system pressure, and therefore does not contribute to the

EoS (as can be seen in the relation between the partition function and the EoS in Equation

(3.30)). This may be why the EoS does not reflect the mass effects (and therefore, the

transiational energy) within the series of alkanes. This seems iikely also for the incorrect

trend within the alcohols, where the larger molecules shouid need a higher temperature to

achieve a supercritical state because of their greater mass.

13.5 Conclusions

The generalized Guggenheim statistics derived in this work offers a more general

description of athermai lattice-fluid systems than previous expressions. This equation

with the quasi-chemical equations is used to formulate a closed-form engineering EoS.

This EoS has five parameters: two parameters characterizing the lattice and three

parameters related to the molecular species. When the molecular parameters are fit to the

critical point, physicai significance is seen in the each of the parameters, and reiations

seem to exist between appropriate AIM properties of the molecules.

With the application of the generaiized athermal ways expression, the structurai

characteristics need not obey the past assumption requiring a strict reiationship between

number of lattice sites occupied and number of external contacts . Such flexibility allows

for the description of fluid species with parameters reflecting the molecular structure
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found using ab inito methods. When this approach is taken for larger molecules,

functionai groups are used and pure species volumetric behavior is able to be predicted.

However, the model fails to correctly predict the criticai point of aicohols and aikanes.

The use of fundamental quantities as the parameters within the EoS ailows for an

assessment of the capabilities of the statisticai model. With a larger set of resuits using

the AIM properties calculated from this work, the errors within the statistical model may

be diagnosed, and appropriate changes may be made.



CHAPTER 14

PREDICTIONS OF VAPOR-LIQUID EQUILIBRIUM
USING LATTICE-FLUID THEORY

The success of the COSMO-based methods is a testament to the power of the quasi-

chemical approach in describing the thermodynamic properties of mixture systems. With

the simple information describing the electrostatic potential around a molecule,

intermolecular interactions can be analyzed and sorted using statistics. The partition

function of the system emerges from these statistics, and vaporIliquid equilibrium,

liquidIliquid equilibrium, partition coefficients and soiubilities are made available to

engineers.

This chapter considers criticisms of the COSMO-based approaches and fills in

these gaps with the molecular-level properties studied in this work. The structural and

electrostatic properties found from AIM Theory and the functional group interaction

potentials offer first-principles information for the physicai parameters used in modeiing

mixture systems. Equations are developed to incorporate these parameters to fully

predict vaporIliquid equiiibrium of a range of fluid systems. Attempts are made to

predict the mixture behavior of systems containing aicohols, alkanes and ethers. Limits

to the quasi-chemicai approach are discussed. Modifications are made to these equations

to better represent real fluid systems, and these resuits are compared to experiment.

This chapter outiines a methodology that attempts to fully predict the vaporIliquid

system behavior without correlating any model quantity to VLE experimental data. Up to

this point, no modei has accomplished this; instead, past models choose to correiate

structural, electrostatic or energetic information to experiment. This work uses calculated
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surface areas and volumes from isoiated molecule electron density profiies as the

structural parameters. Energetics are found by applying a functionai group interaction

potential whose parameters have been found by reproducing phase equilibrium of pure

species in moiecular simulations. With further development, the first-principles force

fieid of this work, where structural and electrostatic properties from isolated molecule

eiectron densities are appiied to an interaction modei, wili be used to offer an interaction

matrix with no fitted parameters. This novel approach to predicting VLE, when validated,

achieves the goai of first-principles knowledge of macroscopic fluid system behavior

without the need for correlation to experiments.

14.1 Criticisms of COSMO-based Approach

Since COSMO-based methods are being used to predict a wide range of fluid-phase

properties, their modeling successes and faiiures are being scrutinized. Several criticisms

have arisen in the recent past, ranging from the fundamental assumptions of the model to

the iimitations in the accuracy of the modei resuits. The criticisms focused on here are

mainly on the basic premises of the model.

A criticism of the COSMO-based methods is the way the location and form of the

surface charge density that exists around the molecule and takes part in interactions. The

distance from the atoms at which these charge densities are sampled is a parameter that is

correlated to experimental data. Although originally attributed as a surface that is 120%

the van der Waals radius away from the atoms, a value used in most continuum solvation

models, the radius has changed in more recently refined versions. These radii form

spheres around the atoms, and the union of these spheres create crevices that have been
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noted to hinder the calculations of surface charge density. These since have been fixed.

Techniques that sample any eiectrostatic property outside the significant electron density

of a molecule are subject to variation with the points that are sampled. Not only is the

choice of points on the surface important, but the depth within which these points are

sampled has a strong effect on properties. To achieve a more correct description of the

electrostatic properties, several surfaces at different depths may be necessary.

It is assumed within the COSMO-based methods that interactions are attributable

to the energetic effects that develop when surface segments overlap in the liquid phase.

Figure 14.1 shows a two-dimensional representation of the layout of molecules within

COSMO-based methods. As show in the figure, this assumption is based on the premise

that the molecules will only interact at distances that are given by the sum of the atomic
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radii. Figures 14.2 and 14.3 depict the electron densities of molecules interacting under

this assumption. The description of the methyl-methyl interaction in Figure 14.2 seems

plausible, with the centers of the groups (the carbon atoms) at a distance of 4.00 A apart.

This corresponds roughly to the most probabie interaction distance predicted by the

functional group interaction model in this work ( 4.23 A) and the TraPPE force field

( 4.21 A ), both shown in Figure 12.7. The COSMO-based interaction also agrees with

the physical significance of the 0.001 au isodensity surface, that molecules interact in

such a way where the 0.001 au surfaces are juxtaposed.

The water dimer interaction of Figure 14.3 is also depicted where the isodensity

surfaces are juxtaposed. This interaction distance is, as suggested by the COSMO-based

radii of the atoms, 3.02 A . However, it is well known that the interaction between water



molecules is nearly 2 A . Figure 14.4 depicts the interaction between water molecules at

the more accepted interaction distance. Here the large electron density overlap expected

by hydrogen bonding is apparent. The 0.001 au surface of each atom is roughly

tangential to the 0.08 au surface of the other atom. Hydrogen-bonding interactions

between water molecules have also been depicted in Figures 11.1 and 11.2. There too, it

is shown the interaction distance assumed by the COSMO-based scheme is not a good

assumption.

The sampling technique employed by the COSMO-based methods does not

account for such a large discrepancy in interaction distances. The fix applied to the

model is held within the correlation constants in the interaction energy terms. There are

two such correlation parameters: one which scales the difference in segment charge
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Figure 14.4 Interaction between water molecules at a distance of approximately 2 A .

densities for non-hydrogen-bonding interaction schemes; one which scales the difference

in segment charge densities for hydrogen-bonding situations. Here, an arbitrary measure

must aiso be implemented to determine what charge density difference constitutes a

hydrogen-bonding interaction.

The statistics employed within the COSMO-based methods consider all the

molecuies interacting with other molecules in the way described in the previous

paragraphs. The statistics do not account for the possibility of vacancies within the

lattice, a concept that is essential to predicting volumetric properties. If it is assumed that

the COSMO-based lattices are fully occupied by molecules, and where the molecuies are

interacting in ways depicted in Figures 14.1 through 14.3, then the sum of the AIM

volumes calculated in Appendix G should correspond to the liquid-like volume of the
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species (since Figure 10.1 suggests that the 0.001 au isodensity surface roughiy

corresponds to the COSMO-based surfaces). Calculation of any of these AIM volumes

for a molecule yields a value that is far below that of a liquid-like volume for the species.

To reproduce these volumes, either iarger distances must exist between the molecules

(uniikely, since past studies do indicate that interactions probably occur at these distances

envisioned by COSMO-base methods), or that vacancies must be included in the lattice.

Including vacancies is not straightforward in COSMO-based methods, since the charge

density surfaces of molecules must interact with charge densities of vacancies that are

influenced by nearby molecules. The lack of vacancies is the same approach taken by

UNIQUAC, UNIFAC and other past engineering models, where the iiquid is on a packed

lattice.

The thermodynamic inconsistency of an earlier version of COSMO, the COSMO-

RS method, has been resoived by the creation of the COSMO-SAC method and the

COSMOSPACE method. Both these methods are based around the quasi-chemical

equations and the entropy of the athermal system described in Sections 4.2 and 5.4.

This work attempts to address the criticisms above by using the moiecular-level

properties within a lattice-fluid model that incorporated vacancies. The structural

properties within AIM are used instead of the correiated radii to determine the extent of

electron densities. The interaction model proposed in this work takes the structural and

eiectrostatic properties and converts these into interaction energies and distances

describable with an interaction curve. Since calculated curves in this work have not been

achieved, simiiar properties, attainable using the TraPPE force field created for molecular

dynamics simulations, are used. These curves avoid the predisposed interaction distances
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necessary in the COSMO-based methods, and aliow for a description of interaction

energies at all distances. The most favorable interaction energies are then used in a

statistical model simiiar to that of the COSMO-based methods, except where vacancies

are included on the lattice. The interaction energy between a molecule and a vacancy, as

well as an interaction between two vacancies, vanishes and thus agrees with acceptable

physical principies.

14.2 The Development of the Lattice-Fluid Model to Predict VLE

The prediction of VLE using the lattice-fluid framework is focused around developing

expressions for the activity coefficient y of the species. These values are then used

within the gamma-phi formulation reviewed in Section 2.2. The focus now is to lay out

the process by which these activity coefficients are caiculated and implemented.

The activity coefficient for species i in a liquid mixture is given by Equation

(2.22). To evaluate this expression, equations describing the Gibbs energies of the

mixture system and the pure fluid system must be determined. For lattice fluids, these

can be found using the partition function in Equation (4.4). This equation is governed by

the temperature, pressure and composition of the system.

The modei variables for this partition function, the numbers and types of

interactions My , and the number of vacancies No are found by soiving the quasi-

chemical equations, given by Equations (5.29) through (5.31) and developed in Appendix

B. An equivalent and simpler way of determining the model variables is to consider the

reiation given by Equation (5.52) and soiving that nonlinear system, where the interacting

entities are functionai groups. Both of these treatments involve soiving the quasi-
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chemical equations for the pure and mixture system, so one may determine the model

variables for both systems for appiication within Equation (5.51).

The athermal contribution to the activity coefficient is found by utiiizing the

athermal ways function of Equations (4.9), (4.13), or (13.2), where the iast of these is a

generalization of the earlier two. The full expression for In Bath is given by

where the athermai ways within the second term is for the pure system at the mixture

system temperature and pressure. If one uses the classical Guggenheim expression of

Equation (4.9), this relation reduces simply to

However, this expression had been developed without vacancies on the iattice. Therefore,

it must be assumed that the volume fraction 0, and the surface area fraction 9, are taken

in a fully packed lattice, with no vacancies.

The gamma-phi formuiation in its originai presentation assumes that B, is

independent of pressure. Since this work is using the Gibbs ensemble, pressure is a

thermodynamic variable that influences aii other variabies within the equations.

Therefore, for procedures that iterate the pressure, such as BUBL p and DEW p, the

most general procedure involves caiculating y, at every pressure iterate. This involves

calculating the solutions of the pure and mixture species quasi-chemical equations each
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time. With computers and automated algorithms, this may be accomplished while still

achieving a timely result.

If one can assume that 1, =1 within the gamma-phi formulation, then the

pressure of the mixture system is readiiy given by summing both sides of Equation (2.23)

where either the experimental results or Antoine's equation is used for piste The vapor

compositions given by

These equations wili be used in this work to predict isothermal VLE data for a variety of

mixture systems. Since it is easier to know the liquid compositions C, in experiments,

the pressure and vapor compositions will be pursued, as in the BUBL p procedure.

14.3 Calculated VLE Behavior using the Full Treatment

In theory, once AIM properties of a species are found, interaction energies, pure fluid and

mixture system behavior can be predicted using the interaction modei in Chapter 12 and

the lattice-fluid statistics in Chapters 4, 5, 13, and 14. This work focuses on the mixture

systems describable with the TraPPE interaction matrix of Table 12.2, which gives the

interaction energies for systems containing linear alkanes, linear alcohols and

dimethylether. This information ailows for the prediction of pure system properties

(done in Chapter 13) and several combinations resulting in binary mixture systems.

Analyzing a mixture system using the full treatment of the theory involves

allowing the EoS to determine the model variables (namely I - , and 00 ) of the pure
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systems and the mixture system. These solutions and the generalized Guggenheim

equation is used to determine the activity coefficients in Equations (5.51) and (14.1) and

the pressure for the species from Equation (14.3). This is done in an iterative manner

using the BUBL p procedure. The vapor composition is calculated from Equation (14.4),

and the results are compared to experiment. Also available from this treatment is the

excess volume of the binary mixture, assumed not to vanish in the most general version

of the model.

The first system treated in this manner is an ideai binary mixture system

containing 1-propanol/1-butanol at 373.15 K, depicted in Figure 14.5. The modei here

predicts ideal solution behavior and the associated vapor phase compositions. The

experimental data shows some curvature that migrates around the predicted p-C line. The

experimental data offers no vapor compositions for this mixture.

The second system treated is the binary mixture containing dimethylether and

ethanoi at 293.15 K, depicted in Figure 14.6. Here, the calculated p-C line is weil above

the experiment, while there is agreement with the pay calculation and experiment. The

disagreement in the p-C behavior is due to the inability of the EoS to accurateiy predict

the liquid volume of the mixture system. In this case, too few vacancies exist in the

ethanol-rich branch, and the dimethylether molecules tend to vaporize rather than interact

with the ethanol molecules. As shown in the next section, the p-C line is modified if the

experimental liquid volume is used.
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14.4 The Use of Experimental Liquid Volumes

In severai systems of interest to this work, the EoS fails to predict a liquid phase or a

liquid-like volume for the pure species at the mixture system temperature. For instance,

the EoS critical parameters predicted in Table 13.2 suggests that linear alkanes exist in a

supercriticai state for all temperatures above 200 K. Therefore, any mixture system

prediction using the full treatment of the method faiis uniess the system temperature is

less than 200 K. Also, although dimethylether has a predicted critical temperature of 375

K, a prediction for the mixture system with the species at 353.15 K is not possible

because a liquid-iike voiume does not exist near the experimental or mixture system

pressure at that temperature.

To aiieviate this shortcoming, the experimental liquid volume at near-ambient

temperatures from a standard engineering source (Poling, et al. 2001) is used to

determine the number of vacancies on the lattice. In this case, the mixture system

voiume is considered the weighted average of the two systems, and the excess volume of

the mixture is considered to vanish. While not true in general, this is a reasonable

approximation because the excess volume is often quite small.

To apply experimental iiquid voiumes that determine the number of vacancies in

the pure and mixture system, more care must be taken in calcuiating In Grath within

Equation (14.1). To start, consider the functionality of the athermal ways function for a

binary system

The derivative of the mixture system In Sla sh within Equation (14.1), in its most general

form, is given by
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In general, the functionality of N0 is determined by the thermodynamic variabies

of the system. Within the fuii treatment of the method, N0 is determined by the

minimization of the Gibbs energy (maximizing the term in the Gibbs partition function)

with respect to all the model variabies. However, here the experimental liquid volume is

used to set this quantity. The function describing N o here becomes

The derivatives of this expression must be included within Equations (14.6) and (14.7)

for the information to be applied properly.

The first system to be calculated using the experimental liquid volumes is the

pentane/hexane ideal binary mixture system at 298.7 K, depicted in Figure 14.7. Here,

both the p-C and the p-y lines are in good agreement with the experimental values, where

the experimental vaiues depict slightly higher pressures in both the p-C and the pay lines.

The second system to be calcuiated here is the dimethyietherImethanol system at

353.15 K, depicted in Figure 14.8. As mentioned before, although dimethylether is

predicted to be sub-critical at this temperature, no liquid-like volume is predicted at the

experimental pressures (1.96 to 22.3 bar). Here, the modei predicts a more ideal system
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in the p-C line. The curvature in the pay line at high dimethylether compositions is

reproduced, although the prediction does not correspond to data well at these

compositions.

The third system to be calculated with the use of experimental liquid volumes is

the dimethylether/ethanol system at 293.15 K, depicted in Figure 14.9. Here, the use of

the experimental liquid volume reproduces the p-C line very weil, while the pay line is

still reproduced weil. Successful use of the liquid volumes here is likely due to the

similarity in system temperature with the temperatures at which the liquid volume is

measured. The system of dimethyletherImethanol is at a higher temperature (353.15 K),

and thusly the experimental liquid volumes used may not correspond well to the liquid

volumes for the species at 353.15 K.
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14.5 Alcohol-Alkane Mixture Systems

The prediction of alcohol-aikane mixture systems is a goai of many mixture modeis,

since it offers a clear and common exampie of non-ideai behavior. It is also a goal to

understand the nature of such mixtures, since compounds in these two groups of

molecules are reguiarly found in the chemical industry, and their behaviors are used to

modei more complex biologicai, pharmaceutical and industriai systems.

The main problem of describing alcohol-alkane systems is the hydrogen-bonding

effects between alcohol molecules. Association effects arising from hydrogen bonding

are difficult to describe statistically. Models in the past have aliowed aggregation to

account for the iong-lived complexes in the liquid phase. In the COSMO-based modeis,

an entireiy separate correlation parameter is introduced solely in the attempt to describe

hydrogen bonding. By introducing such a fix, it suggests a limitation of a quasi-chemical

approach in handiing such systems.

An attempt is made to calcuiate the VLE behavior of the binary system 1-

propanolIhexane at 313.15 K, depicted in Figure 14.10. As with other systems involving

alkanes, the liquid volumes are utilized here. This VLE graph depicts predictions of

liquid-phase splitting, and therefore analysis of VLE behavior using this technique would

not be possible.

In the anaiysis of the solution to the quasi-chemical equations for the 1-

propanolIhexane system, the model variable that represents the behavior of the hydrogen

atoms, FH , increases an order of magnitude in the region of small concentrations of 1-

propanoi ( FHA = 0.0156 at C1 = 0.04 while FH = 0.1522 at C 1 = 0.002 ). This combined

with the value in pure 1-propanol (FHA = 0.0007 at C 1 =1) yields a large enough
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contribution to the residual activity within Equation (5.51) to give a large jump in the

pressure at low 1-propanol concentrations, depicted in Figure 14.10.

This phenomenon can be analyzed further by considering the definition of the

model variable FH . Equation (5.50) states the following relationship

where the local composition yHH reflects the number of hydrogen-hydrogen interactions

in the system. Considering the interaction energy between two hydrogen atoms (690.5

K), the interaction energy between a hydrogen atom and an oxygen atom (-2896 K) and

the number of interactions a hydrogen atom can take part in ( EH = 0.909 ), it is

conjectured that the quasi-chemical equations are predicting too many interactions
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between hydrogen atoms. A suggested solution at this point is to set the model variable

FHA = 0 , thus forcing the model to predict zero hydrogen-hydrogen interactions for the

pure or mixture systems at any composition.

The resuits of the fix stated above for the 1apropanolIhexane system at 313.15 K

is depicted in Figure 14.11. The VLE behavior depicted here is much more in line with

the experimental data. An azeotrope is depicted at low concentrations of 1-propanol near

the composition determined through experiment. The general shape of the p-C, pay

envelope also refiects that of the data. The model approaches the experimental data at

high 1apropanol concentrations for both the p-x and pays lines. The fix stated above has

taken the model from the compietely incorrect prediction from Figure 14.10 to the more

sensible result in Figure 14.11.
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The application of setting F H = 0 is also applied to the calculation of the VLE

behavior of ethanolIpentane at a near-critical temperature of 422.6 K, depicted in Figure

14.12. The model again predicts an azeotrope near the composition found in experiment.

The model also approaches the behavior of experimental data at high concentrations of

the alcohol, while underpredicting the pressures at low concentrations.

By forcing FH = 0 , no contributions from the hydrogen atoms are included in the

activity of the alcohol. This in turn reduces the pressure contribution from the alcohol in

Equation (14.3). Since the activity of the hydrogen atom is most significant at low

alcohol concentrations (suggested by the abnormally high pressures predictions in Figure

14.10), a significant pressure contribution from F HA would mostly be seen at these low
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concentrations. This may be why the system pressures are underpredicted on the p-C line

at low alcohol concentrations in Figures 14.11 and 14.12. The arbitrary value of rH = 0

is seen as an overcorrection to the model result. Since statisticai models always predict a

non-zero solution even though an effect is highiy uniikely, a more correct model

description through an extension of the quasi-chemical method would likely yield a smail,

non-zero result for FH  at these low concentrations.

14.6 Conclusions

The use of molecular characteristics and energetics from first principles offers a new

perspective on the statistical models used to predict fluid-phase behavior. In the past,

errors within the modeling technique could not be analyzed, since they would be masked

by the use of empirical parameters. Now that these characteristics are describable using

first principies, focus can be applied to anaiyzing the faults of the statisticai

methodologies.

The use of the quasi-chemical method for the fuil prediction of VLE behavior has

its shortcomings. The method depends on an EoS that is required to predict iiquid-like

volumes at the mixture system temperature and pressure. It aiso fails to predict the

proper number of interactions within alcohol/alkane systems, thus predicting phase

splitting where an azeotrope shouid exists. Fixes to these problems have been suggested

in this work, such as the use of experimental liquid volumes and the arbitrary observation

that L H = 0 in alcohoi/alkane mixtures. Now that these more specific probiems with the

statistical methods have been diagnosed, a more focused effort can be made to fix the

quasi-chemicai method used in fluid-phase property prediction.



CHAPTER 15

CONCLUSION

15.1 Summary of Contributions

The goal of this work is to create a general modei that uses molecular-level properties to

predict macroscopic fluid system properties. This motivates research in three areas:

molecular and functional group property calculation; applied intermolecular interaction

theory; and statistical thermodynamics of lattice-fluid systems. Research has been

conducted in these fieids, and contributions have been made to achieve an unbroken

algorithm toward the goai of the work.

Within the field of moiecular and functional group property calculation, the

contributions within this work focus on how the methods in computational chemistry can

be used in engineering applications. This work demonstrates that molecular-ievel

properties are attainabie using modest computational equipment. This has resulted in the

calculation of properties for a wide range of molecules and functional groups within the

molecules. The transferability assumption is analyzed using AIM computational results,

thus giving quantitative evidence of its impossibility. Novel AIM properties, such as the

exposed surface area and the polarizability of non-alkyl groups, are calculated for use in

this work.

Within the field of intermolecular interactions, the goal of finding a functional

group interaction model motivates the combination of rigorous theory with the AIM

properties. The extent of the electron density of molecuies and functional groups is used

to describe short-range repulsive effects. The AIM electrostatic properties are used in
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classical expressions to describe iong-range effects. These two contributions are

combined to form first-principles interaction potentials for smali molecules and

functional groups. The intermolecuiar potentiais allow for the prediction of second virial

coefficients for small molecules. The functional group interaction model yields

interaction energies between groups over all interaction ranges. These potentials are

comparabie to those used in moiecular dynamics simulations. The modei also predicts a

hydrogen-bonding interaction energy and distance in the water dimer system that is

comparable to experimental results.

Within the field of lattice-fluid theory, an all-encompassing fluid model is

developed that uses the available structural and energetic information from the fields

described above. A generalization of the Guggenheim statistical model for athermal

systems is derived, so as to utilize the rigorously calculated volumes and surface areas

from AIM theory. Local-composition concepts are resolved with vacancies on a lattice to

create a lattice-fluid modei that may be used in both pure fluid and mixture systems. A

closed-form engineering EoS is derived, where the fitting parameters in the equation

show physical significance. An excess Gibbs energy is caiculated for several ideal and

non-ideai mixture systems, and VLE behavior is predicted without the use of any

parameters correiated from VLE data.

15.2 Future Work

As with ali novei contributions to a research field, questions about assumptions arise as

the capabilities of the methods grow more rigorous. Future work within the three areas of

research will go a long way toward reaching the goal of a fully predictive fluid model.
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Future work in the field of molecular and functional group property calculation

involves creating a database of AIM properties and making such information available to

engineers. The use of higher ievei ab initio and DFT methods wili give molecular

properties that are more comparabie to experiment. With these resuits, AIM properties of

functional groups will reflect the improvement of the molecular calculations. These

properties can then be used in new group-contribution methods which are based on the

rigorous properties, likeiy aliowing for a more detailed description of macroscopic

properties with a more user-friendly method. To make the information more readily

accessible to engineers, a suite of programs can be created to calculate functional group

properties merely from the initial guess of the geometry of the molecule.

Future work in the field of intermolecular interactions involves approaching the

problem from a more theoreticai standpoint, as weii as vaiidation of the current

methodology. Severai expressions that describe the short-range contribution have been

presented, and application of the more theoretical expressions can likely improve the

modei. The use of Slater-type orbitals and p-type orbitais within the orbital overiap

models wili make the model reflect system behavior more rigorously. The inciusion of

quadrupole moment information wili improve the description of the long-range effects in

the intermolecular and functional group interaction models. A suite of programs can be

created that considers two molecules and calculates interaction energy curves and an

interaction matrix for ali the possible group interactions. These curves can also be

applied within molecular dynamics simulations in order to validate their effectiveness at

macroscopic property prediction.



270

Future work in the field of lattice-fluid theory involves assessment of the

limitations of the quasi-chemical approach and application of new statistics to alleviate

these problems. This work has aiready shown the inability of the statistics to accurately

predict criticai points and iiquid voiumes of pure fluids, and the distribution of interaction

numbers within nonideal mixture systems. More molecular effects can be included in the

model, such as non-nearest-neighbor interactions, proximity effects, and the inclusion of

a transiational partition function within lattice-fluids. A more reaiistic EoS can be used

within the generaiized Guggenheim statistics, such as the Carnahan-Stariing equation of

state for hard-spheres (Carnahan and Starling, 1969), as opposed to the modified ideai

gas law. Studies can be conducted into the approach taken for Ising models and

renormalization theory to account for criticai behavior. The results from the quasi-

chemical equations can be compared to excess Gibbs and excess enthalpy data to assess

further the capabilities of the predictive model.

Of great importance to the engineering community is the ease with which

information from fundamental studies are made avaiiable for use in engineering

applications. 0reat effort can be made to make disseminate the methods in this work

using software. This entire work is computation-oriented, and a program that takes an

engineer from a moiecular structure to macroscopic system properties is envisioned. This

would allow for the dissemination and, hopefully, successful use of the new

methodologies.



APPENDIX A

GUGGENHEIM STATISTICS
FOR A BINARY SYSTEM WITH VACANCIES

The statistics proposed by Guggenheim (1944a) attempt to determine the number of ways

an athermal, lattice-fluid system may be arranged. The method relates two approaches

that describe the Helmholtz energy of the system: through the partition function and

through the fundamental property relation. The original derivation considers a binary

mixture of polymer with monomers, and has been incorporated in numerous engineering

models of a lattice-fluid. Here, a generalization to the approach is taken, so as to include

vacancies in the lattice initialiy and to eliminate any assumption about the structure of the

molecules on the lattice. The result is a generalized function that reduces to past work.

A.1 The Gibbs Ensemble Approach

Assume the Gibbs partition function can be approximated by the maximum summand.

Therefore, for a binary system with vacancies

where f is the molecular partition function for species i . Considering an athermai

system, Prig' = 0 and
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Vacancies occur on the lattice, and it is assumed that the partition function of a vacant

lattice site, fo , is unity. Therefore, this term is included within the partition function

without effect on the expression

Here, an EOS for an athermal system must be used to relate the pressure to the

occupancy of the lattice. Consider a modified ideal gas EoS, where the hard-sphere

molecular volumes affect the pressure

where the total volume of the system is given by

Inserting these into Equation (A.4) gives

It is helpful to express this relationship in terms of the total number of lattice

sites Nt , the occupation fraction of the molecules on the lattice co , and the volume

fraction 0 of molecule 1 in the system where no vacancies exist. The definitions of these

variables are given by



This expression wili be revisited iater, after another expression for the total Gibbs energy

of the system is derived.

A.2 The Fundamental Property Relation Approach

Consider the fundamental property relation for the total 0ibbs energy of a binary system

Any changes in the thermodynamic variables of the system will be made isothermally.

Therefore
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Vacancies occur on the lattice, and the chemical potential, po  , within the athermal

system is assumed to be zero. Therefore, the term is included in the expression without

changing the differential. Also, rewriting the expression in dimensionless form yields

An EoS is necessary here to express the differential pressure and the total volume

of the system in terms of the occupancy of the lattice. Here too, the modified version of

the ideal gas EoS is used, Equation (A.5). The differential pressure given in terms of the

numbers of moiecuies is

Inserting this expression into Equation (A.17) and organizing by the differentials yields

Here, the variables within Equation (A.19) are to be changed to the variables of

Equations (A.8) through (A.10). The differentials of the numbers of vacancies and

molecules on the lattice, found using Equations (A.11) through (A.13), are given by



The remainder of the derivation is only concerned with changes in the overall occupancy

of the iattice co . Therefore, the other differential expressions are negiected, simplifying

the expression to

Here, let a, express the ratio of absolute activities to the molecuiar partition functions
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The reason for this will be apparent later, when this 0ibbs energy is compared with that

from the partition function approach. Inserting this into Equation (A.25) yields

A.3 Equating the Approaches

Next step is to consider the difference of the Gibbs energies, to apply limits to the

indefinite integrals in Equation (A.28). Consider the process going from a system of N,

lattice sites with no occupancy to the same size system with the desired occupancy a)

and volume fraction 0

For the partition function approach, plugging Equation (A.14) into Equation (A.29) yields
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A.4 The a Integrals

The concept of a, in the derivation of the Guggenheim statistics is that it represents the

ratio of probabilities of placing molecules on the lattice. The explanation of the quantity

is available within the original derivation of the statistics (Guggenheim, 1952).

In the numerator is the probability that a group of r ibsites is entireiy occupied by a

molecule of species 1. This is given by



278

= 1771 N o + 	 + r2N 2
	 (A.34)

where trim holds symmetry factors that describe the total number of ways a single

molecule of species 1 can occupy a given r1 group of sites. The denominator of the ratio

is the probability that those same r ibsites are completely unoccupied (occupied by

vacancies). This is given by

N° 	Eon No
Po = No +riBi + r2N2 EBB 0 + EiNi + z2N2

VI -1
(A.35) 

This probability is the product of finding one vacancy at the first of the r, lattice sites and

the probability of finding vacancies along each of the remainder of the rib—1sites. The

definition of al from Equation (A.26) is a ratio of these probabilities

B1 fl 	Zoo ;BI + r 2N2 r1-1= = v71= 
0 fo )

r No 	 z

	

Po 	 of 0

Similarly for a2

1.2-1Y 2 f2 	P2	 N2 Zoo Bo ± ;NI ± Z2 B2

a2 = 	 = = 172

	

(Yofo r PO 	 Bo 	 E N0 0

In the reduced coordinates, these expressions are found to be

(A.36)

(A.37)

(Bs, co, 0)	 rib(a)1— co° ) [
1 + 	

w°  +
o2 a) (1 	 (A.38)

r 1— w r2N 1—w

(A.39)

Here, it is convenient to define o, as the ratio of contacts between molecule i and a

vacant site. This is given by

r2 -1
00 1+ Doi 00+o2° (1 	0)1

a2 1 w 0) = tub r2 (1 — a)) L 	 rib1— co	r2 1— co



This differs from the originai expressions from Guggenheim (1944, 1952). The originai

expressions require a relationship between r, and o, namely

This reiationship will not be used in the present derivation, since here it is assumed that

the volume and surface area of a molecule can be found rigorously using other techniques.

A.5 Athermal Ways for the System

Returning back to Equation (A.33), the athermal ways of the system is now able to be

evaluated by using Equations (A.36) and (A.37). Algebraic manipulation is required to

achieve the final result. An intermediate result for Se th  is given by an expression found

just prior to converting natural logarithm functions back into factorials using Stirling's

approximation. This is given by
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Once the integral in the final line is evaluated and the expression is reverted back into

factorial form, the expression for the number of ways an athermai binary mixture with

vacancies can be arranged is found to be

It can be seen here that if Equation (A.41) were satisfied, then K within these expressions

must be unity. This applied to a system without vacancies results in the athermal ways

function in the previous Guggenheim derivations.



APPENDIX B

GENERALIZED QUASI-CHEMICAL APPROACH

The quasi-chemicai method is used within many modern engineering models of fluid-

phase behavior. Its derivation exists in many places, from the originating methods of

Guggenheim (1944b) through to the parallel derivation offered by the COSMO-based

methods (Lin and Sandler, 2002; Kiamt, et al., 2002). This method is rederived here,

utilizing the concepts of local composition and the notation of Knox and coworkers (1984,

1987). Vacancies are included on the lattice initially, and a variable substitution that

leads to the reduction of these equations to that of the COSMO-based methods is offered.

B.1 Model Equations

The equations for a lattice-fluid are written to determine the following model variables:

numbers and types of nearest-neighbor interactions Me ; the interaction distances

between nearest neighbors rid ; and the number of vacancies on the lattice AT  . Also, for

convenience of notation, let No = Mob  . Assume there are n different species in the

system, and there are m distinct types of functional groups within the molecules. All the

summations without bounds in the following derivation include vacancies with all the

moiecule and functional groups.

The total number of interactions a functionai group takes part in is related to the

interaction numbers by the relation
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For the entire system, let the total number of interactions of the system be represented by

I , given by

Also necessary in the quasi-chemical approach is the equaiity between interaction

numbers and interaction distances with those quantities with opposite indices. Therefore,

the following relationships must hoid

With these model equations and the partition function for the lattice-fluid, the

macroscopic system properties are definable through the model variables. The solution

method involves finding the most probable set of interaction numbers and interaction

distances.

B.2 Partition Function Approach

An acceptable assumption for systems far away from the critical region is that the

maximum of D with respect to W 1 and Vt  represents the entire summation.



The total volume and the total energy of the system are explicit in the model variables.

These relations are given by

where via is the volume of interaction and uk  is the energy of interaction evolved

between an interaction of groups k and 1 at a distance rid . The partition function now is

expressed through the modeling variables

The task now is to find the maximum of D 6, with respect to the model variabies.

Taking the naturai logarithm of Equation (B.6) and expanding

Here, define 77k/ as the enthalpy of interaction, a combination of the energy effects and

the volumetric effects

This simplifies Equation (B.11) to



B.3 Maximizing Conditions

The values of the model variables are found by finding the extrema within Equation

(B.14). The derivatives that must be evaluated are

This expression is usually referred to as the EoS, since the partial derivative of In n with

respect to No usually results in an expression explicit in system volume, thereby yielding

an equation that related p , T , and Ti s .

Equation (B.16) is dealt with in two parts. First, for the off-diagonal interactions,

where k <1
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(B.23)

285

in C2
0 —2 17 1700 17ok	 1701 (B.19)= ( a

am kBC kBC kBC	 kBCkl 	 T ,p,A4 ss , No , rkl

Next, for the diagonal terms, where

In L
0

k =1 = s

T ,p,M >NU

71s, 1700± 2 arks (B.20)= 
(a

am kBC kB C kB C

Equation (B.17) is also considered for off-diagonal and diagonal terms, similar to

the iast two derivatives. For the off-diagonal terms, only those where k > 0 is considered,

since it will be assumed that 7701 = 0 for all 1 (there are no energetic or volumetric

consequences in an interaction between two vacancies or a group and a vacancy).

Therefore, for 0 < k <1

u =
T

2M kl

I aoki ikBC)I
(B.21)

T ,p,rs,,NoN Br

[(31n0

ark,	 ,/
Orkl

Similarly for diagonal terms

[a in C2

MSS(

a(Iiss I 'CBI))
(B.22)U arcs arcs

T ,NUN B/ T ,p , rBl ,N0>MBr

Now the derivatives of the ways function L must be evaluated.

B.4 The Ways Function

It is assumed that SZ is the product of a naïve combinatorial formula and a

proportionality factor
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This relation is normalized to the number of ways an athermal system can be arranged.

The proportionality factor is found to be (Knox, et al., 1984; Knox, 1987)

Before evaluating the necessary derivatives with Equation (B.26), the expression

should be represented only in terms of the independent model variables. The derivation

henceforth assumes that the independent variables have the subscripts 0 < k S 1 . The

evaluations of the derivatives of In Q with respect to rid is straightforward, since it is

seen within Equation (B.25) that the ways function is independent of all rid . Therefore,

Equations (B.21) and (B.22) are easily computed, and wili be revisited later.

Writing the ways function in terms of the remaining independent variables is

somewhat difficult, and the necessary derivatives in Equation (B.19) and (B.20) are

found implicitiy. Start by rewriting the double summation within Equation (B.26) to give
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B.5 The Quasi-Chemical Equations in Reduced Variables

Now that the derivatives of In C2 have been found, the conditions where the maximum of

1-A is achieved can be summarized. Firstiy, the trivial case of the rid , Equations (B.21)

and (B.22), is considered. Since SIB is independent of interaction distance, these

expressions iead the conclusion that
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This relation is true for combinations of k 0 and 1 0 . It is also the case that equations

like Equation (B.44) are used to calculate the actual maximizing variables, and thus, the

solution to the quasi-chemicai equations.

It is at this point useful to concisely express the results of the derivations as a set

of non-linear expressions. The equations include the EoS, Equation (B.41), the relations

for interaction distances, Equation (B.40), the quasi-chemical reiations, Equation (B.44),

and the fundamental model relations, Equations (B.1) through (B.4).

Within these expressions, define a set of dimensionless relations that simplify the

derivation results even further. Let the iocal composition of 1 groups around k groups

be defined as



This system of equations is the generalization of the quasi-chemical equations,

where in the past vacancies were not included on the lattice, and interaction volumes

always vanished, leaving i7kr = Ski

A significant simplification of the model equations can be made to relate this

model to that employed by the COSMO-based methods. Define F a as a quantity related

to the activity of functional group k through the relation

Using this relation, Equations (B.47) through (B.50) reduce significantly, to the system

described by

This latter result is given for COSMO-based models, while the EoS is necessary to

describe vacancies on the lattice.



APPENDIX C

INPUT FILES FOR GAUSSIAN 98W

C.1 Full Input File

The following input file contains ali five sections outlined in Section 6.1: header section,

route section, title, Z-matrix and the wavefunction file name. A geometry optimization is

performed on ethanamide (CH 3CONH 2 ) , and a .wfn file is given as an output. If a .wfn

file is not desired, the keyword "output=wfn" and the final two lines of the input file may

be omitted.
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ethanamide.wfn

C.2 Input File using .chk Checkpoint File

The following input file utilizes an already existing checkpoint file to read the title,

charge, multiplicity and Z-matrix for the moiecuie, outlined in Section 6.4. Note the use

of the "geom=allcheck" and "guess=read" keywords listed in the route section. A singie

point energy calculation is performed on ethanamide (CH 3CONH 2 ) , and a .wfn file is

given as an output. If a .wfn file is not desired, the keyword "output=wfn" and the final

two lines of the input fiie may be omitted.

C.3 Output File from Gaussian 98W

The output file from 0aussian 98W iisted below includes the following: common

beginning lines; coordinates of the nuciei; statement of method used in analysis of the

electron density; the electrostatic properties of the molecule; and the AIM properties.

The listing of AIM properties includes: location of attractors; location of critical points;

electrostatic properties; and energetic properties. Each of the sections described here is

separated by a `+ + + +' line below.
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APPENDIX D

WAVEFUNCTION OUTPUT

A wavefunction fiie for water at the MP2/3-21G level and basis set is presented.

The .wfn file yields the characteristics of the wavefunction approximation, and when

caiculated properly, wiil give the computed eiectron density at any point reiative to the

position of the nuclei. The electron density at a point is found through the summation of

the electron density contributed by each orbital le° multiplied by the occupation of that

orbitai v

where limo is the total number of orbitals used in the calculation, and is not necessarily

equal to half the number of electrons (to yield two electrons within each orbital). Here,

the orbitals used with the calculation are molecular orbitals (MOs), which have

contributions centered on all nuclei within the system. Also, the occupation number v of

an orbitai is two for HF calcuiations and not necessarily two for methods based on higher

theory, since more states are available for electrons to inhabit in methods that include

electron correlation.

The MOs are further described by GTFs and with number given by the basis set

chosen for caiculation. A given MO consists of npRIA4 primitives of the form of a GTF

which, for AIM calculations, can take the form of s-type orbitals ( i + j + k = 0 ), p-type
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APPENDIX E

TABLES OF MOLECULAR PROPERTIES

The table of molecuiar properties contains data for dipole moments ("Dipole Moments",

2004), molecular polarizabilities (Miller, 2004), and ionization potentials (Lias, 2004).
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Table E.1 Molecular Properties: Alkanes

molecule name CAS number
(D) a (nm3) I (eV)

OPT SPE exp SPE exp caic

methane 74-82-8 2.43 2.593 12.61

ethane 74-84-0 4.18 4.47 11.56

propane 74-98-6 0.082 0.091 0.084 5.96 6.29 10.95

butane 106-97-8 7.77 8.2 10.53

g-butane 106-97-8-conf 0.086 0.096 7.69

isobutane 75-28-5 0.129 0.144 0.132 7.76 8.14 (10.57)

pentane 109-66-0 0.081 0.090 9.57 9.99 10.28

g-pentane 109-66-0-conf 0.062 0.067 9.51

isopentane 78-78-4 0.093 0.104 0.13 9.50 10.32

neopentane 463-82-1 9.56 10.2 (10.2)

hexane 110-54-3 11.44 11.9 10.13

g-hexane 110-54-3-conf 0.085 0.092 11.31

2-methylpentane 107-83-5 0.132 0.147 0.1 11.33 (10.12)

3-methylpentane 96-14-0 0.083 0.092 11.26 (10.08)

2,2-dimethylbutane 75-83-2 0.054 0.063 11.25 (10.06)

2,3-dimethylbutane 79-29-8 0.000 0.000 0.2 11.23 (10.02)



Table E.2 Molecular Properties: Alkenes

molecule name CAS number
,u (D) a (nm3 ) I (eV)

OPT SPE exp SPE exp caic

ethene 74-85-1 4.02 4.252 10.5138

propene 115-07-1 0.410 0.370 0.366 5.88 6.26 9.86

1-butene 106-98-9 0.452 0.373 0.438 7.73 8.27 9.55

trans-2-butene 624-64-6 0.000 0.000 7.79 8.49 9.10.

cis-2-butene 590-18-1 0.246 0.260 0.253 7.67 9.11

2-methyipropene 115-11-7 0.592 0.502 0.503 7.70 8.29 9.239

1-pentene 109-67-1 0.433 0.382 0.4 9.58 9.65 9.51

trans-2-pentene 646-04-8 0.042 0.050 9.63 9.84 9.04

cis-2-pentene 627-20-3 0.293 9.52 9.84 9.01

2-methyl-2-butene 513-35-9 0.197 9.54 8.69

3-methyl-I -butene 563-45-1 0.318 0.32 9.55 9.52

1-hexene 592-41-6 0.501 0.420 0.4 11.43 11.65 9.44



Table E.3 Molecular Properties: Amines

molecule name CAS number
p (D) a (nm3 ) I (eV)

OPT SPE exp SPE exp caic

methanamine 74-89-5 1.541 1.325 1.31 3.79 4.01 (8.80)

ethanamine 75-04-7 1.533 1.323 1.22 5.60 7.10. 8.86

t-l-propanamine 107-10-8 1.600 1.406 1.17 7.39 9.20. 7.7 (8.78)

g-1-propananmine 107-10-8-conf 1.454 1.283 7.31

2-propanamine 75-31-0 1.438 1.293 1.19 7.41 7.77 (8.72)

t-l-butanamine 109-73-9 1.572 1.378 1.3 9.20 13.5 8.7

g- i -butanamine 109-73-9-conf 1.417 1.243 9.12

butanamine 13952-84-6 1.417 1.238 [1.28] 9.13 8.46

2-methyl-I -propanamine 78-81-9 1.429 1.266 1.2 9.11 8.50.

2-methyl-2-propanamine 75-64-9 1.370 1.222 [1.29] 9.17 8.46

1-pntanamine 100-58-7 1.626 1.439 11.06



Table E.4 Molecular Properties: Diamines

molecule name CAS number
,u (D) a (nm3 ) I (eV)

OPT SPE exp SPE exp caic

dimethylamine 124-40-3 1.228 1.067 1.01 5.60 6.37 8.24

methylethylamine 624-78-2 1.162 1.018 7.45

diethylamine 109-89-7 1.100 0.974 0.92 9.27 10.2 9.61 7.85

methylisopropanamine 627-35-0 1.118 0.981 9.22

methylisopropanamine 4747-21-1 1.101 0.977 9.13

Table E.5 Molecular Properties: Triamines

molecule name CAS number
,u (D) a (nm3 ) I (eV)

OPT SPE exp SPE exp calc

trimethylamine 75-50-3 0.849 0.655 0.612 7.49 8.15 7.82

n,n-dimethyl-ethylamine 598-56-1 0.798 0.616 9.35

methyldiethylamine 616-39-7 0.753 0.582 11.10

Table E.6 Molecular Properties: Nitriles

molecule name CAS number
,u (D) a (nm3 ) I (eV)

OPT SPE exp SPE exp caic

ethanenitrile 75-05-8 4.323 3.936 3.92519 4.31 4.4 4.48 12.2

propanenitrile 107-12-0 4.438 4.029 4.05 6.15 6.7 6.24 11.84

butanenitrile 109-74-0 4.559 4.153 3.91 7.94 8.4 (11.2)

2-methyipropanenitrile 78-82-0 4.481 4.042 4.29 7.88 8.05 (11.3)



Table E.7 Molecular Properties: Alcohols

molecule name CAS number
p (D) a (nm3 ) I (eV)

OPT SPE exp SPE exp caic

methanol 67-56-1 2.062 1.705 1.7 3.10 3.23 3.32 10.85

ethanol 64-17-5 1.928 1.619 1.69 4.89 5.41 5.11 10.43

g-1-propanol 71-23-8 1.821 1.534 1.58 6.64 6.74 10.18
t-l-propanol 71-23-8-conf 1.820 1.528 1.55 6.68

2-propanol 67-63-0 1.938 1.669 1.58 6.67 7.61 6.97 10.17
g-l-butanol 71-36-3 1.806 1.521 1.66 8.45 8.88 9.99
t-1-butanol 71-36-3-conf 1.874 1.595 8.45

2-butanol 78-92-2 1.970 1.710 1.7 8.41 9.88

2-methyl-1-propanol 78-83-1 1.720 1.446 1.64 8.43 8.92 10.02

2-methyl-2-propanol 75-65-0 1.880 1.634 1.7 8.44 9.90.
g-l-pentanol 71-41-0 1.797 1.515 1.7 10.26 (10.00)
t-1-pentanol 71-41-0-conf 1.789 1.505 10.34

2-methyl-2-butanol 75-85-4 1.782 1.541 1.9 10.14 (9.8)

3-methyl-1-butanol 123-51-3 1.732 1.448 10.19

1,2 propanediol 57-55-6 3.083 2.687 [2.25] 7.32

1,3 propanediol 504-63-2 2.647 2.255 [2.55] 7.35

1-methoxy-2-propanol 107-98-2 2.823 2.397 2.36 9.20



Table E.8 Molecular Properties: Ethers

molecule name CAS number

methanal 50-00-0

ethanal 75-07-0

propanal 123-38-6

butanal 123-72-8

2-methylpropanal 78-84-2

p (D) a (nm) I (eV)
OPT SPE exp SPE exp caic

1.693

1.571

1.463

1.484

1.355

1.261

1.175

1.183

1.30.

1.17

1.15

1.107

4.91

6.80

8.59

8.54

5.29

7.93

8.73

8.86

10.025

9.72

9.51

9.41

1.582 1.311 1.247 8.48 9.45

1.554 1.311 10.15 (9.24)

1.467 1.242 12.00

p (D) nma () I (eV)
OPT SPE exp SPE exp caic

3.061 2.430 2.332 2.57 2.8 2.45 10.88

3.450 2.834 2.75 4.43 4.59 10.229

3.301 2.711 2.72 6.13 6.5 9.96

3.218 2.635 2.72 7.94 8.2 9.84

3.383 2.787 2.69 7.90 9.71

molecule name 	 CAS number

dimethyl ether 	 115-10-6

methyl ethyl ether 	 540-67-0

diethyl ether 	 60-29-7

methyl propyl ether 	 557-17-5

methyl isopropyl ether 	 598-53-8

methyl tert-butyl ether 	 1634-04-4

ethyl tert-butyl ether 	 637-92-3

Table E.9 Molecular Properties: Aldehydes



molecule name	 CAS number
OPT

propanone	 67-64-1	 3.621

butanone	 78-93-3	 3.445

2-pentanone	 107-87-9	 3.336

3-pentanone	 96-22-0	 3.275

3-methyl-2-butanone	 563-80-4	 3.473

methyl vinyl ketone	 78-94-3	 3.324

Table E.11 Molecular Properties: Carboxylic Acids

molecule name CAS number
OPT

methanoic 64-18-6 1.733

ethanoic 64-19-7 2.038

propanoic 79-09-4 1.894

butanoic 107-92-6 1.824

2-methyipropanoic 79-31-2 1.986

Table E.10 Molecular Properties: Ketones
p (D) a (nrn3 ) I (eV)
SPE exp SPE exp calc

3.009 2.88 6.18 6.33 6.39 9.703

2.852 2.779 7.91 8.13 9.52

2.745 2.7 9.71 9.93 9.38

2.702 2.8 9.61 9.93 9.31

2.874 2.5 9.62 9.30.

2.769 8.00

p (D) a (nm3 ) I (eV)
SPE exp SPE exp calc

1.465 1.425 3.32 3.4 11.33

1.690 1.7 5.05 5.1 10.65

1.551 1.75 6.78 6.9 10.525

1.477 1.5 8.59 8.58 10.17

1.634 1.3 8.54 10.33



Table E.12 Molecular Properties: Esters

CAS number
p (D) a (nm3 ) I (eV)

OPT SPE exp SPE exp caic

107-31-3

79-20-9

109-94-4

554-12-1

2.061

2.097

2.289

1.931

1.853

1.808

2.105

1.653

1.77

1.72

1.93

1.7

5.06

6.83

6.90

8.59

6.94

8.01

5.05

6.81

6.88

8.97

10.835

10.25

10.61

10.15

141-78-6 2.193 1.943 1.78 8.69 9.7 8.62 10.01

110-74-7 2.360 2.179 1.9 8.65 10.52

109-60-4 2.321 2.048 [1.78] 10.42 (9.92)

96-33-3 1.695 1.517 [1.77] 8.73 (9.9)

108-05-4 2.068 1.764 [1.79] 8.95 9.19

623-42-7 1.842 1.579 10.43 10.41 (10.07)

105-37-3 2.078 1.817 [1.74] 10.41 10.41 (10.00)

592-84-7 2.361 2.181 [2.03] 10.49 10.52

molecule name

methyl methanoate

methyl ethanoate

ethyl methanoate

methyl propanoate

ethyl ethanoate

propyl methanoate

propyl ethanoate

methyl acrylate

vinyl ethanoate

methyl butanoate

ethyl propanoate

butyl methanoate



Table E.13 Molecular Properties: Fluorides

molecule name CAS number i (D) a (nm3 ) I (eV)
OPT SPE exp SPE exp caic

fluoromethane 593-53-3 2.351 1.951 1.858 2.45 2.97 12.47

fluoroethane 353-36-6 2.403 2.051 1.937 4.23 4.96 (11.78)

g-l-fluoropropane 460-13-9 2.307 1.974 1.9 5.97 (11.3)

t-1-fluoropropane 460-13-9-conf 2.450 2.112 2.05 5.98

2-fluoropropane 420-26-8 2.397 2.069 1.958 5.98 (11.08)

g-l-fluorobutane 2366-52-1 2.246 1.913 7.76
t-1-fluorobutane 2366-52-l-conf 2.523 2.188 7.75

2-fluorobutane 2.294 1.979 7.74

2-methyl-l-fluoropropane 2.301 1.971 7.72

2-methyl-2-fluoropropane 353-61-7 2.368 2.052 7.74



Table E.14 Molecular Properties: Amides

molecule name CAS number
p (D) a (nm 3 ) I (eV)

OPT SPE exp SPE exp caic

methanamide 75-12-7 4.451 3.895 3.73 4.15 4.2 4.08 10.16

ethanamide 60-35-5 4.402 3.820 3.68 5.85 5.67 9.65

propanamide 79-05-0 4.262 3.685 7.59

butanamide 541-35-5 4.085 3.542 9.32

2-methyipropanamide 563-83-7 4.183 3.656 9.35

Table E.15 Molecular Properties: Nitros

molecule name CAS number
0 (D) a (nm3 ) I (eV)

OPT SPE exp SPE exp caic

nitromethane 75-52-5 4.388 3.505 3.46 4.83 7.37 11.08

nitroethane 79-24-3 4.569 3.689 3.23 6.56 9.63 10.88

1-nitropropane 108-03-2 4.516 3.670 3.66 8.25 8.5 (10.81)

2-nitropropane 79-46-9 4.653 3.768 3.73 8.27 (10.71)



Table E.16 Molecular Properties: Inorganics

molecule name CAS number
p (D) a (nm3 ) I (eV)

OPT SPE exp SPE exp calc
carbon monoxide 630-08-0 0.438 0.243 0.1098 1.96 1.95 14.014

carbon dioxide 124-38-9 2.64 2.911 13.773

hydrogen fluoride 7664-39-3 2.088 1.818 1.826178 0.74 0.8 16.044

fluorine 7782-41-4 1.08 1.38 15.697

molecular hydrogen 1333-74-0 0.75 0.8059 15.42593

water 7732-18-5 2.276 1.857 1.8546 1.37 1.45 12.6206

ammonia 7664-41-7 1.813 1.468 1.4718 2.05 2.81 10.070.

nitrogen 7727-37-9 1.73 1.7403 15.5808

nitrous oxide 10024-97-2 0.594 0.125 0.16083 2.97 3.03 12.886

neon 7440-01-9 0.30 21.56454

molecular oxygen 7782-44-7 1.31 1.5812 12.0692

hydrogen cyanide 74-90-8 3.342 3.017 2.985188 2.47 2.59 13.60.
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APPENDIX G

ATOMS IN MOLECULES PROPERTIES FOR FUNCTIONAL GROUPS

All quantities in the tables are given in atomic units. the conversion factors are as

follows:

The superscripts on values or functional group definitions stand for the following:

tr denotes value found using assumption of transferability

+ denotes a value determined by the summation of atoms within the group

y denotes value partly determined through symmetry

316



name a V A r,„g

(1) C 6 0.136 -37.8100 6.0E-06 0.000 5.7 78.20 34.48 4.413tt

(2) H 1 -0.034 -0.6259 -1.7E-06 -0.138 2.8 52.35 44.70 2.749

(3) H 1 -0.034 -0.6259 -1.9E-06 -0.138 2.6 52.35 44.70 2.749

(4) H 1 -0.034 -0.6259 -1.8E-06 -0.138 2.6 52.35 44.70 2.749

(5) H 1 -0.034 -0.6259 -1.7E-06 -0.138 2.6 52.35 44.71 2.749

(1) CH 3 9 0.000 -39.7259 -8.3E-07 -0.274 14.1 222.29 148.61 4.116

(2) CH 3 Y 9 0.000 -39.7259 -8.3E-07 -0.274 14.1 222.29 148.61 4.116

(1) CH, 9 -0.015 -39.7344 2.7E-06 -0.272 14.2 222.11 141.38 4.163

(2) CH 2 8 0.030 -39.1224 2.6E-04 -0.322 12.0 160.47 91.20 4.187

(3) CH 3 Y 9 -0.015 -39.7344 2.7E-06 -0.272 14.2 222.11 141.38 4.163

(1) CH 3 9 -0.013 -39.7285 2.1E-06 -0.274 14.3 222.10 141.48 4.170

(2)CH 8 0.014 -39.1370 5.9E-04 -0.322 11.3 159.59 84.89 4.249

(3) CH 2 Y 8 0.014 -39.1370 5.9E-04 -0.322 11.3 159.59 84.89 4.249

(4) CH 3 Y 9 -0.013 -39.7285 2.1E-06 -0.274 14.3 222.10 141.48 4.170

methane
74-82-8

propane
74-98-6

butane (trans)
106-97-8

ethane
74-84-0

Table G.1 AIM Properties for Atoms and Functional Groups: Alkanes



Table G.1 (Continued)
name Z 9 E L Ft a V A ra

(1) CH, 9 -0.015 -39.7326 -7.6E-05 -0.276 12.6 220.01 139.28 4.190

(2) CH 2 8 0.015 -39.1312 1.1E-06 -0.313 9.2 159.85 94.68 4.232

(3) CH 2 8 0.015 -39.1312 -4.9E-07 -0.313 12.1 159.86 94.64 4.232

(4) CH, 9 -0.015 -39.7326 -7.6E-05 -0.276 13.5 220.01 139.28 4.190

(1) CH, 9 -0.024 -39.7444 8.2E-06 -0.276 14.5 220.92 137.34 4.216

(2) CH 7 0.072 -38.4974 4.0E-04 -0.271 8.4 99.41 41.18 4.323

(3) CH, Y 9 -0.024 -39.7444 8.2E-06 -0.276 14.5 220.92 137.34 4.216

(4)CHI' ' 9 -0.024 -39.7444 8.2E-06 -0.276 14.5 220.92 137.34 4.216

(1) CH, 9 -0.012 -39.7258 6.3E-07 -0.275 14.4 222.13 141.07 4.164

(2) CH 2 8 0.014 -39.1331 4.1E-04 -0.320 11.9 159.62 83.05 4.236

(3) CH 2 8 -0.002 -39.1534 4.3E-04 -0.319 11.9 158.82 75.21 4.294

(4) CH 2 Y 8 0.014 -39.1331 4.1E-04 -0.320 11.9 159.62 83.05 4.236

(5) CH  Y 9 -0.012 -39.7258 6.3E-07 -0.275 14.4 222.13 141.07 4.164

(1) CH I 9 -0.016 -39.7301 -1.0E-03 -0.280 13.0 219.93 153.46 4.235

(2) CH 2 8 0.011 -39.1261 -5.6E-03 -0.296 11.6 160.55 97.93 4.261

(3) CH 2 8 -0.006 -39.1462 -5.6E-03 -0.292 12.1 159.71 82.89 4.313

(4) CH 2 8 0.007 -39.1357 -4.8E-03 -0.335 13.0 158.33 103.03 4.398

(5) CH 9 -0.012 -39.7253 2.1E-06 -0.276 14.8 221.99 144.54 4.183

pentane (trans)
109-66-0

g-pentane (gauche)
109-66-0-conf

octane (gauche)
106-97-8-conf

isooctane

75-28-5



Table G.1 (Continued)
name V A r,„,g

(1) CH, 9 -0.022 -39.7264 -8.6E-03 -0.290 16.5 221.87 168.35 4.278
(2) CH I 8 -0.001 -39.1428 -4.6E-03 -0.290 12.8 159.44 82.29 4.309
(3) CH 7 0.053 -38.5062 -4.7E-03 -0.271 8.8 99.56 50.62 4.369
(4) CH, 9 -0.024 -39.7419 7.2E-06 -0.278 14.7 220.32 132.41 4.215

(5) CH, 9 -0.028 -39.7438 -3.7E-03 -0.286 12.9 218.74 150.53 4.275

(1) CH, 9 -0.028 -39.7528 1.3E-05 -0.283 14.1 218.78 123.60 4.225
(2) C 6 0.115 -37.8582 2.2E-03 0.000 8.1 40.84 0.00 5.014

(3)CHI' ' 9 -0.028 -39.7528 1.3E-05 -0.283 14.1 218.78 123.60 4.225
(4)CHIC'' 9 -0.028 -39.7528 1.3E-05 -0.283 14.1 218.78 123.60 4.225
(5) CH, y 9 -0.028 -39.7528 1.3E-05 -0.283 14.1 218.78 123.60 4.225

(1) CH I 9 -0.013 -39.7246 1.8E-06 0.275 14.5 222.11 141.57 4.170
(2) CH I 8 0.015 -39.1310 6.0E-04 0.321 11.9 159.60 82.48 4.250
(3)CHI 8 -0.002 -39.1504 6.5E-04 0.319 11.7 158.63 76.00 4.302
(4) CH I Y 8 -0.002 -39.1504 6.5E-04 0.319 11.7 158.63 76.00 4.302
(5) CH I ' ' 8 0.015 -39.1310 6.0E-04 0.321 11.9 159.60 82.48 4.250
(6) CHIC'' 9 -0.013 -39.7246 1.8E-06 0.275 14.5 222.11 141.57 4.170

(1) CH, 9 -0.017 -39.7287 -1.8E-03 -0.280 17.2 219.93 303.03 4.479
(2) CH I 8 0.014 -39.1246 -3.3E-03 -0.304 12.2 160.13 87.58 4.260
(3) CH 2 8 -0.005 -39.1433 -5.2E-03 -0.294 11.4 159.52 79.19 4.314
(4) CH 2 8 -0.006 -39.1537 -2.2E-03 -0.321 13.6 156.76 98.43 4.478
(5) CH I 8 0.015 -39.1304 -2.1E-04 -0.319 11.9 159.49 85.55 4.275
(6) CHIC 9 -0.013 -39.7240 2.9E-06 -0.275 13.2 222.15 143.43 4.180

hexane (trans)
110-54-3

hexane (gauche)
110-54-3-conf

isopentane
78-78-4

neopentane
463-82-1



Table G.1 (Continued)
name V A rave

(1) CHIC 9 -0.011 -39.7231 5.5E-07 -0.277 16.3 221.85 144.31 4.182

(2) CH I 8 0.008 -39.1331 -4.4E-03 -0.332 17.7 157.90 77.54 4.285

(3) CH 2 8 -0.019 -39.1601 -6.4E-03 -0.283 12.7 158.89 75.28 4.377
(4) CH 7 0.051 -38.5029 -5.9E-03 -0.273 13.5 100.25 45.05 4.374
(5) CHIC 9 -0.023 -39.7402 4.2E-06 -0.279 16.9 220.38 137.36 4.218

(6) CH, 9 -0.023 -39.7440 1.3E-03 -0.281 15.2 217.78 126.46 4.223

(1) CHIC 9 -0.037 -39.7521 -6.9E-03 -0.298 13.9 217.50 140.00h. 4.356 tt

(2) C 6 0.099 -37.8618 -2.4E-03 0.041 4.7 41.94 0.00 4.781
(3) CH, 9 -0.037 -39.7521 -6.9E-03 -0.298 14.5tr 217.49 140.49 4.356

(4) CH, 9 -0.030 -39.7532 1.6E-05 -0.288 14.5tr 217.77 125.35 4.255
(5) CH I 8 -0.004 -39.1492 -1.2E-03 -0.295 9.5 156.51 72.58 4.337
(6) CH, 9 -0.013 -39.7285 -9.7E-04 -0.284 14.5tr 217.22 140.00tr 4.356tt

2-methylpentane
107-83-5 

2,2-dimethylbutane
75-83-2 



name E L a V A r„„g

(1) CH I 8 0.000 -39.1462 -3.1E-05 -0.198 13.6 199.8 133.5 4.025

(2) CH I Y 8 0.000 -39.1462 -3.1E-05 -0.198 13.6 199.8 133.5 4.025

(1) CH I 8 -0.031 -39.1473 7.2E-06 -0.225 14.1 201.96 132.23 4.049

(2) CH 7 -0.011 -38.5577 -3.0E-04 -0.194 11.3 136.31 75.09 4.046

(3) CHIC 9 0.042 -39.7272 2.3E-06 -0.266 14.2 220.70 144.06 4.131

(1) CH I 8 -0.033 -39.1434 9.2E-06 -0.219 14.3 202.14 132.24 4.047

(2) CH 7 -0.023 -38.5642 1.1E-04 -0.207 11.3 135.64 67.84 4.084

(3) CH I 8 0.052 -39.1269 -9.3E-04 -0.287 11.9 159.74 90.42 4.207

(4) CHIC 9 0.002 -39.7346 -2.0E-06 -0.271 14.2 220.80 142.81 4.161

(1) CH, 9 0.034 -39.7193 -2.9E-08 -0.276 14.5 221.18 144.35 4.138

(2) CH 7 -0.034 -38.5669 2.4E-04 -0.215 11.6 137.15 71.54 4.077

(3) CH Y 7 -0.034 -38.5669 2.4E-04 -0.215 11.6 137.15 71.54 4.077

(4)CHIC  Y 9 0.034 -39.7193 -2.9E-08 -0.276 14.5 221.18 144.35 4.138

ethene
74-85-1  

propene
115-07-1

1-octene
106-98-9

trans-2-butene
624-64-6

Table G.2 AIM Properties for Atoms and Functional Groups: Alkenes



Table G.2 (Continued)
name V A rag

(1) CH I 8 -0.051 -39.1524 1.8E-05 -0.253 14.8 202.52 125.99 4.127

(2) C 6 0.002 -37.9560 1.2E-03 -0.045 9.4 72.66 18.37 4.011

(3) CH I 9 0.025 -39.7326 7.7E-06 -0.268 14.0 220.32 137.14 4.154

(4) CHIC + 9 0.025 -39.7326 7.7E-06 -0.268 14.0 220.32 137.14 4.154

(1) CH 2 8 -0.032 -39.1349 3.7E-06 -0.223 14.5 202.09 132.06 4.051

(2) CH 7 -0.023 -38.5623 9.7E-05 -0.197 11.7 135.15 69.23 4.100

(3) CH I 8 0.032 -39.1471 -1.4E-04 -0.296 12.0 158.49 80.41 4.278

(4) CH I 8 0.028 -39.1341 -7.0E-05 -0.309 12.0 159.43 96.31 4.258

(5) CH I 9 -0.007 -39.7327 1.9E-06 -0.272 14.3 221.63 141.51 4.174

(1) CH I 9 0.035 -39.7142 2.4E-07 -0.276 14.5 221.19 144.17 4.138

(2) CH 7 -0.035 -38.5621 -2.1E-05 -0.211 11.9 137.22 70.52 4.104

(3) CH 7 -0.046 -38.5800 -9.6E-06 -0.215 11.7 135.89 65.82 4.151

(4) CH, 8 0.046 -39.1268 -6.3E-06 -0.306 12.4 159.40 86.42 4.217

(5) CH I 9 0.000 -39.7281 -2.7E-06 -0.274 14.6 222.06 141.77 4.166

2-methyipropene
115-11-7

1-pentene
109-67-1

trans-2-pentene
646-04-8



Table G.2 (Continued)
name Z 9 E L 11 a V A rag

(1) CH I 8 -0.032 -39.1331 3.2E-06 -0.223 14.2 202.28 131.52 4.102

(2) CH 7 -0.032 -38.5797 -1.4E-05 -0.196 11.4 133.20 59.85 4.231

(3) CH 3 9 -0.005 -39.7402 -2.2E-06 -0.273 14.5 220.52 133.70 4.202

(4) CH 7 0.075 -38.5162 4.0E-04 -0.254 9.8 98.79 38.19 4.349

(5) CHIC''
9 -0.005 -39.7402 -2.2E-06 -0.273 14.5 220.51 134.42 4.202

(1) CH 2 8 -0.032 -39.1358 8.3E-06 -0.220 14.2 202.33 133.40 4.048

(2) CH 7 -0.022 -38.5542 -9.0E-05 -0.205 11.3 135.61 68.01 4.084

(3) CH I 8 0.036 -39.1371 -1.7E-03 -0.282 11.9 159.01 79.64 4.253

(4) CH 2 8 0.008 -39.1533 -3.8E-04 -0.314 12.0 158.00 76.12 4.293

(5) CH 2 8 0.016 -39.1374 -7.9E-04 -0.316 12.3 159.49 83.08 4.247

(6) CH I 9 -0.009 -39.7304 2.4E-06 -0.273 14.8 221.78 141.82 4.168

3-methyl- 1 -butene
563-45-1 

1-hexene
592-41-6 



name Z 9 E L a V A ravg

(1) CH I 9 0.372 -39.5514 -3.8E-06 -0.697 13.2 212.55 148.26 4.113

(2) NH I 9 -0.372 -55.9255 6.7E-06 0.595 10.6 t 190.13 131.35 3.896

N 7 -1.160 -55.0302 6.5E-05 -0.234 7.6 126.08 70.70 3.778

H 1 0.380 -0.4646 2.5E-04 -0.188 1.5t 31.83 29.78 2.553

H Y 1 0.380 -0.4646 2.5E-04 -0.188 1.5 t1 31.83 29.78 2.553

(1) CH I 9 -0.026 -39.7669 2.3E-07 -0.248 14.4 222.95 144.40 4.168

(2) CH 2 8 0.409 -38.9298 -4.5E-04 -0.601 10.8 151.26 103.46 4.173

(3) NH I 9 -0.383 -55.9210 9.4E-06 0.589 12.6+ 189.64 123.51 3.914

N 7 -1.164 -55.0261 7.1E-05 -0.235 9.6 124.34 67.51 3.778

14 1 0.391 -0.4475 -1.7E-05 -0.220 1.5 32.27 28.84 2.565

H ' ' 1 0.391 -0.4475 -1.7E-05 -0.220 1.5 32.27 28.84 2.565

(1) CH I 9 -0.008 -39.7376 3.1E-06 -0.266 14.8 221.65 141.81 4.166

(2) CH 2 8 -0.003 -39.1686 -5.0E-04 -0.312 13.6 160.50 84.66 4.247

(3) CH I 8 0.393 -38.9411 -3.6E-04 -0.604 10.9 150.45 94.83 4.218

(4) NH I 9 -0.383 -55.9107 9.2E-06 0.590 11.9+ 189.60 124.18 3.915

N 7 -1.164 -55.0156 6.5E-05 -0.235 8.9 124.35 69.12 3.783

H 1 0.384 -0.4556 -2.2E-05 -0.205 1.5t 32.34 28.68 2.564

H Y 1 0.384 -0.4556 8.4E-05 -0.205 1 .5tr 32.34 28.68 2.564

(1) CH I 9 0.008 -39.7361 -5.5E-05 -0.301 13.7 219.31 137.91 4.179

(2) CH I 8 0.015 -39.1534 -1.5E-04 -0.315 12.0 159.64 90.97 4.255

(3) CHIC 8 0.357 -38.9518 -6.4E-05 -0.666 11.5 153.44 87.34 4.239

(4) NH 2 9 -0.379 -55.9132 -2.0E-05 0.569 12.1 + 186.20 118.04 3.949

N 7 -1.161 -55.0170 3.0E-05 -0.226 8.9 121.63 60.10 3.807

H 1 0.389 -0.4487 -2.2E-05 -0.220 1.5 32.48 28.64 2.566

H 1 0.393 -0.4475 -1.5E-05 -0.218 1.7 31.83 29.90 2.569 Be.)
N
.P.

methanamine
74-89-5

ethanamine
75-04-7

1-propanamine (trans)
107-10-8

1-propanamine
(gauche)

107-10-8-conf

Table G.3 AIM Properties for Atoms and Functional Groups: Amines



name Z q E L it a V A rag

(1) CH I 9 0.000 -39.7570 9.1E-06 -0.279 14.0 219.07 133.32 4.182

(2) CH 7 0.385 -38.3173 -2.5E-03 -0.596 9.6 96.17 53.3 Oar 4.292 t1

(3) CH I 9 0.000 -39.7570 9.1E-06 -0.279 13.9 219.07 133.31 4.182

(4) NH I 9 -0.387 -55.9257 2.5E-05 0.587 12.4+ 187.83 113.30 3.974

N 7 -1.165 -55.0286 -2.2E-04 -0.235 9.2 122.42 57.42 3.841

H 1 0.389 -0.4486 -1.5E-05 -0.221 1.6 32.52 28.04 2.580

H ' ' 1 0.389 -0.4486 -1.5E-05 -0.221 1.6 32.52 28.04 2.580

(1) CHI 9 -0.007 -39.7346 5.2E-07 -0.275 14.3 221.77 146.33 4.167

(2) CH I 8 0.014 -39.1419 4.6E-04 -0.314 12.6 159.34 82.39 4.246

(3) CH I 8 -0.018 -39.1828 6.3E-04 -0.312 11.3 159.39 83.80 4.301

(4) CH I 8 0.393 -38.9363 7.8E-05 -0.602 11.0 150.38 82.23 4.218

(5) NH I 9 -0.382 -55.9032 6.0E-06 0.592 12.3 + 189.64 123.73 3.915

N 7 -1.162 -55.0077 7.9E-05 -0.237 9.3 124.25 64.87 3.780

H 1 0.390 -0.4477 -1.7E-05 -0.220 1.5 32.25 28.67 2.564

H ' ' 1 0.390 -0.4477 -1.7E-05 -0.220 1.5 32.25 28.67 2.564

(1) CHI 9 -0.019 -39.7371 2.1E-06 -0.278 14.3 222.49 143.63 4.187

(2) CH I 8 0.041 -39.1373 -1.0E-04 -0.298 11.6 156.28 78.04 4.267

(3) CH I 8 0.000 -39.1671 -4.1E-05 -0.314 12.0 158.77 83.03 4.310

(4) CH 2 8 0.357 -38.9463 1.5E-04 -0.665 11.4 153.51 90.82 4.240

(5) NH I 9 -0.379 -55.9064 -1.8E-05 0.569 12.3 + 186.24 119.26 3.950

N 7 -1.160 -55.0099 -1.3E-04 -0.227 9.1 121.62 60.93 3.806

H 1 0.388 -0.4487 -2.3E-05 -0.220 1.5 32.50 28.54 2.570

H 1 0.393 -0.4478 -1.7E-05 -0.218 1.7 31.84 29.87 2.570

Table G.3 (Continued)

1-butanamine (trans)
109-73-9

2-propanamine
75-31-0

1-butanamine (gauche)
109-73-9-conf



Table G.3 (Continued)
name Z q E L Ii a V A raw

(1)CHIC 9 -0.033 -39.7653 5.0E-06 -0.259 14.4 221.24 134.21 4.212

(2) CH 7 0.402 -38.3189 -1.9E-04 -0.532 9.0 92.94 37.04 4.336

(3) CH I 8 0.005 -39.1627 -1.9E-04 -0.314 12.0 158.05 84.59 4.301

(4) CH, 9 0.011 -39.7306 -5.9E-05 -0.304 14.1 219.13 137.23 4.179

(5) NH, 9 -0.386 -55.9189 -4.5E-05 0.563 12.2+ 184.61 111.98 3.973

N 7 -1.160 -55.0218 6.4E-05 -0.234 9.1 118.69 52.59 3.804

H 1 0.389 -0.4486 -1.4E-05 -0.220 1.6 32.37 28.56 2.580

H 1 0.385 -0.4486 -2.0E-05 -0.224 1.5 33.12 26.87 2.582

(1) CHIC 8 0.347 -38.9620 9.6E-05 -0.663 11.2 151.88 79.93 4.287

(2) CH 7 0.054 -38.5300 6.9E-05 -0.271 10.0 98.89 41.27 4.363

(3) CH, 9 -0.021 -39.7487 2.5E-06 -0.276 14.2 220.22 132.46 4.212

(4)CHIC 9 -0.002 -39.7463 -5.6E-05 -0.307 14.0 217.81 131.31 4.212

(5) N11 2 9 -0.378 -55.9063 -1.9E-05 0.566 12.2+ 185.67 117.88 3.948

N 7 -1.161 -55.0103 -3.1E-05 -0.225 9.1 121.25 56.78 3.807

H 1 0.389 -0.4487 -2.2E-05 -0.220 1.5 32.41 28.68 2.566

H 1 0.394 -0.4473 -1.5E-05 -0.218 1.6 31.82 29.80 2.568

(1) CH, 9 -0.003 -39.7631 1.4E-05 -0.289 14.0 216.70 124.32 4.208

(2) C 6 0.428 -37.6708 -2.4E-03 0.407 7.7 37.54 Olin. 4.413tr

(3)CHIC 9 -0.003 -39.7631 1.4E-05 -0.289 14.0 216.70 124.32 4.208

(4)CHIC 9 -0.036 -39.7748 1.3E-05 -0.268 14.3 219.32 126.12 4.245

(5) NH I 9 -0.389 -55.9276 3.3E-05 0.584 11.9+ 185.61 104.68 3.992

N 7 -1.158 -55.0284 6.9E-05 -0.250 8.9 119.01 50.67 3.837

H 1 0.385 -0.4496 -1.3E-05 -0.223 1.5 33.04 26.62 2.588

H Y 1 0.385 -0.4496 -1.3E-05 -0.223 1.5 33.04 26.62 2.588

2-methyl-l-
propanamine

75-64-9

2-methyl-l-
propanamine

78-81-9

2-butanamine
13952-84-6



Table G.3 (Continued)
name Z q E L 1-1 a V A rag

(1) CH I 9 -0.010 -39.7333 2.3E-06 -0.273 14.7 221.88 142.66 4.169

(2) CH I 8 0.017 -39.1383 -5.2E-04 -0.318 11.8 159.57 82.55 4.248

(3)CH 8 -0.003 -39.1573 -4.1E-04 -0.309 12.3 158.78 74.83 4.298

(4) CH I 8 -0.019 -39.1775 -1.4E-03 -0.306 11.7 159.76 76.59 4.299

(5) CH, 8 0.393 -38.9328 -4.4E-04 -0.600 11.1 150.61 80.29 4.217

(6) NH I 9 -0.382 -55.8988 8.8E-06 0.592 12.7+ 189.67 123.25 3.914

N 7 -1.162 -55.0034 7.2E-05 -0.237 9.7 124.30 67.61 3.779

H 1 0.390 -0.4478 -1.7E-05 -0.220 1.5 32.25 28.65 2.564

H ' ' 1 0.390 -0.4478 -1.7E-05 -0.220 1.5 32.25 28.65 2.564

1 -pentanamine (trans)
100-58-7



name a V A rave

(1)CHIC 9 0.361 -39.5526 -3.5E-06 -0.707 12.7 213.05 138.61 4.143

(2) NH 8 -0.721 -55.5071 1.4E-03 0.525 10.6+ 137.38 75.11 3.909

(3) CHIC''
9 0.361 -39.5526 -3.5E-06 -0.707 12.7 213.05 138.61 4.143

N 7 -1.104 -55.0483 1.4E-03 -0.289 9.4t` 104.96 46.97 3.826

H 1 0.383 -0.4587 -2.2E-05 -0.217 1.2 31.84 28.69 2.576

(1) CH, 9 0.360 -39.5445 -1.5E-06 -0.706 13.8 213.15 140.39 4.155

(2) NH 8 -0.730 -55.5102 8.9E-05 0.520 11.0k 136.43 67.84 3.953

(3) CH I 8 0.358 -38.9554 1.5E-04 -0.680 11.6 153.76 82.77 4.250

(4) CHIC 9 0.012 -39.7434 9.7E-07 -0.277 13.9 220.32 143.23 4.159

N 7 -1.109 -55.0510 5.5E-05 -0.285 9.6 103.65 41.09 3.866

H 1 0.379 -0.4592 -1.1E-05 -0.221 1.4 32.57 27.24 2.601

(1) CH, 9 0.012 -39.7384 -1.6E-06 -0.278 14.3 220.46 141.16 4.158

(2) CH I 8 0.357 -38.9500 -4.4E-04 -0.678 11.6 153.84 85.00 4.259

(3) NH 8 -0.738 -55.5185 1.4E-03 0.515 10.9+ 135.15 59.13 4.021

(4) CHIC''
8 0.357 -38.9500 -3.7E-04 -0.678 11.6 153.84 81.69 4.254

(5) CHIC ' ' 9 0.012 -39.7384 -1.6E-06 -0.278 14.3 220.46 141.16 4.158

N 7 -1.112 -55.0589 1.5E-03 -0.286 9.2 101.86 34.43 3.915

H 1 0.374 -0.4596 -1.7E-05 -0.224 1.7 33.23 24.52 2.625

(1) CHIC 9 0.360 -39.5401 -3.2E-06 -0.706 13.1 213.09 141.38 4.154

(2) NH 8 -0.730 -55.5022 -4.1E-05 0.521 11.0k 136.38 67.52 3.954

(3) CH I 8 0.343 -38.9693 -1.6E-05 -0.679 11.0 152.86 73.99 4.303

(4) CH 2 8 0.033 -39.1483 2.6E-04 -0.306 12.2 158.00 83.82 4.233

(5) CH, 9 -0.006 -39.7336 -1.5E-06 -0.272 13.7 221.40 141.44 4.166

N 7 -1.109 -55.0429 -9.6E-05 -0.283 9.6"- 103.62 43.26 3.864

H 1 0.364 -0.4719 -3.9E-03 -0.186 1.4". 32.96 26.90 2.601 (r4
N

dimethylamine
124-40-3

diethylamine
109-89-7

methyl-n-propanamine
627-35-0

niethylethylamine624-78-2

Table G.4 AIM Properties for Atoms and Functional Groups: Diamines

00



Table G.5 AIM Properties for Atoms and Functional Groups: Triamines
name Z q

(1) CH I 9 0.355

(2) N 7 -1.063

(3) CHIC'' 9 0.355

(4) CHIVY 9 0.355

trimethylamine
75-50-3 .44

Table G.4 (Continued)
a V A rag

-39.5406 -9.3E-03 -0.728 13.9ar 212.93 133.50 4.164

-55.5077 -3.6E-03 0.496 9.3+ 135.37 67.41 4.024

-39.7543 5.2E-06 -0.286 13.9tr 218.71 133.55 4.201

-38.3159 -4.7E-03 -0.521 9.7 93.46 37.77 4.346

-39.7682 -2.5E-03 -0.265 13.9 t1 219.09 127.66 4.215

-55.0496 -3.7E-03 -0.259 8.4 101.96 40.14 3.880

-0.4581 -1.8E-05 -0.224 0.9 33.21 26.46 2.590

E L P a V A rag

-39.5586 4.8E-06 -0.715 13.4 212.14 135.50 4.212

-55.0715 1.9E-03 -0.298 11.8 87.58 31.07 3.878

-39.5586 4.8E-06 -0.715 13.4 212.13 135.50 4.212

-39.5586 4.3E-06 -0.715 13.4 212.13 135.50 4.212  

name

(1) CH I 	9	 0.350

(2) NH	 8	 -0.741

(3) CH I 	9	 0.002

(4) CH	 7	 0.404

(5) CH I 	9	 -0.036

N 	 7	 -1.117

H 	 1	 0.377 

methylisopropanamine
4747-21-1   



name E L /1 a V A ravg

(1) CHIC 9 0.275 -39.6736 -7.1E-06 -0.308 12.9 210.61 146.90 4.020

(2) C 6 0.922 -37.4735 3.5E-05 0.997 6.6 77.07 36.93 3.645

( 3 ) N 7 -1.197 -55.2672 -1.5E-05 0.573 9.6 168.32 116.36 3.646

(1) CH I 9 0.084 -39.7511 -3.6E-06 -0.256 13.5 216.27 144.31 4.119

(2) CH I 8 0.207 -39.0899 -8.9E-04 -0.307 11.5 153.88 90.61 4.117

(3) C 6 0.906 -37.4761 2.9E-05 1.010 6.6 77.11 34.86 3.679

(4) N 7 -1.198 -55.2349 -1.2E-05 0.569 9.6 169.16 119.08 3.656

(1) CHIC 9 0.020 -39.7646 4.8E-06 -0.255 13.8 219.30 142.90 4.151

(2) CH 2 8 0.081 -39.1516 -1.7E-03 -0.271 11.2 156.74 85.24 4.193

(3) CH I 8 0.189 -39.0964 -1.1E-03 -0.307 11.6 153.44 84.41 4.162

(4) C 6 0.905 -37.4630 5.4E-05 1.009 7.1 77.22 36.57 3.683

(5) N 7 -1.197 -55.2155 -1.2E-05 0.567 10.1 169.18 118.90 3.656

(1) CHIC 9 0.065 -39.7551 4.6E-06 -0.257 13.7 215.89 134.73 4.143

(2) CH 7 0.172 -38.4835 -1.2E-03 -0.276 9.7 97.44 41.84 4.190

(3) CHIC'' 9 0.065 -39.7551 4.6E-06 -0.257 13.7 215.89 134.73 4.143

(4) C 6 0.894 -37.4837 4.7E-05 1.016 6.3 75.43 29.58 3.745

( 5) N 7 -1.198 -55.2131 -1.3E-05 0.565 9.2 169.38 118.67 3.658

ethanenitrile
75-05-8

propanenitrile
107-12-0

butanenitrile
109-74-0

2-methylpropanenitrile
78-82-0

Table G.6 AIM Properties for Atoms and Functional 0roups: Nitriles



name a V A mg

(1) CHIC 9 0.532 -39.4610 5.5E-07 -0.789 12.1 208.15 148.13 4.078

(2) OH 9 -0.533 -75.8252 -1.9E-04 0.597 6.1+ 150.93 102.51 3.607

O 8 -1.118 -75.4722 -1.3E-04 0.246 5.1 128.61 86.41 3.517

H 1 0.586 -0.3530 -1.1E-04 -0.179 1.0 22.18 22.39 2.422

(1) CH, 9 0.047 -39.7479 5.1E-06 -0.285 13.6 218.10 145.91 4.138

(2) CH I 8 0.490 -38.8689 -1.3E-03 -0.757 10.7 151.63 91.73 4.160

(3) OH 9 -0.538 -75.8106 -2.7E-04 0.646 8.7+ 150.56 102.51 3.607

O 8 -1.122 -75.4563 1.8E-05 0.240 7.6 127.92 80.26 3.547

H 1 0.584 -0.3543 -1.1E-04 -0.180 1.1 22.36 22.51 2.428

(1) CH IC 9 0.014 -39.7369 -2.4E-05 -0.296 13.8 218.44 138.73 4.174

(2) CH I 8 0.048 -39.1521 1.6E-04 -0.311 11.7 157.96 90.10 4.230

(3) CH I 8 0.476 -38.8773 -1.3E-03 -0.758 10.8 151.35 80.84tr 4.160`r

(4) OH 9 -0.539 -75.7988 1.0E-04 0.637 8.6+ 148.50 97.29 3.618

O 8 -1.123 -75.4446 -5.8E-05 0.252 7.5 125.92 74.99 3.550

H 1 0.585 -0.3540 -1.1E-05 -0.179 1.1 22.33 22.72 2.430

(1) CHIC 9 -0.004 -39.7370 -7.4E-07 -0.267 14.2 221.24 142.02 4.162

(2) CH I 8 0.065 -39.1521 -3.6E-05 -0.278 11.6 156.01 92.33 4.207

(3) CH 2 8 0.477 -38.8799 -7.5E-04 -0.760 10.7 151.01 84.36 4.203

(4) OH 9 -0.539 -75.7979 -2.0E-04 0.645 8.7+ 150.59 102.34 3.608

O 8 -1.122 -75.4434 -2.3E-05 0.241 7.7 127.92 80.12 3.547

H 1 0.584 -0.3545 -1.1E-04 -0.180 1.0 22.39 22.49 2.427 

methanol
67-56-1    

ethanol
64-17-5    

1-propanol (gauche)
71-23-8 

1-propanol (trans)
71-23-8-conf

Table G.7 AIM Properties for Atoms and Functional 0roups: Alcohols



Table G.7 (Continued)
name a V A

(1) CH, 9 0.037 -39.7546 1.0E-05 -0.290 13.8 216.97 140.26 4.180

(2) CH 7 0.505 -38.2461 -1.1E-03 -0.658 9.0 93.24 47.45 4.289

(3)CHIC 9 0.000 -39.7667 1.1E-05 -0.259 13.6 219.05 136.03 4.192

(4) OH 9 -0.543 -75.8041 1.6E-04 0.633 8.6+ 149.21 95.59 3.624

O 8 -1.122 -75.4484 3.7E-06 0.242 7.6 126.04 73.24 3.553

H 1 0.579 -0.3556 -6.3E-05 -0.183 1.0 23.09 21.53 2.449

(1)CHIC 9 -0.014 -39.7383 7.6E-07 -0.276 14.2 222.09 144.10 4.184

(2) CH I 8 0.042 -39.1392 -2.2E-05 -0.299 11.6 156.03 83.57 4.266

(3) CH 2 8 0.032 -39.1658 -2.0E-05 -0.309 11.7 157.09 84.48 4.284

(4) CH I 8 0.477 -38.8715 -1.4E-03 -0.756 11.3 151.37 80.8e 4.160u.

(5) OH 9 -0.538 -75.7896 -2.2E-04 0.636 8.4+ 148.53 98.29 3.619

O 8 -1.122 -75.4354 9.4E-05 0.251 7.3 125.81 75.30 3.552

H 1 0.584 -0.3543 -5.2E-05 -0.179 1.1 22.34 22.50 2.428

(1) CHIC 9 -0.001 -39.7353 2.4E-06 -0.275 14.1 221.34 142.28 4.165

(2) CH 2 8 0.013 -39.1424 4.4E-04 -0.323 11.6 159.53 83.65 4.244

(3) CH I 8 0.048 -39.1663 -5.8E-04 -0.273 11.8 155.36 76.61 4.254

(4) CH I 8 0.477 -38.8747 -8.7E-04 -0.757 10.6 150.94 83.75 4.203

(5) OH 9 -0.538 -75.7884 -1.9E-04 0.644 9.1+ 150.63 102.12 3.609

O 8 -1.121 -75.4334 -1.1E-05 0.241 8.0 127.80 79.25 3.549

H 1 0.583 -0.3550 -1.6E-04 -0.180 1.1 22.30 22.19 2.428

(1) CHIC 9 -0.012 -39.7407 -3.6E-05 -0.268 13.9 218.93 136.35 4.179

(2) CH 2 8 0.027 -39.1659 -4.0E-05 -0.293 11.8 157.07 83.47 4.276

(3) CH 7 0.492 -38.2557 -1.8E-04 -0.665 9.0 92.75 73.61 4.340

(4) CHIC 9 0.036 -39.7496 9.8E-06 -0.293 14.0 216.91 134.54 4.180

(5) OH 9 -0.544 -75.7970 -8.9E-05 0.642 8.2+ 147.31 89.82 3.609

O 8 -1.124 -75.4410 1.1E-04 0.238 7.3 124.72 73.46 3.550

H 1 0.581 -0.3561 -4.9E-05 -0.179 0.9 22.32 16.93 2.454 Br.)
W
N

1-octanol (trans)
71-36-3-conf

2-octanol
78-92-2

1-butanol (gauche)
71-36-3

2-propanol
67-63-0



Table G.7 (Continued)
name Z q E L 11, a V A r„,,g

(1) CH I 9 -0.016 -39.7483 5.1E-06 -0.271 14.1 219.92 132.31 4.208

(2) CH 7 0.083 -38.5312 -1.9E-05 -0.238 9.8 97.35 50.59 4.323

(3) CH I 9 0.004 -39.7474 -2.2E-05 -0.301 14.0 216.98 131.73 4.208

(4) CH I 8 0.468 -38.8865 -8.8E-04 -0.758 10.6 149.90 84.36li 4.203 tt

(5) OH 9 -0.539 -75.7907 5.6E-05 0.636 8.5+ 148.13 96.95 3.620

O 8 -1.124 -75.4365 -5.5E-05 0.254 7.5 125.48 74.37 3.551

H 1 0.585 -0.3540 -6.0E-05 -0.179 1.0 22.20 22.65 2.429

(1) CH I 9 -0.003 -39.7721 1.9E-05 -0.272 14.0 217.22 126.12 4.198

(2) C 6 0.519 -37.6115 -6.0E-04 0.522 6.8 36.55 0.00 4.672

(3) CH I 9 0.031 -39.7615 1.9E-05 -0.298 13.4 215.14 127.74 4.211

(4) CH I 9 -0.003 -39.7721 1.9E-05 -0.272 13.9 217.22 126.12 4.198

(5) OH 9 -0.544 -75.7993 -2.1E-04 0.622 8.9+ 147.32 86.18 3.646

O 8 -1.120 -75.4427 -6.7E-07 0.245 7.8 123.42 65.78 3.570

H 1 0.576 -0.3566 -1.6E-04 -0.186 1.1 23.53 20.52 2.465

(1) CH I 9 -0.012 -39.7350 3.0E-06 -0.277 14.4 222.02 143.22 4.181

(2) CH I 8 0.012 -39.1418 -8.6E-05 -0.324 12.1 159.70 89.05 4.276

(3) CH I 8 0.026 -39.1549 -6.9E-05 -0.296 11.6 155.07 72.98 4.325

(4) CH 2 8 0.033 -39.1610 1.9E-04 -0.308 11.8 157.10 99.02 4.284

(5) CH 2 8 0.478 -38.8681 -8.5E-04 -0.757 11.2 151.30 80.8e 4.160tt

(6) OH 9 -0.538 -75.7836 -2.1E-04 0.636 8.6+ 148.55 95.46 3.617

O 8 -1.122 -75.4294 4.3E-05 0.251 7.5 125.80 73.26 3.548

H 1 0.584 -0.3544 -1.0E-04 -0.179 1.1 22.26 22.51 2.429

1-pentanol (gauche)
71-41-0

2-methyl-l-propanol
78-83-1

2-methyl-2-propanol
75-65-0



Table G.7 (Continued)
name V A mg

(1)CHIC 9 -0.010 -39.7355 2.2E-06 -0.273 14.0 221.91 141.63 4.169
(2) CH 2 8 0.024 -39.1390 6.0E-04 -0.316 12.6 158.95 83.31 4.244
(3) CH I 8 -0.003 -39.1581 6.6E-04 -0.322 11.0 158.62 76.91 4.296
(4) CH I 8 0.049 -39.1616 -9.2E-05 -0.273 12.0 155.26 76.24 4.255
(5) CH 2 8 0.479 -38.8714 -1.7E-05 -0.758 10.5 150.87 84.36t 4.203t

(6) OH 9 -0.538 -75.7822 -2.7E-04 0.644 9.4+ 150.69 101.95 3.608
O 8 -1.121 -75.4272 -3.9E-05 0.241 8.4 127.82 78.90 3.547

H 1 0.583 -0.3551 -1.6E-04 -0.180 1.0 22.31 22.61 2.429

(1) CHIC 9 0.015 -39.7323 -2.3E-04 -0.306 13.6 215.86 131.21 4.176
(2) CH I 8 0.030 -39.1653 -6.4E-04 -0.305 11.8 154.79 78.31 4.309

(3) C 6 0.505 -37.6179 -2.2E-03 0.525 7.6 36.72 0 4.413
(4) CHIC 9 -0.004 -39.7698 1.4E-05 -0.276 14.2 216.59 127.11 4.235
(5) CHIC 9 -0.004 -39.7719 -6.0E-05 -0.278 13.8 214.62 125.15 4.247
(6) OH 9 -0.545 -75.7931 -2.2E-05 0.612 8.4+ 144.98 79.59 3.627

O 8 -1.121 -75.4368 -1.7E-05 0.256 7.4 121.13 59.86 3.534
H 1 0.576 -0.3562 -7.0E-05 -0.186 1.0 23.46 20.66 2.454

(1) OH 9 -0.539 -75.7807 -2.8E-04 0.634 8.3+ 148.12 91.74 3.606
(2) CH I 8 0.477 -38.8731 -5.5E-04 -0.754 15.6 148.38 80.84 4.160
(3) CH I 8 0.019 -39.1722 -1.6E-03 -0.297 13.0 156.34 77.82 4.312
(4) CH 7 0.089 -38.5078 -1.6E-03 -0.209 7.0 95.30 32.41 4.321
(5) CHIC 9 -0.025 -39.7507 6.6E-06 -0.281 13.6 220.49 131.37 4.209
(6) CHIC 9 -0.028 -39.7539 -2.3E-03 -0.291 13.4 218.47 124.88 4.224

O 8 -1.123 -75.4264 -5.1E-05 0.253 7.5t 125.45 71.19 3.532

H 1 0.584 -0.3544 -1.7E-04 -0.179 0.8 22.28 22.35 2.425

1-pentanol (trans)
71-41-0-conf

2-methyl-2-octanol
75-85-4

3-methyl- 1 -butanol
123-51-3



Table G.7 (Continued)
name Z 9 E L /I a V A rag

(1)CHIC 9 0.019 -29.7608 8.6E-06 -0.250 14.0 218.41 125.70 4.178

(2) CH 7 0.492 -28.2890 -1.6E-02 -0.626 7.9 92.04 52.20 4.292

(2) CH 2 8 0.554 -38.8764 -4.2E-04 -0.724 9.1 146.12 80.84b. 4.160t

(4) OH 9 -0.541 -75.8136 5.7E-05 0.648 6.9+ 145.11 90.00 2.622

(5) OH 9 -0.528 -75.8104 1.2E-04 0.712 5.0+ 146.07 95.27 2.566

(4) o 8 -1.120 -75.4629 8.6E-05 0.250 6.2 122.57 67.22 2.555

(4) H 1 0.589 -0.3507 -2.2E-05 -0.177 0.7t 22.22 22.12 2.428

(5)o 8 -1.121 -75.4672 -1.5E-05 0.227 4.2 125.84 79.70 2.518

(5) H 1 0.604 -0.2429 -1.1E-04 -0.166 0.7 19.95 15.22 2.428

(1) CH I 8 0.488 -28.8759 -2.8E-04 -0.759 10.1 150.48 85.72 4.190

(2) CH I 8 0.059 -29.1902 5.0E-04 -0.245 10.6 152.77 78.96 4.229

(2) CH2 8 0.519 -28.8644 -4.1E-04 0.726 9.6 148.56 82.21 4.179

(4) OH 9 -0.522 -75.8082 -2.1E-04 0.650 7.2+ 150.00 101.52 2.602

(5) OH 9 -0.524 -75.8068 4.0E-05 0.641 5.0+ 149.86 101.91 2.596

(4) o 8 -1.118 -75.4545 8.8E-06 0.241 6.5 127.47 78.07 2.542

(4) H 1 0.585 -0.2528 -1.6E-04 -0.178 0.74 22.16 22.54 2.425

(5)O 8 -1.118 -75.4521 1.1E-05 0.245 4.4 126.89 79.26 2.514

(5) H 1 0.582 -0.2527 7.4E-05 -0.181 0.6 22.68 21.47 2.422

(1) CHIC 9 0.526 -29.4519 6.2E-06 -0.789 12.7 207.74 141.67 4.122

(2) o 8 -1.067 -75.4972 2.4E-04 0.029 8.0 101.28 46.22 2.564

(2) CH I 8 0.482 -28.9146 1.1E-04 -0.756 10.7 148.72 76.00 4.210

(4) CH 7 0.525 -28.2624 -1.1E-02 -0.654 8.5 91.05 46.57 4.202

(5) CHIC 9 0.042 -29.7505 6.4E-06 -0.287 12.9 217.00 140.74 4.176

(6) OH 9 -0.520 -75.8117 -9.0E-05 0.709 8.2+ 145.10 88.75 2.591

O 8 -1.122 -75.4680 -1.2E-05 0.227 7.5 125.02 72.82 2.544

H 1 0.602 -0.2427 -1.2E-04 -0.166 0.8 19.94 15.12 2.425

1-methoxy-2-propanol
107-98-2

1,2-propanediol
504-62-2

1,2-propanediol
57-55-6



name V A rax

(1)CHIC 9 0.529 -29.4608 1.1E-05 -0.809 12.6 208.19 129.54 4.110
(2)o 8 -1.057 -75.5051 2.7E-04 0.027 8.0 106.26 58.67 2.502

(2) CHIC  Y 9 0.529 -39.4608 1.1E-05 -0.809 12.6 208.19 129.54 4.110

(1)CHIC 9 0.526 -29.4528 1.0E-05 -0.810 12.9 208.55 140.22 4.119
(2) O 8 -1.059 -75.4967 7.0E-04 0.026 7.4 105.50 52.26 2.556

(2) CH I 8 0.488 -28.8755 1.2E-04 -0.779 10.7 150.72 82.98 4.222

(4) CHIC 9 0.047 -29.7425 6.1E-06 -0.285 12.8 218.42 144.62 4.140

(1) CH, 9 0.045 -29.7288 4.6E-06 -0.286 14.1 218.676 142.170 4.122

(2) CH 8 0.486 -28.8708 -2.1E-05 -0.778 10.8 150.849 82.682 4.214

(2) O 8 -1.062 -75.4926 2.0E-04 0.017 8.2 104.498 46.216 2.586
(4) CH 2 Y 8 0.486 -28.8708 -2.1E-05 -0.778 10.8 150.849 82.682 4.212

(5) CHIC'' 9 0.045 -29.7288 4.6E-06 -0.286 14.1 218.676 142.527 4.122

(1) CHIC 9 0.526 -29.4478 6.9E-06 -0.810 12.0 208.45 140.57 4.129
(2) o 8 -1.062 -75.4889 -1.9E-05 0.040 7.9 102.29 46.47 2.556

(3) CH I 8 0.474 -28.8848 -7.2E-05 -0.780 11.1 150.52 82.21 4.291

(4) CH 2 8 0.048 -29.1495 -2.8E-05 -0.211 11.9 158.10 92.74 4.221
(5) CH 9 0.014 -29.7259 -2.1E-05 -0.296 12.8 218.62 128.29 4.172

dimethyl ether
115-10-6

diethyl ether
60-29-7

methyl ethyl ether
540-67-0

methyl propyl ether
557-17-5

Table G.8 AIM Properties for Atoms and Functional 0roups: Ethers



name V A rag

(1) CH, 9 0.512 -29.4524 -8.6E-02 -0.826 15.2 208.25 124.00 4.122

(2)o 8 -1.062 -75.4789 -4.0E-02 0.042 6.7 104.78 48.08 2.569

(2) CHIC 9 -0.007 -29.7650 -8.1E-02 -0.278 14.0 218.96 129.28 4.195

(4) CH 7 0.494 -28.2522 -6.9E-02 -0.658 9.2 92.16 28.55 4.259

(5) CH IC 9 0.024 -29.7542 1.2E-05 -0.292 12.8 217.22 125.02 4.180

methyl isopropyl ether
598-52-8

Table G.8 (Continued)



name oz V A r

(1) CH 2 8 1.079 -28.4991 2.0E-05 -1.020 10.1 164.20 122.08 2.909

(2) o 8 -1.079 -75.6569 -4.0E-06 0.507 7.2 129.09 102.50 2.426

(1) CHIC 9 0.071 -29.7704 6.2E-07 -0.194 12.8 218.14 147.21 4.096

(2) CH 7 1.026 -27.8957 -1.2E-02 -0.956 8.4 107.45 68.19 2.892

(2) o 8 -1.107 -75.6210 1.5E-05 0.486 7.8 129.28 98.59 2.468

(1) CHIC 9 0.057 -29.7255 -1.2E-05 -0.282 12.5 215.88 128.12 4.145

(2) CH 2 8 0.022 -29.1849 7.6E-05 -0.222 12.2 160.00 91.78 4.171

(2) CH 7 1.021 -27.9046 5.6E-04 -0.967 8.2 107.26 67.60 2.902

(4) o 8 -1.111 -75.6107 -2.2E-06 0.482 7.4 127.22 92.08 2.469

(1) CH IC 9 -0.002 -29.7488 1.8E-06 -0.268 14.1 221.22 142.47 4.162

(2) CH I 8 0.076 -29.1275 4.6E-04 -0.257 11.2 152.99 79.17 4.218

(3) CH I 8 0.017 -29.1961 7.2E-05 -0.221 12.2 159.29 84.82 4.214

(4) CH 7 1.024 -27.8874 -1.8E-04 -0.962 8.6 107.49 66.60 2.907

(5) O 8 -1.110 -75.5964 -5.4E-06 0.482 7.6 127.09 89.95 2.467

methanal
50-00-0

ethanal
75-07-0

propanal
122-28-6

octanal
122-72-8

Table G.9 AIM Properties for Atoms and Functional Groups: Aldehydes



name Z 9 E L Ft V A

(1) CHIC 9 0.021 -29.7424 2.6E-06 -0.254 12.8 218.11 124.94 4.186

(2) CH 7 0.027 -28.5757 -4.1E-04 -0.198 10.2 100.55 68.22 4.286

(3) CHIC 9 0.042 -29.7446 -8.8E-06 -0.286 12.4 215.12 124.79 4.190

(4) CH 7 1.008 -27.9164 -2.4E-05 -0.972 8.2 106.09 64.14 2.988

(5) O 8 -1.109 -75.5949 -8.4E-06 0.482 7.6 127.07 89.98 2.468

2-methyipropanal
78-84-2

Table G.9 (Continued)



Table G.10 AIM Properties for Atoms and Functional Groups: Ketones
name V A raw

(1) CH I 9 0.052 -29.7678 5.1E-06 -0.212 12.7 217.51 140.27 4.120

(2) C 6 1.020 -27.2929 -2.8E-04 0.827 6.0 48.25 27.44 2.642

(2) O 8 -1.127 -75.6159 1.7E-05 0.459 8.2 128.92 92.45 2.468

(4) CH I Y 9 0.052 -29.7678 5.1E-06 -0.212 12.7 217.51 140.27 4.120

(1) CH I 9 0.052 -29.7206 -1.1E-05 -0.294 12.9 215.86 128.79 4.150

(2) CH I 8 0.018 -39.1826 1.2E-04 -0.228 12.0 159.24 85.17 4.201

(3) C 6 1.006 -27.2025 -6.8E-04 0.828 6.1 48.12 10.05 2.612

(4) O 8 -1.129 -75.6029 -5.7E-06 0.458 7.7 126.28 82.86 2.481

(5) CH I 9 0.051 -29.7609 6.7E-06 -0.214 12.7 217.56 129.79 4.122

(1) CH I 9 -0.009 -29.7452 1.6E-06 -0.270 14.8 221.57 142.60 4.166

(2) CH I 8 0.077 -29.1220 5.5E-04 -0.258 11.2 152.60 79.55 4.222

(2) CH I 8 0.002 -29.1974 4.0E-05 -0.225 12.2 158.22 76.66 4.251

(4) C 6 1.007 -27.2970 -6.2E-05 0.822 6.2 47.98 9.97 2.617

(5) O 8 -1.128 -75.5927 -4.1E-07 0.457 7.4 126.15 82.97 2.482

(6) CH I 9 0.051 -29.7559 6.1E-06 -0.214 12.9 217.64 128.92 4.122

(1) CH I 9 0.052 -29.7258 -1.1E-05 -0.295 12.8 216.02 127.28 4.147

(2) CH 2 8 0.017 -29.1788 -1.7E-05 -0.228 11.8 159.11 84.25 4.198

(3) C 6 0.992 -27.2155 -2.1E-04 0.842 6.2 47.66 12.21 2.642

(4) O 8 -1.120 -75.5957 -2.5E-05 0.455 7.6 122.46 75.16 2.459

(5) CH I Y 8 0.017 -29.1788 -1.7E-05 -0.228 11.8 159.11 84.25 4.198

(6) CH I Y 9 0.052 -29.7258 -1.1E-05 -0.295 12.8 216.02 127.28 4.147

propanone
67-64-1

octanone
78-92-2

2-pentanone
107-87-9

2-pentanone
96-22-0



Table G.10 (Continued)
name Z 9 E L N cx V A

(1) CH 3 9 0.016 -29.7425 -2.7E-05 -0.262 12.7 216.47 127.45 4.195

(2) CH 7 0.020 -28.5698 -6.6E-04 -0.212 10.2 99.62 57.68 4.212

(2) CH I 9 0.028 -29.7424 -7.6E-06 -0.297 12.6 214.74 128.17 4.192

(4) C 6 0.994 -27.2122 -2.2E-04 0.846 6.1 47.07 15.72 2.658

(5) O 8 -1.128 -75.5910 -4.2E-06 0.454 7.5 125.89 82.92 2.482

(6) CH I 9 0.049 -29.7579 -2.2E-05 -0.224 12.7 215.66 121.74 4.129

(1) CH I 8 0.082 -29.1225 -9.2E-06 -0.200 12.1 190.89 125.65 2.984

(2) CH 7 -0.029 -38.6229 -1.7E-04 -0.182 12.2 128.19 72.48 4.050

(3) C 6 1.011 -27.2048 1.4E-04 0.810 6.2 49.57 11.54 2.651

(4) O 8 -1.115 -75.6027 1.0E-05 0.429 7.7 126.02 85.70 2.478

(5) CH I 9 0.060 -29.7629 5.1E-06 -0.212 14.2 217.18 129.90 4.118

2-methyl-2-octanone
562-80-4

methyl vinyl ketone
78-94-2



name V A rag

(1) CH 7 1.702 -27.4819 8.2E-04 -0.794 6.1 90.98 62.65 2.796

(2) O 8 -1.170 -75.7079 9.5E-06 0.528 8.0 129.71 100.02 2.470

(2) OH 9 -0.521 -75.9902 -1.1E-04 0.822 8.6+ 145.68 1 04.60 2.529

O 8 -1.152 -75.6624 -4.2E-05 0.282 7.8n. 125.01 84.46 2.470

H 1 0.622 -0.2268 -1.5E-04 -0.161 0.8 20.81 19.71 2.272

(1) CH I 9 0.150 -29.7252 7.4E-06 -0.252 12.1 212.28 141.25 4.084

(2) C 6 1.571 -26.9249 -7.2E-04 0.817 4.4 28.24 27.82 2.522

(2) o 8 -1.186 -75.6898 2.5E-05 0.510 7.6 129.25 95.20 2.481

(4) OH 9 -0.525 -75.9628 -7.6E-05 0.805 8.9+ 144.52 98.26 2.547

O 8 -1.155 -75.6242 -4.1E-05 0.265 8.0 122.65 78.06 2.486

H 1 0.619 -0.2294 -1.5E-04 -0.162 0.9 20.80 19.69 2.282

(1) CH I 9 0.064 -29.7265 -1.1E-05 -0.282 12.4 215.267 128.262 4.142

(2) CH 2 8 0.102 -29.1544 6.0E-05 -0.226 11.2 154.894 86.975 4.159

(3) C 6 1.556 -26.9474 -9.7E-04 0.824 4.8 27.886 55.880 2.517

(4)o 8 -1.187 -75.6744 1.2E-05 0.507 7.9 127.145 86.552 2.481

(5) OH 9 -0.527 -75.9477 -9.9E-05 0.800 8.6+ 144.284 97.277 2.549

O 8 -1.155 -75.6177 -2.1E-05 0.266 7.6 122.472 79.175 2.488

1 0.618 -0.2200 -1.5E-04 -0.162 1.0 20.858 19.567 2.285

methanoic acid
64-18-6

ethanoic acid
64-19-7

propanoic acid
79-09-4

Table G.11 AIM Properties for Atoms and Functional 0roups: Carboxylic Acids



Table G.11 (Continued)
name Z q E L P a V A ►ag

(1) CH I 9 -0.001 -29.7514 2.2E-06 -0.265 14.1 220.82 142.54 4.161

(2) CH 2 8 0.081 -29.1400 6.8E-04 -0.264 11.0 152.72 79.62 4.217

(2) CH 2 8 0.088 -29.1679 7.2E-06 -0.222 11.4 152.96 78.50 4.206

(4) C 6 1.555 -26.9410 -1.6E-02 0.822 5.2 27.90 22.24 2.514

(5) O 8 -1.187 -75.6622 6.4E-06 0.506 7.6 127.02 86.18 2.482

(6) OH 9 -0.527 -75.9262 -1.0E-04 0.799 8.9+ 144.49 97.06 2.548

O 8 -1.154 -75.6059 -7.9E-05 0.265 7.9 122.55 77.06 2.487

H 1 0.618 -0.2202 -1.5E-04 -0.162 1.0 20.90 19.62 2.286

(1) CH I 9 0.045 -29.7410 -1.1E-05 -0.269 12.7 215.91 121.95 4.172

(2) CH 7 0.088 -28.5521 -1.2E-02 -0.219 9.8 96.82 58.26 4.257

(2) CH I 9 0.047 -29.7475 -7.1E-06 -0.284 12.4 214.75 128.70 4.179

(4) C 6 1.541 -26.9624 -1.0E-02 0.845 4.6 26.42 24.01 2.552

(5)o 8 -1.187 -75.6590 1.2E-06 0.501 7.6 127.24 85.97 2.476

(6) OH 9 -0.526 -75.9245 5.6E-05 0.792 8.2+ 142.92 97.80 2.558

O 8 -1.152 -75.6041 2.9E-05 0.267 7.4 122.94 78.42 2.489

H 1 0.617 -0.2204 -7.5E-05 -0.164 0.9 20.94 20.01 2.291

butanoic acid
107-92-6

2-methyipropanic acid
79-21-2



name V A ravg

(1) CH 7 1.678 -27.4948 -6.9E-04 -0.807 6.6 91.92 62.11 2.815

(2) O 8 -1.171 -75.6879 -2.4E-06 0.518 7.4 127.05 90.80 2.476

(2) O 8 -1.082 -75.6480 2.8E-05 0.212 8.4 105.28 58.66 2.502

(4) CH I 9 0.576 -29.4820 5.0E-06 -0.696 11.7 199.98 124.70 4.062

(1) CH I 9 0.126 -29.7256 8.1E-06 -0.258 12.7 212.22 140.70 4.092

(2) C 6 1.559 -26.9448 -2.1E-02 0.809 5.0 28.57 41.85 2.542

(3) O 8 -1.184 -75.6768 6.4E-06 0.492 7.4 126.18 84.57 2.486

(4) O 8 -1.085 -75.6271 8.8E-05 0.179 8.2 102.85 52.28 2.521

(5) CH I 9 0.571 -29.4742 6.8E-07 -0.712 11.7 200.59 124.22 4.071

(1) CH 7 1.674 -27.4888 -1.4E-04 -0.812 6.9 92.12 62.52 2.821

(2) o 8 -1.172 -75.6707 -6.7E-06 0.515 7.7 127.17 90.40 2.479

(2) o 8 -1.086 -75.6280 6.1E-05 0.211 8.4 105.09 52.59 2.525

(4) CH I 8 0.512 -28.9060 1.6E-04 -0.652 9.9 144.25 78.41 4.151

(5) CH 3 9 0.070 -29.7527 5.5E-06 -0.270 12.8 216.62 142.89 4.126

(1) CH I 9 0.058 -29.7260 -1.2E-05 -0.287 12.2 215.82 129.08 4.146

(2) CH 2 8 0.096 -29.1545 8.1E-05 -0.240 11.7 155.22 86.44 4.168

(3) C 6 1.547 -26.9587 -2.1E-04 0.822 4.9 27.96 8.48 2.522

(4) O 8 -1.184 -75.6645 -1.0E-05 0.489 7.0 122.90 76.28 2.487

(5) O 8 -1.086 -75.6140 -1.2E-04 0.179 8.9 102.62 51.61 2.521

(6) CHI 9 0.570 -29.4682 5.0E-06 -0.715 11.9 200.76 124.79 4.071

methyl methanoate
107-21-2

methyl ethanoate
79-20-9

ethyl methanoate
109-94-4

methyl propanoate
554-12-1

Table G.12 AIM Properties for Atoms and Functional Groups: Esters



Table G.12 (Continued)
name V A ra,

(1) CH I 9 0.122 -29.7212 8.0E-06 -0.262 12.5 212.55 141.27 4.092

(2) C 6 1.559 -26.9266 -2.7E-02 0.806 4.9 28.62 40.82 2.544

(3) O 8 -1.190 -75.6655 1.1E-05 0.488 7.7 126.52 84.84 2.490

(4) O 8 -1.082 -75.6195 -7.9E-05 0.181 8.4 102.70 45.87 2.559

(5) CH, 8 0.516 -28.8985 1.9E-04 -0.661 9.8 144.15 78.22 4.160

(6) CH I 9 0.062 -29.7484 5.1E-06 -0.272 12.7 217.19 144.14 4.121

(1) CH 7 1.672 -27.4829 7.4E-05 -0.815 6.8 92.25 61.51 2.852

(2) O 8 -1.172 -75.6578 -9.5E-06 0.515 7.7 127.15 90.21 2.476

(3) O 8 -1.087 -75.6275 -1.4E-04 0.220 8.5 102.45 50.22 2.549

(4) CH I 8 0.499 -28.9157 -4.8E-05 -0.654 9.9 142.92 74.69 4.210

(5) CH 2 8 0.065 -29.1592 -1.1E-04 -0.292 11.7 156.94 89.02 4.217

(6) CH, 9 0.022 -29.7507 -2.1E-05 -0.277 12.8 217.92 127.80 4.168

(1) CH I 9 0.122 -29.7266 -6.8E-07 -0.259 12.6 212.61 141.22 4.098

(2) C 6 1.559 -26.9266 -2.7E-02 0.806 4.9 28.62 9.82t1 2.559tr

(3) O 8 -1.184 -75.6529 -2.1E-06 0.490 7.6 126.22 84.67 2.487

(4) O 8 -1.089 -75.6144 -1.2E-04 0.188 8.5 101.77 28.85 2.578

(5) CH 2 8 0.502 -28.9078 9.8E-06 -0.666 10.1 142.89 72.62 4.210

(6) CH I 8 0.060 -29.1560 -8.2E-05 -0.297 12.1 157.27 88.59 4.210

9 0.017 -29.7468 -1.2E-04 -0.281 12.8 218.27 126.95 4.165
I

(1) CH 2 8 0.089 -29.1222 -7.8E-06 -0.198 12.5 190.99 124.24 2.984

(2) CH 7 0.026 -28.5921 1.9E-04 -0.172 11.8 122.67 72.27 4.014

(3) C 6 1.554 -26.9566 -8.7E-04 0.782 5.4 29.42 9.82 2.559

(4) O 8 -1.176 -75.6625 -2.4E-06 0.476 7.2 124.02 77.77 2.484

(5) O 8 -1.078 -75.6208 1.0E-04 0.180 8.7 102.41 52.08 2.518

(6) CH IC 9 0.575 -29.4715 2.1E-06 -0.710 11.9 200.22 124.84 4.069

ethyl ethanoate
141-78-6

propyl methanoate
110-74-7

propyl ethanoate
109-60-4

methyl acrylate
96-22-2



vinyl ethanoate
108-05-4

methyl octanoate
622-42-7

***`.
ethyl propanoate

105-27-2

butyl methanoate
592-84-7

Table G.12 (Continued)
name V A rag

(1) CH I 8 0.062 -29.1211 -1.5E-06 -0.272 14.2 198.50 122.90 4.020

(2) CH 7 0.525 -28.2767 -1.0E-02 -0.745 10.2 118.25 68.99 2.959

(2) O 8 -1.111 -75.6667 1.8E-05 0.169 9.2 102.89 48.44 2.528

(4) C 6 1.542 -26.9522 -1.0E-02 0.810 5.4 28.75 9.52 2.522

(5) o 8 -1.175 -75.6892 -1.6E-05 0.516 7.7 124.51 85.88 2.471

(6) CHIC 9 0.154 -29.7297 8.1E-06 -0.256 12.7 212.04 140.44 4.085

(1) CH IC 9 -0.005 -29.7508 2.2E-06 -0.268 12.7 t1 221.22 142.05 4.162

(2) CH IC 8 0.076 -29.1294 -2.1E-04 -0.262 11.2t 154.02 79.18 4.220

(2) CH I 8 0.081 -29.1689 -1.2E-04 -0.228 11.0t 154.24 78.40 4.216

(4) C 6 1.542 -26.9475 -4.5E-02 0.790 5.2t1 28.77 8.48 2.525

(5) O 8 -1.195 -75.6597 -8.2E-02 0.480 7.2tt 124.02 77.22 2.485

(6) O 8 -1.089 -75.5942 -6.0E-02 0.192 7.7 104.44 52.10 2.521

9 0.569 -29.4675 6.9E-04 -0.729 8.4 200.15 125.12 4.052

1 CH 9 0.057 -29.7218 -1.2E-05 -0.288 12.7 215.90 128.28 4.147

(2) CH I 8 0.092 -29.1514 2.8E-05 -0.241 11.6 155.49 85.76 4.170

(2) C 6 1.545 -26.9520 -1.7E-02 0.822 5.2 28.16 16.60 2.522

(4) O 8 -1.185 -75.6546 -1.2E-05 0.487 7.5 122.92 76.14 2.488

(5) o 8 -1.088 -75.6115 6.5E-05 0.177 8.7 102.51 44.50 2.558

(6) CH 2 8 0.516 -28.8921 1.9E-04 -0.666 10.0 144.41 77.89 4.162

9 0.061 -29.7442 2.9E-06 -0.275 12.9 217.24 144.48 4.121

1 CHI 9 -0.002 -29.7510 2.2E-06 -0.270 14.2 221.22 142.62 4.174

(2) CH I 8 0.040 -29.1552 -6.0E-05 -0.297 11.5 156.12 82.92 4.256

(3) CH 2 8 0.049 -29.1722 2.8E-05 -0.292 11.8 156.07 84.09 4.268

(4) CH I 8 0.499 -28.9092 -4.9E-04 -0.652 9.9 144.10 86.65 4.210

(5) O 8 -1.087 -75.6178 4.9E-05 0.220 8.4 102.27 48.96 2.551

(6) CH 7 1.671 -27.4792 -1.5E-02 -0.811 6.4 92.28 61.16 2.852

8 -1.172 -75.6482 -5.8E-06 0.514 7.8 127.15 90.48 2.476



name E L At cx V A rag

(1) CH I 9 0.620 -39.4027 5.2E-05 -0.757 11.7 202.65 150.21 2.988

(2) F 9 -0.620 -99.7725 4.6E-06 0.145 4.8 112.48 85.49 2.204

(1) CH I 9 0.064 -29.7279 5.0E-06 -0.262 12.6 217.00 146.84 4.122

(2) CH I 8 0.572 -28.8264 -5.9E-04 -0.705 10.2 147.67 92.05 4.092

(2) F 9 -0.626 -99.7540 1.5E-05 0.129 4.8 112.14 80.22 2.228

(1) CH I 9 0.025 -29.7295 -7.2E-06 -0.278 12.5 217.95 141.68 4.162

(2) CH I 8 0.057 -39.1472 -4.7E-04 -0.291 11.5 157.67 98.47 4.214

(2) CH 2 8 0.555 -28.8286 -1.1E-02 -0.707 10.2 147.66 89.42 4.142

(4) F 9 -0.627 -99.7409 6.8E-06 0.128 4.8 111.89 76.74 2.225

(1) CH I 9 0.010 -29.7279 2.8E-06 -0.257 12.9 220.16 142.28 4.152

(2) CH 2 8 0.069 -29.1490 -4.4E-05 -0.262 11.5 156.01 87.20 4.187

(2) CH I 8 0.557 -28.8292 -2.9E-04 -0.710 9.8 147.15 82.99 4.128

(4) F 9 -0.627 -99.7422 1.5E-05 0.121 5.2 112.12 81.42 2.228

fluoromethane
592-52-2

fluoroethane
252-26-6

1-fluoropropane (trans)
460-12-9-conf

1-fluoropropane
(gauche)
460-12-9  

Table G.13 AIM Properties for Atoms and Functional Groups: Fluorides



Table G.13 (Continued)
name Z 9 E L /-1 V A rag

(1) CH, 9 0.052 -29.7472 2.2E-05 -0.270 12.4 226.32 226.79 4.240

(2) CH 7 0.525 -28.2280 -2.2E-02 -0.620 8.6 92.86 42.67 4.257

(2) CHI'' 9 0.052 -29.7472 2.2E-05 -0.270 22.4 226.22 226.79 4.240

(4) F 9 -0.640 -99.7408 2.2E-05 0.222 5.0 222.25 72.48 2.252

(1) CHIC 9 -0.005 -29.7225 2.2E-06 -0.272 14.2 222.24 144.22 4.178

(2) CH I 8 0.044 -29.2249 -7.2E-05 -0.292 22.6 256.24 82.61 4.256

(2) CH I 8 0.042 -29.2622 -9.2E-05 -0.292 22.8 256.82 85.59 4.267

(4) CH 2 8 0.556 -28.8224 -6.7E-04 -0.707 10.2 247.64 226.50 4.244

(5) F 9 -0.628 -99.7220 6.2E-06 0.228 5.0 222.86 76.08 2.225

(2) CH I 9 0.008 -29.7202 2.8E-06 -0.270 22.7 220.70 242.82 4.260

(2) CH I 8 0.028 -29.2267 -6.8E-04 -0.222 22.0 259.22 82.96 4.225

(2) CH 2 8 0.052 -29.2645 6.2E-04 -0.262 12.2 255.04 79.78 4.222

(4) CH 2 8 0.558 -28.8246 -2.0E-05 -0.708 20.2 247.09 85.52 4.226

(5) F 9 -0.626 -99.7227 2.5E-05 0.220 5.2 222.25 80.28 2.227

(1) CH I 9 0.052 -29.7425 2.2E-05 -0.272 22.4 226.28 127.09 4.262

(2) CH 7 0.528 -28.2422 -1.7E-02 -0.626 8.4 92.78 64.25 4.266

(2) CH I 8 0.044 -29.2585 -2.2E-04 -0.297 12.4 256.67 85.42 4.257

(4) CH I 9 0.025 -29.7260 -9.2E-06 -0.284 14.2 227.92 229.22 4.264

(5) F 9 -0.642 -99.7225 2.9E-05 0.222 5.0 220.66 72.20 2.252

2-fluorooctane (trans)
2266-52-2-conf

1-fluoropropane
420-26-8

1-fluorobutane (gauche)
2266-52-2

1-fluorobutane



Table G.13 (Continued)
name a V A ravg

(1) CH, 8 0.547 -28.8485 -9.0E-05 -0.710 10.0 146.22 82.97 4.192

(2) CH 7 0.082 -28.5224 -1.6E-04 -0.229 9.8 97.42 41.18fr 4.223`

(2) CH, 9 0.012 -29.7415 -6.1E-06 -0.282 12.7 216.69 122.44 4.197

(4) CH, 9 -0.002 -39.7405 6.9E-06 -0.260 12.8 218.97 122.65 4.198

(5) F 9 -0.629 -99.7221 9.0E-06 0.120 5.0 111.55 75.10 2.227

(1) CH, 9 0.044 -29.7556 1.8E-05 -0.281 12.5 214.81 129.09 4.182

(2) C 6 0.510 -27.6111 4.7E-04 0.547 6.6 27.10 0.00 4.412

(3) CH, ' ' 9 0.044 -29.7556 1.7E-05 -0.281 12.5 214.81 129.09 4.182

(4) CH, Y 9 0.044 -29.7556 1.8E-05 -0.281 12.5 214.81 129.09 4.182

(5) F 9 -0.641 -99.7204 4.7E-05 0.096 5.2 110.75 68.02 2.260

1-methyl-l-
fluoropropane

1-methy1-2-
fluoropropane

252-61-7



name a V A Barg

(1) CH 7 1.565 -27.5614 2.6E-04 -0.867 7.6 95.71 62.68 2.887

(2) O 8 -1.174 -75.6616 1.6E-05 0.466 8.4 142.21 101.07 2.494

(2) NH 2 9 -0.290 -56.1295 1.8E-05 0.778 12.2+ 182.12 124.62 2.825

N 7 -1.228 -55.2122 1.1E-04 0.077 9.7 128.19 70.62 2.766

H 1 0.475 -0.4050 -2.5E-05 -0.185 1.2 27.64 26.69 2.480

H 1 0.464 -0.4122 -2.6E-05 -0.188 1.2 27.92 26.92 2.490

(1) C 6 1.498 -26.9921 -4.2E-04 0.748 5.2 29.28 8.77 2.592

(2) o 8 -1.188 -75.6421 2.9E-05 0.440 8.5 141.78 95.24 2.506

(3) CH I 9 0.077 -29.7605 4.8E-06 -0.251 12.7 215.72 140.25 4.111

(4)NH 9 -0.288 -56.1026 -2.6E-05 0.728 12.0+ 181.48 117.80 2.852

N 7 -1.212 -55.2780 1.4E-05 0.042 9.6 125.82 66.10 2.776

H 1 0.469 -0.4082 -2.2E-05 -0.187 1.2 27.88 26.51 2.491

H 1 0.455 -0.4172 -2.2E-05 -0.191 1.2 28.48 25.17 2.508

(1) C 6 1.492 -26.9929 -4.2E-04 0.767 1.4 28.64 8.12 2.585

(2) o 8 -1.187 -75.6251 2.9E-06 0.426 7.2 129.02 86.62 2.506

(2) NH I 9 -0.400 -56.1042 -2.5E-05 0.722 12.0+ 181.29 117.27 2.856

(4) CH, 8 0.020 -29.1789 -2.6E-05 -0.272 12.0". 158.22 85.47 4.195

(5) CH I 9 0.062 -29.7241 -1.9E-05 -0.202 11.1 215.28 127.69 4.149

N 7 -1.220 -55.2806 6.2E-05 0.042 9.e 125.91 64.82 2.782

H 1 0.472 -0.4075 -2.5E-05 -0.186 1.2t 27.78 25.88 2.488

H 1 0.458 -0.4162 -2.4E-05 -0.190 1.2n- 28.42 24.92 2.499

methanamide
75-12-7

ethanamide
60-25-5

propanamide
79-05-0

Table G.14 AIM Properties for Atoms and Functional Groups: Amides



Table G.14 (Continued)
name V A r„,g

(1) C 6 1.484 -26.9967 -5.0E-04 0.769 5.0 27.26 11.22 2.681

(2) o 8 -1.191 -75.6128 -2.8E-06 0.422 8.0 129.02 84.19 2.507

(2) CH I 8 0.021 -29.1896 -8.0E-04 -0.287 12.0 157.02 80.12 4.229

(4) CH 2 8 0.074 -29.1240 8.7E-06 -0.216 11.5 155.02 82.12 4.192

(5) CH I 9 0.001 -29.7504 -1.2E-04 -0.278 12.7 219.57 122.40 4.148

(6) N1-1 2 9 -0.290 -56.0879 2.1E-06 0.722 12.6+ 182.01 115.64 2.858

N 7 -1.215 -55.2629 4.2E-05 0.050 10.0 126.27 62.88 2.776

H 1 0.468 -0.4087 -1.9E-05 -0.187 1.2 27.99 26.11 2.491

H 1 0.457 -0.4162 -1.6E-04 -0.191 1.2 28.26 25.12 2.516

(1) C 6 1.482 -27.0092 -2.2E-04 0.775 0.6 27.01 2.85 2.662

(2) o 8 -1.192 -75.6087 2.2E-06 0.425 6.5 129.20 82.82 2.490

(2) NH 2 9 -0.296 -56.0952 2.8E-05 0.741 12.8k 181.74 116.20 2.880

(4) CH I 9 0.027 -29.7422 -8.7E-06 -0.289 11.9 216.28 122.76 4.186

(5) CH 7 0.022 -28.5741 2.4E-04 -0.282 1.0 98.62 25.82 4.252

(6) CH I 9 0.027 -29.7422 -1.0E-05 -0.289 11.8 216.28 125.04 4.186

N 7 -1.226 -55.2722 9.2E-05 0.055 9.6"* 126.52 66.49 2.771

H 1 0.460 -0.4152 -2.2E-05 -0.190 1.7 27.92 24.09 2.472

H 1 0.470 -0.4080 -2.1E-05 -0.187 1.5tt 27.90 26.02 2.484

1-methyipropanamide
562-82-7

butanamide
541-25-5



name V A Bad

(1) N

(2) O

(3) O''

(4)CHIC

7

8

8

9

0.432

-0.475

-0.475

0.518

-54.2722

-75.2409

-75.2409

-29.5821

9.0E-04

2.6E-05

2.6E-05

6.6E-06

0.726

-0.268

-0.268

-0.546

6.9

6.9

6.9

11.6

51.17

124.64

124.64

200.02

12.62

89.12

89.12

129.92

2.490

2.400

2.400

4.045

(1) N 7 0.428 -54.2710 -9.1E-06 0.728 7.4 50.48 26.11 2.515

(2) O 8 -0.484 -75.2212 2.8E-05 -0.272 6.7 122.49 82.47 2.417

(3) O 8 -0.476 -75.2157 2.5E-05 -0.270 7.0 124.74 89.44 2.415

(4) CH 2 8 0.422 -29.0182 -1.7E-04 -0.526 10.2 145.26 82.74 4.115

(5) CH I 9 0.109 -29.7474 -9.2E-06 -0.260 12.9 212.50 127.21 4.118

(1) N 7 0.425 -54.2602 -5.4E-05 0.728 7.2 48.51 7.18 2.519

(2) O 8 -0.486 -75.2046 2.2E-05 -0.272 6.6 122.22 80.82 2.402

(3) O 8 -0.477 -75.1994 2.2E-05 -0.270 6.9 124.86 87.55 2.426

(4) CH I 8 0.407 -29.0265 -6.8E-04 -0.521 10.4 144.89 78.75 4.110

(5) CH I 8 0.092 -29.1562 -4.4E-05 -0.275 11.1 152.57 84.21 4.180

(6) CHI 9 0.027 -29.7602 -8.2E-05 -0.247 12.2 216.06 122.44 4.142

(1) N 7 0.429 -54.2682 5.8E-04 0.729 7.4 49.22 8.45 2.561

(2) O 8 -0.488 -75.2061 2.2E-05 -0.274 6.8 121.65 76.76 2.292

(2) O 8 -0.479 -75.1987 2.5E-05 -0.272 6.7 124.88 88.06 2.417

(4) CH I 9 0.088 -29.7568 -2.6E-07 -0.261 12.2 211.96 125.62 4.155

(5) CH 7 0.262 -28.4229 -6.2E-05 -0.482 8.6 90.59 25.16 4.241

(6)CHIC'' 9 0.088 -29.7568 1.1E-06 -0.261 12.2 211.96 125.62 4.155

nitromethane
75-52-5

nitroethane
79-24-2

1-nitropropane
108-02-2

1-nitropropane
79-46-9

Table G.15 AIM Properties for Atoms and Functional Groups: Nitros



Table G.16 (Continued)
name	 Z 9 E L A a V A Big

hydrogen (1) H	 1 0.000 -0.5755 -6.7E-07 -0.102 2.5 56.64 57.01 2.687
1222-74-0 (2)WHY 	 1 0.000 -0.5755 -6.7E-07 -0.102 2.5 56.64 57.01 2.687

(1) O	 8 -1.202 -75.4687 5.4E-05 0.266 7.7 151.66 118.44 2.502
water

(2) H	 1 0.601 -0.2412 -2.4E-02 -0.170 0.9 21.64 22.47 2.4177722-18-5
(2) H Y 	1 0.601 -0.2412 -2.4E-02 -0.170 0.6 21.64 22.47 2.417

(1) N	 7 -1.222 -55.0447 5.9E-05 -0.022 9.4 150.71 102.17 2.740

ammonia (2) H	 1 0.411 -0.4222 -2.7E-05 -0.215 1.5 21.04 29.70 2.549
7664-41-7 (3) H '' 	1 0.411 -0.4222 -2.1E-05 -0.215 1.5 21.04 29.70 2.549

(4) H Y 	1 0.411 -0.4222 -2.1E-05 -0.215 1.5 21.04 29.70 2.549

nitrogen (1) N 7 0.000 -54.7075 2.1E-08 -0.610 5.9 122.52 98.59 2.471
7727-27-9 (2) N '' 7 0.000 -54.7075 2.1E-08 -0.610 5.9 122.52 98.59 2.471

C.J4



Table G.16 (Continued)
name V A

(1) N

(2) N

(2) O

7

7

8

0.272

0.094

-0.265

-54.6844

-54.4516

-75.2565

8.5E-06

2.0E-05

1.2E-05

0.505

-0.828

-0.252

6.5

6.9

6.5

75.84

127.24

122.25

42.22

97.70

102.02

2.429

2.495

2.248

(1) Ne 10 0.000 -128.2552 -4.2E-05 0.000 2.0 105.29 107.82 2.929

(1) O 8 0.000 -75.0099 -1.6E-07 -0.416 4.4 115.14 91.27 2.280

(2) O ' ' 8 0.000 -75.0099 -1.6E-07 -0.416 4.4 115.14 91.27 2.280

(1) C 6 0.941 -27.4291 1.6E-04 1.066 6.5 91.98 60.54 2.598

(2) N 7 -1.150 -55.2218 -1.6E-05 0.600 8.6 168.12 114.61 2.619

(2) H 1 0.209 -0.5159 -1.0E-05 -0.124 1.7 29.18 27.09 2.517

nitrous oxide
10024-97-2 4111041110

neon
7440-01-9

oxygen
7782-44-7

hydrogen cyanide
74-90-8
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