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ABSTRACT

FLUID-PHASE THERMODYNAMICS FROM MOLECULAR-LEVEL
PROPERTIES AND INTERACTIONS BASED IN QUANTUM THEORY

by
Steven G. Arturo

A methodology to predict the thermodynamics of macroscopic fluid systems from
quantum chemistry and statistical thermodynamics has been developed. This work
extends the group-contribution concepts most utilized in chemical engineering.
Computational chemistry software is used to define the geometries and electron density
profiles of target molecules. Atoms in Molecules theory and associated software
packages are used to calculate rigorous properties of the functional groups within
molecules of interest. These properties are incorporated into an intermolecular potential
energy function which describes interactions between entire molecules as a set of
interactions between functional groups. This information is applied to a lattice-fluid
model with the capability to predict volumetric properties of pure fluids and vapor/liquid
equilibrium properties of mixture systems. This work develops a bridge from chemistry
at the molecular level to the statistical mechanics at the macroscopic system level.

The rigorous properties of functional groups lead to the application of first-
principles mathematical models that qualitatively agree with volumetric properties of
pure fluids and predict vapor/liquid equilibrium behavior for near-ambient mixtures of
alkanes, alcohols and ethers. The theoretical and computational efforts developed in this
work offer engineers the ability to determine molecular-level modeling parameters within

engineering models without the use of experiment.
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CHAPTER1

INTRODUCTION

1.1 Objective

This work lays out an algorithm that achieves thermodynamic properties of fluids from
rigorous properties at the molecular and functional group level. The fluid properties of
interest include conditions and compositions for vapor/liquid equilibrium of binary
mixtures, pure species volumetric behavior and heats of formation. The functional group
properties calculated in this work include structural, electrostatic and energetic
characteristics. The modeling results are geared toward application to systems of interest
to chemical engineers, while the fundamental approach and the molecular-level concepts
studied are geared toward models of interest to physical chemists.

The layout of this work is separable into four topics: chemical engineering
science; computational chemistry; quantum chemistry of interactions between closed-
shell molecules; and statistical mechanics of lattice-fluid systems. Chapters 2 and 3
review the fundamental expressions within classical and statistical thermodynamics to
theoretically describe macroscopic and molecular systems. Chapters 4 and 5 review the
statistical methods chemists and engineers have formulated for describing fluid systems,
namely lattice-fluid models and the modifications made by engineers to describe real
systems. Chapters 6 and 7 review the theory and methods behind quantum chemistry that
predict energies and electron density profiles of molecules numerically, and Chapter 8
presents results of computations for molecules of interest to this work. Chapter 9 reviews

the concept of the functional group in modeling molecular behavior, and Chapter 10



presents functional group property calculations using a rigorous method based in
quantum chemical theory. Chapter 11 reviews classical and modern approaches to the
problem of interacting closed-shell molecules. Chapter 12 presents novel models for
interactions between molecules and functional groups utilizing calculations of Chapters 8
and 10 with the theoretical expressions of Chapter 11. Chapters 13 and 14 describe novel
applications of both the molecular-level properties and interaction energies to lattice-fluid
theory towards a first-principles description of the thermodynamics of pure and mixture
systems. Chapters 1 through 7, 9 and 11 review prior work, while the remaining chapters

document the efforts of the author.

1.2 Background Information
Engineers are responsible for large scale processes important to the health and well-being
of people in today’s society. The chemicals that engineers assist in manufacturing lead to
a higher standard of living for people by producing food for a more stable food supply,
detergents for a cleaner lifestyle and medicines for a longer and healthier life. Today’s
chemical engineer must devise safe, economical and efficient processes to bring large
amounts of advanced products to those who can benefit.

The science of chemical thermodynamics solves a variety of problems for
chemical engineers who oversee large-scale operations of fluid systems, the systems
within which most of today’s mass-produced chemicals are created. Knowledge of fluid
properties is used to accurately build the reactors and plants where manufacturing is
centered. The processes may also be optimized after models of heat and work effects on

the system are derived from thermodynamics. All stages of the process, from the initial



streams to intermediate properties to output flows, are able to be incorporated into
thermodynamic models of the process, thus allowing for a full characterization of the
product at several stages.

In all levels of processing, properties of the fluid phase are essential. Engineers
must know properties at various temperatures and pressures, two thermodynamic
variables readily controlled and monitored. Engineers must be able to predict the
response of fluids to changing heat and work effects, therefore properties of pure fluids
and mixtures must be known for relevant temperatures and pressures. For mixture
systems, which are the majority of systems in practice, properties must be known for
varying compositions of species as well. These properties are achievable with knowledge
of the volumetric behavior and heat capacity of the fluid, which are mathematical
relations available to the engineer.

Of particular importance to engineers is the process of separating chemicals.
Reactions that form the target compound rarely go to completion, resulting in a complex
mixture of reactants, by-products, solvents and the desired species. The compound of
interest usually needs to be separated from the remaining species, and sometimes this
must be done on a large scale. The classic approach is to use a distillation process, which
takes advantage of the different vapor pressures of the species at different conditions and
compositions.

The solubility of a trace compound within solvents is another thermodynamic
concept used in separations. Whether it be the solubility of a gaseous species within a

liquid or a solid, or the solubility of a solid or liquid species within a gas, a range of



separation techniques exist by taking advantage of the affinity a compound has to a
different phase or solvent.

In all systems studied by chemical engineers, the behavior of fluids at the various
conditions is representable either through tables and graphs, or analytically using
correlations or first-principles approaches. For the former, experiments have to be
conducted to amass volumetric data for pure systems and phase behavior data for mixture
systems at different conditions and compositions. A large number of experiments have to
be conducted to get a fine representation of all the states of interest, and states between
experimental results are then interpolated. To get such information, a great amount of
time and money must be invested. As an alternative, a limited number of experiments
may be used to correlate parameters within a mathematical expression. Analytical
expressions result from such a treatment, although the correlation is usually only good
within the range of conditions within the experiments. Analytical expressions with a
predictive capability over a full range of conditions are possible if the fundamental
driving forces of the system are defined. These mathematical expressions are usable by
scientists and engineers to give more timely results of an unknown system than by
methods that involve experiment. Having such expressions available makes engineers

more efficient and effective at predicting the behaviors of fluids in a process.



CHAPTER 2

CLASSICAL THERMODYNAMICS

Equilibrium thermodynamics is the study of natural laws that describe the state of
material at given conditions (e.g. temperature and pressure) and composition. The study
of such laws commenced with the study of steam engines to determine how much energy
can be extracted in the form of work and how much energy is wasted in the form of heat.
Scientists continue striving to understand the underlying principles of energy and how it
drives processes. Beginning as an applied science, the framework has matured into
abstract mathematical concepts and now is used by chemical engineers and scientists to
make all kinds of quantitative assessments, on systems from the molecular level to
systems on the scale of astronomical bodies.

This chapter reviews concepts familiar to those who have learned undergraduate
chemical engineering thermodynamics. The state function formalism is reviewed, and
notation conventions are established; these may differ from those with which chemists
are familiar. The quantification of nonidealities, namely through defining residual and
excess properties, and the utilization of equations of state and activity coefficients within
these expressions are shown. The gamma-phi formulation, a set of equations used by
engineers to calculate vapor/liquid equilibrium conditions, and the algorithms using these
equations are introduced. Those who wish for a more in depth discussion are referred to

a standard textbook in the area (Smith, Van Ness, & Abbott, 1996).



2.1 The State Function Formalism

The state function formalism of equilibrium thermodynamics simplifies the description of
systems so that engineers need only be concerned with the initial and final conditions of a
process. The change in energy of the system is independent of the path the process takes.
Different external effects change the path off the system. Such concepts fall within the
study of kinetics and reactor design. Thermodynamics is used by engineers when they
need to establish the initial and final conditions, any intermediate states, and limits of
heat and work effects on the system. Such effects can then be applied to create the
desired output.

The most important state function within all of thermodynamics is the Gibbs
energy. By the Second Law of Thermodynamics, a pure species system that has achieved
equilibrium has reached a state that minimizes the Gibbs energy at the given temperature
and pressure. The Gibbs energy expresses a balance between the internal energy U of
the system, the entropy S at the system temperature 7', and the pressure-volume effect
that the system encounters to exist with volume V' at a thermodynamic pressure p
(Levenspiel, 1996)

G=U-TS+pV @1

A state function of theoretical interest is the Helmholtz energy of the system, which is
expressed here through the Gibbs energy

A=G-pV=U-TS (2.2)

In processes, the enthalpy of the system is important to determine heat effects and phase

changes of flow systems. This state function is given by

H=G+TS=U+pV 2.3)



The Gibbs energy is most important to engineers because of the natural variables
of the state function. Changes are wholly describable through changes in the pressure,
temperature and composition of the system, conditions engineers control and measure
using a thermometer, barometer and species-measuring device. In differential form, a

change in the total Gibbs energy of a system with multiple species is given by

t

dG' =V'dp-S'dT + Z(‘;i] dn, 24)
: n
! T.p,n

i .
)

where the extensive properties here are given as total quantities, denoted by the

superscript ¢, », is the number of moles of species i, and where the partial derivative is

taken while holding 7, p, and n,, constant. A more usable form of the above

1

differential is given by the dimensionless form of the equation, found to be

d(i} _r dp- H o Z(a%ﬂ] dn, (2.5)
: n
! T,P,”/

1

where R is the ideal gas constant. The total entropy term is replaced by an equivalent
expression including total enthalpy, a quantity more accessible to engineers.
A differential change equation for the Helmholtz energy is similarly expressed,

but with different natural variables

t
dA' =-pdV' —S'dT +) [%J dn, (2.6)
! on, V'.T.n;

i

where the change in 4’ is expressed in terms of changes in volume, temperature and
species amounts. The differential expression for a change in enthalpy is not as practical,

since the change in entropy of the system needs to be known



n.

dH' =V'dp+TdS' + Z(QH—] dn, Q2.7
i a fi p,S’,nj
Equations (2.4) through (2.7) are called the fundamental property relations (FPR) for the
respective energies.

In each of the above FPRs, the change in the energy with respect to the amount of

species i i1s called the chemical potential of species i. The chemical potential g, is

given by

oG’ oA’ OH'
K =( 2 ] =[_a J =[_a J (2.8)
ni T,P,ﬂ,- ni V';Tsnj ni P,SI,”/-

This quantity measures the affinity of a given species to a given phase. If two phases are
in contact and molecules are able to move between phases, a molecule of type i moves
from the phase with higher chemical potential to the phase with lower chemical potential.
This flux of molecules continues until the chemical potential of both phases are equal.

Equality of x4, for each species in all phases defines the equilibrium of the system.

2.2 Real versus Ideal Systems
The study of the change in energy of a real system begins with the study of change in an
idealized system. Expressions developed for idealized systems are almost always simpler
and are used as first-order approximations. Gas-phase systems are related to the ideal gas
state, where molecules neither interact nor displace any volume. Real gases tend toward
ideal gases at low pressure, high temperature, and large molar volumes. The
nonidealities of real gases develop from the volumes taken up by molecules and the

forces of attraction and repulsion between them. Liquid-mixture systems are similarly



related to ideal solutions. Properties of ideal solutions of a given composition are the
weighted average of pure liquid properties added to an idealized entropic effect. Ideal
solutions are good approximations to mixture systems with species whose molecules
have similar sizes and interactions. The nonidealities arise when molecules with different
structures and/or unlike polarities are mixed.

Engineers relate the deviation of system properties of a real gas from the ideal
state by considering residual properties. Only the equation of state (EoS) of the fluid is
needed to calculate these properties. To see this, consider the definition of the molar

residual Gibbs energy of the system
G*(T,p)=G(T.p)-G* (T.p) 2.9)
where each system exists at the same temperature and pressure. The FPR in Equation

(2.5) is used for the pure species ideal gas and residual property

Gig Vig Hig
d 2 ar 2.10
T ) RT P TRE (2.10)

GRY VR H*R
RT ) RT © RT?

dr (2.11)

Finding the changes in the Gibbs energy is straightforward for an ideal gas with
knowledge of the ideal gas heat capacity and the ideal gas EoS. For a constant-
temperature process, the change in the residual Gibbs energy is calculated by integrating

the differential change from the ideal gas pressure, p =0, to the pressure of interest
G" dp
—=\|Z(T,p)-1|— 2.12
wr~ b L2(Tp)-1] 2.12)

where Z is the compressibility factor is found through the real gas EoS and is dependent

on temperature and pressure
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pV(T.p)
Z(T,p)=——"= 2.13
(7.P) =27 (2.13)
Similarly, the residual enthalpy in a constant temperature process is found to be
R
L f(%j % 2.14)
RT or ), p

It is therefore shown how an EoS in the form of the compressibility factor Z is used
within the residual property formulation to determine the thermodynamic properties of a
pure species. An analytical EoS makes the job of an engineer more efficient by allowing
for the quantitative assessment of thermodynamic properties of real fluids through the use
of Equations (2.12) through (2.14).

The excess properties of a liquid quantify the deviation of real liquid mixture
behavior from ideal solution behavior. For instance, the molar Gibbs energy of an ideal
solution is the weighted sum of energies from the pure liquids added to an entropic

contribution

G“=Y xG,+RTY x,Inx, (2.15)

where x, is the mole fraction of species i in the liquid phase. The excess molar Gibbs
energy of a mixture is defined as follows

G* (T, p,x)=G(T, p.x)-G"(T, p,x) (2.16)
where each system is at the same temperature, pressure, and composition x. To develop
mathematical expressions usable by engineers, it is necessary to consider the FPR of the
total Gibbs energy, similar to Equation (2.5). For an ideal solution,

G’ id V’ id H’ id i
d (R; =(R; dp—(RT)2 dT+Z’;—’Tdn,. 2.17)
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where the chemical potential of species i in an ideal solution is denoted as 4.

Subtracting this expression from the FPR for a real mixture system gives the total excess

Gibbs energy
(@) | -0y H-(a) p
d = =7 dp— e dT+ZTdn, (2.18)
Including excess property notation gives
(&) |_(r) (&) =
d = |= 77 dp - 277 dT+Z—Tdn,. (2.19)

Within this expression, define the natural log of the activity coefficient of species i, Iny,,

as proportional to the difference in chemical potentials of the real and ideal mixture
systems

RTIny, = p — (2.20)
This relation quantitatively describes the different way a species behaves in a real
mixture as opposed to an ideal solution and is used to determine what phase is preferable
to a species. By inserting Equation (2.20) into Equation (2.19) and taking the derivative

with respect to amount of species, #,, the activity coefficient is related to the total excess

Gibbs energy

o|(a) [rr]

on.

1

Iny, = (2.21)

p.T.n;
Inserting the original expressions for the total excess Gibbs energy and the total Gibbs

energy of an ideal solution, the activity coefficient is found
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Iny, = {E(_G'/_RT_)} - {?E/_RT_)} —Ilnx (2.22)
: on, . on, . '

where G! is the total Gibbs energy of pure species i.

With development of models of the Gibbs energy for pure liquids and liquid
mixtures, expressions are attainable for the activity coefficients of species within the

system and, therefore, the thermodynamic behavior of those species in solution.

2.3 Classical Treatment of VLE Behavior
The activity coefficient plays a very important role in determining the vapor/liquid
equilibrium (VLE) curves of mixture systems of interest to engineers. At low to
moderate pressures, the engineering expressions relating the liquid and vapor
compositions to the system temperature and pressure are called the gamma-phi

formulation

sat

yoO,p=xyp, (2.23)

sat

where y, is the mole fraction of species i in the vapor phase, p;* is the saturated vapor
pressure of species i at the system temperature and @, contains factors that describe the

nonidealities of species i within the system. These include vapor phase nonidealities
accounted for by the virial EoS and liquid volume corrections accounted for by the

Poynting factor. This quantity is given by

(B,-V!)(p-p")+

(SR

;;y/yk (2511 - 5Jk)

RT

@, =exp (2.24)
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where B, is the pure species second virial coefficient, ¥/ is the molar liquid volume, and

J,, is a difference of pure and mixture second virial coefficients

o,,=2B,-B,,—B, (2.25)
For a binary mixture, Equation (2.24) reduces to
B _ Vl N + 25
® =exp( 1" )(p b ) Pyop (2.26)

RT
for species 1, and the expression for species 2 is found by exchanging subscripts. In
practice, the thermodynamic variables for VLE systems are temperature, pressure and

composition. The dependence of the terms in the gamma-phi formulation is as follows

q)i =f¢0(Tﬂp9y]7y29'"9yN_1) (2.27)
=1, (T2 DX Xy s Xy ) (2.28)
p“=f(T) (2.29)

Iterative procedures have been developed to determine full VLE tables and graphs
with limited information by using the functionalities above. The following procedures
are documented (Smith, et al. 1996), therefore the algorithms are not presented here.
There is a slight discrepancy, since here y, is considered dependent on pressure. The

documented procedure approximates y, as only dependent on temperature and liquid

composition. The general dependence can be worked into the documented procedures by

evaluating the activity coefficients with each iterated pressure.
The bubble point (BUBL) procedures calculate the composition of the vapor
phase within the first bubble that forms within the liquid phase, while the dew point

(DEW) procedures calculate the liquid composition of the first liquid drop that forms
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from the vapor phase. The most common information is the liquid composition and
either temperature (for an isothermal VLE graph) or pressure (for an isobaric VLE graph).

The BUBL p procedure allows for pressure and vapor composition to be found with

knowledge of the liquid composition and temperature. The BUBL 7' procedure allows
for temperature and vapor composition to be found with knowledge of the liquid
composition and pressure. The implementation of the DEW procedures is less common,
since experimental data rarely includes only vapor phase compositions. Difficulty is
encountered when trying to keep the entire headspace at uniform conditions to avoid
fluctuations in density or concentrations. The DEW p procedure calculates the liquid
composition and pressure with knowledge of the vapor composition and temperature.
The DEW T procedure calculates the liquid phase composition and the temperature with

knowledge of the vapor compositions and pressure.

2.4 Notes on the Critical Point of a Fluid
Most pure fluids and fluid mixtures have a particular set of conditions where classical
mathematical formulations of thermodynamic properties break down. The critical point
for a pure species is a set of conditions, usually given as the critical temperature and
pressure, 7. and p., that denote the highest temperature and pressure where the liquid
phase and the gas phase of a fluid have a distinct interface. Below such conditions, VLE

may exist. Experimentally properties for a pure species EoS at the critical point have

been found, namely

op &’p
(5171 =0 and (5V2 JT =0atp=p.and T =T, (2.30)
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To get a sense of the difficulties around the critical point, consider that the
isothermal compressibility of a fluid, the change in volume when applying a pressure at

constant temperature, is mathematically expressed as

1{oV
2]

This expression is thereby infinite at the critical point, given by the conditions stated in
Equation (2.30), meaning that one can theoretically apply pressure to a fluid without
resistance. This is counterintuitive, since real world experience shows that a fluid resists
occupying a smaller space by applying a force outward on the container. At the critical
point, this is not the case.

Molecular-level characteristics of a species do not determine the thermodynamics
around the critical point, since all fluids and fluid mixtures have critical points. Nor do
the molecular properties affect the way the fluid approaches the critical point, either
isothermally or isobarically. Such species-specific and composition-specific
characteristics do determine the actual values of the critical temperature and pressure.
Mathematical treatments for an EoS and a Gibbs energy expression do exist, but these are
arduous to use and are high in theory. Systems far from the critical point are subject to
the classical treatments described above and throughout this work. Introductory
information of critical phenomena and its relation to phase transitions is explained
(Stanley, 1971), and nonclassical approaches resolving some issues with the critical

region are offered (Anisimov and Sengers, 2000).
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2.5 Summary
Engineers benefit when the thermodynamic behavior of fluids and fluid mixtures are
reduced to mathematical formulations. Equations of state can be used to determine real
gas properties. Gibbs energy expressions can be used to determine the behavior of liquid
mixtures. Although these expressions are more difficult to determine around the critical
region, methods do exist and offer a quantitative description of the thermodynamics there.
If one is able to determine the Gibbs energy for a generalized fluid system at any
temperature, pressure and composition, it is found that both the EoS and activity
coefficients are available for use in calculations. Theoretical frameworks that attempt to
relate fundamental molecular behavior to macroscopic system properties exist. Statistical
thermodynamics, an interpretation of molecular behavior that results in macroscopic
thermodynamic properties, is the bridge between the very small entities and the large

properties with which engineers are familiar.



CHAPTER 33

STATISTICAL THERMODYNAMICS

Statistical thermodynamics allows for the information at the molecular level to be
translated into the macroscopic thermodynamics that engineers are interested in. The
focus of macroscopic property prediction is to find the most probable energy levels of the
system using a statistical analysis of the myriad combinations of molecular energy states,
since the sheer number of molecules in a typical engineering system includes Avogadro’s

number of molecules, N,, and a system degeneracy (the combinations of molecular

states that result in the same system energy) of order 10"+, Knowledge of these most
probable states leads to the macroscopic system properties engineers use in practice.

This chapter reviews concepts within physical chemistry and molecular physics
that are not usually taught to undergraduate chemical engineers. The derivation of
Boltzmann’s distribution of quantized energy states available to a system is discussed,
and expressions relating these distributions to macroscopic thermodynamics are
established. The maximum term approximation for the summation within the partition
function is expressed, as it will serve an important role in the calculation of
thermodynamic properties. The origin of the virial equation of state, a theoretically
rigorous equation of state, is noted, and the role of intermolecular potentials within
gaseous systems is presented. Classical physics expressions for the interaction of
molecules and statistical simplifications of these expressions are reviewed. The

derivations and notation of the statistical thermodynamics in this chapter is a restatement

17
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of work within a standard textbook (McQuarrie, 2000), as too are the expressions of the

intermolecular potential functions (Hirschfelder, Curtiss, & Bird, 1964).

3.1 Boltzmann’s Distribution
To start, consider the classical example of determining the thermodynamic properties of a
system given the temperature, total volume and total number of molecules, N. With
these conditions, the theory of quantum mechanics ensures that the states available to the
system are defined. If the most probable states are found, then the properties of the
system at these states are calculated, as they are assumed to reflect the equilibrium
properties of the real system.

In time, the macroscopic state cycles through its available quantum states. Let the
time-dependent motion of states be represented as an ensemble, a large collection of
systems under the same thermodynamic conditions, where each system represents a state
visited by the real system. Analysis thereby begins with gathering all the information

about the ensemble. Each system in this ensemble is in a state j with a total system
energy E;. The number of systems that occupy the same energy state is given by a ;-

The total energy of the ensemble is therefore

€= aE 3.1)
J

The number of systems in the ensemble must be very large, given the number of

degeneracies discussed above. This quantity is

A=Y a, (3.2)
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Given system conditions and the above constraints, the most probable energy state is able
to be found.

The most probable state is directly related to the distribution of states in the
ensemble. The number of ways the systems in the ensemble can be distributed is a
reflection of how often a distribution of states is encountered upon analysis. This number
is given by the combinatorial formula

2!

I_[aj!
J

Q(a)= (3.3)

where a =(a1,a2,...). If the number of systems in the ensemble is sufficiently large,
which is prescribed above, the distribution of systems corresponding to the largest
number of ways effectively represents the distribution of systems. One can assume the

existence of this distribution, labeled a*. Of course, the distribution a* must be

constrained by Equations (3.1) and (3.2).

The task now is to quantify a*. This is accomplished by maximizing the ways
function (or here, the natural log of the ways function, which is entirely equivalent due to
the monotonic nature of the natural log operator) using the constraints above and the
method of Lagrange undetermined multipliers. Maximizing InQ involves taking the

derivatives of all a, and constraining the distribution to Equations (3.1) and (3.2). The

result is given as
1[111 Q(a)-ad a,-BY aE, |=0 (3.4)
oa g k k

for each j. In this treatment, the undetermined multipliers are @ and £, and the task

will be to find what these quantities are. Solving for the elements of the most probable
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distribution, a;, gives a relationship between the multipliers and the energy state E;.
The result follows, for each j

a =e e (3.5)

We can further evaluate by summing Equation (3.5) over all j and utilizing

Equation (3.2). This gives an expression isolating o

S
el = 4 - (3.6)

The probability of finding a system in state j, given by the occupation number of state j

in the most probable distribution, is found by combining Equations (3.5) and (3.6)

= (3.7)

This is the relationship that leads to the probability distribution of quantum states.
The function in the denominator of Equation (3.7) is a common relation within

statistical mechanics and is called the canonical ensemble partition function, Q. It is

defined as

oMV T)=Ye o () (3.8)

J
The partition function may also be expressed by grouping energy states with the same

energy and summing through the available energy levels

oV, T)= Y Qi) 3.9)

k(levels)

where Q, is the degeneracy of energy level &
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Q, =Q(NV,E(NV')) (3.10)
Therefore, the probability now of finding a system at energy level & is

Qe 75
Pk — k

Probabilities in the form of Equation (3.11) and the canonical partition function, Equation
(3.10), are central quantities when relating the molecular quantum states to the

macroscopic properties.

3.2 Relationships between Partition Functions and Macroscopic Properties
With the expressions for the most probable energy level, the macroscopic system
properties desired by engineers are nearly calculable. The last hurdle is to relate the
probabilities to macroscopic properties and, in the process, to determine the second

multiplier #. One must begin by considering the average energy of a system, the

weighted average of all the energy states in the ensemble. This is expressed as

E'e

E'=) PE =) jQ (3.12)

Recall that the total internal energy of a system, U’ , is the energy of the molecules within
a system: the kinetic energy of translation; internal rotations and vibrations; and the
potential energy they experience through interactions. These effects are exactly
described in the quantum state, therefore Equation (3.12) is exactly the internal energy of

the macroscopic system.

U =E' (3.13)
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Another relation between statistical thermodynamics and macroscopic

thermodynamics reveals the definition of f. First, recall that the differential change in
energy needed to reversibly expand a volume at a given pressure

dU’ = pdV" (3.14)
For a system within the ensemble, this relation is given by

dE; = pdV" (3.15)
The subscript exists on the pressure here because the pressure for a given differential

volume change is dependent on the system quantum state. Rearrangement isolates this

pressure

_| 2, (3.16)
Pr=lar ), '

The pressure familiar to engineers is the thermodynamic pressure, and this quantity is

given as the ensemble average of the system pressures, similar to Equation (3.12)

- 1 aEl -BE"
A A
- J£ ;Q aV v

Consider now the derivative of the average energy, Equation (3.12), with respect to the

volume, holding N and £ constant

aE’J —_ 1 OE, i -BE, =
— =—p+ﬂ—2[——jt] Ee™ —-pBE'pD (3.18)
(aV N.B Q J oV N ’

This expression is simplified when one considers the derivative of the average pressure,

Equation (3.17), with respect to S while holding N and V' constant

_ oE" :
(@j _Ep-~Y| L | B (3.19)
B )y, o5\ar )

J
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Equation (3.19) inserted into Equation (3.18) results in

OF' — dp
) -3
V' )y s 0B )y
Relating this to a similar expression derived from the FPR of the internal energy
v =~p+7(5_1’) (3.21)
o' ),y OT )y

suggests that S = constant/T . This constant is universal for all systems considered, and

it is called Boltzmann’s constant, named after a founding contributor to statistical
thermodynamics. The undetermined multiplier is therefore

1
B= 7 (3.22)

where the numerical value of Boltzmann’s constant has been determined to be
k, =1.3807x107> J/K (3.23)
The natural variables of the canonical partition function suggest a relationship
between Q and the Helmholtz energy 4. Development of the statistics and relations of
the FPR in classical thermodynamics result in a straightforward relationship
A =-k,TInQ (3.24)
The pressure of a system describable by a canonical ensemble is found using the FPR of

the Helmholtz energy, Equation (2.6)

od' J (a In Q)
p=—|—| =kT|=—% (3.25)
(GV T.N ’ ov T.N

The chemical potential for a given species i, utilized within engineering models, is given

by
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ON,

I

o= —kBT( aan] (3.26)
TV N,

For the other macroscopic thermodynamic functions of interest, one must sum

over the Boltzmann-like factor of interest to achieve the appropriate variables. For
instance, if one wished to have the partition function depend on p instead of V', one

finds

E' pV

G'(N.T,p)=—k,TInA(N,T,p)=-k;TInD.> Qe "¢ *' (3.27)

vt oE'
where A is called the isothermal/ispbaric, or Gibbs, ensemble partition function. The
summations here are over all possible system volumes and energy levels. Also of interest
is the partition function the grand canonical ensemble, =, where N is exchanged with

the chemical potential, u
_E N
PV =k, TIE(m T,V )=k TInY. Y Qe " e (3.28)
N E

One is able to go backwards from the canonical ensemble and remove the summation

over energies, thus having the thermodynamic variables N, V', and E’. This function is

the degeneracy of the system of energy E’ and is related to the entropy of the system
through Boltzmann’s formula

S'=kTmQ(N,V',E") (3.29)

Since the focus of this work is around the Gibbs function and its associated

partition function A, thermodynamic functions found using Equation (3.27) and the FPR

in Equation (2.4) are of interest. The total volume of the system, important in research of

an EoS, is given by
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V= (a&} - —kBT[ Oln A] (3.30)
P Jr P Jrw
The chemical potential is important within the VLE framework, and this is given by
P (LS S (Ch T (3.31)
N, ), oN, J;,

where N, is the number of molecules of species i in the system.

To facilitate calculation of properties using the partition function approach, the
maximum term within the summation is used to represent the entire partition function.

For instance, consider writing the canonical partition function as

Q(NV',T)=3 1,(N.V'.T;E") (3.32)

where
7o (NV.TE ) =Q(N,V'  E)eE (3.33)
It is assumed that the terms in the summation are dominated by a single term, similar to

the assumption made with the occupancy of states and Equation (3.3). The function

representing the summand, 7, , is maximized with respect to energy to find this
maximum term. The partition function, Equation (3.32), is therefore assumed to be
Q(N,V‘,T):rQ(N,V’,T;E") (3.34)
where E” maximizes 7,. Similarly with the Gibbs ensemble, the summation within the
partition function is expressible as the maximum term. Considering the partition function
A(N,T, p) ZZQ(N V' E)e g Il

=Y >0 (N.T.pV' E)

V{ EI

(3.35)
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The maximum of 7, is found by taking the derivatives with respect to E' and V' and

setting those to zero

( a’é) =0 and [%J -0 (3.36)
V' )y OE' )y,

The partition function is therefore expressible as
A(N.T,p)=7,(N.T.p;V" ,E") (3.37)

thereby giving the most probable energy state and volume when considering an ensemble

of systems at a given temperature, pressure and composition.

3.3 Virial Equation of State
The virial equation of state is a Taylor’s series expansion of system pressure in terms of
system density around the low density limit. This expansion is the only theoretically
correct representation of the gas state that exists in thermodynamics. The macroscopic

thermodynamic representation is given by
p=—1§/—]:(1+£+£+2+.nj (3.38)

where B, C, and D are virial coefficients dependent on temperature. At subcritical
temperatures, the series converges only for gas-like volumes. At supercritical
temperatures, the series converges for all volumes. The number of terms necessary for an
accurate representation of a system depends on the pressure and on the substance. For
systems with pressures up to 20 bar, an accurate volume can usually be calculated with

the inclusion of the B/V term. For system with pressures up to 50 bar, terms up to

C/V? must be included.
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To derive the virial coefficients, one must consider the grand canonical ensemble,
Equation (3.28). A series expansion of the ensemble and relation to Equation (3.38)

yields rigorous definitions in terms of intermolecular potentials. These definitions relate

the coefficient of order (—n) to the molecular interactions of systems involving » and

fewer molecules. The result for B involves expressions for molecular interactions in

systems with two molecules, given by
B(T)==2x [ (e —1)rldr, (3.39)
where u,,(r,) is the intermolecular potential depending on the distance between

molecule 1 and 2 and 7, =|r, —r,| is the distance between molecules 1 and 2. The third

virial coefficient, C, involves interactions within systems up to three molecules. This
expression is somewhat more involved, since there are three binary interaction terms and
one three-body interaction term. If one neglects the three-body interaction term, the

expression for the third virial coefficient is simply
C(T)= IH (et —1)(emalwlbl 1) (ol —1)drdrydry,  (3.40)

Here, the integrals are taken over all possible positions of the three molecules in the

system. If the three-body interaction is included in the formulation, C is then given by

(e upz (1) kgl 1) (e-"zs(’zs)/"BT _ 1)(6‘"13(’13)/"5T _ 1)

J‘J. ~t1a (3 )=t (73 )15 (15 drldrzdrs (341)
kgT ( ~6(rizhi3.m3 ) kT _1)

where &(7,,%;,1,) describes the energetics evolved from the three molecules given their

binary distances. These expressions reflect that, up to pressure of 20 bar, two-body
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interactions play a significant role in the gas phase thermodynamics. Up to 50 bar, three-

body interactions are significant influences on the properties of the gas system.

3.4 Intermolecular Interactions

Statistical thermodynamics and lattice-fluid theory reduce the problem of finding the
quantum states of a system into the problem of molecular interactions. Interactions
change the system state by stabilizing or destabilizing the configurational energy.
Intermolecular potentials are necessary for the calculation of virial coefficients of real
fluids and in approximating the system quantum states within partition function
expressions. Such forces are modeled by separating the effects into the Coulombic
effects, the effects at short interaction distances and the effects at long interaction
distances.

Coulombic effects dominate the interactions between molecules that have a non-
zero electronic charge, e.g. systems with ionic species. The energy between two

molecules with charges is given by the Coulombic potential

U, = ——‘1;‘12 (3.42)
12

where g, represents the charge of molecule i. If the charges are of opposite sign, the

molecules attract one another due to a greater reduction of system energy at shorter
interaction distance. If the charges are of the same sign, the interaction energy is positive,
and the molecules will repel one another due to a more stable interaction energy at larger
distances.

Short-range interactions between neutral molecules are repulsive. This is a

manifestation of the Pauli exclusion principle, which states that quantum particles (here,
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electrons) cannot occupy the same quantum state. For closed-shell molecules, the
electron clouds around the nuclei overlap, thereby occupying the same space and
attempting to occupy the same quantum state. This is energetically unfavorable,
therefore the molecules repel. = However when the electron clouds overlap, electrons
have more space to occupy, which energetically is favorable. This results in an attractive
force, albeit small. This is called the exchange contribution and cannot be described
classically, since such an effect has no analogue in the particle description of electrons.
The combined attractive and repulsive effects at short-range is sometimes called the
exchange-repulsion effect.

Long-range interactions between neutral molecules are attractive. These effects
are further separable into the electrostatic, induction and dispersion contributions. The
electrostatic contribution involves the interactions of multipole moments (charge, dipole,
quadrupole and higher moments), which arise from the asymmetrical distribution of the
negatively charged electron cloud and the positively charged nuclei. Induction is when
the multipole moments of one molecule induce a shift in the electron cloud of the second
molecule, thus causing a short-lived attraction similar to the interaction between dipoles.
Dispersion arises when one electron cloud induces another to shift, and in response, the
shifted electron cloud causes the originating cloud to shift, thus creating an alternating
motion that leads to short-lived dipole moments of opposite orientation. The latter two
contributions are influenced by the polarizability of the molecule, which is the measure of
how easily swayed the electron cloud is when under the influence of an external electric

field.
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The electrostatic interactions are calculated using Coulomb’s law, Equation (3.42).
Partial charges are placed within the molecule to reproduce the multipole moments. This
results in orientation-dependent expressions for intermolecular interaction energies. For

instance, the charge-dipole interaction is given by

u,, =122 cos g, (3.43)
ha

where 4 is the magnitude of the dipole moment of molecule i, and ¢ measures the

angle of the dipole off the line connecting the partial charge and the center of the dipole

vector. The dipole-dipole interaction is given by

Uy =

_ M,
3

. [2005¢] cos @, —sin @, sin @, cos (6, —92)] (3.44)
12

where 6 is the angle of the dipole moment off the plane perpendicular to the line

connecting the centers of the dipole moments.

For long-range interactions, molecules can rotate without being influenced by the
potential wells of certain stable orientations between molecules. These interactions may
be considered as orientation-averaged interactions. This is done by integrating
Boltzmann factors over all orientations to determine a partition function for the system,
and then dividing the partition function weighted by the energy, similar to Equation
(3.12). In general, the orientation-averaged interaction energy for an intermolecular
potential u, is given by

uxy (r) - J'J‘e"“x_y(’)/kBTda)lda)z

(3.45)
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where @, =sin6,df,dyp,. For large enough distances or high enough temperatures, the

Boltzmann factors can be expanded in terms of 1/k,T

2
ool _p_ My 1y | (3.46)
kT 2\ k,T

The result when applying the charge-dipole interaction of Equation (3.43) into Equation

(3.45) yields

_ L 4
7 S, (V.1 3.47
qu ("12) 3kBT ri; ( )

For the dipole-dipole interaction, Equations (3.44) and (3.45) give

_ 2 M
u (r,)=- 3.48
My ( 12 ) 3kBT r]g ( )

The induction contribution is dependent on the magnitude of the electric
multipoles and the polarizability of the electron cloud of the affected molecule. All
orders of multipole moments can induce a dipole in an electron cloud. Induction caused

by a charge results in the intermolecular potential describable by

2
u =-4% (3.49)

“om,
where ¢, is the polarizability of molecule i with the induced moment. Induction caused
by a dipole moment is given by

2. (3cos’ @, +1
5 =_ﬂ1 2( 12 ) (3.50)

ua 6
2r,

The orientation-averaged expression is found by applying Equation (3.45). The result of

this is
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2
7 =_t% (3.51)

“on
Dispersion interactions are significant because they are the main force of
attraction between non-polar molecules. Spherically symmetric molecules do condense
into a liquid phase; therefore they do have an interaction that results in attraction. These
interactions have been deemed London-type dispersive interactions and are named after

the scientist who applied quantum mechanical treatments to explain this phenomenon

(Gray and Gubbins, 1984). The interaction is described by

u,, =220 Mo, (3.52)
2 n \(Wy,+hvy,

where 4 is Planck’s constant and v, is a characteristic ground-state electronic frequency
of molecule i. If one assumes that Av,; is roughly described by the ionization potential,

I, , then the relation becomes

u, =—20% [ fuly (3.53)
“2 oy U+,

To calculate the interaction energy between two molecules, the effects described

above are summed together

u (rl > l'2 ) = uex/ rep + ueleclrostatic + uinduction + udispersion (3 5 4)

where the Coulombic interaction is included in the electrostatic contributions and, in

general, the orientation-dependent expressions are used.
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3.5 Summary
Statistical thermodynamics offers engineers a bridge between the molecular description
of matter and the macroscopic description of systems. The partition function and the
probability distribution of quantum states allows for a fuller understanding of how
molecular-level properties, such as state distributions and interaction energies, affect
volumetric properties and chemical potentials.

The volumetric behavior of a gaseous system is shown to be directly influenced
by the characteristics of interaction potentials involving only a few molecules. Molecular
properties used in these interaction formulas, such as the multipoles and polarizabilities,
have in the past been found through experiment. More recently, these properties can be
calculated numerically by utilizing quantum chemistry from its first principles to give
electron density profiles of molecules and how they may be influenced by electric fields.
These properties are becoming accurately represented through quantum chemistry, in turn
making such information more readily accessible to engineers for use in these interaction

formulas and within partition functions.



CHAPTER 4

LATTICE-FLUID THEORY

The amount of information necessary to use the general partition function approach in the
description of fluid systems is immense. Even for the system in the gas phase, the ease of
the virial equation series solution is lost as one considers multiple body interactions.
Ideally, the partition function approach would describe all states available to a fluid,
whether in the gas phase or the liquid phase. To accomplish this, assumptions must be
made to consider a smaller number of dominant molecular effects most important to the
macroscopic description of the system.

One method for describing fluids within a system space is to imagine them
occupying a lattice. Lattice statistics make available closed-form, analytical equations
describing the dominant effects within the partition function formulation. The details of
the lattice need not be explicit, as long as the sites are uniformly distributed throughout
the space, whether on fixed coordinates or not. Methods applied within lattice-fluid
theory make the description of fluids more tractable and result in qualitative descriptions
of vapor-liquid equilibrium for pure species and mixture systems. These theoretical
methods are also flexible enough to incorporate properties of real molecules, thus making
the models useful in the description of real systems.

This chapter focuses on lattice-fluid concepts and current approaches to the fluid
problem. Fluids on lattices have been modeled both by fully occupying the lattice and by
occupying a lattice also occupied by vacancies. Basic assumptions to simplify the

partition functions for use within the theory are presented for a system with a fully

34



35

occupied lattice. A combinatorial approach to the entropy neglecting contributions from
the interaction energies, thus describing the random state of the fluid, is formulated. The
interaction energies are then included and adjustments are made to describe the system in
the more realistic, nonrandom state. The same process is followed for systems where
vacancies are included in the lattice, and the volumetric properties of lattice fluids are
considered.

Lattice-fluid theory is the foundation for the application of the molecular-level
structural and energetic properties later in this work. It is here that both the pure species
equation of state and the activity coefficient of species in solution are able to be
calculated using the same model. The goal is to make available a single set on modeling

equations that engineers can employ in the study of pure and mixture fluid systems.

4.1 Partition Functions of Lattice-Fluid Theory

The initial systems considered involve fully occupied lattices, since it is thought that such
systems serve as reasonable approximations to the liquid state. Since the number of
lattice sites is known from the beginning, the volume of the system (a liquid-like volume)
is thereby known also. These models attempt to evaluate the terms within Equation (3.9),
the canonical partition function.

The lattice-fluid partition function is assumed to be simpler than the general
canonical partition function. Consider a lattice-fluid system where only two different

species exist, molecules of species 4 and molecules of species B. Instead of being

interested in the entire system energy, only the total configurational energy W' is

considered within the partition sum (Hill, 1960)
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O(N Ny V', T) = Qe 2 267 4.1)
-

where Q, . represents the contribution of the energy modes internal to the molecule

and assumed separable from configurational effects. The total configurational energy W'

is given by the interaction of nearest neighbors. For a binary system,

w'= ZZ.NU% =N 44+ NpEup+ NyyEpy + NppEpp “4.2)
[

where N, is the number of nearest-neighbor interactions between molecules i and ,

and where ¢g; is the corresponding interaction energy. Although separated explicitly, it is
assumed that N, =N, and ¢, =¢,. When the maximum term method described in

Equation (3.34) is applied, the notation within the partition function reduces

0= O™ ! (43)
where the * associated with the maximum term approximation is henceforth omitted.

The systems later considered are those lattice fluids that include vacancies. The
number of vacancies is considered a variable that is to be determined by system
temperature and pressure, as well as implicitly by the nature of molecules mixed.
Thereby, the Gibbs ensemble in Equation (3.27) is used, and the maximum term

approximation is taken as above

A(N s Ny, p.T) = Ay Q™ T g7 hsT (4.4)
VERAVIY S

internal
The total volume of the system is given by the volumes of the molecules and unoccupied

lattice sites

V=3 Nb =Nyby+Nb, +Nb, 4.5)
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where b, is the volume of molecule i, N, is the number of vacancies on the lattice, and
b, is the volume of a vacant lattice site.

These interpretations of the partition functions allow the problem to be reduced to

determining the most favorable set of interaction numbers N o the number of vacancies

N, and the degeneracy of the system given that interaction profile. The latter problem is

now addressed.

4.2 The Ideal Solution and the Athermal Mixture
The first attempt to determine the degeneracy is to consider systems where the interaction
energies have no bearing on the thermodynamics. These systems are called athermal,
where either W' =0 or the configurational energies of the pure systems being mixed and
the resulting mixture systems are the same (Guggenheim, 1944a), as in the case of mixing
two alcohol species of similar sizes. The only contributions to the partition function in

Equation (4.3) here are the internal term and the degeneracy term

Q = Qimemal Qa{h (4 6)

Since the internal contributions will cancel upon mixing, they will be left out of
subsequent expressions.

An ideal solution describable by Equation (2.15) considers a system where the
geometries of the molecules are so similar that size and shape effects have a negligible
contribution to the system entropy. Therefore, simple mixing is considered in the
degeneracy, and the partition function is given by (Hill, 1960)

N!

Q — Qath —
N,IN,!

4.7)
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This formula is the same as a model problem in the field of combinatorial analysis. This

is the value of the number of ways one can draw N =N, + N, balls from an urn with
two different color balls, N, balls of one color and N, balls of the other. The system is

said to possibly exist in Q ways, since this is the number of ways the molecules can exist
in the system while yielding an equivalent system energy.

For polymer systems where the size and shape differences between the
macromolecule and the solvent are large, the degeneracy described by Equation (4.7)
does not adequately depict the thermodynamics of the athermal mixture. This problem
must be approached by considering the probabilities of placing a polymer onto a lattice
systematically. These probabilities are then computed as a function of lattice-site
occupation, assuming the other species on the lattice is a monomer (or nonexistent,
therefore considered to be vacancies). An original assumption in this treatment is that the
probability of placing the next segment of a polymer on a lattice is assumed to be the
fraction of unoccupied sites within the entire system, without consideration as to whether
an adjacent site is available for a monomer to be placed (Flory, 1942). The number of

ways N, monomers and N, polymers occupying r, segments is placed on the lattice is

given by

(rs=1)Np ’ B
o )| () 4.8)
o =N, 2% Nyl (N, /1, = Np)!

where z, is the coordination number of the lattice and N, =N, +r,N, is the total

number of lattice sites in the system.
A more general treatment of the mixture of a macromolecular species and

monomers has been conducted (Guggenheim, 1944a). The approach analyzes the
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mixture of molecules composed of segments of different sizes as they occupy a lattice

The ways function for any number of different species on a lattice is given by

Q ath

— N t Qt
Guggenheim — H HN '(N '] (4'9)

where @, is a symmetry factor for molecule i, Q, is related to the total number of
nearest-neighbor interactions in the system

Q =q,N,+q3Ny (4.10)
and g, is such that z,g, =z, is the number of external contacts for molecule i. Within

the original derivation, g, is defined through the relation

2 (r-q)=r-1 @.11)

Equation (4.9) has been considered as a generalization of Equation (4.8), where the Flory
expression is recovered from the Guggenheim expression by allowing for the lattice

coordination number to approach infinity, z, — o« (Sanchez and Lacombe, 1976). This

is the case because of the placement probabilities assumption described above (Sayegh
and Vera, 1980); to guarantee that there is always an adjacent lattice site available when
placing a polymer onto a lattice, that site must be a nearest neighbor to all the sites on the
lattice. Also, Equation (4.8) has been shown to be recovered from Equation (4.9) at the
low volume fraction occupancy of a given species in the presence of vacant lattice sites
(Martinez, 1995).

The relationship between the number of external contacts and the number of
occupied lattice sites, here given by Equation (4.11), assumes that each monomer of the

polymer occupies a single lattice site, that exactly two contact (one from each monomer)
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is used to connect the monomers, and that the molecules are not cyclic. A factor is
included into Equation (4.11) that allows for the description of molecules that violate the

assumptions above (Staverman, 1950). This more general expression is
I = (r q,)-(r,-1) (4.12)

where /, quantifies the bulkiness of the molecule. The revised degeneracy of the system

described with Equation (4.12) is

ln Qath ln Qalh

Staverman Guggenheim

+Y_IN,InN, (4.13)

A review of expressions that describe an athermal mixture (Sayegh and Vera,
1980) suggest the use of Equation (4.13) over the expressions given by Equations (4.8),
(4.9), and others (Tompa, 1956; Donohue and Prausnitz, 1975). It is shown that Equation
(4.13) offers an accurate description of systems describable by more complicated
methods, such as those based within computational thermodynamics, while still retaining
a simple form. Furthermore, it has been shown that Equation (4.13) improves the
calculation of cavity formation free energies in liquid systems (Lin and Sandler, 1999a,
Lin and Sandler, 1999b), and has been chosen to represent the athermal contributions
within COSMO-based models (Lin and Sandler, 2002; Klamt, et al. 2002).

A generalized derivation of Equation (4.9) without assuming Equations (4.11) or
(4.12) is offered in Appendix A. The motivation is to make available an expression

without defining an arbitrary value such as /,, which usually becomes a correlating

parameter in engineering models of real fluids.
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4.3 The Nonathermal Mixture
The nonathermal mixture considers the interaction energies between the molecules in the
above statistics. However, to determine the maximum term as given by Equation (4.3),

one must determine the interaction numbers that gives the maximum of the expression

Qe™'/%" | This is not straightforward because of the difficulties of describing the
entropy of a real system, even though the athermal configurational energy is explicit.
Although the only closed-form representation of the entropy term up to this point is that
of the athermal case, this is enough to determine the entropy of the nonathermal mixture.

The original statements of the entropy consider the degeneracy strictly a function
of the number of molecules. For the binary system

Q=Q"(N,Ny)=Q"(N,) (4.14)

It is assumed that the degeneracy is a function of the interaction numbers also

(Guggenheim, 1944b)
Q™ (N,)>Q(N,.N,) (4.15)

This assumption makes the athermal degeneracy, as it stands, not adequate to incorporate

interaction effects.

Here, a guess at the form of Q(Nl.,N,.j) is made. Consider a binary mixture

system describable by the canonical ensemble. Consider also a fully occupied lattice.
There exists a number of interactions that will occur on this lattice, dependent on the
number of molecules 4 and B, the size and bulkiness of the molecules, and the number
of interactions that 4 and B participate in. Let I represent the total number of

interactions, given by
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i

These I interactions may be depicted as a lattice that is superimposed on the lattice that
molecules occupy. These interaction lattice points thereby are occupied by interactions
denoted A4, AB, BA, and BB. A first assumption is to state that these interaction
points are distributable as molecules are on a lattice. The number of ways by this
assumption is given by an expression similar to Equation (4.7), which is

I I!
CTITIN,! Nad!Np !N IN,!
[

Q'(N,N,) (4.17)

A descriptive argument as to why this method overcounts the number of ways is

documented (Hill, 1960).

Another assumption on the form of Q(N,., N, ,.j) must be made. It is assumed that

the degeneracy is separable into two contributions: one strictly in terms of the numbers of

molecules, the other in terms of the first assumption described above (Hill, 1960)
Q(N,,N,;)=K(N,)(N,.N,) (4.18)

The proportionality factor K is found by normalizing the sum over all possible sets of

N, , which should equate to the athermal contribution above
Q(N,N,)=Q"(N)=K(N) > Q(N.N,) (4.19)
all sets of N, all sets of N;

This process is generally described for molecules (Guggenheim, 1944b) and interacting
surface segments (Kehiaian, et al. 1978). The proportionality factor K, for any number
of molecules in the system, is found explicitly using Lagrange undetermined multipliers

(Knox, et al. 1984). The expression is given by



43

T1(zN,/2)7T
K(N)=Q" —1'__ (4.20)

where I is expressible through the numbers of molecules and their numbers of

interactions z,

1= 5% (4.21)

ZL=3"N, 4.22)

Therefore, the partition function that describes the lattice fluid where any number of

species occupies all sites is given by (Knox, et al. 1984)

N"VI’T = Yintemnal Qath Ni i )
oK, V".T)= O ‘al.se;m,, () MiNeA
i

[H (z.N, /2)!]2

T 403y

With this partition function, the problem of maximizing the term within the

summation is considered. The objective is to find the set of N; (for a binary system, the

N,, Ny, N, and N;) that maximizes the term. These numbers are under the

constraints given by Equations (4.2), (4.16), (4.22) and by the equality

N,=N, (4.24)
This problem has been solved indirectly (Guggenheim, 1944b; Kehiaian, 1978) and
through the using Lagrange undetermined multipliers (Knox, et al. 1984; Knox, 1987). It
is found that the numbers of interactions in the nonathermal system must satisfy what is

called the quasi-chemical relationship
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_25,] —&i—E;

NN
U J—g kT (4.25)

where the quantity within the exponential is referred to as the interchange energy. Once
this has been established, all unknowns within the system of equations can be solved for.
The derivation for the quasi-chemical equations in its most general form is offered in
Appendix B. The solution to these equations then gives thermodynamic properties of the

lattice-fluid system through the techniques described in Section 3.2.

4.4 Vacancies on a Lattice and Equations of State

The premise under most of the early work within lattice-fluid theory centers on the
description of polymer fluids. The polymer is modeled as a large number of segments,
each occupying one lattice site, while another, monomer-sized species, occupied the
remaining sites. Since these models consider the athermal solution, the energies of
interaction between monomer-polymer segments are treated as equivalent to polymer-
polymer interactions. Therefore, these monomers have been considered vacancies or
small solvent molecules by those developing the theories. Assuming these monomers are
vacancies, it has been shown that statistics involving the surface area contacts
(Guggenheim, 1944a; Staverman, 1950) are a general theoretical treatment of this
problem, while earlier works (Flory, 1942; Huggins, 1942) are approximations at low
polymer density (Martinez, 1995).

Use of the Gibbs partition function, Equation (4.4), allows for the effect of
vacancies on a lattice to be explicit. The difference to the canonical partition function

approach is that, to eliminate the summation over all volumes as given in Equation (3.35),
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the number of vacancies N, must also maximize the term. It turns out that this process

reveals the relation between the pressure, volume, and temperature of the system, thus
gives an equation of state. Recall that using the Gibbs partition function allows for a
description of the volumetric properties of the fluid, given by Equation (3.30).

Allowing vacancies on a lattice has become an interesting technique in modeling
volumetric properties for pure species and mixture systems. One way is to consider the
vacancies randomly distributed throughout the lattice (Sanchez and Lacombe, 1976).
This approach begins with the athermal statistics given by Equation (4.9) and considers a

binary system of molecules and vacancies

Qalh =

N(No+rN)!{(No+qN)T’2 (4.26)

Ny!N! | (Ny+rN)!
where @, N, r, and g are quantities of the pure species in the system. Using Stirling’s
approximation and taking the coordination number z, — o, a simplified form of the

degeneracy emerges

N N
lim Q™ = (lj ( Z l) 4.27)
Zy—> ¢ e ¢

where ¢ is the volume fraction of the species on the lattice

_ N
Ny+rN

(4.28)

Equation (4.27) corresponds to the ways given by the Flory degeneracy in Equation (4.8).
Inserting Equations (4.2), (4.5), and (4.27) into Equation (4.4) and maximizing with

respect to N, gives the EoS (Sanchez and Lacombe, 1976)
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ﬁ2+p+f[1n(1—ﬁ)+(1—lJﬁ]=o (4.29)
r

where the dimensionless variables are given by

. Nrb,
=% 4.30
p=— (4.30)
p=2h 431)
zZ, €
Fo2 kT 4.32)
zZ, €

where ¢ is the interaction energy between two molecules.

Further work of including vacancies in the lattice includes them in a nonrandom
manner (Smirnova and Victorov, 1987; Taimoori and Panayiotou, 2001; Panayiotou,
2003b), where the notation in the subsequent expressions reflects the latter references.

The vacancies recently have been considered a separate species in the lattice-fluid
mixture, occupying space and interacting with nearest neighbors. These interactions
contribute no energy to the configuration of the lattice. The resulting EoS when the

entropy of Equation (4.27) is applied is given by
[7+f[ln(1——,5)+(1—l]ﬁ+%lnl“oo}=0 (4.33)
r

where the reduced variables are the same as above, s is the average number of contacts

for a lattice site, and T, is a nonrandomness factor found by solving the following

equations (Taimoori and Panayiotou, 2001)

(1= 5)To + ALy, =0 (4.34)
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2

Ly, =
1+[1-4p(1- p)(1-7*)]

(4.35)

172

T = e (4.36)
When I', =1, the vacancies are said to be distributed randomly, as in the case described

above. For the case where Equation (4.26) describes the entropy, the EoS is given by

(Smirnova and Victorov, 1987; Panayiotou, 2003b)

ﬁ+f[1n(l—,5)+—2—1n(1+%[7—;3)+%1n1’00}=O (4.37)

4.5 Summary

Lattice-fluid theory allows for the simplification of the fluid problem. The assumption
that the internal molecular modes are independent of the other molecules in the system
allows for focus to be applied on the numbers and types of interactions in the partition
function. The reduced problem of the athermal system gives the foundation for
expressions that describe the nonathermal system. Vacancies are included in the lattice in
the attempt to describe both liquid and gas phases with the same model.

Lattice-fluid theory includes molecular properties, such as volumes and surface

area (reflected in r and g) that can be evaluated approximately through correlation or

rigorously calculated from quantum chemistry. Also, the energetics of the system
depends primarily on nearest-neighbor binary interactions, which allows again for
descriptions ranging from empirical to theoretical. Structural, electrostatic and energetics
quantities will be the focus of a large majority of this work, after an assessment of the

ways these properties have been formulated in engineering models.



CHAPTER 5

ENGINEERING SOLUTIONS TO THE
VAPOR/LIQUID EQUILIBRIUM PROBLEM

To make the classical and statistical theory useful for applications, engineers elucidate
concepts to bridge the molecular level and the macroscopic system level. Engineers need
not know the absolute values of internal energy and entropy, but how these properties
behave when a system changes temperature and pressure. Approximations must be made
at the molecular level to separate the dominating effects from the incidental effects that
most affect changes at the macroscopic level.

To accomplish this, engineers have developed phenomenological models to
account for the most important molecular-level effects. The VLE problem has served as
a measure of how well a model encapsulates the dominant effects, mainly because errors
may cancel out in the application of Equation (2.22).

Assumptions are made to find a closed-form expression for the excess Gibbs
energy. Firstly, although encountered in practice and explicit in the mathematical
framework described above, engineers have assumed that the excess volume is negligible
in a mixing process. This allows for the for the excess Gibbs energy to be approximated
by the excess Helmholtz energy

G'=4" (5.1)
Therefore, the total Gibbs energy is approximately the total Helmholtz energy and its

corresponding partition function

G'=A'=—k,TInQ (5.2)

48
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Secondly, the quantum energy levels within the isolated molecules of the system are
assumed to not change through the mixing process, as per the assumption made within
Section 4.1. This allows for the separation of the partition function as mentioned by
Equation (4.3).

The engineering models presented in the chapter take these assumptions and
describe the entropic and energetic effects of mixing, which in turn yields VLE behavior.
Lattice-fluid modeling is employed due to the ease with which system level properties are
described using statistics. The first part of this chapter involves the combinatorial
entropy contribution to the excess Gibbs energy formulas. The local composition
concepts are introduced, and early attempts to include contributions of interaction
energies are presented. Theoretical problems within these approaches have arisen as
these methods have been studied, and these are reviewed here. The more rigorous lattice-
fluid theory in Chapter 4, the quasi-chemical method, has been developed in response to
these criticisms, and both molecular and functional group models that utilize the theory
are presented. Finally, the COSMO-based methods are introduced due to their recent
acceptance by the engineering community. The identity between the quasi-chemical

statistics and the COSMO-based statistics is established.

5.1 Athermal Effects and Engineering G© Equations

For the simplest case, consider a mixture resulting in an ideal solution. The sizes and
geometries of the species are the same, and W' for the mixture system and for the pure

systems are the same. A mixture system that is not affected by changes in W' upon
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mixing is called an athermal mixture. The difference between the Gibbs energy of the

mixture system and the weighted averages of the pure systems is found to be

G-Y xG =) xnx, (5.3)

This is, of course, the identical expression given for an ideal solution, given by Equation
(2.15).

For mixtures of molecules that are of different sizes, the composition is not
considered the greatest factor in determining the entropy. The occupancy of the lattice is
considered more important, and the entropy of mixing is determined to be the number of
ways the lattice sites are occupied (Flory, 1942; Huggins, 1942). Assuming an athermal

mixture, the difference in mixture and pure Gibbs energies is found to be

G-YxG =RTY x,Ing, (5.4)

where ¢, is the volume fraction of species i in the system. Equation (5.4) reduces to the

ideal solution expression in Equation (5.3) if all the sizes of the molecules are the same;

mathematically, this means that 7, =7, for all the molecules in the system.

A more rigorous approach in determining the entropy from a mixing process for
an athermal mixture is accomplished by analyzing the mixture of molecules composed of
segments of different sizes as they occupy a lattice (Guggenheim, 1944a). The resulting
difference in mixture and pure Gibbs energies of the athermal mixture system is

G- xG =RTY xIng, +RTZx,,-Z-°2q—"1n% (5.5)

where 6, is the surface area fraction of species i in the system, given by
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0 _ (ZOqi ) Ni _ qiNl

- 2(za,)N, XAy

(5.6)

J
Note the first term of Equation (5.5) is identical to that of the Flory expression, while the

last term contains effects due to surface area differences.

5.2 Residual Effects and Engineering G® Equations

The athermal system expressions above give idealized descriptions on which the effects
within a real system, namely the interaction energies, are built. The ideal basis considers
fluids existing in a random state, while the influence of interaction energies brings the
fluid into a nonrandom state. It is assumed in the following models that the interaction
energies from nearest-neighbor interactions are the only significant contributions to W',
and these may be described by Equation (4.2). This affects the local composition of
molecules around a particular molecule, which is different than the bulk composition and
depends on magnitudes and signs of interaction energies.

The first widely used equation that exploits the local composition concept is the
Wilson equation (Wilson, 1964). Here, the ideal solution relation of Equation (5.3) is

used as a basis, where the latter composition is replaced by the local composition

G—Zx,.G, =Zx, Inx, 5.7

where x, represents the local composition of j molecules surrounding i molecules.

The local compositions are assumed to be related to the actual composition by the

following relation

1
ﬁ X VJ e—(s,-, =2,) kel
x, xV'

i 1

(5.8)
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This equation has been used by engineers to correlate VLE data with the n(n-1)

parameters, where n is the number of species in a system. Each parameter contains the

exponential in Equation (5.8). Therefore, for a binary system, the two parameters are
P, =g mmaiT p _ gleumeu)t (5.9)
For a ternary mixture, there are six parameters: 1-2; 1-3; 2-1; 2-3; 3-1; 3-2.
The Universal Quasi-Chemical (UNIQUAC) equation (Abrams and Prausnitz,

1975) is an oft-used model that combines the athermal contribution from Guggenheim,

Equation (5.5), and a residual contribution, modeled by a modified Wilson equation

G-Y xG =RTY xIng, +RTZx,%1n%+RTZx,q, ln% (5.10)

1 1

where 6, is the local surface area fraction of j molecules around i/ molecules. This

quantity is given in an expression similar to the local composition, Equation (5.8), except

for the factor of z,/2 within the exponential function

g, 6 -22%
?oizéj—e . (5.11)

Similar to Wilson’s equation, there are n(n—l) parameters that are correlated to

experimental data.

In conjunction with the development of UNIQUAC, a group-contribution method
called the UNIQUAC Functional-group Activity Coefficients (UNIFAC) method
(Fredenslund, et al. 1975) takes most of the same features as UNIQUAC except that the
residual contribution focuses on the interactions between functional groups. These

functional group interaction parameters, similar to those in Wilson and UNIQUAC, are
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correlated to known experimental systems and used in systems that lack experimental
data. The expression for the difference in Gibbs energies is given by

G-2xG =RT L xIng+RT Y x =L 2 n&

i

| (5.12)
)
+RTT0.7, 1n —RTZx szy(’)lny""

where k cycles through the different groups in the system, O, is the surface area

parameter of a group analogous to g,, y, is the composition of group & in the system,

v, is the local composition of group / around group &, and the superscript @ denotes

the quantity as it exists in pure species i. The local composition in this functional group

framework is found by Equation (5.11), which is similar to the UNIQUAC model

Yu _ Y T (5.13)
Y NG

The parameters within UNIFAC the form of those in Equation (5.9). These are found
through correlation of known experimental results and are assumed to be transferable,
which then allows the model to be applied to systems with no experimental VLE data.
The UNIFAC model has been the most widely used predictive tool for VLE and
other engineering systems involving phase equilibrium. The number of groups within the
method grows as experimental data for new systems are made available. The Dortmund
Data Bank has been employed to fit parameters for 45 major group definitions with
temperature dependence within a modified UNIFAC method (Gmehling, et al. 1993).
The modification increases the number of energetic parameters for each pairing of

functional groups to six, where it is two in the original UNIFAC method. A recent
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assessment reveals that the total numbers of parameters for the UNIFAC and modified

UNIFAC methods are 168 and 612, respectively (Lin and Sandler, 2002).

5.3 Criticisms of the UNIQUAC/UNIFAC Method
The local composition concept employed within the UNIQUAC/UNIFAC method and its
various implementations have been scrutinized. Of foremost concern within these
models has been the violation of a basic mass-balance constraint (McDermott and Ashton,

1977), which resides within the definition of the local composition. When it is related to

N, , the number of interactions between molecule i and molecule j , x, is found to be
al (5.14)
X, =——— .
" zg,N, /2

The mass-balance constraint requires that the number of ij interactions equal the number

of ji interactions as in Equation (4.24). This links the local compositions by the relation

ZOqiNi x.=N.=N.= ZOqij

2 Y v 2 i

Instead of relating the local compositions in this manner, engineers have related them
through the energetics in Equations (5.8), (5.11) and (5.13). The errors arising from the
lack of a mass-balance constraint are not explicit in the correlations, as they are contained
within the regressed parameters.

The UNIQUAC relation originally is derived using the concept of one-fluid
theory (Abrams and Prausnitz, 1975), where the statistics of the mixture system were
derived as the molecules existed in the same fluid. A second derivation of UNIQUAC

(Maurer and Prausnitz, 1978) offers a consistent derivation under the above stated
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criticism by employing the two-fluid theory. The two-fluid theory supposes that the

changes in the external energy, AW', evolved from a binary mixture process is given by

z,N,

z,N
AW' = 1(‘911811 +921521 31(1)) 02 2 (922352) +912£1(2) 5§2)) (3.15)

where 6‘5 ), ,51) , ,.5.2) denote an interaction energy between i and j in the mixture state,

in fluid 1 and fluid 2, respectively. These latter fluids do not necessarily represent pure
fluid states. It is further assumed that the homogeneous interactions are equivalent

1 0 0
51(1) gl(l)’g§2) 5§2)

while the inhomogeneous interaction is not

1 2
‘951) * 51(2)

This assumption leads to the two different energetic parameters for a single ij interaction.

This adds to the capability of the model, yet it renders the description theoretically
incorrect and empirical (Kehiaian, et al. 1978; Klamt, et al. 2002).

The mass-balance constraint and a reinterpretation of the factor multiplying the
residual contribution have been applied to the UNIQUAC expression (Knox, 1982). The

resulting expression for the local surface area fraction from (5.11) is now given by

6, 6, “
L=t M (5.16)

and the full expression for the Gibbs energy from (5.10) is now

G-2xG = RT L xIng+RT L x Oq'ln¢+RTz Oq’ln% (5.17)

which simplifies to

G-Y xG,=RT) x, 1n¢i+RTZx,.ﬁ’23L1n% (5.18)
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It has been shown that this expression fits VLE data about as well as the original

UNIQUAC model (Knox, 1982).

5.4 The Quasi-Chemical Approach

Local composition models exist where the mass-balance constraint has been built into the
derivation, thus alleviating the criticisms noted above. This approach corresponds to the
quasi-chemical approach described in Section 4.3. Initial theoretical exercises on fluid
systems are given for polysegmented molecules (Guggenheim, 1944b; Guggenheim,
1952). This approach has been applied for real systems where the interaction energies
are correlated to reproduce data (Barker and Smith, 1954). A derivation of the approach
has been offered to include a relation between random and nonrandom effects within the
entropy term for any number of components in the system (Kehiaian et at, 1978). The
nonrandom entropy is assumed to be a proportion of the random entropy, and an iterative
solution to the nonlinear set of equations has been found (Knox, et al. 1984). The
derivation of the same nonlinear set of equations is accomplished using surface segments
within a Conductor-Like Screening Model (COSMO) (Lin and Sandler, 2002; Klamt, et
al. 2002). Throughout this work, the partition function derivation and accompanying
notation of Knox and coworkers is employed. A generalized derivation of this method is
offered in Appendix B.

The expression for the excess molar Gibbs energy of a system describable through
the quasi-chemical approach is similar to that given in Equation (5.18) combined with

Equations (2.15) and (2.16)

E n n
AR, o lnﬁ+2%lnf—‘i (5.19)
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where z, = z,q, is the number of contacts on molecule i. In this expression, the local
compositions x, cannot be found explicitly. These values are a solution to the set of

nonlinear equations given by

Ox,=0x,,(i,j=1,2,...,n) (5.20)
Zx =1(i=12,..,n) (5.21)
xi'x'i ..

x.j._xj =7,,(i,/=12,..,n) (5.22)

[Idg/]

where the area fraction of the molecule is found in a similar manner to Equation (5.6)

Z,X,
6 = (5.23)
Z z,x
and where the interactions are implicit within the 7, expression
_25,/—5[,—211
T, =e (5.24)

i
The athermal contribution in the above model is given by Equation (5.5). This quasi-

chemical model has n(n—l) /2 parameters for a mixture of n species, a reduction by a

factor of 2 due to the recognition of the mass-balance constraint. The interaction

parameters within this engineering method are the 7,. This model has been shown to

perform comparably to the UNIQUAC expression while only needing half the number of
interaction parameters, although difficulty is encountered when attempting to correlate
highly non-ideal mixtures, such as alcohol/alkane mixtures (Knox, et al. 1984).

The excess molar Gibbs energy model of Equation (5.19) also exists as a group-

contribution method (Knox, 1987). The excess Gibbs energy for that model is given by
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E n » n ‘ _ n.m 7y o x
LA PRI AN o) AT N TN (525)
RT ‘3 x, o 2 ¢ STa 2 Vi / ®,

where m is the number of different group types in the system, Z, is the number of
contacts on group k, v,, denotes the number of group k& within molecule i, ©, is the

surface area fraction of group k. The molecular surface area fraction is given through

group quantities by

R = (5.26)

The molecular volume fractions ¢, are found using volume properties of the groups by

Z XV Ry
PR
I n

—

(5.27)

M=
\x
X

=
*%

=~

j=1 k=1

where R, is the number of lattice sites occupied by group k. The surface area fraction

of group £ is given by

n

zxivl,kzk
0, = n’—zlm———-— (5.28)
Z xV,.Z
1=

1

The local compositions y,, in the excess Gibbs expression in Equation (5.25) also cannot
be included explicitly. The system of equations that yield the local compositions are
given by

O,y = O ys(k.1=12,....,m) (5.29)
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Zykl = la(k = Oala"'sm) (5.30)
I=1
Yl _ 22 (k1=1,2,...m (5.31)
ki
Yl

The resulting expression for the activity coefficient of species i in the mixture is given

by

LYk | Yu/©
Iny, =Iny™ +3 2k || Vel P (5.32)
; 2 L/el

where 7™ is the activity coefficient of molecule i in an athermal solution and

traditionally holds the contribution of the first two terms within Equation (5.25). Again,

this system of equations yields m(m—l) / 2 interaction parameters for the m functional

groups within the system. This method is able to predict VLE data for systems without
experimental data, similar to the use of UNIFAC, although the number of correlated
interaction parameters is not large. Correlated interaction parameters between functional
groups show physical significance by trending monotonically with the number of

hydrogen atoms within a CH, group (Knox, 1987).

5.5 Defining Functional Groups using Computational Chemistry
In order to minimize the number of experiments in the evaluation of interaction
parameters within group-contribution methods, the complete transferability of groups has
to date almost always been assumed. By definition, a group that is transferable has the
same intermolecular and intramolecular properties in all applications. Thus the

individual group properties are presumed to be independent of the other groups that exist
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in the system, as well as independent of the other groups constituting the molecule.
Within activity coefficient models, where interaction effects are important, group-group
interaction energies have been considered transferable, just as with all other group
properties.

The development of a group-contribution method for evaluation of system
properties must first begin with a search for the proper group definitions. A group can be
as small as a single atom, or it can be a combination of several atoms, or it can consist of
an entire molecule. A successful additivity scheme that predicts thermophysical property
data (Benson, 1976) defines a group as a heavy (non-hydrogen atom) atom of a linear or
cyclic molecule and all the atoms whose only bond or bonds are with the heavy atom
(mainly hydrogen atoms). Other heavy atoms bonded to the group heavy atom are
included in the definition for nominal purposes.

The defining of groups has been arbitrary, usually resulting in definitions that suit
particular systems and allow for the best predictive results. Where groups in certain
molecules are clearly not transferable, they are replaced by larger, more specific groups
that do not occur in as many molecules. These definitions then become somewhat
particular to the molecules investigated, and the advantage of adopting a group-
contribution technique is lost. However, the problem for smaller group definitions, that
the group properties vary between molecules, remains (Wu and Sandler, 1991a). Thus it
is impractical to rely upon a group-contribution method that relies upon universal
properties for small functional groups.

The use of computational chemistry has been proposed as a tool for ending the

arbitrary methods for defining groups within engineering models (Wu and Sandler,
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1991a). It is suggested that, to expect the transferability of a group, the geometry of the
constituent atoms should be equivalent amongst all species when occurring. Also,
Mulliken population analysis (Mulliken, 1955) is used to examine charge distributions
within molecules by assigning effective partial charges to atoms. Groups are defined as
collections of atoms with a near neutral Mulliken charge. More recently, the neutrality
criterion has been revised to one that accepts a consistent distribution of charge over the
atoms as indicative of transferability (Lin and Sandler, 2000). Some groups satisfying
the criteria are the same as those for UNIFAC, while new group definitions, usually a
combination of smaller groups, are employed to satisfy the Mulliken charge criterion. A

result of this study states that methylene (CH, ) groups should be included with highly
electronegative groups (OH, NH,, NO,, CHO) to create an approximately transferable

group.

5.6 An Overview of COSMO-based Methods
A successful attempt to evaluate VLE with computational methods and correlated model
parameters has been proposed (Klamt, 1995; Klamt et al 1998). The COSMO for Real
Solvent (COSMO-RS) approach avoids the problems of past group-contribution methods
by avoiding the need to define functional groups altogether. A molecule within a
condensed state is assumed to be solvated within a dielectric continuum. A surface-
charge distribution, referred to as the o -profile, is calculated for each molecule using
computational chemistry. The surface-charge distribution is partitioned into segments,
and molecular interactions are accounted for by the juxtaposition of these segments. The

types of binary surface segment interactions are assigned in a similar manner of
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minimizing the partition function with respect to N,

and properties such as vapor
pressure, partition coefficients and energy of hydration become available.

The parameterization of the original COSMO-RS scheme involves two structural
parameters for each of three elements (H, C, and O) and eight global model parameters.
The structural parameters for the elements N and Cl were determined after fixing the
parameters of the other elements. Therefore, for molecules containing the above
elements, the model requires 18 global parameters, much less than the hundreds of
parameters necessary in the UNIFAC methods.

The procedure of parameterizing and optimizing the model has led to some
compromising of the basic model premises. Although claimed that the model parameters

are close to their theoretical estimate, a pair of parameters, r,, and 7, , which are

av off 2
equivalent in theory, differ after optimization by a factor of three (Klamt, et al. 1998).
The sampling of properties around a molecule, such as for the screening charge density in
the COSMO-RS model, has been criticized as being dependent on the distance from the
nuclei and on the distribution of sampling points (Sigfridsson and Ryde, 1998).
Theoretical problems also result from the choice of radii for the elements. It had been
found that charge density outside the approximating sphere for an atom distorts the
screening charge density. Also, the interaction distance described by the radii of the two
interacting components may not correspond to the actual interaction distance in the real
fluids, especially in instances of hydrogen bonding.

It is noted that the COSMO-RS method does not satisfy the Gibbs-Duhem relation,

a basic requirement for expressions that calculate activity coefficients y, (Lin and

Sandler, 2002). This relation states, for a binary mixture,
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, Olny, rx, Olny, _0

5.33
o o (5.33)

To satisfy this relation, the activity coefficient for molecule i in a mixture is proposed to

be

1 ath N pl) [ N I
iny, =Iny?+ 3" (;vj)ln(}-{—)J (5.34)

k

where v, here denotes the number of segments of type k& within molecule i, thereby

giving the total number of segments contributed by molecule i by the inner summation,
Bf” is the probability of finding a segment of type £ within pure species i, and I, is
deemed the activity coefficient of surface segment k. The activity coefficient of segment
k is found by solving the nonlinear system of equations, given by
-1—=i}71“,rk,,(k=1,2,...,m) (5.35)
I, =
This methodology, combining the concept of interacting surface segments with
thermodynamically consistency of Equation (5.33) is called the COSMO Segment
Activity Coefficient (COSMO-SAC) model (Lin and Sandler, 2002). Soon after, the
COSMO Surface-Pair Activity Coefficient Equation (COSMOSPACE) method (Klamt,

et al. 2002), which utilizes the same statistics, has been proposed.

5.7 The Statistics of Interacting Surface Segments
The interacting surface segment model is the contribution to the residual partition
function within the COSMO-based models. However, the link between functional group

interaction schemes and surface segment interactions (Kehiaian, et al. 1978) seems to be
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made far earlier than the development of COSMO-SAC and COSMOSPACE. The more
recent derivation of the surface segment statistics is presented here (Klamt, et al. 2002).
Consider a set of surface segments, where there are m different types of segments.

Let M, be the number of segments of type i. The goal here is to determine the activity

coefficient of a general segment type i under the influence of the interactions of other
segments while the macroscopic system is in the liquid phase. The molecular activity
coefficient will then be available by summing the functional group contributions, as in
other excess Gibbs energy models.

The chemical potential for a surface segment of type i is found through the
canonical partition function of Equation (3.26). Since the number of segments of the
system is so large (on the order of the number of molecules within the system), the

derivative in the chemical potential relation is approximated by a finite difference

InO-InQ,
= _kaT% =—k, o Q(_’) =—k;T ln—g— (5.36)

i M,.-(M,- _1) Q(“)
where the subscript (—i) denotes the system with one less segment of type i. Also

removing a segment of type j follows the procedure in Equation (5.36)

M+ p,=—k;Tln 0 5.37)
(=i,-J)

Now the goal is to clarify the ratio of partition functions given here.

Consider a similar system as above, except where the surface segments are
distinguishable. The partition function for this new system of segments is very similar to
that above, except for a familiar factor that includes indistinguishability in the above case.

The partition function of this new case, (', in terms of the earlier partition function is
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0 =0[[M,!1=0M,, (5:38)
k=1

Therefore, the chemical potential of segment i in terms of Q' is given by inserting
Equation (5.38) into Equation (5.36)

‘M :
mQ——i“—l - kT kT M, =, +k,TinM,  (539)
Q-yMna -

where M, /M na(—) =M, and the segment removed from the system of distinguishable
objects is called . The removal of « from the system of distinguishable objects is
implicit within the chemical potential 4, and this must be determined.

The partition function of the distinguishable system includes terms involving
segment « and all the interacting segments. It is presumed that these effects are

separable from the partition function in such a way as to relate the whole partition

function with that where « is removed (Klamt, et al. 2002). This is given by

] i M kT ’
Q=>2—e"Q, , (5.40)

where the factors of 2 and M/2 account for the indistinguishability of the a8 ordering
and the M/2 interaction sites where the interaction may take place, respectively, and

where &, is the interaction energy between the segments. Inserting Equation (5.37) with

primed notation into Equation (5.40) and simplifying yields

Iy ~EaptHa iy

O=>Me “ @ (5.41)
B=1
B

Isolating 4 gives
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M Caths

M, ==k, Tln| D e " |-k, TInM (5.42)
B=1
Bra

Here, the model notation must revert back to the original ensemble, where the
surface segments of a given type are indistinguishable. This is accomplished by inserting

the relationship between x/ and x4 found in Equation (5.39) and allowing the
summation to run over all types with the appropriate M ; multiplying the summand, since
there are M terms in the summation within Equation (5.42) that contribute effects from

type j. These manipulations result in the following
—g;+p;-InM;

P =—kBTln[ZMje ksT ]+kBT1n—AA—//{I‘— (5.43)

j=1
where &, = £, when the segment named S is of type j. Simplifying this gives
m SitH
p==k;TIn| >e ® |+kTlnx, (5.44)
Jj=l

The definition of the activity of surface segment i, given by I',, closely

resembles that for molecules, given by Equation (2.20), except that the reference system
here is not an ideal solution but a solution fully occupied by segments i

k,7InT, = g, — p, — kT Inx, (5.45)
where 4, is the chemical potential of segment i in a system of pure segments i, and

where the final term is included due to the composition difference in the real and
reference states (a problem not encountered in Equation (2.20)). By Equation (5.44), it

follows that
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;= 5.46
Hy== (5.46)
To find the relation for the activity coefficient of the segments, Equations (5.44) through

(5.46) are combined to yield the final result

=Y x7,0,,(i=12,..m) (5.47)

m
g=
J=1

1
ri

The segment activity coefficients within Equations (5.47) are used to calculate the
activity of the molecule in a way similar to the engineering excess Gibbs energy

formulations in Section 5.4. The activity for the molecule is given by

n I" )
_ ath J
Iny,=lny/ + J-E:n v, In =) (5.48)

J

where v, ; is the number of segments of type j in molecule i, and the superscript (i)

denotes the quantity as it exists in pure species i. This relation is quite similar to that
given by Equation (5.32) where the quasi-chemical equations and the local composition

model are considered.

5.8 Surface Segment Statistics and the Quasi-Chemical Equations
The relationship between the result of the surface segment statistics, given by Equation
(5.48) and that of the quasi-chemical equations, given by Equation (5.32) suggests a
strong resemblance in concepts. If one were to consider that each contact on the external
surface area of a functional group is equivalent to a surface segment, and that all the
contacts on a particular functional group are the same surface segment type, then it

follows that

(group) _ ,,(segment)
Vij L=V (5.49)
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It now seems plausible that if one were to relate the local composition fractions and areas
within the functional group argument to the activity coefficient of a surface segment by

the relation

Vi

21 5.50
) (53.50)

then Equations (5.48) and (5.32) are exactly equivalent. The activity coefficient for a

species through the quasi-chemical approach is given by

LI

r
Iny, =Iny* + 2v,,2, In—s (5.51)
j .

J

This conclusion is also achieved when the nonlinear equations within the quasi-
chemical model, Equations (5.29) through (5.31), are simplified. What one finds is that
these m* equations are reducible to the m equations necessary to find the surface
segment activity coefficients in Equation (5.47), as long as the relationship within

Equation (5.50) is used. This simplification results in the following nonlinear system
1 .
== Zejr,jr »(i=0,1,..,n) (5.52)
i J

This is accomplished for a system with a limited number of functional groups in
Appendix B. A different derivation that relates the quasi-chemical approach to the

statistics within COSMO-based models has also been offered (Panayiotou, 2003a).
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5.9 Summary
Engineers have taken large steps in the past 30 years in formulating a workable
description of the liquid state. These efforts have yielded strong fundamental work in the
nature of entropy in a fluid system and how the interactions between molecules bring a
level of order to the system arrangements.

The methods based on local compositions, namely the UNIQUAC and UNIFAC
methods, have given engineers a vefy powerful tool in the prediction of mixture system
behavior. These tools are still referenced today, even though the criticisms of the method
have rendered the theoretical framework incorrect. Enough flexibility has been built into
the model to allow engineers to predict the thermodynamics of a large number of fluid
systems.

The faults of these methods, however, render them unusable if a rational approach
is taken to build more predictive capabilities into the methods. The physical reasoning
behind the number of contacts and the number of lattice sites of a group, as well as the
energetics within the model, is compromised by the lack of mathematical consistency in
the derivation of the methods. There is no guarantee that these quantities, if calculated at
a more fundamental level, would improve the predictive capabilities of the method since
their physical significance is lost.

The quasi-chemical approach offers the consistency that the early local-
composition models are lacking. Since no compromises had been made during the
derivation of the expressions, it is at least possible to rationalize the improvement of
these models by the use of physically-significant structural and electrostatic properties of

the functional groups. The success of the COSMO-based methods shows the power of
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the quasi-chemical method in the application of information from computational
chemistry.

Quantum and computational chemistry is explored further to find first-principle
quantities similar to the surface segment information in COMSO-based methods.
However, the information of interest in this work is related to the information commonly
used within past group-contribution methods: structural and electrostatic properties of

molecules that lead to the interaction energies of functional groups.



CHAPTER 6

QUANTUM CHEMISTRY

Application of quantum chemistry allows for the determination of atomic and molecular
properties from first principles. Insightful information about molecules is available, even
when starting from the basic concepts of subatomic particles and a very simplistic
interaction law, Coulomb’s Law. Such information is more accessible now through the
explosive growth of computational power and the refinement of computational
algorithms. The theory of quantum chemistry also leads to insights in statistical
mechanics, such as the quantized states of system and the manifestations of interacting
electron clouds.

In this chapter, the most basic problems of quantum chemistry, the hydrogen atom
and the molecular Hamiltonian, are outlined. Of specific interest are the functions used
to represent the electron density within an atomic system, since these will be employed in
an engineering model that approximates electron densities for functional groups. A
classical solution method for the molecular Hamiltonian, called the Hartree-Fock Self
Consistent Field method, is presented in its pedagogical form. Also, mathematical
methods on how to extract information from the solution of the Hamiltonian are reviewed.
The more complete presentation of these derivations and solution methods are
documented in standard textbooks (Levine, 2000; Szabo and Ostlund, 1982). A more
contemporary interpretation of molecular properties through Atoms in Molecules theory

(Bader, 1990) is also reviewed.

71
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6.1 Hamiltonian for the Hydrogen Atom and Its Solution
The hydrogen atom is one of the simplest problems within quantum chemistry, and one
of the few real systems that is completely soluble. The problem is to determine the
energy states of a single electron existing around a single proton. The only force between
the two is the force of attraction arising from the Coulombic expression, Equation (3.42).
In quantum chemistry, the solution of problems begins with the formulation of the
Hamiltonian of the system. The Hamiltonian is the sum of the kinetic and potential

energies, K and V', thereby accounting for all the energy within a system

A A

H=K+V (6.1)
The notation includes the * symbol to signify the use of operators that act upon the
wavefunction of the system V. The Hamiltonian is important because the energy of the
system is revealed by this eigenvalue equation
HY = E¥ (6.2)
When expanded, this relation is either expressible as a partial differential equation where
H contains derivatives acting on the function W, or a linear algebra equation where H
is a matrix acting on the vector . In this work, Equation (6.2) is considered a partial
differential equation. The goals for all problems expressed in the form of Equation (6.2)
are to determine the Hamiltonian of the system using classical mechanical arguments and
to solve for the wavefunction analytically or numerically.
The wavefunction W is the most important description of the system and its
behavior in space and time. It holds all the information about all the measurable
properties of that system over all time. However, in this work the wavefunctions of

equilibrium systems are independent of time and describe stationary states. The
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wavefunction within the framework of quantum chemistry require it to be a well-behaved,
mathematical function. Firstly, the function must be continuous and differentiable over

all the variables within the system. Secondly, the function must be quadratically

integrable, where J“P"Pd‘r integrated over the entire variable ranges must be finite. The

integrand here is the complex conjugate of the wavefunction W* multiplying the
wavefunction itself ¥ . The product is integrated over the space within the bounds of the
variables, a differential element of which is given by dz. When integrated over all space,
the wavefunction of one particle is not only finite but also normalized, satisfying the

relationship
j 'Ydr =1 (6.3)

A normalization constant is usually included in the wavefunction to ensure this.

The Hamiltonian and wavefunction for the hydrogen atom is a classical problem
offering insight to the solution of the molecular Hamiltonian. The general Hamiltonian
keeps track of the kinetic energies of both the proton and the electron, and the potential
energy of the system due to their Coulombic interaction. In a reduced problem, the only
coordinates of interest are those that express the position of the electron relative to the
proton. This Hamiltonian thereby only considers the kinetic energy of the electron

around a motionless proton and the potential energy from the Coulombic interaction

2 2

—EZ(VZV/)—%—://:EW (6.4)

where y is the wavefunction for the hydrogen atom system, &= h/27 is the definition of

h-bar, g=m,m, / (mp +me) is the reduced mass of the proton-electron system, e is the
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charge of one electron, » =/x* +y* +z* is the distance between the electron and the

proton, and V* is the Laplacian operator, given in Cartesian coordinates by

62 62 62
+—+
o o or

V2= (6.5)

The proton is assumed to exist at the origin, and the Cartesian coordinates describe the
position of the electron about the origin.
Two more simplifications are made before solving Equation (6.4). Firstly, atomic

units are defined to simplify the notation. Multiplying through by u / n* gives

| Ry eul iy
)G e ©8)

Define the reduced energy E as

E=LE (6.7)

2

St

Also define the reduced interaction distance 7 as
1 enl (6.8)
r

to give the partial differential equation in simplified form

—%(sz/)—%l//=él// (6.9)

The reduced energy and distance are now in atomic units. These units have been deemed
hartrees and bohrs, respectively, named after significant contributors to the field. The

conversion factors for hartrees are

1 hartree = 627.15 keal _ 2625.5 L 272114 eV (6.10)

mol mol

The main conversion factor for the bohr is
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1 bohr = 0.529177 A (6.11)
Secondly, the symmetry of the problem suggests an approach on the PDE in spherical

coordinates. The Laplacian in Equation (6.5) in spherical coordinates is given by

1 @

s 20 1 ol 0
#*sin’ @ 0¢’

Vi 422 4 - -
oFr FoF 7t oo?

1 o
+;2-(cot9)%+ (6.12)

This simplification allows for the wavefunction to be solved in a more natural coordinate
system for this problem.

The problem when posed in spherical coordinates allows for the technique of
separation of variables to be used. Using Equation (6.12) with Equation (6.9) and
separating variables, the solution to the hydrogen atom is given as a product of radial and

angular portions
l//nlm = Rnl (f)},lm (93 (0) (6.13)
where 1" is the spherical harmonic function, and the integers n, /, and m are quantum

numbers that denote the quantum state of the electron. Ranges for these numbers are
determined in the solution, and these are given by

n=1,2,3,...
[=0,1,..,n-1 (6.14)
m=-1,-1+1,....,1 -1,/

The radial portion of the wavefunction, R,,, is found to be
B n=-1 ]
R, (F)=e"F# > b (6.15)
J=0
where the series coefficients within the summation are found using a recursion relation

2 1+l+j+n
o= b 6.16
Mon () (j+20+2) (6.16)
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Each combination of quantum numbers within Equation (6.14) yields an energy

state. The reduced energy for a set of quantum numbers is given by

E:W (6.17)

The degeneracy of the energy level is reflected in the number of combinations of / and
m possible for a given n.

Each combination of quantum numbers in Equation (6.14) also yields a function
called an atomic orbital, a function in space that reflects the energy state of the electron.

The simplest of these orbitals is the ground state of the hydrogen atom, the 1s orbital
Vito =¥, =" (6.18)
100 1s \/; ‘

This function does not have angular dependencies, since the spherical harmonic for
[=m=0 is constant with respect to the angles. The only series coefficient within the
radial contribution is b,, and this is used solely to normalize the wavefunction as
necessary by Equation (6.3).

Here are several examples of atomic orbitals with m=0. The following
wavefunctions include the depiction through the quantum numbers and through the

commonly used alphanumeric names of the orbitals. The 2s orbital is

1 =\ -7
‘//200=‘//2s=4—\/7(2“")e 2 (6.19)

The 3s orbital is similar, except for the polynomial radial portion

Wi =¥s, = 8—1\}7( 27187 +27* )¢ (6.20)

The 2p, orbital is an example of a state that is dependent on an angle
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Voo =V, = ﬁfﬂ? cos 6 (6.21)

For the cases when m # 0, the spherical harmonics contain imaginary numbers.

Real-valued wavefunctions are attainable from these expressions by determining the

correct linear combination that eliminates the imaginary parts. Two real orbitals, 2p,

and 2p, , are found in this manner

1 ( L
¥ai(-y ""/1211): ¥,, =—=="re ""sinfcosy

v e (6.22)

1 | S

NG (z,//21(_1) —(//2“) =Yy, = PG re”''" sin @sin ¢
Higher orbitals, such those on the n =3 energy level, are also found this way

21 2\ 7013 o
V3p, = ;8—1-(6—1‘)7'6 sin@cos ¢
(6.23)

Wiy =\/zi"2e’f/3 sin @ cosdsin ¢
” 7 81

Orbitals are also expressible in Cartesian coordinates, which are helpful within

computational schemes. The s-type orbitals are expressed in Cartesian form by
replacing 7 with the definition of distance

F=y#+7°+2° (6.24)
The directionality of the orbitals for those where /# 0 becomes more obvious when

portions of the spherical expressions are expressed in Cartesian coordinates

X=rsinfcosp
y=rsinfsing (6.25)
Z=7

The motivation behind the common names of the above orbitals becomes apparent when

Cartesian factors are included:
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—

Vi, = G ze (6.26)
1 i

Yy = 2lom Xe (6.27)

ye (6.28)

l//Zpy \/_ ye

(6 F)ze " (6.29)
21
Wia, j/%ayze B (6.30)

6.2 Molecular Hamiltonian and Its Solution
The molecular system is of interest in this work, since nearly all of the compounds
encountered in practice are not constructed from a single atom, especially not a single
hydrogen atom. The molecular Hamiltonian is the generalization of the atomic

Hamiltonian expressed in Equation (6.9)

R

a pra 1 P>t y

6.31)

where o and B range over the nuclei, V> is the Laplacian operator with respect to
coordinates of nucleus a , Z, represents the atomic number of nucleus « , 7, is the

reduced interaction distance between entities £ and /, and i and j range over the

electrons. From left to right, this equation holds the mathematical expressions for the
kinetic energy of the nuclei, the kinetic energy of the electrons, and the potential energies
from nucleus-nucleus interactions, from nucleus-electron interactions and from electron-

electron interactions. The nuclei and electrons are here treated as point masses.
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The solution of the problem expressed in the molecular Hamiltonian is extremely
complicated, since the wavefunction of the system involves the location of a large
number of electrons that are under the influence of a complex field dependent on the
location of the nuclei. A classical assumption, called the Born-Oppenheimer
approximation, is made to simplify Equation (6.31) by decoupling the problem of the
nuclei positions from the problem of the electron positions. The Born-Oppenheimer
approximation comes from the concept that the mass of an electron is several orders of
magnitude less than the mass of any nucleus, even a single proton. Therefore, since

m, < m, for all «r, the magnitude of first term of Equation (6.31), which contributes the

kinetic energy of the movement of the nuclei, vanishes. This leaves

A Tuyyi-yy L.yl 632
o i iy y
This Hamiltonian can now be separated into two major contributions

H=H AﬂZZ

a p>a aﬂ

(6.33)

where the nucleus-nucleus interactions are found in the latter term, and the positions of
the electrons relative to one another and the nuclei contribute to the electronic

Hamiltonian

f,--iyv-pyleysl 634

i j>i ,j
Equation (6.9) is recovered from Equation (6.34) if one nucleus with atomic number

Z, =1 and one electron exists in the system.

The separation in Equation (6.33) allows for the solution of the wavefunction

solely describing electron position, while the locations of atomic nuclei are considered
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parameters in the problem. This approach is intuitively correct because of the differences
in velocities of electrons and nuclei in regular molecular motion. The speed with which
electrons move is so much faster than nuclei that for normal nuclear movements due to
vibration or rotation, electrons nearly instantaneously react and alter their state at all
points in time to accommodate the nuclei locations.

Of specific importance is the location of the ground-state positions of the nuclei.
This equilibrium geometry is the configuration that allows for the lowest energy
configuration of all the possible geometric configurations of the nuclei and the electrons.
This geometry reveals the energy minima around which molecular vibrational modes act
and from which rotational modes depart. This configuration serves as the most probable
configuration for the isolated molecule within the gas phase.

Solving the wavefunction for the Hamiltonian given in Equation (6.34) gives the
electronic energy of the molecular system and the electron density profile around the
nuclei. This information yields molecular properties of use within the statistical

frameworks described above.

6.3 Calculation of Properties within Quantum Chemistry
Determining the wavefunction is the most powerful objective when one desires the
properties of a system. The wavefunction holds all the measurable information of the
system. Quantum chemistry includes methods to extract this information.

Every operator within quantum chemistry is directly related to a property within

classical physics. For instance, the Hamiltonian operator H is related to the total system

energy. When the operator acts upon the wavefunction describing the stationary state of
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a system, as in Equation (6.2), the energy of the system is found. Another way of
extracting this information is by taking the average value of that property within the
system. For a general operator F, the mean value of the corresponding classical
property is given by

F={wFivdr (6.35)
The integration is taken over all the values of the coordinates. With regards to the system

energy, the mean value described by the stationary state ¥ is given by

E= j\y*ﬁwr = J“P‘E‘Pdr =E I‘P“Pdr =E (6.36)

Replacing HY with E¥ is a consequence of Equation (6.2). Another example is the
position operator. Assume one wants to know the average x -coordinate of the particle of

the system. This is given by
%= [¥'iWdr = [¥'xWdr (6.37)

No further simplification is possible in this example, since the wavefunction is not
necessarily an eigenfunction of the x -position operator, x, and since the functionality of
Y is not explicit here. Any operator can be included in Equation (6.35) to determine an
average property value for the system.

A different notation is commonly used to express the integration of an operator in

the form of Equation (6.35). The bracket notation is given by

F=(¢|F|¥) (6.38)
If ¥ is an eigenfunction of the operatorl:’ , the eigenvalue is factored out of the integral,
and the notation is reduced

F=(P|F|¥)=(¥|F|¥)=F(¥|¥)=F (6.39)
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The last simplification is because the normalization property of Equation (6.3), which
yields (¥|W#)=1. In bracket notation, the calculation described in Equation (6.36) is
depicted by
E=(¥|H|¥)=(¥|E|¥)=E(¥|¥)=E (6.40)
For parameterized functions that approximate real wavefunctions, the variation
theorem is used to determine the how good the approximation is. For example, if the task
is to find the ground-state energy eigenvalue for a given Hamiltonian, the following
inequality holds
(¢'|H|¥)2E, (6.41)
where W' represents an approximation to the real wavefunction, and E; is the lowest
possible energy eigenvalue. The theorem also states that the wavefunction form and
parameters that come closest to the ground-state energy, of course from above, yields the
best approximation to the actual wavefunction. The parameters within the wavefunction

are thereby found by minimizing the variation integral, the left side of Equation (6.41),

with respect to the parameters.

6.4 The Hartree-Fock Self-Consistent Field Method
The problem posed in the molecular Hamiltonian is considerably simpler to solve if the

Coulombic interactions between electrons are omitted. Equation (6.34) is reduced to
~ 1 2 Z
H=-EZV,- _ZZT& (6.42)
i a i 7, ai

and the solution is simply the product of hydrogen-like orbitals given by Equation (6.13)
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¥ =[vum (7.6.4)=]1R,, (7)1 (6.4) (6.43)

Of course the Coulombic interaction between the electrons is a very strong influence on
the molecular system and, thereby, the molecular Hamiltonian. The solution given by
Equation (6.43) still serves as a workable first-order approximation to the real
wavefunction.

To gain a more precise solution, changes to this approximation must be applied.
The form of an improved solution to the molecular Hamiltonian retains the product of a

radial portion multiplying the spherical harmonic

b g =l—[si (5791’¢i) (6.44)

where the functional form of s, is not necessarily the same as the explicit function given

by Equations (6.13) and (6.15). The function does retain the exponential function in

distance e”" and parameters that are able to change to accommodate physical effects,
such as the Coulombic effects between electrons and nuclear charge screening. To find
the best values for the parameters within Equation (6.44), the variation theorem described
above is used.

The Hartree-Fock Self-Consistent Field (HF) method is an iterative algorithm that
guesses the wavefunctions to Equation (6.34) by attempting to adjust the wavefunction
description of one electron while the other electron wavefunctions are not changing.

Consider Equation (6.44) the guess for the system wavefunction. The wavefunction of

electron 1, given as s, (F],B,,¢,) is subjected to a potential field V| created by remaining

n, —1 electrons and the nuclei
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. n, . Z n, ; Za
V(7o) = D, (BE)+ 2 S2 = I s 5 2o (645)

i=2 a ra] i=2 rli a ral
Here, let the charges of all electrons except for that of electron 1 be represented with their
wavefunctions. This is accomplished by representing the electrons as clouds of electron

density p, the square of their wavefunctions. An integral over all space of the electron
cloud will represent the total charge g, of the electron in (6.45), thus leading to the

relation

-~ n, ) ~ ] Y 2
a0, 2 00d),, § g E0I) , (646)

=2 N i=2 h; i=2 Hi
where dv, is the differential volume element of electron i, and the charge on electron 1

is unity. The potential field becomes
2
) s, (7.0, Z,
Vl(n,91,¢1)=Zj|(F—)Idv,.+Zr~— (6.47)
i=2 1 a Tal

The result of this transformation is that the Hamiltonian representing the state of electron
1 is represented as a PDE similar to Equation (6.9), except for the dependence on the
potential field

1 ~
—Est,{'} ~V,(7,6,,4)s" =™ (6.48)

where the wavefunction representing electron 1 has a superscript % to denote the i"

iterated solution to the wavefunction, and where & denotes the energy eigenvalue of
electron 1 in the PDE. It is advantageous to have the potential in Equation (6.48) be a

spherically symmetric potential field. This allows for the wavefunction s (7,4,,4,) to
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be rigorously separable into a radial portion and a spherical harmonic, as in Equation
(6.13). To achieve this, V] is averaged over all angles

2n w

[ [Vi(7.6.4)sin6d6.d4,
I/l(ﬁ)= 02 2z 7 (6’49)
[ [sin6.d6,dg,
0

0

This assumption is called the central field approximation and reduces the PDE to

;stll} ~V,(7)sM = g1 (6.50)

Now, the iterated solution can be separated into a radial portion and a spherical harmonic.
To continue toward the solution, the wavefunction of the second electron is

iterated under influence of the field of the remaining n, —1 electrons, including the new

wavefunction for electron 1. The field is described by

‘ {1} ”1’91>¢1 |

(r2592>¢2) _[ Ji‘s ‘,e’,¢)‘ dav, +Z (6.51)

The central field approximation is used here to get a PDE of the form of Equation (6.50).
Once the iterated solution of electron 2, sél} (FZ,Bz,gbz), is found, electron 3 is considered,

and so on and so forth.
This process continues until a first iterated solution for each electron is found.

Once this occurs, the process begins again at electron 1 to achieve a second iterated
solution, s (7,6,,4) . All wavefunctions of the electrons are considered again.

Additional iterations are performed until convergence of each wavefunction to a solution.
The solution method to find the wavefunction described in Equation (6.44) offers

a pedagogical example for the HF method. Although a reasonable choice, the product of



86

purely radial functions with spherical harmonics, deemed spatial orbitals, does not
account for spin effects of electrons. The proper wavefunction guess is actually an
asymmetric product of spin orbitals, spatial orbitals multiplied by the spin wavefunction
(either up-spin or down-spin) to achieve the proper description of the orbitals within
which electrons occupy.

The energy of the system, the original eigenvalue of Equation (6.42), in the HF

method is found to be

E, =2nz/12<s,. |}3,.|s,,>+n -3 /2(2./,, K )+ Y Y Zaly (6.52)

i=] j=1 o ﬂ>ll raﬁ

~.

where I;,. is called the core Hamiltonian for electron i and is given by
h =-—v?-zi (6.53)

J, is called the Coulomb integral between electrons i and j , given by

y

J,=(s,(1)s, )]s, (1)s,(2)) = | j's of ls @)l dvdv, (6.54)

and K is called the exchange integral, given by

K, =(s,(0)s,)[F:']s, (05, (2)) = [ [ (W)'s, (223 52y (655)

The Coulomb integral is called such because it is the quantum mechanical equivalent to
the Coulombic interaction between two electrons, except in quantum mechanics the
electrons are treated as probability densities and not particles. The éxchange integral is
called such because it reflects the existence of the electrons partly in their own orbitals

and party in the other electron’s orbital, thus seemingly exchanging positions. The
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summations containing the Coulomb and exchange integrals are taken over the different
spatial orbitals the electrons occupy. The contribution of the Coulomb integral is doubled
to reflect the occupancy of two electrons in each spatial orbital, one with up-spin and one
with down-spin.

The integrals given in Equations (6.54) and (6.55) are encountered frequently
within computational chemistry. These are called two-electron integrals, and multitudes
of these are calculated within the computer routines that employ the HF and other
solution methods. This work mainly deals with spatial orbitals. Therefore, the above

integrals acting on spatial orbitals are typically denoted by

(1) = (s, (1)s, )" (1), (2)) = ”s' W)'s, (22* 5:(U5,(2) dndv, (6.56)

h,
This notation is sometimes called the 1212 (one-two-one-two) notation, since the orbital
labels alternate between electrons, beginning with electron 1. In 1212 notation, the

Coulomb integral and the exchange integral are expressed as
Jy =(#l7) (6.57)

K, =(]7) (6.58)
Another two-electron integral encountered in computations and this work is called

quantum-hybrid integrals. An examples of one such integral is
L, =(iily) (6.59)
Since the orbitals are real functions describing spatial orbitals, the complex conjugate of

the orbital function is equal to the orbital function. Different permutations within the

integrals, and therefore within the parenthesis correspond to equivalent integrals. The
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equivalence relations for the Coulombic, exchange, and hybrid integrals, respectively, are

given by
J, =(iili) = (Jjilji) =, (6.60)
K, = (5]1)= (il ) = (s7lii) = (jils) = K., (661)
L, =(iilif) = (ii] ji) = (if]if) = (jiii) (6.62)

Note here that within the quantum-hybrid integral notation, switching subscripts does not
imply equality in the expressions, as in the Coulomb and exchange integrals

L #L, (6.63)

An important quality of the HF method is that the Hamiltonian of the system and
the wavefunction that is found to best approximate the solution satisfy the assumptions of
the variation theorem, Equation (6.41). The HF energy therefore is always greater than
the actual energy of the system, unless when the energies are equal and the
approximating wavefunction of the system is exactly the real wavefunction. A
wavefunction approximation that gives a lower energy than previous approximations

implies an improved description.

6.5 Partitioning of the Electron Density using Atoms in Molecules Theory
It has been theoretically proven that all the properties of a molecule can be found through

the electron density o of a molecule (Hohenberg and Kohn, 1964). This is helpful, since

concepts like an atom within a molecule or bonds between these atoms are not obvious

from the wavefunction, which is dependent on six variables (three position, three
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momentum) for each particle in the system and exists in complex space. Atoms and
bonds do have meaning in real space and are reflected in the electron density.

For a system with multiple electrons, p is expressed as the integration of the
square of the wavefunction of the system over all electron spins and coordinates except

one
p(r)= [.[|¥[ drdr,.dr, (6.64)

The electron density is a real-valued function over all space and describes the probability
of finding an electron at the differential space around the position r.

For example, the positions of the nuclei are able to be found through the electron
density by the existence of local maxima. The type of atomic nucleus at a particular

position is related to the electron density of the position by (Bader, 1990)
3
p(r,)= Zz—" (6.65)
The existence of bonds within a molecule is also seen within the electron density. A
bond exists on a line between two atoms if there exists a saddle point in the electron
density. This point is a local minimum on the line connecting the two nuclei, while it is a
local maximum along the two directions perpendicular to the bond.

The electron density also holds information on how to partition a molecule into
representative constituents. In theory, any partitioning is allowable. Within a partition,
the average value for a classical property is calculable using Equation (6.35) where the
space of integration is the partition. However, there is no guarantee that the properties

found within an arbitrary partition yields physically significant properties. Atoms in
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Molecules (AIM) theory (Bader, 1990) establishes that surfaces that define physically-

significant partitions of the molecule satisfy the zero-flux condition
Vp(r)-n(r)=0 (6.66)
where Vp is the gradient of the electron density and n(r) is the vector normal to the

bounding surface at r. A system that is bound by a surface or surfaces that satisfies
Equation (6.66) is called a proper open system. Boundary conditions satisfying Equation
(6.66) yield the same mathematical consequences as the boundary conditions of isolated
quantum mechanical systems. Therefore, one can expect the same physical significance
in an average property calculation within a proper open system as for any general
quantum system. Also, the properties within a proper open system are said to be
transferable from one quantum system to another if the electron density functionality is
preserved.

Partitioning the electron density of a molecule with zero-flux surfaces results in a
set of subsystems each containing one nucleus. Under AIM theory, these quantum atoms
are thereby defined to be the electron density within the partitioned space and the nucleus
that resides within the boundaries. Quantum atoms are the objects that, when assembled,
create molecules. These atoms have properties that, when combined appropriately, yield
the property of the molecule.

The properties for a quantum atom defined in AIM theory are calculated in the
same manner as the properties of any isolated quantum system, by Equation (6.35),

except that the integration is taken over the partition of the atom in real space

F,= [¥'FW¥dz, = [pFdr, (6.67)



91

where dz, is a differential element within atom 4. These properties are additive; the

sum of a given property over all the atoms in a molecule gives the molecular property.
For atoms not wholly bounded by a surface satisfying Equation (6.66), as most atoms are,
the integration bounds would be infinite on some rays. For computational purposes, the
boundary is taken to be a distance at which the electron density is negligible. However,
for structural properties, a bounding isodensity surface of somewhat more significant
density, e.g. the 0.001 au surface, is included to create a finite space for the atom.

Atomic properties of interest in engineering applications are separated into
structural and electrostatic properties. The volume of the atom is the space bounded by
zero-flux boundaries and the isodensity surface. The total surface area is the size of the
zero-flux boundaries and the isodensity surface. The exposed surface area is solely the
area of the bounding isodensity surface. The partial charge of the atom is the amount of
electron density with the bounding surfaces. The dipole and quadrupole moments detail
the displacement of the center of negative charge off the nucleus.

The energy of an atomic basin is not as straightforward as above. It is not
possible to separate the Hamiltonian of the system into parts that reveal the contributions
of atomic basins without violating the indistinguishability of the electrons in the molecule.
An intermediate function, the energy density, is defined, and this quantity is integrated
within Equation (6.67) to give the energy of an atom within AIM theory. This energy, as
with the other properties of atoms, is additive and gives the energy of the molecule when

added together.
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6.6 Summary
First-principles knowledge of molecules and electron densities allows for the detailed
study of molecules at very basic levels. Although the rigorous orbital information given
by the solution of the hydrogen atom is not available for a molecular system, such
functional forms are applicable to the solutions of molecular wavefunctions and, later, to
the approximations of electron densities involved in intermolecular interactions.

The HF method is an example of how complex problems of a finite number of
discrete entities can be iteratively solved. This method offers a first look of what orbitals
within a molecule may look like, and it serves as a first approximation to more
contemporary and complete solutions to the molecular Hamiltonian: the Meller-Plesset
methods described later. Frequently used integrals, such as the two-electron integrals,
have been defined within the context of the HF derivations, as these will be used
extensively in the study of molecular interactions.

AIM theory offers a concise way of describing portions of molecules through the
electron density, rather than the wavefunction or orbital description. Rigorous definitions
of the structural and electrostatic properties, and the subsequent calculations of such
properties, are usable by engineers through the group-contribution methodology, where
portions of molecules are assembled and their contributions are added to give an
approximation to the macroscopic property. AIM theory states that the summation for
the functional group properties, when found rigorously, exactly gives the molecular
property. This is developed further in this work to give thermodynamic properties for

macroscopic systems.



CHAPTER 7

COMPUTATIONAL CHEMISTRY

User-friendly software packages employing computational chemistry algorithms are
allowing scientists and engineers to use powerful numerical routines without being fully
knowledge of quantum theory. The software computes approximations of the solution to
the molecular Hamiltonian, thereby giving a numerical solution to the wavefunction. The
approximated wavefunction is assumed to be the product of molecular orbitals, and each
of these orbitals is approximated as a series of functional forms similar to orbitals within
a hydrogen atom. All these methods are made available by Gaussian 98W (Gaussian Inc.,
1998), a program that holds most of the contemporary techniques for the calculation of a
molecular wavefunction. The full wavefunction is also made available from the program,
making molecular and functional group properties calculable using more specific
software.

This chapter reviews theoretical methods wused within contemporary
computational chemistry. Density functional theories are considered and compared to
classical ab inito methods and perturbation theories. The functions that are used to
approximate wavefunctions are reviewed, as these functional forms are important to the
analysis of the resulting wavefunction. How Gaussian 98W is used within this work,

including a list of important keywords and sample input files, is presented.

93
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7.1 ab initio versus Density Functional Theory

As of now, methods that offer a solution or solution algorithm to the problem of
determining the absolute energy of a molecule and the form of the electron density are
separable into three categories. The fastest and least rigorous methods are called semi-
empirical methods, since the Hamiltonian is not treated in its original terms and two-
electron integrals are not calculated at every step. Modern schemes in this category
include the AM1 (Dewar, et al. 1985) and PM3 schemes (Stewart, 1989). The other two
methods are more strongly rooted in theory. Methods based on density-functional theory
(DFT) look to determine the electron density from first principles, while ab initio
methods attempt to calculate the system wavefunction from first principles.

The motivation behind the study of DFT methods is that the electron density
holds all the information necessary to determine the properties of a molecule (Hohenberg
and Kohn, 1964). This eliminates the need to determine the wavefunction and its
numerous degrees of freedom. In contrast, the electron density is merely a function in the
three spatial coordinates. A theorem within DFT states that, if one knows the ground-

state electron density, p,, of a quantum system, the number of electrons within the

system, n,, is calculable

[podz=n, (7.1)
Also, one may determine the position of the nuclei in a molecular system uniquely using
0, » as shown in Section 6.5.

An algorithm to find the ground-state electron density of a molecular system has

been proposed (Kohn and Sham, 1965). The method separates the properties of a real
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system into the properties of non-interacting electrons and non-ideal effects. The ground-

state energy of the molecule is thereby separated into four contributions

Ey[p]= Ipo (r)v(r)dr+K, [po]+%J‘M—)—dr,a’r2 +E,.[ po] (7.2)

ha
where E,[p,] is the ground state energy and is a functional of p,, the first term is the

electron density interacting with the field v created by the nuclei, the second term is the

mean kinetic energy of the non-interacting system, K, , the third term is the classical

ni
expression of electron-electron repulsion in terms of the smeared out electron clouds, and

the last term is the exchange-correlation functional, E, , which holds the nonidealities of

xc
the kinetic energy and the electron-electron repulsion within the real, interacting system.

All the terms in the energy expression are found rigorously, except for E, ..
The problem within DFT is reduced to finding the form of E, . The first

approximation offered is the local-density approximation (Hohenberg and Kohn, 1964)

given by
ELDA[pO] jpo r)EUEG( (r))dr (7.3)

where EZ*“ is the exchange-correlation within a uniform electron gas and depends on the

magnitude of the electron density. This expression is shown to be a good approximation
for slowly varying electron densities within real systems. A more general form of
Equation (7.3) attempts to incorporate more complicated electron densities by including

the gradient of the electron density explicitly in the integrand

E.[p]=[£(po(r). Vo, (r))dr (7.4)
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A more modern approach is to separate the exchange contribution from the correlation
contribution and assume that the exchange within DFT contributes the same energy
within the Hartree-Fock energy of Equation (6.52). Functionals using this concept are
called hybrid functionals, and the most commonly used DFT methods today, such as

B3LYP (Becke, 1992) and B3PW91 (Perdew, et al. 1996) employ hybrid functionals.

The above approximations to E_ usually contain parameters founds empirically, whether

correlated to experimental data or high level ab initio calculations.

A review of modern computational methods summarizes the strengths and
weaknesses of DFT approaches (Head-Gordon, 1996). Since DFT strives for the electron
density directly rather than the wavefunction representation, fewer functions (smaller
basis sets, discussed in subsequent sections) are needed to reproduce solutions (Johnson,
et al. 1993). Also, the calculation method employed is similar to that of the HF methods,
and this is faster than methods that employ perturbation or correlation corrections (such
as MP2, which is addressed in the following section). For a given amount of
computational power and time, this allows for calculations on molecules similar in size to
those available for the HF method and larger than those available to more accurate ab
initio methods. The results for ground-state geometries and energies are similar to that of
the MP2 method, which are better than those found with the HF method.

The downsides of the DFT theory lie in the exchange-correlation terms
approximated by Equations (7.3) and (7.4). Since arbitrary forms of these equations are
introduced into the theory, questions arise as to whether this is a method still based on
first principles (Levine, 2000). The variation theorem, a version of which exists for DFT,

cannot be employed in DFT due to the use of arbitrary forms. Also, improvements
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within the expression for £, cannot be made in a systematic manner as in perturbation

methods. New functionals are introduced and must be tested with calculation, since no
theoretical framework exists to assess the benefits of one functional over others.

For these reasons, perturbation methods are used in this work instead of DFT
methods.  With increased computational power and refined algorithms, higher
perturbations are able to be made on current, already quite accurate, results of molecular

properties.

7.2 Perturbation Theory and the Meller-Plesset Expansion

Some basic assumptions made to facilitate calculation within the HF method in Section
6.4 render the results somewhat undesirable. In the above presentation, there had been no
mention of the HF energy, Equation (6.42), being exactly the eigenenergy in the
molecular Hamiltonian. Errors arise from the central-field approximation in Equation
(6.49) and in the treatment of each electron separately in the iterative process. Electron-
electron repulsions are included in the central-field approximation, but only in an average
way.

Methods have been developed to alleviate some of the error from the averaging
procedure in the HF method. Most methods use the HF energy as a first-order
approximation to the real energy, and small correcting factors are then added to gradually
reduce the errors. Perturbation treatments of the ground-state wavefunction and the

ground-state energy for the electronic Hamiltonian in Equation (6.34) aim to express ¥

and E, as a series expansion in 4. First, the Hamiltonian of the system is separated into

an unperturbed portion H°and a perturbation H' whose effect on the system is smaller
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in magnitude. The latter is thereby multiplied by the perturbing parameter to denote this.
The electronic Hamiltonian for the molecule, expressed henceforth as H , becomes
H=H"+iH' (7.5)
and the Hamiltonian equation for the system in its ground state is
(A°+AB")w, = E¥, (7.6)
Next, the assumption is made that the wavefunction and energy are functions of 4
¥, (r,5,..) > ¥, (4n.1,,...) and E, - E (1) (7.7)

These functions are expanded as a Taylor’s series around A =0

S ACA
E A e e
’ gi![az' LG
E, =
Sl

Inserting these expansions into Equation (7.6) and expressing the functions out to the

= im{;’]

i=0

imgl
i=0

(7.8)

second order gives the following relationship

(ﬁ“ +lﬁ’)(‘l’£°] + APl 4 22l +) 79
= (EM + A0 + 2EP + L) (¥4 290 794 ) '

This method allows for the systematic solution to the terms in the Taylor’s expansions by
equating like powers of 4. Equating the terms multiplied by A° on the left with those on
the right gives

A9l = gl (7.10)
This reduced problem states that the first-order approximation to the ground-state

wavefunction and ground-state energy evolve from the unperturbed Hamiltonian. Notice
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this is the expression when the perturbation parameter A is set to zero. This means that
all perturbations are excluded, thus revealing the unperturbed problem.
Equating terms multiplied by A' gives the relation

Al 4 gogll = glihgl] | glohgll] (7.11)
This is soluble once the unperturbed problem is solved. Expressions for the zeroth-order
wavefunction and energy are inserted into Equation (7.11) to yield a soluble problem for
‘Po[l] and E([,‘]. The derivations for these general expressions are not shown here, but the
results are

B = (| A o)

<1}1[)°] ‘ﬁ]'l \PLO]> e (7.12)

i

il =%

= EM-E"
where the change in subscripts denotes system states with energies higher than that of the
ground state.

It is seen within Equation (7.9) how the problems containing the higher-order
corrections are posed. As suggested by the solution to the first-order problem in
Equation (7.12), knowledge of both the lower-order solutions of the ground state and of
all possible excited states are necessary. This complexity continues to increase for all
higher-order solutions, making the determination of further corrections difficult.

The Meller-Plesset (MP) Perturbation Theory (Meller and Plesset, 1932)
expresses the molecular Hamiltonian as an unperturbed portion and a perturbation in

order to apply the method described above. The unperturbed portion is chosen to be

n,

A =Z—%Vf +ii(},(i)—éj (7)) (7.13)

i=1 i=1 j=1
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where the Coulomb operator ] | (i ) acting on a general orbital f is given by

5, 0070)=£ (1) J"”f( L

(7.14)
and where the exchange operator & 5 (i) acting on a general orbital f is given by
E Q)7 (10)=vw,() j"’f )f 2) (7.15)

The perturbation in the problem is thereby the difference between the actual electronic

Hamiltonian of the system, Equations (6.34) and (7.13)

n-1 n,
=33 —-ZZ(J, )=k, (7)) (7.16)
=] j= =i+l 1] ij i=l j=1
Applying the perturbation theory, the zeroth-order problem has the same form as
Equation (7.10). Once the zeroth-order problem is solved, the first-order correction is

found using Equation (7.12). The application of MP perturbation theory states that the
energy of the system taken to the first-order correction is exactly the Hartree-Fock energy
E, =EV + El! (7.17)
Any improvement over the result from the HF method is made beginning with the
calculation of the second-order correction to the energy and the system wavefunction.
Such a treatment is called a calculation at the MP2 (Mgller-Plesset, 2™ order) level of
theory. Calculations at higher levels are possible, and the theoretical levels are called the
MPn levels of theory.
Calculations of energies and wavefunctions for molecular systems using the MPn
methods give a better representation of the environment electrons encounter. Not only

are the electrons subject to the normal Coulombic interactions, the excited states of the
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molecule are also included in the solution and interact with the ground-state configuration.
Necessary in the calculation of higher approximations of the wavefunction and energy are
the wavefunctions of the excited states within lower approximations, as shown in
Equation (7.12). This added information changes the states of the electrons by bringing
in quantum effects that excited levels bear on the system in the ground state.

For whatever level of theory applied, a HF solution must be calculated to
assemble the first-order wavefunction for MPn. The most common calculations are the
MP2 levels, and they require more computational effort than HF and DFT methods.
Further improvements can be made with MP3 and MP4 calculations. MP5 and further
calculations can be done, but these are extremely expensive with present day

computational resources.

7.3 Basis Sets
Up to this point, the theory behind calculating the energy and wavefunction of a
molecular system has been the focus. Approximate solution methods exist that give a
good representation of the molecular structure and the electron density profile upon
solving the molecular Hamiltonian. General statements about wavefunctions have been
used in the derivations of these methods. Actual guesses of the form of these
wavefunctions are needed to facilitate calculations and to express the electron density for
further use in molecular modeling. Two main types of functional forms are used in the
expression of the wavefunction: Slater-type orbitals (STOs) and Gaussian-type functions
(GTFs). Also, these expressions are used in two types of representations of the orbitals

within which electrons reside: atomic orbitals (AOs) and molecular orbitals (MOs).
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As in the first wavefunction guess in the HF method, Equation (6.44), a product of
hydrogen-like orbitals gives a possible functional form for orbitals within the molecular
system. The hydrogen-like wavefunctions take the form of Equation (6.13) with the
radial contribution being a product of a polynomial and exponential in terms of 7. A

STO closely resembles a hydrogen-like orbital by taking a simplified form

n+l/2
_(26)_zwrgsiiym (5,9 (7.18)

n = T2

where ¢ is the STO exponent that determines the spatial extent of the wavefunction, and
the prefactor normalizes the wavefunction. Like the hydrogen-like atom, n, /, and m
are quantum numbers that determine the state of the orbital. The radial portion of
Equation (7.18) takes the form of a gamma distribution regularly used in statistics and
probability theory. The orbital exponents are used as a parameter either to minimize the
variation integral (and thus minimize the system energy) or to represent a single orbital
by a linear combination of STOs with judiciously chosen exponents.

An orbital of the form of Equation (7.18) give a very good function representation
of real orbitals. However, calculations of the above numerical methods using STOs are
computationally intense. Specifically, the calculation of two-electron integrals of
Equation (6.56) is quite complicated for the non-spherical STOs. To alleviate the
computational time issue with STOs, functions containing a normal distribution rather
than a gamma distribution are used (Boys, 1950). These GTFs take the form

i+ j+ V2
2 3/4 (85)’ J ki!j!k! =i~ sk —EF
. ( : j GO GED Xy'ze (7.19)
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where & is the GTF exponent that determines the spatial extent of the wavefunction,
where all the coordinates are distances from the nucleus on which the orbital resides, and
where the prefactor normalizes the wavefunction. The integers i, j, and k£ are chosen
so the GTF has the same functionality as the orbital it represents. For the case
i+ j+k =0, the orbital takes a spherically symmetric form and thus represents an s-type
orbital. For the case i+ j+k =1, the GTF has one of the three Cartesian coordinates
multiplying the radial factor. This function has the form of the orbitals in Equations
(6.26) through (6.29), and therefore this GTF represents a p-type orbital. Similarly for
the case i+ j+k =2, where there will be either two Cartesian coordinates or a power of
two on one of the coordinates. This represents a d-type orbital not unlike the function in
(6.30). Integers that sum to three represent an f-type orbital and so on.

A comparison between the functionalities of a STO and a GTF are shown in
Figure 7.1. The STO reflects the functionality of a hydrogen-like orbital, with the

discontinuous first derivative at the nucleus (r=0), while the GTF reflects the

functionality of a normal distribution. Of more importance than the behavior at the origin
is the behavior at the tail (larger r) of the wavefunction and the electron densities. At
these distances, the differences between the functions become small, and with the
addition of more GTFs as a description of a STO, this difference vanishes.

The utility of GTFs to represent orbitals lies in the ease with which a two-electron
integral like Equation (6.56) is computed. This is due to the mathematical identity which
allows a product of two normal distributions to be rewritten as a single normal

distribution
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CAgls (l‘ - RA )CBgls (r - RB) = CACBCABgls (l‘ - RP) (7-20)
where C, and C, contain normalization constants and axial factors for the uncombined

GTFs, R, and R, are the location of the orbital centers, C,; is a prefactor that emerges

from the combination and is given by

—Satp, R ,-R;[

C 5 =€ (7.21)
and where the location of the intermediate center R, is given by

R, =——§Al§* :?RB (7.22)

An important integral encountered throughout this work is the overlap integral, S,
between two 1s-type orbitals. This expression is given by Equation (7.20) integrated

through all space. For non-normalized GTFs

2 ﬁ’jﬂ
S=<gu(r—RA)lgls(r—RB))=<g1s(A)Igls(B)){f +§B] ests " (7.23)

where 7, is the distance between the centers of the orbitals. Another important integral

in this work is the electron-nucleus integral. For non-normalized 1s-type GTFs, this

expression is given by

~$alp 2
Zees Ry ((fA +35 )r}fc ) (7.24)

2

$atSy

(21 (D)2 /rclsi. (B)) =

where 7,,. is the distance between the nucleus center and the point described by Equation

(7.22), and where F; contains the error function and is a function defined as

F(f)= % \/gerf(\/; ) (7.25)
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A product of four different GTFs in the two-electron integral given by Equation
(6.56) is reducible to one GTF with an exponent containing contributions of the original
four exponents. The integrals reduce to concise mathematical expressions readily
available for calculation. The general expression for a two-electron integral for four

different non-normalized 1s-type GTFs is given by

2”5/2

(€48 (Gt e e,

AB cD
xeé" +¢p e§c+§o (7.26)

XﬂGQ+QXQ+QL%J
§A +§B+§C +§D

(2, (4) 2. (B)|rz'| .. (C) &, (D))

where the center R, is defined in (7.22) where 4 and B are replaced by C and D.

The above integrals are the basis for computations of integrals with any type of
orbital considered. For integrals with higher orbitals, a derivative is taken with respect to
the position of the orbital center (Boys, 1960). For example, the overlap integral (7.23)

of an s-type orbital with a p,-type orbital is given by

(8. (4)]g,,(B))= ?[ ag, (g.(4)

g, (B))J (7.27)

where B, is the z -coordinate for the center of the p_-type orbital, and the function upon
which the differential is taken is given by Equation (7.23). The direction of the p-type
orbital is altered by changing the axis along which the derivative is taken. To determine
the overlap of two p-type orbitals, another derivative is taken with respect to the center
location of the orbital labeled A4 in the given direction. In general, integrals with higher

orbitals are found by applying the proper derivatives to Equations (7.23), (7.24) and
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(7.26). A generalized set of integral equations with any type of GTF-representation of
orbitals has been compiled for use within numerical methods (Browne and Poshusta,
1962).

Wavefunctions containing STOs do not have such a simplified treatment when the
above integrals are calculated. This complication has eliminated the use of STOs in most
modern calculations of HF, DFT and MPn energies and wavefunctions, except for the
small molecules. However, the functionality of a STO is very important and is attempted
to be preserved. Within calculations of wavefunctions the exponents of a linear
combination of GTFs are selected to approximate the functional form of a STO. An

example is the STO-3G basis set, where a 1s STO is approximated with the form
3
S = 2 Citss (7.28)
i=1

where y, is a GTF called a primitive and has a different exponent &. The coefficients c,

2c11,>. This

and the primitive exponents & are found by maximizing the integral <s

allows the approximate representation of theoretically appealing STOs with more
efficient GTFs.

The sum of functions in Equation (7.28) is considered a series representation of
the orbital. In this view, a better representation can be made if more functions are
included. For example, if an orbital on a hydrogen atom within a molecule is desired, the
reasonable starting point for representation of that orbital is a sum of three primitives, as
in Equation (7.28). A better representation of orbitals about the hydrogen includes six
primitives. And although not clearly suggested by the problem, a more exhaustive

representation is to include primitives in the form of higher orbitals, such as a set of
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p-type primitives, a set of d-type primitives and so on. These add-ons to the original
set of orbital functions give a more complete description of the space and energy levels
an electron may occupy around the hydrogen atom. It is readily accepted that the more
functions included in the orbital description, the better the approximation to the real
system.

The number and types of primitive Gaussian functions used to describe orbitals
around atoms within molecules is called the basis set. A large number of examples have
been developed for use in present computational chemistry methods (Hehre, et al. 1986).
Common basis sets used in calculations are abbreviated to define how large these
functions are. For example, a common basis set called 3-21G uses a linear combination
of three primitives for non-valence, or inner-shell, orbitals (one 1s orbital for the row Li-

Ne; one 1s, one 2s, and three 2p orbitals for the row Na-Ar; etc.), and a combination of

a single GTF with a linear combination of two primitives for the valence orbitals (one 1s
orbital for H and He; one 2s and three 2p orbitals for the row Li-Ne; etc.). A similarly
defined basis set is the 6-31G, where a larger number of primitives are included in the
inner-shell and valence orbital descriptions.

Additions to these basis sets can better describe specific physical effects that
electrons encounter within a molecular environment. Polarization functions are added to
expand the space in which an electron resides and accommodate for the field imposed by
other atoms in the molecule. The inclusion of polarization functions in the above basis

sets is denoted by a * after the G. The basis set 6-31G* adds six d-type GTFs on the

rows Li-Ne and Na-Ar. A second star, as in the 6-31G** basis set, adds also three

p-type functions to H and He. This basis function is also called 6-31G(d,p) to explicitly
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show the types of polarization functions. Also made available in calculations are further
polarization orbitals of the f-type on the rows Li-Ne and Na-Ar and d-type for H and
He. Such a basis set is denoted by 6-31G(f,d).

Advantages are found when very diffuse orbitals (GTFs with small exponents) are
added to the description. This addition to the above basis sets is denoted by a + in the
name. Therefore, 6-31+G includes one s-type and three p-type GTFs with small
exponents on all non-hydrogen atoms. The 6-31++G basis set also adds a diffuse s-type
orbital on the hydrogen atoms.

A more systematic approach to a series-like description of an orbital exists in the
correlation-consistent, polarized valence, n zeta (cc-pVnZ) basis sets (Dunning, 1989),
where #=D,T,Q,5,6 describes the multiplicity of the valence shell (double, triple,
quadruple, etc.). The statement correlation-consistent means that the basis set is useful in
theoretical treatments that describe the interactions of excited states, such as the MPn
methods. The polarized functions described above, previously denoted by ** or (d,p), are
included in this basis set without denotation. The cc-pVnZ set has available diffuse
functions similar to the + and ++ notation above. To include these, an AUG- is added as
a prefix in the basis set name. Thus, a double zeta basis set with polarization functions is
denoted as the AUG-cc-pVDZ basis set.

The multiplicity of the valence shell, or the zeta, is where the systematic addition
of functions can be examined. As calculations with higher zeta multiplicities are
performed, inferences can be made on the greater multiplicities, such as an infinite

multiplicity that would exhaust all possible wavefunction descriptions and give the actual
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wavefunction behavior. The number of functions in the cc-pVnZ sets dwarfs that of the

6-31G set, so a large computational effort is necessary to proceed along such a track.

7.4 Computational Chemistry Software: Gaussian 98W

Gaussian 98W (G98W) (Gaussian Inc., 1998) is a software package that links programs
that calculate myriad properties of molecules within the gas phase or solution. The
package is a user-friendly tool that can predict properties of an isolated molecule, such as
absolute molecular energies, molecular structure, orbital occupancies, atomic charges,
multipole moments, polarizabilities, and electrostatic potentials surrounding molecules.
Coupled with a closely associated graphical user interface (GUI) called GaussView
(Gaussian Inc., 2000), the package serves as a user-friendly tool to implement the
theoretical and numerical methods mentioned above.

To conduct a calculation on a molecule, one must become familiar with the
format of the input files necessary to direct G98W. For this work, the instructions are
separable into five different groupings: the header statements, the route section with
associated keywords, the title of the calculation, the Z-matrix, and a filename to end the
input file. A full description of a typical input file for G98W is available with the
software package and on the Internet, and examples of input files used in this work are
offered in Appendix C.

The header statements declare hardware information to G98W. The amount of
random-access memory (RAM) available for calculation is declared beginning with the
‘%mem="command. For instance, a computer with 512 megabytes (MB) of RAM may

have about 400 MB available for a calculation. To utilize this memory, a header
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statement should read ‘%omem=400MB’. A file called a checkpoint file is created to store
molecular system information during and at the end of a calculation. A file is created
when using the ‘%chk=" header. For systems with multiple processors, the header
‘%nproc=" is stated to utilize the hardware.

The route section includes the level of theory (HF, MP2, MP4, B3LYP, etc...),
the basis set, and any other secondary calculations to be performed. Each line in the

b

route section must begin with a ‘#’ symbol. For instance, a common calculation is to
invoke the HF level of theory with a 6-31+G* basis set. The first statement within the
route section reads ‘HF/6-31+G*’ followed by keywords. An oft-used calculation within
this work invokes a restricted MP2 level of theory where electron correlation is applied to
all electrons and using the AUG-cc-pVDZ basis set. The keyword line therefore begins
with ‘MP2(full)/AUG-cc-pVDZ’ followed by keywords. A number of keywords most
utilized in this work are outlined within the following paragraphs.

A line is devoted to the title of the calculation is usually included for bookkeeping
purposes and does not influence the calculation procedure.

The Z-matrix is a set of coordinates that inputs the locations, or initial guess to the
locations, of the nuclei in the molecule. The first line of the Z-matrix states the
multiplicity (a value of 1 for closed-shell molecules) and the overall charge of the
molecule. The following matrix describing nuclear positions can be stated in two forms:
Cartesian coordinates or internal coordinates. A description of the Z-matrix in internal
coordinates is not given here, since it is somewhat involved and necessitates the use of

numerous images and graphs, and since GUIs such as GaussView allow for the

construction of the Z-matrix without actual knowledge of how to write one from scratch.
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A Z-matrix can be omitted from the input file when a checkpoint file exists for the
molecule. The guess of the structure is thereby read from the checkpoint file using a
keyword detailed later. Descriptions of how to create Z-matrices exist in the literature
(Levine, 2000) as well as on the Internet.

A filename is necessary at the end of the input file to store information requested
by the keywords. Of use in this work is the wavefunction resulting from the calculation.
Therefore, a filename with the extension ‘.wfn’ ends some of the input files. If this
keyword or any other that requests a filename is not used, then the filename is not
necessary.

When looking for the ground-state energy, ground-state wavefunction and
associated electron density of an isolated molecule (as is done in this work), several steps
must be taken to achieve this goal. Firstly, an initial guess to the locations of the nuclei
must be determined. This task involves determining rotational conformers of molecules
and their relative energies at low theoretical levels, so that the lowest conformer can be
used for more intense calculation. Secondly, the geometry of the nuclei must be
optimized at a higher theoretical level to achieve representative bond lengths and angles
for the low energy conformer. This calculation is called a geometry optimization (OPT)
and is performed by G98W in an iterative manner. For this reason, OPTs are typically
performed at an intermediate level of theory or with moderately-sized basis sets, or both.
Thirdly, the calculation that achieves the energy for this optimized structure is performed
with higher theory and larger basis sets. This calculation is called the single point energy
(SPE) calculation for the ground-state structure of the molecule. Finally, multiple SPE

calculations are performed to determine effect electric fields have on the electron density,
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thus determining the polarizability of the molecule. A more detailed algorithm of the
methods utilized in this work is offered in Section 8.1.

A list of keywords available within G98W that are related to portions of this work
is included in Table 7.1. The levels of theory applied within this work are the ‘HF” level
and the ‘MP2(full)’ level, and the basis sets used are the ‘6-31++G(d,p)’ and ‘AUG-cc-
pVDZ’ sets.

The execution of the conformer search and OPT calculations described in Section
8.3 are made easier with use of the GaussView program. The software offers a molecule
builder for the user to connect atoms, alter angles and twist dihedral angles to achieve the
desired initial guess of a geometry optimization. Given this graphical representation of
the molecule, the user is then able to access an input file creator and change the
calculation type and keywords. The most popular options are readily available, and users
can supplement other keywords in an input box found within the input file creator. Some
options used in this work are not included in GaussView, so the software is mostly seen

as a convenient way to create the Z-matrices for geometry optimizations.

7.5 Wavefunction Output of Gaussian 98W
Gaussian 98W outputs the wavefunction solution to a molecular system when the
‘output=win’ keyword is used. This command outputs a PROAIMV wavefunction file
that is subsequently used within AIM property calculators (discussed in Chapters 9 and
10). Instructions on what the layout of the .wfn file is, how to extract the wavefunction

of the molecular system and how to calculate the electron density are given in Appendix

D.
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Table 7.1 Commonly Used Keywords in Gaussian 98W

keyword section  description common options Lines .
added/omitted
chk header  checkpoint file declaration %chk=molecule.chk
mem header  SYyStem memory available for %mem=300MB
calculation
nproc header = number of processors %nproc=1
hf or rhf route restricted HF method hf/6-31G
mp?2 or rmp2 route restricted MP2 method rmp2/aug-cc-pvdz
b3lyp route B3LYP DFT method b3lyp/3-21G
b3pw9l route B3PW91 DFT method b3pw91/6-31++G**
3-21G route 3-21G basis
6-31G route 6-31G basis
-3 ]++ .
(6)r36l-31g%€3‘ route 6-31++G** basis
aug-cc-pvdz route AUG-cc-pVDZ basis
opt route geometry optimization
scf route single point energy calculation
nosymm route removes orbital symmetry
constraint
geom route source of molecule input geom=allcheck no Z-matrix
necessary
source of initial guess to HF _
guess route wavefunction guess=read
. specifies level of theory to .
density route analyze density=current
aim route AIM analysis on molecule a§mit1ght
aim=cp
field route applies an electric field field=x+0.0070
cube route samples space with a cube of cube=pot molecule.cub at
points P end of input file
population route orblta}l population or partial popimk
atomic charges pop=chelp
units route controls units in the Z-matrix  units=au
output route requests an output file output=win molecule.wfn at

end of input file
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7.6 Summary

The theoretical methods and basis sets described in this chapter offers background on the
fundamental nature of the choices made for calculations of this work. Although offering
advantages in computational time and accuracy, DFT methods are not used in this work
because of the lack of a theoretical basis by which one can increase its effectiveness.
Perturbation methods are employed with the goal of devising a series of calculation
results that may extrapolate to results offered at greater levels of theory or sizes of basis
sets.

The computational chemistry software now available to engineers allows for an
easy application of these high levels of theory. Gaussian 98W used on a Microsoft
Windows-based personal computer is employed in this work to determine a wide variety
of properties for a particular molecule. Some of this information is sufficiently close to
experimental results that the predicted results will be used to determine the
thermodynamic properties of macroscopic systems. Since the full wavefunction
approximation is also made available by this software, AIM properties of the molecule

can be calculated as molecular information becomes necessary.



CHAPTER 8

PROPERTIES CALCULATION OF ORGANIC MOLECULES

Computational chemistry in this work is employed to determine information about
molecular species without the use of experiment. This information is then used within
interaction models and statistical fluid models (presented in subsequent chapters) that
attempt to determine macroscopic system behavior from the molecular properties. This
begins with the computation of approximations of the molecular wavefunctions available
through the techniques reviewed in Chapters 6 and 7.

This chapter details the molecular computations on over 130 molecules analyzed
within this work. The levels of theory and basis sets are given. The search for the low
energy conformer, important in determining the most probable structure of the molecule,
is explained. The method to determine the polarizability of molecules, an important
property in intermolecular interaction theory previous found experimentally, is outlined.
The computational results of the dipole moment and the polarizability are then compared
to experiment, and the utility of several DFT and ab initio methods and basis sets at

predicting experimental properties is tabulated and compared.

8.1 Calculation Method
Whenever computational chemistry is employed, one must take care in choosing the
theoretical method and basis set that will best predict the properties of interest. Of
interest in this work is the electron density profile of the molecule and the systematic

methods with which to get better representations of the electron density as more
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computational power arises. The former, of course, is the goal for all of computational
chemistry, and methods are continually being refined to approach this goal. The latter
states the need to use perturbation methods (MP2) rather than density functional theory
methods. Also, the use of the correlation consistent, polarized valence basis sets (AUG-
cc-pVDZ etc...) allows for this by making available the systematic increase of space-
filling functions for the approximating wavefunction.

The computational chemistry methods employed in this work are used to
determine the ground-state geometry of a molecule, the wavefunction (and thereby the
electron density) of the molecular system, and how this wavefunction is affected by
uniform electric fields in three perpendicular directions. The algorithm used to determine
this information is as follows:

o The initial guess for the ground-state geometry is determined using a rotational
conformer search. This is done by performing multiple geometry optimizations
(OPTs) at a very low theoretical level and basis set (HF/6-31G) for timely results.
More about this procedure and results are presented in Section 8.3.

e An OPT is performed with the initial guess of the ground-state geometry. This is
performed at an intermediate level of theory and with a moderately-sized basis set
(MP2(full)/6-31++G**).  This calculation is meant to achieve a better
representation of the bond lengths and angles than the conformer search had
provided. An example OPT input file for G98W used in this work is made
available in Appendix C.

¢ A single point energy (SPE) calculation is performed on the molecule with a high

level of theory and large basis set (MP2(full)/AUG-cc-pVDZ) to achieve as good
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a representation of the electron density as possible. The output from this
calculation also includes the wavefunction description (using the ‘output=wfn’
keyword in G98W) and the critical points within the electron density (using the
‘aim=cp’ keyword in G98W). The wavefunction is made available in a
separate .wfn file, and the critical points are found near the end of the standard
GI98W output file. Example SPE input and output file for G98W are made
available in Appendix C of this work. A description of the .win file is available in
Appendix D of this work.

e Three more SPE calculations are employed to determine the response of the

electron density to electric fields in the x, y, and z directions. These calculations

are used to determine the polarizability of the electron density. The level of

theory and size of the basis set correspond to that of the SPE calculation of the

ground-state wavefunction (MP2(full))AUG-cc-pVDZ). Similar to the ground-
state calculation, the outputs from this calculation include the wavefunction
description of this system and the critical points within the electron density.

These four steps yield a total of eight output files that contain information
necessary for further steps in this work. These include four .wfn files, one for the ground
state and three for the polarized states, as well as four G98W output files that hold the
critical points of the electron density. These files and the critical point information are
used in AIM integration routines that determine properties for atoms and functional
groups within the molecule. Also of importance is the .chk file that is used for the
geometry in OPT and SPE calculations. However, the information on the geometry is

also included in the G98W output file, so this file is seen as extraneous.
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Also of importance to the application of computational chemistry is the level of
hardware resources available to the software (here, G98W). The molecular-level
calculations for this work are all performed on a single personal computer. This
computer runs on a 1.8 Gigahertz Pentium 4 processor, 512 MB of RAM, and runs the
Microsoft Windows 2000 Professional operating system. The total hard drive space is 32
GB, of which 20 GB is left free for the G98W program to utilize during calculation. The
header line ‘%omem=400MB’ is written to utilize the RAM available on the computer
system. The computational methods chosen for the SPE calculations above are the most

rigorous ab initio methods allowable with the computational resources listed.

8.2 Choice of Molecules

The molecules chosen for analysis in this work have several constraints. Firstly, as noted
above, the computational resources available dictate the theoretical method and basis set
that are attainable over the range of molecules considered. Also, the methods are affected
by the number of electrons within the system; therefore only first-row heavy (non-
hydrogen) atoms, specifically C, N, O, and F, are used to build molecules. The available
analysis techniques of functional groups also dictate whether certain molecules can be
pursued in this work.

The list of molecules calculated for this work is motivated by work that explored
use of computational chemistry within models of the excess Gibbs energy (Wu and
Sandler, 1991a). The main size constraint is to restrict the number of first-row heavy
atoms to six. This size constraint is relaxed in groupings where more molecules are

needed for analyzing purposes and where mixture systems of interest contain these larger
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molecules. The list of molecular grouping with the molecule names and CAS registry

numbers in parenthesis are as follows:

Alkanes: methane (74-82-8); ethane (74-84-0); propane (74-98-6); butane (106-
97-8); isobutane (75-28-5); pentane (109-66-0); isopentane (78-78-4); neopentane
(463-82-1); hexane (110-54-3); 2-methylpentane (107-83-5); 3-methylpentane
(96-14-0); 2,2-dimethylpentane (75-83-2); 2,3-dimethylbutane (79-29-8)

Alkenes: ethane (74-85-1); propene (115-07-1); 1-butene (106-98-9); trans-2-
butene (624-64-6); cis-2-butene (590-18-1); 2-methylpropene (115-11-7); 1-
pentene (109-67-1); trans-2-pentene (646-04-8); cis-2-pentene (627-20-3); 2-
methyl-2-butene (513-35-9); 3-methyl-1-butene (563-45-1); 1-hexene (592-41-6)
Amines: methanamine (74-89-5); ethanamine (75-04-7); 1-propanamine (107-10-
8); 2-propanamine (75-31-0); 1-butanamine (109-73-9); 2-butanamine (13952-84-
6); 2-methyl-1-propanamine (78-81-9); 2-methyl-2-propanamine (75-64-9); 1-
pentanamine (100-58-7)

Diamines:  dimethylamine  (124-40-3);  methylethylamine  (624-78-2);
diethylamine (109-89-7); methyl-n-propanamine (627-35-0);
methylisopropanamine (4747-21-1)

Triamines: trimethylamine (75-50-3); n,n-dimethyl-ethylamine (598-56-1);
methyldiethylamine (616-39-7)

Nitriles: ethanenitrile (75-05-8); propanenitrile (107-12-0); butanenitrile (109-74-
0); 2-methylpropanenitrile (78-82-0)

Alcohols: methanol (67-56-1); ethanol (64-17-5); 1-propanol (71-23-8); 2-

propanol (67-63-0); 1-butanol (71-36-3); 2-butanol (78-92-2); 2-methyl-1-
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propanol (78-83-1); 2-methyl-2-propanol (75-65-0); 1-pentanol (71-41-0); 2-
methyl-2-butanol (75-85-4); 3-methyl-1-butanol (123-51-3); 1,2-propanediol (57-
55-6); 1,3-propanediol (504-63-2); 1-methoxy-2-propanol (107-98-2)

Ethers: dimethylether (115-10-6); methylethylether (540-67-0); diethylether (60-
29-7); methylpropylether (557-17-5); methyl isopropylether (598-53-8); methyl
tert-butyl ether (1634-04-4); ethyl tert-butyl ether (637-92-3)

Aldehydes: methanal (50-00-0); ethanal (75-07-0); propanal (123-38-6); butanal
(123-72-8); 2-methylpropanal (78-84-2)

Ketones: propanone (67-64-1); butanone (78-93-3); 2-pentanone (107-87-9); 3-
pentanone (96-22-0); 3-methyl-2-butanone (563-80-4); methyl vinyl ketone (78-
94-3)

Carboxylic Acids: methanoic acid (64-18-6); ethanoic acid (64-19-7); propanoic
acid (79-09-4); butanoic acid (107-92-6); 2-methylpropanoic acid (79-31-2)
Esters: methyl methanoate (107-31-3); methyl ethanoate (79-20-9); ethyl
methanoate (109-94-4); methyl propanoate (554-12-1); ethyl ethanoate (141-78-
6); propyl methanoate (110-74-7); methyl acrylate (96-33-3); vinyl ethanoate
(108-05-4); methyl butanoate (623-42-7); ethyl butanoate (105-37-3); butyl
methanoate (592-84-7)

Fluorides: fluoromethane (593-53-3); fluoroethane (353-36-6); 1-fluoropropane
(460-13-9); 2-fluoropropane (420-26-8); 1-fluorobutane (2366-52-1); 2-
fluorobutane; 2-methyl-1-fluoropropanel; 2-methyl-2-fluoropropane (353-61-7)
Amides: methanamide (75-12-7); ethanamide (60-35-5); propanamine (79-05-0);

butanamide (541-35-5); 2-methylpropanamide (563-83-7)



122

e Nitros: nitromethane (75-52-5); nitroethane (79-24-3); 1-nitropropane (108-03-2);
2-nitropropane (979-46-9)
e Inorganics: carbon monoxide (630-08-0); carbon dioxide (124-38-9); hydrogen
fluoride (7664-39-3); fluorine (7782-41-4); hydrogen (1333-74-0); water (7732-
18-5); ammonia (7664-41-7); nitrogen (7727-37-9); nitrous oxide (10024-97-2);
neon (7440-01-9); oxygen (7782-44-7); hydrogen cyanide (74-90-8)
Also, rotational conformers for several linear molecules with electronegative
atoms within the terminal functional groups are considered. These are included to
analyze the effects of electronegative atoms on the properties of other functional groups

within the molecule. The description of these molecules is given in the following section.

8.3 Search for Low Energy Conformer
Molecules exist in constant motion. While a molecule in the fluid phase translates along
trajectories within a system, internal vibrations and rotations cause the nuclei to travel in
varied directions and speeds allowable by the chemical bonds. This internal motion is
not only influenced by intramolecular forces, such as bond strengths and steric effects,
but they are also influenced significantly by the molecules around them, especially in the
liquid phase.

Every single conformation of a molecule cannot be accounted for within a
computational chemistry algorithm meant to predict molecular properties. The
description of effects that other molecules have on a molecule is available within
computational chemistry, but this involves study into solvation models that average these

effects. The first filtering criterion when guessing a conformer of interest is that the
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Table 8.1 Absolute Energies of Linear Molecules in Different Conformations

energy (au)
molecule
HF MP2(full) HF MP2(full)/
6-31++G**  6-31++G** AUG-cc-pVDZ AUG-cc-pVDZ
trans -157.3149 -157.9347 -157.3151 -157.9377
butane
gauche  -157.3133 -157.9335 -157.3135 -157.9368
trans -196.3529 -197.1237 -196.3539 -197.1285
pentane
gauche  -196.3511 -197.1226 -196.3522 -197.1277
trans -235.3908 -236.3127 -235.3927 -236.3194
hexane
gauche  -235.3890 -236.3117 -235.3910 -236.3187
trans -173.3050 -173.9493 -173.3112 -173.9623
1-propanamine
gauche  -173.3045 -173.9492 -173.3105 -173.9623
trans -212.3429 -213.1381 -212.3499 -213.1529
1-butanamine
gauche  -212.3423 -213.1382 -212.3492 -213.1530
trans -193.1330 -193.7844 -193.1443 -193.8121
1-propanol
gauche  -193.1329 -193.7849 -193.1440 -193.8124
trans -232.1709 -232.9732 -232.1830 -233.0026
1-butanol
gauche  -232.1707 -232.9738 -232.1827 -233.0031
trans -271.2089 -272.1623 -271.2218 -272.1935
1-pentanol
gauche  -271.2087 -272.1630 -271.2215 -272.1940
trans -217.1316 -217.7680 -217.1420 -217.8078
1-fluoropropane
gauche  -217.1317 -217.7685 -217.1421 -217.8083
trans -256.1694 -256.9567 -256.1807 -256.9983

1-fluorobutane
gauche -256.1696 -256.9573 -256.1809 -256.9989
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8.4 Calculation of Molecular Polarizability

The molecular polarizability attempts to quantify the response of the electron density to
an applied electric field. It is a proportionality factor that describes the linear response of
the dipole moment to a small electric field. Greater field strengths induce nonlinear
responses, called hyper-polarizabilities. The general formula for the polarizability is
given by

Ap=0a-E 8.1
where the dipole vector p changes under the influence of the electric field, here

expressed as the vector quantity E. The polarizability here is expressed as the tensor a,
and the elements of the tensor are found through the calculation methods described above.

The polarizability tensor reflects the specific directional responses of the electron
density to the electric fields. The density may respond in any of the three perpendicular

directions (e.g. the x, y, and z directions) to a field in a particular direction, either the
x,¥, or z direction. These yield nine responses the electron density may show, therefore

the nine elements a.

The most significant responses are those in the same direction as the electric field.
Therefore one can expect that the diagonal of the polarizability tensor contains the largest
contributions. Table 8.2 presents the results of the calculations of the dipole moment
vector of 1-propanol in the ground state and with electric fields applied in the x, y, and z
directions. The largest changes in the dipole moment vector are in fact in the directions
of the electric field. This, in turn, yields polarizabilities an order of magnitude larger on
the diagonal than for the other elements. Also note that the polarizability tensor is

required to be symmetric. The tensor in Table 8.2 approximately obeys this.
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Table 8.2 Response of the Dipole Moment Vector of 1-Propanol to an Electric Field of
Strength —0.007 au

1 (Debye) ground-state E, E, E,
X 0.6311 -0.2334 0.6235 0.624
y 1.0245 1.0164 0.2344 1.0246
z 0.9507 0.9428 0.9507 0.2134
x -0.8645 -0.0076 -0.0071
Ap (Debye) y -0.0081 -0.7901 0.0001
z -0.0079 0 -0.7373
7.20 0.06 0.06
a (A% 0.07 6.58 0.00
0.07 0.00 6.14

The polarizabilities of this work are presented as scalar quantities and thus
describe the polarizability of the molecule as a spherically symmetric property. To
achieve this, the trace of the tensor (the average of the elements of the diagonal) is
considered the polarizability of the molecule.

A similar algorithm is followed for the calculation of the polarizabilities of
functional groups, presented in Chapter 10. However, there the change in the dipole
moment of the group is more detailed, taking into account the charge transfer possible

within a molecule influenced by an electric field.

8.5 Results
The results of the calculations and their relation to experimental molecular properties are
accomplished in this work by analyzing the difference between the experimental dipole
moments and polarizabilities with those predicted by the computational techniques.

Comparisons for each individual molecule are listed in Appendix E.
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To simplify the analysis between predicted and experimental results, the
groupings of molecules are subgrouped by their constituent atoms:
e Hydrocarbons contain Alkanes and Alkenes
¢ Amines contain molecules with singly-bonded nitrogen atoms
e Alcohols & Ethers contain molecules with singly-bonded oxygen atoms
e Fluorides contain molecules that contain akﬂuorine atom
e Aldehydes & Ketones contain molecules with a doubly-bonded oxygen atom
o Esters & Acids contain molecules with a carboxylic group (OC=0)
¢ Inorganics contain smaller molecules
e Amides, Nitriles & Nitros contain less-encountered species with a single
electronegative atoms or a group of nitrogen and oxygen atoms
The difference between the experimental dipole moments and the calculated
results from both the OPT and SPE metﬁods used in this work are presented in Table 8.3.
The difference between the calculated polarizabilities from the SPE calculations is
considered in Table 8.4. Also within these tables are results from both ab initio and DFT
methods with various size basis sets. This information is made available from the
Computational Chemistry Comparison and Benchmark Database (CCCBDB) online
(“Computational Chemistry...”, 2004). This selection of methods and basis sets has been
made because calculations on a majority of molecules in this work have been completed
by the CCCBDB with these methods. The theoretical methods include the DFT methods
referenced in Section 7.1, the B3LYP method and the B3PW91 method. Also included
for comparison is the MP2 perturbation with correlation only included for the valence

electrons, hence the ‘fc’ (frozen core) notation. The basis sets included from the
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CCCBDB is the 6-31++G* set, the larger 6-31G(2df,p) set, and the correlation-consistent
sets, AUG-cc-pVDZ and cc-pVTZ sets. Note that the second and the fourth basis sets on
this list do not include diffuse functions.

The absolute percent error of calculated dipole moments over the range of
methods is presented in Table 8.3. Both the OPT values and the SPE values are
represented here, and a large improvement is seen when using the larger basis set. The
SPE calculation performs better than those of the DFT methods with smaller basis sets,
which is surprising noting that an advantage to DFT methods is that a smaller basis set
can be used with comparable accuracy. The method employing the next larger
correlation-consistent basis set does incrementally better than the SPE calculation over

most of the groupings.

Table 8.3 Absolute Percent Error of Calculated Dipole Moments from Experiment
(“Dipole Moments”, 2004).

method and basis set
MP2(fc)/ B3LYP/ B3PW91/ B3LYP/

OPT SPE copVTZ  631++G*  6-31G(2dfp)  AUG-cc-pVDZ
Hydrocarbons 13.4% 10.3% 11.1% 17.6% 20.3% 9.8%
Amines 21.6% 7.0% 3.4% 9.9% 8.0% 8.5%
Alcohols & Ethers 17.8% 6.8% 2.1% 8.9% 12.9% 3.5%
Fluorides 22.8% 4.7% 2.7% 12.6% 14.5% 2.8%
Aliehydes & 25.1% 4.2% 4.8% 10.3% 6.6% 5.3%
etones
Esters & Acids 20.5% 8.1% 3.2% 38.4% 26.3% 37.4%
Am‘delffi:(‘;“'es & 19.6% 3.8% 2.5% 7.7% 3.0% 13.4%
Inorganics 106.8% 24.3% 35.6% 23.0% 16.9% 14.8%
g (0357D)  (0.036D)  (0.165D)  (0.078 D) (0.083 D) (0.041 D)

OPT refers to the MP2(full)/6-31++G** calculations
SPE refers to the MP2(full)/AUG-cc-pVDZ calculations
Results for remaining methods from the CCCBDB (“Computational Chemistry...”, 2004)
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The DFT method with the same size basis set also performs better than the SPE
calculation, although the SPE calculation yields competitive numbers.

A question exists in the performance of the B3LYP/AUG-cc-pvDZ methods for
the Esters & Acids grouping. The geometries considered by the CCCBDB may not
correspond to those geometries considered in this work.

Also, all methods do poorly in predicting the small molecule dipole moments
within the Inorganics grouping. This may be so because the dipole is more influenced by
the actual electron density of the system, while the dipole for larger molecules are more
influenced by the positions of the more numerous nuclei. Also, the magnitudes of the
dipole in this group are smaller, so absolute error may be a better measure on how well
the dipoles are predicted. These values are also included within the table, depicting the
best results from the SPE method and the DFT method with the large basis set, and
reasonable results for the majority of methods.

The absolute percent error of calculated polarizabilities over the range of methods
is presented in Table 8.4. One can immediately note the success that basis sets with
diffuse functions have over those without. The SPE calculations do a better job than the
calculation with the cc-pVTZ basis, mainly due to the lack of the diffuse functions in the
latter. This is also seen with the two DFT methods with the 6-31G sets; the calculations
with the diffuse functions perform better. Again, when the diffuse basis set is coupled

with the DFT method, the numbers are most near that of the experiment.
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Table 8.4 Percent Error of Calculated Polarizabilities from Experiment (Miller, 2004)
method and basis set

SPE MP2(fcy _ B3LYP/ B3PWO1/ B3LYP/

cc-pvIZ 6-31++G* 6-31G(2dfp) AUG-cc-pvDZ
Hydrocarbons 4.9% 14.5% 10.8% 18.8% 1.7%
Amines 11.4% 22.2% 18.8% 27.1% 9.1%
Al‘é‘;ﬂ‘e’:: & 5.4% 15.5% 12.1% 18.9% 2.7%
Fluorides 16.2% 27.3% 27.3% 29.7% 13.9%
Al‘liee*zﬂ:z& 3.6% 10.5% $.2% 16.2% 1.6%
Esters & Acids 1.0% 17.1% 6.8% 16.4% 2.7%
Am‘g‘:e;;itlj(‘;”‘es 13.6% 11.4% 15.6% 15.9% 11.2%
Inorganics 10.2% 28.5% 24.6% 30.8% 7.5%

SPE refers to the MP2(full)/AUG-cc-pVDZ calculations
Results for remaining methods from the CCCBDB (“Computational Chemistry...”, 2004)

8.6 Conclusions
Computational chemistry offers methods with which one may analyze a large number of
molecules without the use of complex and expensive experimental apparatuses.
Although no method has ended the search to makes experiments completely obsolete,
enough information is available to establish the accuracy and predictive capability of
such methods.

The methods utilized in this work allow for a timely prediction of the electrostatic
properties of molecules of interest to chemical engineers. The results of these methods
can also be improved in a systematic manner as the need arises. The molecular
wavefunctions may now be analyzed to determine functional group properties for
application within predictive group-contribution methods. The algorithm has been

applied to a large number of species, making available molecular-level properties that
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may aid in evaluating pure and mixture system properties with techniques described later
in the work.

All this information comes from modest computational resources. With the
application of more powerful tools, the results in theory will approach those of
experimental results. Due to the greater acceptance of such computational techniques,
such solution methodologies will become regularly used tools for chemical engineers

willing to approach problems from a more fundamental standpoint.



CHAPTER 9

GROUP-CONTRIBUTION METHODS AND
THE CONCEPT OF THE FUNCTIONAL GROUP

Thousands of chemicals are of interest to engineers, and more are added every year. It is
impossible to expect that all the relevant properties of these molecules and their mixtures
can be readily available to engineers for use in process design. Group-contribution
methods (GCMs) have been developed to aid engineers approximate molecular properties
through a smaller set of entities called functional groups.

Functional groups are the atoms and collections of atoms that are used to
approximate the properties for molecules of interest. The problem of finding all the
properties of molecules and their mixtures is reduced to finding the definitions of
functional groups, the functional group properties and the models used to assemble
molecular properties.

The transferability concept alluded to in Section 5.5 has made the finding of
universal and well-defined properties for a group a goal in the advancement of GCMs.
The problem is, of course, that the properties of a given group of atoms are affected by
what other groups constitute both the molecule and system. This means that the group is
almost never transferable (Fresendelund and Prausnitz, 1975; Bader and Becker, 1988;
Sandler, 1994), and thus GCMs that assume transferability will have a limited scope of
success.

A related problem with current GCMs involves isomers (Fresendelund, et al.
1975). Molecules that consist of geometric rearrangements of the same set of groups are

indistinguishable by current models that rely on the assumption of transferability.

133
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Atoms in Molecules (AIM) theory (Bader, 1990) offers a rigorous method to find
properties of functional groups in molecular environments. Such information is
calculable once the numerical approximation to the wavefunction is found using methods
described in Chapter 6. Two main bodies of work on this subject exist: by the Bader
group, on the theoretical basis of AIM and initial studies of alkanes (Bader, et al. 1987;
Bader and Becker, 1988; Bader, 1990; Bader et at, 1992; Bader and Bayles, 2000; Cortés-
Guzman and Bader, 2003); and another by the Mosquera group, on the calculation of
properties for a wide range of molecule types (Grafia and Mosquera, 1999; Carballo and
Mosquera, 2000; Grafia and Mosquera, 2000; Vila and Mosquera, 2001; Lorenzo and
Mosquera, 2002; Mandado, et al. 2002; Mandado, et al. 2003; Quifidénez, et al. 2003).
Since the number of references is numerous, the general body of work from each group
within this chapter will not be rewritten, except when a particular piece of work is
referenced due to the focus of that work.

This chapter offers an overview of GCMs and the tasks in determining definitions
and contributions to the properties of a molecule. Focus is then placed on the role that
AIM theory has in alleviating the past problems with definitions and properties. Several
numerical routines exist to determine AIM properties; these are considered. Finally, an
argument against the full transferability of a functional group definition over molecules is

discussed, but on a quantitative scale offered by AIM theory.
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9.1 Group-Contribution Methods for Thermophysical Properties
Thermophysical property prediction continues to be a significant research area. The
importance of readily available and accurate properties of known and yet unknown
species is evident by their use in powerful engineering process simulations. Properties
such as heats of formation, boiling points, and heat capacities for all participating species
need to be readily available for a robust simulation. Also, costly, time consuming
experiments on rare compounds are avoidable if a predictive model of sufficient accuracy
can be used within these simulations.

Group-contribution methods are regularly used to predict thermophysical
properties. Methods exist that make this information available simply with knowledge of
the numbers and types of groups occurring in a molecule. Each functional group
contributes a value to the property of interest. In the past, these contributions have been
correlated to a large set of data for the property of interest. For simpler schemes, a
contribution from a particular group is assumed to be the transferable, the same in
whichever molecule the group exists.

To calculate macroscopic properties, GCMs assume that each contribution from a
group can be summed linearly to give the property of interest. For a given

thermophysical property F;, the contributions of the functional groups f, are added to

give the result

E=3V.,f 9.1)

where v, ; is the number of j functional groups in molecule i. Each of the functional

group properties is assumed to be independent of the contributions by other groups in the



136

molecule. Also, these properties are assumed to be transferable, thereby usable for the
functional group within any molecular environment.

Recently, this subject matter has been studied within the framework of quantum
mechanics and AIM theory. Linear additivity, demonstrated by Equation (9.1), has been
shown to exist for structural properties of alkanes (Bader et al. 1987), the polarizability of
linear alkanes (Bader et al. 1992), and the HF energies of linear alkanes and oligosilanes
(Bader and Bayles, 2000).

Group-contribution methods widely used by engineers have had success assuming
linear additivity without a rigorous theoretical framework. A successful additivity
scheme (Benson, 1976) establishes a large number of functional groups and their
associated properties with which to construct many molecules. The properties made
available allow for the calculation of common properties necessary for process design,
such as heats of formation, entropies, and heat capacities. The application of this method
is rather straightforward, since one only needs to add one contribution from each group.

The complexity of GCMs has grown recently in order to predict larger molecules
not previously included in correlation schemes. These methods have multiple
contributions from groups of differing scales, usually in a scheme resembling a

perturbation expansion
E=Y v aSWE P S B fl 9.2)
j k !

where the superscripts denote the order of the functional group contribution (first-order,
second-order, etc.), and A and y are perturbation parameters that assume the values of
0 or 1. A first-order approximation can be applied for a quick estimation of properties.

For better accuracy, the higher-order contributions are added to finely adjust the first
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result. A scheme has been proposed where a second-order contribution is based on the
numbers and types of conjugate structures possible within a molecule (Constantinou and
Gani, 1994). These second-order contributions were based, in part, on the enthalpy of
reaction of the bond conjugation. Another scheme proposes first-order group
contributions on par with the simplicity of Benson, and second-order contributions given
by larger groups containing two adjacent, first-order groups (Marrero-Morejon and
Pardillo-Fontdevila, 1999). These contributions are then to be summed in global
equations containing two correlated parameters. This concept is built on by adding as
third-order contribution groups the size of aromatic rings and larger (Marrero and Gani,
2001). This method is geared toward including the prediction of large, polycyclic
molecules.

Each of these schemes employs definitions of functional groups that are not
necessarily similar to that of prior work. These definitions have been chosen arbitrarily

and must be reconsidered when developing or studying any new method.

9.2 Research into Functional-Group Definitions
For a palatable GCM, the definition of a functional group must balance between ease of
use and complexity of description. A functional group with fewer atoms/bonds will
satisfy the desire for a simple method, but will sacrifice the accuracy necessary in a
robust model. A simple functional group will occur in a large variety of molecules, each
likely with a different surrounding environment of atoms and electron densities. A group
reflects these differences with changes in their electron density profile, and thus, a change

in their functional group properties. A method that applies large functional group
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definitions serves the purpose of accounting for these environmental effects. Yet these
groups tend to occur in fewer molecules, therefore the database of functional groups must
be very large to include more unique groups. These larger definitions may also be
confusing because molecules are able to be built using different functional groups in this
larger database.

The Benson additivity scheme employs a simple group definition that includes a
central, polyvalent atom (an atom bonded to two or more other atoms) and its ligands.
The notation in that work considers the central atom as a first-order definition and defines

further orders with the ligands. For example, ethanamine is defined using four groups

stated in the following way: one C-(H),(C), one C-(H),(C),, one C-(H),(C)(N),
and one N-(H), (C). An atom can exist in several group definitions, but only as ligands

to other central atoms. Larger cyclic groups, composed of combinations of smaller
groups, are defined to allow for small corrections to the values found using the polyvalent
atoms. This group definition scheme is likely the simplest that employs information
beyond only atoms and bonds.

The work of Marrero and Gani (2001) employs a range of functional group
definitions, from simple to complex, to encompass a larger array of molecules. The
groups are in general more specific and do not follow as simple a definition as with the
Benson method, thereby eliminating the uniqueness of a group definition. For example,
it seems plausible to build ethanamine in several different ways under the Marrero and

Gani definitions. One way is similar to the definition above: one CH;, two CH,, and
one NH,. Another way, which is advised by the authors, is the following: one CH,, one

CH,, and one CH,NH,. When considering the second-order corrections to the result
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from the above groups, the second-order groups are allowed to overlap. Although the
second-order groups CH,CH,CH, and CH,CH,NH, do not exist in the method, if they

did, these would both serve as necessary second-order corrections to the first-order result.
Second-order group definitions are allowed to not overlap, partially overlap (as above),
and completely overlap (where one definition is a subset of atoms within a larger
definition). Third-order group definitions involve rings to incorporate polycyclic
compounds into the predictive method and are not related to this work.

Although UNIFAC (Fredenslund, et al. 1975) and modified UNIFAC (Gmehling,
et al. 1993) methods do not attempt to predict thermophysical properties, these methods
employ a definition as complex as that of Marrero and Gani. Since these methods
attempt to correlate VLE data, interaction energies between groups are important. The
group definition includes a main grouping and a subgrouping to eliminate fitting
parameters to every element of the interaction matrix. Interactions between groups
within the same main group vanish. Like the definitions proposed by Marrero and Gani,
a similar complication pertaining to the non-unique breakdown of a molecule into
functional groups arises.

Attempts have been made to incorporate computational chemistry methods to
alleviate some of the concerns of group definitions within the UNIFAC methods (Wu and
Sandler, 1991a; Lin and Sandler, 2000), as alluded to in Section 5.5. But these
improvements do not eliminate the non-unique definitions for molecules.

Functional groups are incorporated within molecular dynamics simulations to
allow for more efficient computations by considering fewer entities within the system

space. A functional group definition scheme that has been successful in the correlation
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and prediction of alkane system properties (Jorgensen, et al. 1984; Martin and Siepmann,
1998) is called the United-Atom (UA) definition. The definitions for alkanes, alkenes
and cyclic hydrocarbons include bonded hydrogen atoms onto the heavy carbon atom,
similar to Benson definitions. Further works with alcohols (Chen, et al. 2001) and other
oxygen-containing compounds (Stubbs, et al. 2004) include ligands within the group
definition, thus returning to the Benson definition of functional groups. Also of note in
the UA definitions, hydrogen atoms are separated from oxygen atoms, thus exposing the
large partial charge on the hydrogen atom and allowing for the simulated system to
represent hydrogen bonding.

The more rigorous routines that find functional group properties, those employing
a theoretical framework such as AIM theory, utilize functional group definitions near the
simplicity to the Benson and UA schemes: a heavy atom and the attached hydrogen
atoms. This is possible since the molecular environment affecting a particular functional
group is reflected in the rigorously determined functional group properties. Therefore,

subgroupings of the functional group CH, are seen purely through the partial charge the

group has when attached to electronegative atoms F, O, N, etc...

9.3 Functional Group Properties
In the past, engineers have used correlation to find functional group properties. They
would assemble a database of a large number of experiments that measure the system
property of interest for a wide array of molecules. Then the database is separated into a
training set, used mainly to find the functional group properties, and a validation set,

which is used to compare the predicted results of the correlation to the experimental data.
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Engineers at this point hope the functional properties can be used in a model that predicts
experimental behavior for molecules where data is not available. This makes the finding
of universal functional group properties valuable.

The problem of estimating molecular properties reduces to finding the
contributions of the functional groups to the molecular properties in relations such as
Equations (9.1) and (9.2). The properties of interest to engineers and chemists include
the size and shape properties (structural), the contribution to molecular energies
(energetics), and partial charges and dipole moments for use in interaction energy
schemes (electrostatics). These properties can be found in several different ways: full
correlation of experiment on macroscopic systems; correlation of computational chemical
properties; approximation from theoretical concepts; or fully rigorous theoretical results.
The methods employing AIM theory have not been developed for use in engineering
models as have the others, and special focus is placed on these due to their application
within this work.

Structural group properties reflect the amount of excluded space a group occupies
and the surface area available for interactions with other functional groups. Such
properties are important within the lattice-fluid models which account for system entropy
of randomly and nonrandomly mixed systems, as described in Chapters 4 and 5. A
simple set of formulas exist that approximate the volume and surface area using
overlapping spheres with radii that correspond to the van der Waals radii (Bondi, 1964).
The UNIQUAC method (Abrams and Prausnitz, 1975), an empirical model, relates the

size and area parameters of a molecule, 7, and g,, to the Bondi size and surface area of a
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methylene group in an infinitely long polymer composed of methylene groups. The

parameters for a general molecule are found using the formulas

”:VK and g, = —2% (9.3)

CH,,» H,
where the volume and area for the methylene group in the infinite polymer, V, . and

Ay, . » are found to be

Ve,  =15.17 cm’/mol and Ay, ., =2.9x10° cm®/mol 9.4

The COSMO-based methods (Klamt, 1995; Klamt, et al. 1998; Lin and Sandler, 2002;
Klamt, et al. 2002) utilize approximately 120% of the van der Waals radius to construct
the surface surrounding a molecule in a continuum solvent, although these radii have
been correlated in the more recent works. Since functional group volumes are not
actually needed within lattice-fluid models (the molecular volume is needed), the
functional group volumes may be inferred from liquid volumes (Knox, 1987).

Models that use overlapping spheres formed from van der Waals radii have
encountered problems at the intersections of those spheres, where crevices form and
create errors in calculations of properties on these surfaces (Klamt, et al. 1998). Fixes
have to be implemented to smooth out the crevices.

A concise way to determine structural properties of functional groups without
approximations or fixes is achievable using AIM theory. Calculated molecular volumes
of alkanes are shown to be additive in the sense of Equation (9.1) (Bader, et al. 1987).
This result agrees with the well-accepted notion that system volumes of linear alkanes
beyond hexane increase by a constant factor. The surfaces partitioning molecules and an

arbitrarily chosen isodensity surface, usually the 0.001 au isodensity surface, enclose a
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functional group volume. The area of this isodensity surface also corresponds
conceptually to the surface area utilized in lattice-fluid models: the exposed surface area
available for interactions with other functional groups. Novel calculations of these
surface areas are presented in Chapter 10.

Energetic properties of a functional group reflect the contribution made to the
molecule’s absolute energy (found in computational chemistry) and heat of formation
(mainly found through experiment). The engineering GCMs correlate these functional
group properties to experimental data. AIM theory allows for the calculation of the
energies of atoms, which are thereby added to get the energies of functional groups.
These properties are found to be additive in the sense of Equation (9.1) (Bader and
Becker, 1988). A large database of energy values for functional groups within
hydrocarbons and oxygen-containing compounds has been made available by the
Mosquera group (Grafia and Mosquera, 1999; Grafia and Mosquera, 2000; Carballo and
Mosquera, 2000; Vila and Mosquera, 2001; Lorenzo and Mosquera, 2002; Mandado, et al.
2002; Mandado, et al. 2003; Quifidnez, et al. 2003).

Electrostatic properties, such as partial charges and dipole moments, originally
have served as higher-order descriptors that distinguish similar functional group
definitions between molecules (Wu and Sandler, 1991a). A large number of methods
have been developed to determine the distribution of partial charges amongst atoms
within a molecule, mainly due to the importance of such information within molecular
dynamics simulations. However, because partial charges are not measurable quantities

within the quantum mechanical sense (measurable meaning they can be calculated by an
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integral such as Equation (6.35)), partial charges do not exist and must serve as
approximations of the electron density profile (Cox and Williams, 1981).

Partial charges have been determined for molecules in numerous ways. An
approximation is found by enumerating electrons within orbitals wholly attributable to an
atom and equally splitting electrons shared by atoms (Mulliken, 1955). This yields a
number reflecting the topological occupation of electrons within the available orbitals.
Empirical charge fitting schemes grew out of a motivation to fix some well-documented
problems of Mulliken charges: charges are not measurable; the shared electrons are
arbitrarily distributed evenly to the nuclei; and in general the Mulliken charges do not
appeal to trends that are chemically realistic (Cox and Williams, 1981). A solution is to
assign charges to atoms within a molecule by empirically fitting them to the electrostatic
potential around the molecule, a measurable quantity with quantum chemistry (Momany,
1978). Since interactions at relatively high energies occur outside the space where
electron densities are high, points in this region can be sampled to fit charges on atoms to
reflect intermolecular interaction tendencies. Several charge fitting procedures exist
within the Gaussian 98W package by evoking the ‘pop’ keyword: Merz-Kollman (MK)
(Besler, et al. 1990); Charges from Electrostatic Potentials (CHelp) (Chirlian and Francl,
1987); and Charges from Electrostatic Potentials using a Grid (CHelpG) (Breneman and
Wiberg, 1990). Each of these routines samples the electrostatic potential around the
molecule and fits charges accordingly.

While charges fit to the electrostatic potential offer a computationally efficient
way to determine partial negative and partial positive fragments of a molecule, charges

on nuclei alone cannot fully describe the complex functionality of the electrostatic
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potential. Comparisons have been made between the major charge fitting procedures
available with quantum chemical calculation software (Sigfreddson and Ryde, 1998). All
the well-known charge fitting procedures use a grid of points to sample the electrostatic
potential. The procedures available in the G98W software package have been found to
be dependent on the orientation of the molecule in the calculations. Since the grid is
predetermined within the software, the orientation of the molecule dictates where these
points fall. The minimum distance from nuclei at which points are sampled also is an
arbitrary choice. The authors suggest that newer methods should employ the higher
electrostatic moments for the charge fit or weightings of sampled points.

Another method of determining partial charges on functional groups is to select
them according to results within molecular simulations (Martin and Siepmann, 1998;
Chen, et al. 2001; Stubbs, et al. 2004). They are attributed to the centers of the UAs, and
serve to simplify the Coulombic interactions between polar portions of molecules.
According to J. J. Potoff (personal communication, November 7, 2004), the selection of
charges at this point is more of an art.

Atoms in Molecules theory, through the partitioning of the electron density of the
molecule, allows for the calculation of a partial charge of a functional group, as well as
other electrostatic properties such as the dipole moment, quadrupole tensor and the
polarizability (Bader, 1990; Bader, et al. 1992). The partial charge of a functional group
is given by integrating the electron density within the boundaries of the group found

through AIM theory
9o =Zq-No=2,- IPdTQ 9.5)

The dipole moment vector is found by finding the first moment of the electron density
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Bo =~ Il‘npdTn 9.6)
where r,, is the distance with respect to the nucleus. The quadrupole tensor is also given

by integration with the appropriate operator, but this quantity is not utilized within this
work.

The calculation to determine the polarizability is a somewhat more involved
calculation, due to the necessity of molecular calculations in the ground-state
configuration as well as on configurations with electric fields being applied. The
polarizability of a molecule or a functional group is given by the linear response of the
electron density to an electric field. This is expressible through the change in the dipole
moment given by Equation (8.1). The change in the dipole moment for an entire
molecule can be separated into atomic or functional group quantities (Bader, et al. 1992),
which are then used to determine the polarizability for functional groups within Equation

(8.1). This relation is give by

Ap =Y (AgoRg +Apg) 9.7)

where R, represents the location of the center of atom or functional group Q.

Determining the latter term within Equation (9.7) involves calculating the dipole
moments of a functional group with Equation (9.6) and determining the change in this
value after applying electric fields in the x, y, and z directions.

Determining the former contribution within Equation (9.7) involves determining
the shift of electrons within a functional group and determining the shift of electrons from

the group of interest to and from the remainder of the molecule. For a functional group
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with attached hydrogen atoms, such as CH,, CH,, and CH, the formula for contribution

to the change in Ap is given by (Bader, et al. 1992)

Agey Rey = ZH Agy (RH, -R¢ ) + BZCP Agqy (Ri - Rc) 9.8)
i=1 i=1

where n,; represents the number of hydrogen atoms within the group, n,., represents the

number of bond critical points the functional group has with other functional groups

within the molecule, R, is the location of bond critical point i, and Ag, represents the

change in the partial charge of the molecule beyond the bond critical point i. For
functional groups with no attached hydrogen atoms, or for functional group computations
where the bounding surfaces between the carbon atom and the hydrogen atoms are
ignored, only the second term of Equation (9.8) is necessary. The effects of the
intragroup charge transfer in this latter case are quantified in the change of the dipole

moment of the group, Ap,, .

The polarizabilities of atoms and functional groups given by Equations (8.1) and
(9.7) are found to be linearly additive in the sense of Equation (9.1). When computed at
the HF level of theory with correlation corrections, the sum of the group polarizabilities
within linear alkanes are found to be exactly the same as the calculated polarizabilities for
the entire molecule and are about 11% less than experimental values for the molecule

(Bader, et al. 1992).
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9.4 The Quantitative Reasoning Against Transferability
Transferability of a functional group over a large number of molecules is considered by
most an idealization that has proven difficult to achieve. The properties of a functional
group depend on many things, such as group definition, group boundaries and
surrounding groups within a molecule. The smaller group definitions, the chances of
transferability become less because of the more immediate effect different environments
have on its properties. The larger the group definitions, the chances of achieving
transferability are better, but mainly because the functional group would occur in fewer
molecules. This becomes less useful and complicates the GCMs employing such
definitions.

The application of AIM theory to molecular studies has furnished proof of the
slight chance of transferability in a GCM. Work on defining the AIM properties of
carbon atoms within alkyl groups in aldehydes and ketones (Grafia and Mosquera, 2000),
in monoethers (Vila and Mosquera, 2001) and in linear alcohols (Mondado, et al. 2002)
shows the sensitivity of alkyl groups, the most common functional groups in organic
compounds, to an electronegative atom like the oxygen atom.

The number of transferable group definitions within the studies above suggests
that a chemist’s viewpoint of transferability is extremely sensitive and demands a large
number of subgroupings to be of use. Table 9.1 shows the number of subgroupings
within the molecules mentioned above. First note that the number of different carbon
atoms within these groups of molecules number 47. The main deciding factor within
separating functional group definitions is found to be the distance from the

electronegative atom. The range of partial charges within the ethers and alcohols is due
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Table 9.1 Analysis of Transferability of Atoms within Alkyl Groups (Grafia and
Mosquera, 2000; Vila and Mosquera, 2001; Mondado, et al. 2002).

molecules number of molecules o o iom  Pumber of distinct range in
considered subgroupings partial charge

aldehydes and 12 H bonded to CO 3 0.020
ketones 0 c . 0,100
methyl C 5 0.625

monoethers 33
methylene C 11 0.589

linear alkanes

and alcohols 19 C 10 0.576

to the difference between a carbon atom bonded directly to an oxygen atom, which makes
the partial charge on carbon become largely negative, and a carbon atom far away from
the electronegative atom, which makes the partial charge only slightly negative.

Such a demonstration on the way AIM charges are affected by electronegative
atoms within relatively simple molecules eliminates the validity of the transferability
assumption from any engineering model that uses AIM properties. There is a possibility
that transferability exists approximately, as shown in alkyl groups in alkanes (Cortés-
Guzman and Bader, 2003), or shown by the groups in linear alcohols approaching the
properties of the alkyl groups in alkanes (Mandado, et al. 2002). Such conclusions are
used in limited cases within the AIM properties of functional groups calculated for this

work. These are presented in the next chapter.

9.5 AIM Property Calculators
Three software packages are available to calculate AIM properties: PROAIMYV (Biegler-
Konig, et al. 1982); a subroutine within Gaussian 98W evoked by the ‘aim’ keyword

(Stefanov and Cioslowski, 1995); and AIM2000 (Biegler-K6nig, et al. 2000). The most
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computationally intensive portion of an AIM calculation is determining the partitioning
surfaces. The first two routines do this, albeit in different manners, while the third,
AIM2000, attempts to proceed integrating without such information. The user interfaces,
the necessary user input and the routine outputs are described.

The earliest and probably most widely used software is the PROAIMV routine
available within the AIMPAC suite. This suite is made available by the Bader research
group. The partitioning surface is found by walking along gradient paths that begin at a
bond critical point. An array of points on the surface is determined, and triangles are
used to connect the points and represent the surface. The program is run on a PC from a
DOS prompt after compiling in a FORTRAN 77 compiler. The user input for this routine
is the most involved of all the routines; the user needs the .wfn file made available within
G98W and the location of the bond critical points. Also necessary for calculation are the
numbers of bond, cage and critical points (the latter two not discussed in this work), the
number of planes and radial points used for the three dimensional integration within the
atomic space, and an array of values that allow for customized calculations. The output
of the routine is a formatted text file with all the calculable properties within AIM theory,
except the external surface area and polarizability. Since the interface is a DOS prompt,
it is possible to write scripts that allow for multiple integrations to be run without user
intervention. Also, if one or more bond critical points are omitted from the input file, the
routine will integrate as though the surface is not there. This is helpful for functional
group property calculation, where the user may omit the bond critical points between the
hydrogen atoms and the carbon atom in a methyl group to achieve a single integration of

the alkyl group properties.
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A method that attempts finding of the partitioning surface more elegantly is made
available within G98W by using the ‘aim’ keyword (Stefanov and Cioslowski, 1995).
An analytic function is used to fit the partitioning surfaces between two atoms. This
program is easily executed from a G98W input file and needs no further input from the
user. The AIM properties for all the atoms are calculated when the routine is executed.
The output of this routine is a section within the formatted output regularly available after
a G98W calculation. The properties calculated include the partial charges, the dipole
moments relative to the attractor in the basin (the maximum of the electron density), the
quadrupole moment, and a variety of atomic energies and forces. An example of the
output for this routine is given in Appendix C.

A method that attempts to avoid calculating the partitioning surface altogether is
with the free software called AIM2000, Version 1.0. This package numerically integrates
by finding the points within the atomic space using a technique within differential
equations. Each of these points is found by beginning at the attractor within an atomic
basin and walking downhill along a gradient path. By theory, all these points on the
gradient path belong to the attractor on which the path begins. The interface of this
program is a Windows-based GUI with a three dimensional representation of the
molecule, the bonds, and the bond critical points. The inputs from the user involve
mostly integration parameters and are set within menus available in the software.
Calculation routines with AIM2000 are utilized to determine the attractor centers and
bond critical points. The output of the calculations includes all the information available
from PROAIMYV, but within a table that is inaccessible to outside software. No text-

based output is available with AIM2000.
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Two different integration techniques are made available within AIM2000. The
first choice is similar to the PROAIMV, where a beta sphere around the atom center is
formed. A two step integration is then performed: one inside the beta sphere and one
outside the beta sphere. The second choice is called a radial integration, which is a one
part integration of the entire atomic space using the atom center as the starting point.

The coarseness of the partitioning surface finder within PROAIMV motivates the
creation of the routine that finds the analytical representation of the surface (Stefanov and
Cioslowski, 1995). Although elegant, this routine is prone to crashing when attempting
to find surfaces with sharp curvatures (Biegler-Konig, 2000). Since the AIM properties
of all the molecules are found together using the ‘aim’ keyword, if one surface fails in the
process, the entire calculation fails and no output of AIM properties for any atom is
offered. The AIM2000 routine is also elegant, but its methods have been criticized as
numerically expensive and too time consuming (Stefanov and Cioslowski, 1995).

Due to the nature of numerical calculation, the values determined by the software

are subject to some variability. A measure of the numerical error by the AIM integrators,

L(Q) , is proportional to the Laplacian of the electron density integrated within the

volume. If the properties of the atoms and the partitioning surfaces are determined
exactly, this quantity theoretically vanishes for each atom (Bader, 1990; Cortés-Guzman,

and Bader, 2003). To achieve an error of less than 0.0022¢ in the number of electrons

integrated within a basin, the value of L(Q) is to be less than 1.0x10au and

1.0x10™au for a hydrogen atom and carbon atom, respectively (Bader, et al. 1992).
When calculating the magnitude of the dipole moment vector, Gaussian 98W and

AIM2000 use different conventions than the PROAIMYV routine. In AIM2000, the dipole
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moment needs to be multiplied by a factor of negative one to alleviate the difference in
sign convention. In Gaussian 98W, the centers of the attractors, maxima of the electron
density at or near the location of the nuclei, are the centers of positive charge used when

determining the dipole moments.

9.6 Summary
Group-contribution methods have a successful record at modeling many thermodynamic
properties of fluid systems. However, with so many models in existence, there are as
many definitions for functional groups as there are methods. New definitions have been
created to best correlate the data for that particular model.

The emergence of computational power and a theoretical method, AIM theory,
now may eliminate the arbitrary practice of defining functional groups. Instead of
striving for transferable group properties, deemed impossible in its classical
conceptualization, group definitions can be given less attention as long as the
accompanying properties are defined. It is these functional group properties that are
physically significant and can be related directly to macroscopic system behavior.
Information on the structural, electrostatic and energetic properties of functional groups
had previously been unavailable, and new techniques to describe thermochemistry and
thermodynamics can utilize this information for more fundamentally sound GCMs. With
the availability of software to calculate AIM properties, such information can be

disseminated as more molecular calculations are performed.
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This work progresses along this path by taking the molecular calculation results
and analyzing them using AIM theory. This information becomes the basis for newly

conceived physical parameters within interaction and statistical models.



CHAPTER 10

FUNCTIONAL GROUP PROPERTIES USING AIM THEORY

The statistical models that depict macroscopic system thermodynamics have a number of
parameters that are related to the structure and energetic behavior at the molecular level.
In the past, engineers used approximations or correlation techniques to determine these
properties. These correlations, especially those within quasi-chemical models, yield
parameters with physical significance.

This work uses the computational results from Chapter 8 to determine functional
group properties using Atoms in Molecules (AIM) theory. To simplify the often
confusing range of definitions of functional groups, a straightforward definition is used
within this work. The transferability assumption will not be assumed, eliminating the
need for complicated rules-based methods that have governed past definitions. This also
allows for unique definitions of molecules. The AIM properties serve as the higher-order
distinguishing characteristics, thus eliminating the problem with isomers.

The algorithm to calculate functional group properties results from computational
chemistry methods is outlined. The calculation method determines the exposed surface
area of a group, an important property within quasi-chemical group-contribution methods
(GCMs), is presented. Tables of AIM properties for molecules of interest in this work
are also presented, and these are referenced back to macroscopic properties in the attempt
to validate the properties. Since most of the properties are additive, the comparison of
the functional group property results to experimental data are found within the

comparisons to experimental data in Chapter 8 and Appendix E.

155



156

10.1 Working Definition of a Functional Group
The wealth of information available within the AIM property calculations allows for very
simple definitions of functional groups. The scheme employed in this work is motivated
by the success of the United-Atom (UA) schemes in molecular dynamics and by the ease
of application of the Benson method for thermophysical properties.

The molecules in this work contain functional groups that are classified in one of
eight definitions: CH3; CHy; CH; C; H; N; O; and F. The only qualifier in this list is that
the H functional group must be attached to a non-carbon heavy atom, namely an N, O or
F. This reasoning follows that of the UA approaches, where the H atom has a relatively
large positive charge (g >0.1) as compared to the H atoms within the alkyl functional
groups (g <0.1).

The simplicity of this scheme becomes apparent when one considers the
suggestion by past GCMs that employ quantum mechanics: to attach alkyl groups or
H atoms to adjacent groups that contain electronegative atoms. If this suggestion were
employed for this work, the list of groups would be very large. For a start, the following
basic functional group definitions make the list: CHs; CH,; CH; C; NH;; NH; OH; O; and
F. Attaching the adjacent alkyl group to the electronegative group would add 24 more
definitions (take one from the first four groups and combine with one from the last six
groups). This would bring the total up to 34 definitions. If one were to add other
combinations, such as the NO, group for nitro-containing molecules and COOH for
carboxylic acids, as well as other qualifiers such as doubly-bonded atoms and aromatic

groups, the number grows such that there is nearly an order of magnitude more

definitions than the original eight proposed for this work.



157

To distinguish the myriad environments within which the eight functional groups
can exist, the AIM properties for the functional group serve as descriptors. These
properties include one energetic parameter (the energy of the group E), three structural

parameters (the volume V', the exposed surface area 4, and the average distance 7, to

the 0.001 au isodensity surface), and three electrostatic parameters (the partial charge g,
the magnitude and direction of the dipole moment g, and the polarizability « ). Such

rigorously calculable functional group properties have not been used within engineering

group-contribution methods in the past, as they are in this work.

10.2 The Lack of Transferability
If the transferability assumption were to hold for such group definitions as above, then
one must expect that all the information available for the transferable groups must be
identical. This includes not only the topological definition, but also the seven properties
in the AIM analysis. Past experience has shown this to be unachievable. The view that
transferability is unattainable is absolutely acceptable now because of quantitative
evidence presented in Section 9.4 and the results of this work.

As noted in Section 9.4, there are a few instances where transferability strictly
exists. From an engineer’s point of view, many of the differences that a chemist may cite
are too small to eliminate transferability as a first approximation. Such schemes that
employ a looser definition of transferability can be created, albeit with arbitrary bounds
of what is considered transferable.

For the majority of this work, the transferability assumption is not made. There

are a few instances when, attempting to calculate the AIM properties of functional groups,
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problems within the computational routine arise and give inaccurate results. Past
experience is used to determine these functional group properties, specifically through the
consideration of instances of transferability from prior calculated results. Details of this
are explained in a later section. But for the majority of the cases, the computational
power and availability of AIM properties allows one to disregard the transferability
assumption, which was made to simplify and make more efficient the estimation of

thermophysical properties when such computational power did not exist.

10.3 Calculation of Group Properties

The algorithm for the calculation of functional group properties is an extension to the
algorithm in Section 8.1 that obtains the molecular wavefunction from ab initio methods.
Integrations for a particular functional group must be run four times: once for the ground-
state molecular wavefunctions, and once each for the wavefunction under the influence of
the three electric fields. To perform an AIM integration using the PROAIMYV routine, the
critical points within the G98W output file and the .wfn files are needed. Also needed are
input files and the executable file that runs the PROAIMYV code.

The algorithm to achieve the seven functional group properties follows. Example
input files and executable calls referenced within each step are presented in Appendix F.

e The PROAIMV routine is called to determine the energies, volumes, partial
charges and dipole moments for each of the functional groups within the ground
state of the molecule. The critical points from the G98W output file are used
within the input files of PROAIMYV, and the ground-state wavefunction is utilized

in the routine. Integration options must be set within the PROAIMYV input file.
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The PROAIMYV routine is called to determine the partial charges and dipole
moments for each group within the molecule under the influence of the three
electric fields. The bond critical points have to be rewritten into new input files,
since they are different for the molecule under the electric field. The
wavefunctions from the molecular calculations with the applied electric fields are
utilized in this step. To balance the computational time, the integration
parameters for this step are changed so to offer a slightly rougher integration.

A series of routines has been created in this work to determine the exposed
surface area, the average distance to the exposed surface area, and the volume of
the group using a Monte Carlo calculation. An input file similar to that of the
PROAIMYV routines is necessary here, with a few added values to set more
numerical parameters. The critical points of the functional groups are also
necessary for this step, as well as the ground-state wavefunction of the molecule.
More details on the routines that determine structural parameters are offered in the
next section.

The results of the calculations on all the functional groups are tabulated. The
energy, integrated volume, partial charge and dipole moment are found directly
from the integrations of the ground-state wavefunction. The polarizability must
be calculated from the integration results for the ground-state system and the
systems influenced by the electric field. Equation (8.1) is used to determine the
polarizability of the group, where Equation (9.7) is used to determine the change
in the dipole moment. The exposed surface area and the distance to the isodensity

surface are accepted as successful computations upon comparison of the Monte
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Carlo volume with the integrated volume. Examples of successful and

unsuccessful computations are detailed in the next section.

The computations of AIM properties of functional groups are the most time-
intensive task in this work. The integration routines usually involve determining the
bounding zero-flux surfaces that partition a molecule. This task is approached in several
different ways, each referenced in Section 9.4, and none of thé routines researched offers
a combination of elegance, correctness and timeliness. Also, there are numerous such
integrations necessary to extract the information for this work, particularly the
polarizability. For each functional group, there are four AIM integrations and one routine
to determine the external surface area. This task can made somewhat easier to

accomplish by creating a batch file to run multiple tasks in series from a DOS prompt.

10.4 Exposed Surface Area of a Functional Group

To determine AIM properties, the integrators referenced above perform three-
dimensional integrations on the space that constitutes the functional group. In directions
where no zero-flux boundary surface (and thusly no adjacent functional group) exists, the
integration ray extends out to points where the electron density is deemed negligible.
However, for structural properties, such as the volume, an isodensity surface must be
defined to enclose the space. This isodensity surface can therefore be considered the
exposed surface area of the functional group, and its size aids in the application of AIM
properties to engineering models of fluid behavior.

Models that employ functional group interactions attempt to approximate the

external surface area of functional groups. This property, in turn, approximates the
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The use of a consistent surface across all molecules, whether it be the 0.001 au
surface or the 0.002 au surface (another important surface in the study of AIM theory)
allows for a non-arbitrary standard across all molecules. The surface determined within
the COSMO-based schemes here roughly corresponds to the 0.001 au isodensity surface
in this plane, but this surface contains crevices that have needed to be fixed in subsequent
works.

The calculation of the size of the 0.001 au isodensity surface and its average
distance from the functional group center motivates the creation of numerical routines
that employ the PROAIMYV zero-flux boundary method. Three separate steps are taken

for the determination of the exposed surface area: determination of the set of points

(r, 9,¢) that bound the integrated volume in the PROAIMYV routine; determination of the
points that correspond to p(r',6,4)=0.001 au; and the summation of the area that is

created by the points with p(r,6,4)=0.001au. The three steps correspond to the

images within Figure 10.2.
The first step in the routines collects the extent of the integration, », for each 6

and ¢, where the origin of the coordinate system exists on the nucleus. For the rays that

end on the zero-flux boundaries partitioning the molecule (depicted in Figure 10.2 as the
red surfaces), the points are given as the location of zero-flux surfaces (these points are
not depicted in the figure to avoid confusion). The important points for the exposed
surface area calculation are those that extend toward infinity beyond the 0.001 au
isodensity surface (in gray). These points are shown in Figure 10.2a, and their

coordinates are tabulated.
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Figure 10.4 Depiction of the method to quantify the exposed surface area through the
summation of triangle areas.

calculations of the integrated volumes, MC volumes, errors attributable to the MC
volumes, and surface area of the functional groups. Note here that two factors can trigger
suspicion in the calculated area. First, if the MC volume does not correspond to the
integrated volume, as in the methylene group within 1-butanol, the points amassed by the
above routines do not correspond with the isodensity surface. Also, if the MC volume is
close to the integrated volume, but the error in the MC volume is larger than 1.0 au, as in
the methylene group in 1-propanol, then the area calculations are off the actual values.
The demonstration also shows what can happen to groups with very few exposed surface
points, as in the carbon atom in various molecules. A very small error in the routines

above can lead to a gross error in the calculation of a small surface area.
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Table 10.1 A Comparison of Integrated Functional Group Volumes to Monte Carlo
(MC) Functional Group Volumes and Results of Exposed Surface Area Calculations

group molecule integrated volume  MC volume Zr;guilgtli\gr? A
3-methyl-1-butanol 148.38 148.26 0.636 80.84
CH, gauche-1-butanol 150.87 201.15 15.472 115.71
gauche-1-propanol 151.35 151.86 5.977 216.42
neopentane 40.84 40.64 0.373 0.002
¢ 2-methyl-2-propanamine 37.54 215429 202.874 547.27

10.5 Results

The properties of functional groups within most of the molecules listed in Section 8.2 are
presented in Appendix G. The molecule name, CAS registry number and an image of the
conformer is included to ease reference to other works that have calculated AIM
properties. The functional group properties included in the tables are the following:
group name; the number of protons in the group; the partial charge; the energy of the
group; the numerical error associated with the PROAIMYV integration; the magnitude and
direction of the dipole moment; the polarizability; the volume; the exposed surface area;
and the average distance from the nucleus denoting the group center to the exposed
surface area. More details on how to read and use the tables are offered in Appendix G.

The tables include group definitions that have been used within past GCMs.
Properties for the full hydroxyl group, OH, and the amine groups, NH, and NH, have
been calculated for those who wish to devise a GCM based around these group

definitions. Also, these calculations serve as checks to the more refined calculations on

the separate atoms in the group.
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The rigorous nature of the partitioning of the electron density into functional
groups allows for an analysis of a particular functional group over a series of molecules.
As generally seen within the tables in Appendix G, the alkyl groups are those that are
most influenced by the environment within the molecule, while the properties of the
electronegative groups tend to fluctuate less.

The extent of how the electron density is affected by an electronegative functional
group is seen in the effects on the electron density topology in Figure 10.5. Over the

series of molecules CH,X , where X=CH,, NH,, OH, F, the bond critical point tends

more toward the methyl group as the electronegativity of the bonded group increases
(shown in Figure 10.5a). The proximity of the bonded group shows its influence directly
on the electron density profile of the methyl group, namely by occupying more electron

density situated between the groups. If the electronegative group exists on the other end

of a long molecule, as in the series CH,(CH,) X, where n>3 and X =CH,, NH,,

OH, F, the effect on the methyl group electron density is nearly negligible however
electronegative the opposite terminal end is (shown in Figure 10.5b). This is also seen
when the partial charge of the methyl group is plotted against the distance from the
terminal electronegative group, shown in Figure 10.6. The charges for groups within
amines, alcohols and fluorides all approach the charge of the alkane, —0.015e, as the
chain length increases. Also, a terminal oxygen or fluorine atom affects the charge of the
methyl group when it is two groups away from the atoms, while the effect of the nitrogen
atom approaches that of a carbon atom. The effect of the terminal electronegative group

is nearly negligible at a distance of three groups and greater.
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Also of note within the tables in Appendix G is the distribution of charges for
hydrogen, oxygen and nitrogen atoms. These quantities are presented in Table 10.3, as is
the molecule within which these groups occur in and, for the hydrogen atoms, what the
atom is attached to. The distribution for the hydrogen atom is large: from showing a
slightly negative charge in methane to being stripped of electron density by atoms of
increasing electronegativity. The charge on the oxygen atoms in this study is a more
stable quantity since it is mostly attached to carbon atoms (singly- or doubly-bonded) or
hydrogen atoms. The charges mainly fall between —1.0e and about —1.2e. A large
deviation from this is seen in 1-nitropropane, where the oxygen atoms are directly bonded
to a nitrogen atom. The nitrogen atoms within this study also show similar variability,
mainly between —1.0e and about —1.3e. Again, a difference is seen when the atom is
attached to another highly electronegative atom, where oxygen atoms tend to pull charge

away from the nitrogen atoms.

Table 10.2 Average Partial Charge of Second-Bonded Methylene Groups
terminal group  average partial charge

CH; 0.002
NH; -0.005
OH 0.046
F 0.055

As noted earlier in Section 9.4, the numbers within the AIM property calculations
are subject to error associated with the numerical nature of the integrations. The majority

of the calculations within this study fell within the error tolerance stated earlier, where an

error of |L(€)|<0.001 au assures a maximum error in the electron density of 0.0022e .



172

Table 10.3 AIM Partial Charges of Hydrogen, Oxygen, and Nitrogen Atoms within a

Variety of Molecules, from This Work

H (0] N
attached q molecule q molecule q molecule
CH; -0.034 methane -1.202 water -1.330 propanamide
C 0.209 hydrogen cyanide -1.187 propanamide -1.232 ammonia
N 0.377 methylisopropanamine -1.187 butanoic acid -1.197 butanenitrile
N 0.391 ethanamine -1.184 propyl ethanoate -1.165  2-propanamine
N 0.411 ammonia -1.154 butanoic acid -1.112 diethylamine
N 0.468 butanamide -1.132 ;’;‘fggg:gl -1.063  trimethylamine
(0] 0.579 2-propanol -1.130 3-pentanone 0.094 nitrous oxide
o 0.601 water -1.123 1-propanol 0.272 nitrous oxide
(0] 0.619 ethanoic acid -1.110 butanal 0.425 nitropropane
F 0.720 hydrogen fluoride -1.089 propyl ethanoate
o fmebos:
-1.062 methy] propyl ether
-0.486 1-nitropropane
-0.477 1-nitropropane

The calculations on some larger molecules, such as methyldiethylamine and 3-

methylpentane, have larger errors in the integrations. Therefore, the group properties of

these molecules have been left out of the database for the time being. A different type of

error existed for cis-2-butene, where the electron density shows a local minimum

between the two terminal methyl groups. This results in what AIM theory calls a ring

point, a local minimum that occurs between non-bonded atoms or groups within a

molecule. Studies into this molecule, as for other molecules with ring points (such as

benzene or cycloalkanes) have not been conducted due to the existence of ring points and

due to the inability of the surface area routine to account for such points.
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10.6 Comparisons with Prior Calculations and Experiment

The calculations of the functional groups properties within this work offers a wealth of
new information not made available previously in such a large and varied scale.
However, to test the validity of these quantities, one must relate these results to
measurable quantities found through experiment. Unfortunately, no experiments at this
point can measure the properties of a portion of a molecule. Also, the functional group
definition, however theoretical, must be viewed at a point in the motion of a molecule
that only serves as an average depiction of its nature.

Some AIM properties can be assembled in such ways as to return full molecular
properties found in the original G98W computations or even experiment. As noted in the
previous sections on AIM theory, the functional group energies, partial charges,
polarizabilities, volumes and areas must add up directly to the appropriate molecular
quantities.

The dipole moments presented for the functional groups are magnitudes and
general directions of dipoles and do not obey additivity as the other quantities. The sign
of the number only depicts whether the dipole is pointing outward toward the center of

the exposed surface area (£ >0), or inward away from that point (£ <0). One can

combine the vector quantities and return back to the molecular, and possibly
experimental, dipole moments when one assembles the locations of the positive and
negative charge centers of the atoms. The water molecule arrangement and the
distribution of partial charges within the space of the molecule are presented in Figure
10.8. The partial charges are calculated from the integrations through spaces of the atoms,

and the locations of the centers of negative charge are found by using the calculated
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whereas the full molecule calculation gives, from Table E.16, 1.857 D and the
experimental value is 1.855 D.

Comparisons of structural properties are able to be made with values of past
engineering GCMs, namely the Bondi scheme for UNIFAC and the COSMO-based
surfaces. The volumes and surface areas from these schemes are compared with results

from this work in Table 10.4. Note that the documented values do not include the single

Table 10.4 Structural Properties for Functional Groups using Published Values,
Calculated Values using the Methods of Bondi, and Calculated Valued from This Work
(Bondi, 1964, Klamt, et al. 1998)

V (cm’/mol) A (nm’)
attached molecule - n - -
to  foundin Bondi  Bondi  gonig el | BOMdi Bondi o noqvG calc
lit calc lit calc

CH, C ethane 13.67  13.51 1751  19.84 | 2.12 2.10 235 251

CH, CC  propane 1023  10.05 1226 1432 | 135 1.33 132 154

cH ccc 2-methyl- 678  6.60 7.01 887 | 057 0.55 030  0.69
propane

C C,C.,C,C neopentane 3.33 3.15 1.76 3.64 0 0.00 0.00 0.00

H C methane 1.84 1.19 467 0.49 038 075

H N ammonia 2.26 1.78 277 0.56 048  0.50

H o) water 2.34 221 1.93 0.57 0.55 038

H F hydrogen 238 181 139 0.58 049 031
fluoride

N  HHH ammonia 6.90 13.06  13.45 0.82 149 172

N  CHH  methanamine 5.48 927 1125 0.57 092 119

N  CCH dimethylamine 4.07 548 937 0.33 036  0.79

N  CCC trimethylamine 433 266 169 782 | 023 0.08 0.00  0.52

o) HH  water 6.75 1089  13.53 1.02 148  2.00

o) CH  methanol 5.38 737 1148 0.79 097 146

o) C,C  dimethylether 3.7 4.02 3.85 949 | 06 0.56 0.45  0.99

F H hydrogen 710 1299  11.66 129 200 197
fluoride

F C fluoromethane  5.72  5.76 915 1013 | 1.1 1.06 143 1.44




176

atoms, such as the nitrogen atom within an amine group. For groups of atoms, similar
trends can be seen throughout the methods, but those used in UNIFAC and COSMO-
based models tend to attribute more volume to the carbon atom than the AIM integrations.
This is predictable because the separation of space within the former schemes is
arbitrarily equal. The AIM treatment reflects the electronegativity by yielding more
space to the more electronegative atoms (as seen in the analysis of alkyl groups in linear
molecules in Figure 10.5). It must be noted that COSMO-based methods are not
sensitive to which functional group a piece of surface area belongs to, as is the case with
UNIFAC and this work.

As noted earlier, group polarizabilities are linearly additive and result in the value
of the molecular polarizability calculated for the molecules in this work. The comparison
of the molecular polarizabilities, and thusly the group polarizabilities, with that from
experiment is given in Section 8.5. Prior calculations of the polarizability for methyl and
methylene groups (Bader, et al. 1992) are comparable to those from alkyl methyl and

methylene groups from this work. The past results (approximately @, =13.5au and
Oy, =11.3 au) correspond with the calculated results from this work (approximately
Gy, =144 au and o, =11.8 au). The difference is likely due to the larger basis set

used in this work.

10.7 The Spherical Gaussian Approximation
A property of interest within the quasi-chemical equations is the exposed surface area,
since this depicts the number of interactions a functional group may participate in. As

suggested by AIM theory and by of COSMO-based interactions, molecules within the
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liquid phase tend to interact by having these exposed surface areas overlapping

tangentially. Thus, the calculation of the quantity 7, , the average distance from the

vg 2
center of the functional group to the exposed surface area, is conducted to give
information on the interaction distances between functional groups within such models.

Within this work, 7

g 18 found using the electron density of a functional group at
the 0.001 au isodensity surface. It is assumed that, at these interaction distances, the sum

of the r, between the two groups, enough electron density overlap occurs to develop a

avg
significant repulsion effect. A spherically symmetric wavefunction is used to

approximate the electron density around ,,, , thus allowing for a doubly-occupied orbital

ve >
representation of the electron density of the functional group at these distances.
Observations on the functional group interactions using this information are presented in
the next two chapters.

Two types of spherically-symmetric functions may be used to approximate an
atomic orbital: a Slater-type orbital (STO) and a Gaussian-type function (GTF). The STO
is given by Equation (7.18), where a normalized 1s-type function is given by

32

S100 = ﬁ

The GTF is given by Equation (7.19), where a normalized ls-type function is given by

0\ o
8ooo =(‘”£J e’ (10.3)

These functions, as depicted in Figure 7.1, offer different functionalities as they approach

s (10.2)

the center of the orbital, but offer similar nature near the tail of the wavefunctions.
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Both of these functions contain orbital exponents, £ and &, that determine the
extent of the space within which an electron exists. In this work, these exponents are
used to reproduce the extent of the electron density of a functional group to correspond to

an electron density of 0.001 au at the distance of 7,,,. To accomplish this, it is assumed

that doubly-occupied orbital represent the functional groups. For STOs, the exponent &

is found by solving
— 2 §3 28Tag
0.001=2s,,, =2| = |e (10.4)
7

while for GTFs, the exponent £ is given by
32
e

0.001=2g2, = 2(§J 2o (10.5)
T

Figure 10.9 depicts the functionality of the exponents with respect to 7,,,. One may

notice how smaller exponents are necessary to depict more diffuse electron densities.

Of particular interest in this work is how GTFs reproduce the electron densities of
small molecules and functional groups. This is important because these functions, called
spherical Gaussian approximations (SGA) to the electron density profile, are used within
a binary interaction function in Chapter 12 which, with other AIM properties, determines
interaction energies and distances. For small molecules, the SGA serves as the spherical
average of the electron density, while for a functional group, the SGA serves as the extent
to the electron density in directions important in the development of a repulsive
interaction.  Figure 10.10 depicts the SGA against the electron density profiles of a
methane molecule and a nitrogen molecule. It is shown how the 0.001 au isodensity

surface of the SGA, depicted by the blue line, corresponds to this surface on the
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of the molecule. This is true because the orbital depicted by the GTF only contains two
electrons, while the electron density within the molecule accounts for 10 electrons.
Figure 10.12 shows how the SGA reproduces the external surface area of the alkyl

functional groups CH, and CH,. In both graphs, the SGA, depicted by the blue line,

reproduces the exposed surface areas well (for the latter, the surface near the top for the

CH, group). The expected bulging of the group electron density exists near the

hydrogen atoms and the sunken portions exist between hydrogen atoms.

Figure 10.13 relates the electron density profile of the SGA against three rays
within the methyl group. The rays here sample density on similar paths as those in
Figure 10.11. A similar functionality exists between the SGA and the electron densities
at the tail. Again, the SGA predicts the location of the 0.001 au surface in the middle of
the three rays.

The importance of Figures 10.11 and 10.13 is that the SGA approximates the
functionality of the electron density tails rather well. This is important due to the overlap
effects that these portions of the electron densities experience in intermolecular
interactions. The need to use STOs to reproduce the electron density may give better
behavior as one approaches the centers of the molecules and the functional group, but use
of these results in a much more complicated interaction function. The use of GTFs to

approximate the electron densities is adequate for this work.






183

10.8 Conclusions
Models used by chemists and engineers have in the past either approximated or correlated
functional group properties. These quantities have contributed to useful group-
contribution methods for the thermochemistry of macroscopic systems. However, with
the development of functional property determination methods within the last two
chapters, such correlations should be unnecessary in the future.

The ability to calculate rigorous functional group properties allows for a
significant amount of simplicity when building a group-contribution method. Functional
group definitions are allowed to be smaller due to the use of rigorous properties as
higher-order descriptors. Transferability can be eliminated completely as an assumption,
except for use to estimate functional group properties in those cases when it may be
quantitatively applicable. The structural and electrostatic properties presented in this
chapter serve as physically significant characteristics that can serve as the basis for future
modeling efforts. With further computations into functional group properties, especially
at higher levels of ab initio theory, a database of properties can be formed and powerful
models can be created to take advantage of such information.

This work utilizes electrostatics and the SGA for interaction energies, and
structural parameters for statistical modeling to determine macroscopic system behavior
from first principles. @~ With the structural properties having been calculated,
intermolecular interaction theory is explored to determine how the electrostatic properties

of a functional group can reflect the nature of an interaction.



CHAPTER 11

INTERACTIONS BETWEEN CLOSED SHELL MOLECULES

The study of the interactions of closed-shell molecules continues to be a hurdle in the
development of theoretical treatments of fluids in the liquid phase. In the gas phase,
molecules exist at large distances from one another, allowing for descriptions using
classical methods. The functional forms presented in Section 3.4 combined with a simple
repulsive term, such as a hard-sphere repulsion, offers an adequate model of molecular
behavior of real gases near the ideal gas limit. Such a simplification does not exist in the
liquid phase, where molecules are always close together and where the form of the
repulsive term of any interaction model takes on importance.

The goal of this research is to find an intermolecular potential energy function
within which the functional group properties presented in Chapter 10 may be applied.
This will serve as a simplification of an interaction between two molecules, where it will
be assumed that a functional group interaction is the significant contribution. It is
presumed that functional groups offer the defining properties that cause a favorable or
unfavorable interaction, an assumption made in all group-contribution methods
employing group interactions (Fredenslund, et al. 1975; Kehiaian, et al. 1978; Knox,
1987). Three contributions are found to be important within an interaction potential
energy function for functional groups: short-range repulsion; long-range attraction;
Coulombic interaction for partial charges. These terms are explored at the molecular

level.

184
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This chapter reviews the current state of intermolecular interaction theory,
including the use of perturbation theory on the Hamiltonian of the system, the application
of computational chemistry on binary and cluster systems, and the functional forms most
utilized in empirical potentials. Molecular-level concepts are explored as possible
simplifications for use in a functional group interaction scheme. Classic work of the
interaction of doubly-occupied orbitals is presented. Applications of contemporary
techniques are presented for hydrogen-bonding systems, as well as for calculation of
macroscopic system properties. Here, the use of effective functional group interactions

within molecular dynamics simulations is seen to yield promising results.

11.1 Results from Perturbation Treatments
When one considers a quantum system of two interacting molecules, the Hamiltonian of
the system must be defined. An approach to solving the problem is thereby similar to
that of an isolated molecule; one writes the Hamiltonian of the system as in Equation
(6.31) and attempts to solve for the wavefunction as in Equation (6.2). The Hamiltonian
of the system includes all the interactions between electrons of molecule 4 and electrons
of molecule B, nuclei of molecule 4 and electrons of molecule B, nuclei of molecule B
and electrons of molecule 4, nuclei of molecule 4 and nuclei of molecule B, as well as

the interactions within the two isolated molecular systems. This is shown to be
2~ 1 Z Z ZQZ A A
H=3 2 —=2 0 == 275+ ) ——+H,+H, (1L.1)
sy i g tg T e Ve Ta B Tap

where i and @ cycle through the electrons and nuclei of molecule 4, respectively, and

where j and g cycle through the electrons and nuclei of molecule B, respectively. The
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energy of interest within the study of interactions between molecules is the difference
between the total system and the isolated molecular systems

Ep=Eyp-E,—E; (11.2)
This interaction energy is found by applying Equation (11.1) and subtracting the isolated

molecular Hamiltonians from the system Hamiltonian
(A-A,-8,)¥=¢,¥ (11.3)

The Hamiltonian of interest is therefore now
A 1 z Z Z,Z
Hy =22 —-2 2=+ —+ (11.4)
if’:’j iﬂriﬁ jtlrja a B raﬂ
This problem is as difficult as that given by the molecular Hamiltonian, although
some points can be made about the nature of the solution. A binary interaction energy is

a very small change from the absolute molecular energies found in quantum chemistry, so

£,; is considered a perturbation. Also, in a number of solution methods, the total

wavefunction of the system is assumed to be a perturbation of the product of the isolated
molecular wavefunctions. This latter treatment of the problem is called the Heitler-
London (HL) solution method.

For interactions between molecules at long-range, it is correct to assume that the
unperturbed portion of the wavefunction is a simple product of the isolated molecular
wavefunctions. Regular Rayleigh-Schrodinger (RS) perturbation theory (Buckingham,
1967) is employed using Equation (11.4) as the perturbing Hamiltonian. The resulting
intermolecular potential, if one truncates after the second-order terms, is summarized as

three notable effects: electrostatic; induction; and dispersion (Engkvist, et al. 2000)

uAB = ueleclros{auc + uinduclion (B by A) + uinduction (A by B ) + udtspersion (1 1 5)
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where the Coulombic interactions are included in the electrostatic term, and where the
last three terms usually stabilize the system. This treatment offers rigor to the attractive
long-range interaction terms offered in Section 3.4.

The only difference between Equations (11.5) and (3.54) is the exchange-
repulsion contribution. Because RS perturbation theory applies only at long-range, the
electron densities of the two molecules do not significantly overlap. Therefore, the
densities do not have a chance to experience the repulsive effects due to Pauli exclusion
or an exchange-attraction at short distances. In fact, the RS theory does not work at short
distances because of this omission. Several short-range perturbation theories have been
created (Hayes and Stone, 1984; Jeziorski, et al. 1994) with such a contribution in mind.
The main differences are that the unperturbed wavefunction is an asymmetric product of
the molecular wavefunctions (a change that accounts for the exchange contribution), and
that more care is taken to determine the perturbing portion of the Hamiltonian.
Perturbation theories that use the asymmetric wavefunction, called Symmetry-Adapted
Perturbation Theories (SAPT), have a similar exchange-repulsion contribution to the

interaction energy (Stone, 1996). The exchange contribution is given by
1
uexchange = _EZZ(aibf ‘bja[) (11.6)
i

where the orbitals here are spin-orbitals, and where a and 5 denote the orbitals on

molecule 4 and B, respectively. The repulsion term is given by

urepulsion = Z ; <Wl l//j>(7:J a 5‘1)

1
+—2—Z sz‘: Z(Wiwf |‘//k'//1 )(]:kal —6,0y ~T,)T; + 5[1519’)
L

_ﬁ+:_Z_B+lV2
r, 2

ry

(11.7)
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where, again, the orbitals are spin-orbitals and the summations cycle through all the
occupied spin-orbitals in the system, whether they are on molecule 4 or molecule B.

Here, 6, represents the Kronecker delta

1ifi=j
5 =4 117 (11.8)
Yooloifi# g

and T represents the inverse of the matrix where the element in row i, column j is the

overlap integral S,

T,=(s7), (11.9)

Although predominantly affecting the interaction at long-range, induction and
dispersion have corresponding short-range contributions. Damping functions are used to
modify these effects for systems involving small molecules (Knowles and Meath, 1986a;
Knowles and Meath, 1986b; Knowles and Meath, 1987). These functions approach unity

at long-range, while they tend toward zero at short-range.

11.2 Interactions Using Quantum Calculations

Interaction energies and orientations are concepts that can be studied within
computational chemistry. As opposed to an isolated molecule calculation, two or more
molecules can be placed within close proximity for analysis. The software packages
available for geometry optimizations and single point energy calculations, one being
Gaussian 98W, are used to determine favorable orientations for interactions between
molecules and the quantitative energy change given that orientation.

A calculation involving multiple molecules within the proximity of one another is

sometimes called a supermolecule calculation. Calculations of this type have become
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extremely common, as they have been geared toward solving specific problems involving
a small number of species. A review of the use of computational chemistry for non-
bonded interaction energies for small molecules outlines the methods (ab inito and DFT)
and challenges of using such techniques (Rappé and Bernstein, 2000).

Supermolecule calculations have been conducted from systems containing small
molecules, such as argon and formic acid (Wawrzyniak, et al. 2004), to systems
considering the aqueous effects on biomolecules (Yeganegi, et al. 2003) to systems
dominated by hydrogen-bonding effects (Estrin, et al. 1996; Bartha, et al. 2003;
Kozmutza, et al. 2003; Kryachko and Scheiner, 2004). Each of these studies considers
the possible interaction arrangements, calculated interaction energies and how they
compare to past work.

In the liquid phase and within the gas phase of strongly associating molecules,
clusters of two or more molecules form and exist within the system for a time longer than
a normal intermolecular interaction. Calculations on clusters of small alcohols (Wu and
Sandler, 2000) reveal possible orientations for up to six molecules at close range. The
binding energies of these clusters are calculated at the HF and MP2 levels of theory, and
these energies are shown not to behave linearly, i.e. the binding energy of a trimer of
methanol molecules does not equal three times the binding energy of a binary methanol
system. This offers quantitative evidence of the need to include ternary interaction
potentials within models for higher density molecular system, such as those describable
using the third virial coefficients in Equation (3.41).

A non-intuitive problem with supermolecule calculations is the evolution of a

stabilization energy from what is called basis set superposition error (BSSE). A naive
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way of calculating the interaction energy using the supermolecule methods involves the
calculation of each isolated molecule with its basis sets (molecule 4 with basis 4 and
molecule B with basis B ), and the supermolecule with the combined basis sets

(supermolecule 4B with basis set 4B ). This interaction energy is given by
€45 = E .5 (basis AB) - E , (basis 4) - E, (basis B) (11.10)

This leads to an interaction energy that, for an orientation that yields a favorable
interaction energy, is too negative. The electrons within the supermolecule have a more
complete basis set, which usually leads to a lower absolute energy, than they have in the
respective isolated molecule calculations. To alleviate this, it is assumed that as long as
the same basis set is used in all three calculations in Equation (11.10), then the interaction
energy for the system will be properly represented. This is accomplished by making the
supermolecule basis set 4B available to the isolated molecules. The interaction energy

is now represented by
€45 = E 5 (basis AB) - E, (basis AB) - E, (basis 4B) (11.11)

This correction is usually called the counterpoise correction, and the process involved to
alleviate BSSE is given within the user manual of Gaussian 98W.

It has been noted that the problems with BSSE may have more to do with the
incomplete basis sets used in supermolecule calculations (Stone, 1996), and that
calculations with a large BSSE have more fault in the original choice of basis set. This
viewpoint is supported by the reduction of BSSE seen in supermolecule calculations

applying systematically larger basis sets (Rappé and Bernstein, 2000).
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11.3 Empirical Potentials

Several intermolecular potentials serve mainly as functional forms that represent the
gross repulsion and attraction effects within an interaction. The utility of such
expressions is mainly found within computer simulations of fluids, where numerous
evaluations of the potential functions are necessary to determine trajectories and positions
of molecules at the next time step. Potentials with a simple functional form are
inexpensive computationally and are favored in large-scale calculations. Since somewhat
accurate results arise when using the simpler empirical equations, they continue to be
used.

Such functions tend to consist of terms that account for major effects in an
interaction and fitting parameters to model the specific molecules of interest. The
parameters within the expression have been found in several ways: fitted to experimental
data, such as second virial coefficient or viscosity data; approximated using theoretical
concepts, such as use of the van der Waals radius as a size parameter; or fitted to
reproduce the potentials from the more rigorous perturbation or supermolecule methods.

Empirical potentials vary in their functional forms and the number of parameters.
All try to combine a repulsive interaction at short distances and an attractive interaction at
intermediate and long distances. The equations presented in the following paragraphs
have similar features, and the notation is shared. Let o be the distance at which the
energy of interaction vanishes. For single-well potentials, this point is on the repulsive
wall and represents the effective radius of the molecule. Let £ represent the magnitude

of the potential well. This quantity reflects the strength of the attraction between the two
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molecules at its most probable interaction distance. This position reflects the most
probable distance of interaction.
A primitive interaction potential is the hard sphere potential. This potential takes

the form

u™ (r)= (11.12)

oowhenr <o
O whenr >o

The hard sphere potential mimics the behavior of non-polar species in the gas phase, and
viscosity data is sometimes used to correlate o. The stepwise nature of this potential is
very easy to implement in molecular simulation routines.

A modification to the hard sphere potential is the square well potential. Given by

o whenr <o
u” (r)=4-¢ when o >r 20’ (11.13)

0 whenr > o'

the square well potential adds an attractive interaction to the infinite repulsion. Here, o’
is a parameter that represents the length of the square well. Again a stepwise function,
this form is easy to implement within molecular simulations. Modifications of this
functional form have appeared recently as a transferable potential that contains multiple
steps (Unlu, et al. 2004).

Probably the most widely used potential functional forms arose more than 70

years ago. This function is called Mie’s potential and takes the form

e
ye = 2o Con (11.14)

n m

r r
where n>m . This form is a continuous function through all interaction distances, and as

long as n > m, the function has the characteristic interaction energy well. The exponent
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within the attraction term usually takes on a value of m =6, due to the attraction terms
derived in classical work, Equations (3.48), (3.51) and (3.53). When n=12, Equation

(11.14) is called the Lennard-Jones (LJ) potential. This function is best known with o

u” (r)= 43[(1:-]12 —(%ﬂ (11.15)

This function, although not as easy to implement into computer routines as the stepwise

and £ explicit

functions, is likely the easiest functional form that is altogether continuous, differentiable
and physically meaningful.

A more flexible potential than the LJ potential with similar computational
simplicity is available (Kihara, 1978). This form is given by

oo when r < 2a

Kihara - _ 12 _ 6 1116
“ (r) 4£|:(O- ZaJ _(0' 2a)}whenr>2a ( )

r—2a r—2a

Here, a is called the hard-core radius and offers extra flexibility with the added
parameter.
For those critical of the arbitrary repulsion term, a modification is offered that

reflects the exponential nature of the repulsion due to electron overlap (Born and Mayer,

1932)

U =C, e —Cr—G (11.17)

This expression has also been modified to include a C/r® term to include higher-order

attractive effects (Buckingham and Corner, 1947). These expressions have the correct

functional form for the repulsive wall, yet the LJ potential has become the more popular
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in time. This may be so because of the difficulty of computing the exponential function
before the time of fast microprocessors (Stone, 1996). An issue with the exponential-6
potential is that it does not yield an infinitely positive result at interaction distances near

zero. It has been noted that such interaction schemes with an exponential repulsion term

may include a 7' term to avoid such inconsistencies (Brdarski and Karlstrom, 1998).

11.4 Approximations to Short-Range Interactions

Long-range interactions are well-studied phenomena and have as solutions the
expressions given in Section 3.4, the RS Perturbation theory and a powerful technique
not presented in this work, the distributed multiple analysis (Stone, 1996). As stated
earlier, these expressions break down as the electron densities begin to overlap at small
interaction distances. The energy developed at such a short range is of interest not only
to those in the theoretical community, but to those in molecular dynamics who desire a
rigorous reasoning behind the empirical potentials in Equations (11.15) through (11.17).

One of the simpler and more descriptive interaction systems in quantum
chemistry is the interaction between a pair of s-type orbitals. When these orbitals are
doubly-occupied, the resulting non-bonded interaction is that experienced by a pair of
helium atoms. The HL interaction energy for molecules with s-type orbitals outside
inner closed-shells has been studied (Rosen, 1931). The HL energy is calculated by
assuming the system wavefunction is an unperturbed, asymmetric product of the isolated
molecular wavefunctions. The study includes the interaction between two singly-
occupied orbitals, a singly- and doubly-occupied orbital, and two doubly-occupied

orbitals, with long-range effects being excluded from the study. For molecules A and B
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each with a doubly-occupied s-type orbital as their outer shell, the short-range

b>+~1—<a —Z a>J

2 T

= 2[Ka,,—s[l<a b>+l<a 2y b> } (11.18)
1-S 2 2

1

s
LA (N

interaction energy is given by

u= Z4Zs +—4——2 Ja,,+l b
r 1-S 2

_ZA

vy

—ZA

r,

where a and b are the orbitals for molecules on 4 and B, respectively. This readily
gives the interaction energy between two helium atoms by setting Z, =7, =2.

A more recent derivation of the HL energy of a system of interacting molecules
offers a simplified expression of the total overlap repulsion energy at short-range (Hazma
and Mayer, 2001a). The simplification is due to the application of Lowdin’s pairing
theorem (Amos and Hall, 1961; Loéwdin, 1962; Mayer, 1997). Application of this
theorem allows for a transformation of the orbitals within the two interacting molecules

A and B that retains the orthogonal nature of the orbitals
(a,|a,)=(b|b,) =35, (11.19)
while pairing one orbital in 4 with one orbital in B
(a],)=5, (11.20)
where a and b within Equations (11.19) and (11.20) represent transformed orbitals, and

S represents the overlap integral, similar to Equation (7.23). This allows for a great

simplification in the computation of the energy of interaction. In an interaction where the
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molecules each have 10 orbitals, one may only consider effects depending on the overlap

of 10 paired orbitals instead of the original 10’ =100 pairings.

These transformed wavefunctions are then applied to an expression yielding the
HL energy. The resulting interaction energy is separated into physically meaningful
terms
+u

u=u + g (11.21)

electrostatic exchange
where the first two terms are the classical electrostatic term and the exchange term, and
the final term holds all the effects evolved from the overlap of the wavefunctions. The

overlap effects can by further separated

Ug = uS,basis + uS,x’nlra + uS,el ex + uS,direct (1 1 22)

where the first term arises from a description using an incomplete basis set (similar to
BSSE), the second term is the overlap effects on the intramolecular energy, the third term
holds the effect that electron overlap has on the electrostatic and exchange terms, and the
final and most significant term hold the so-called direct overlap effects that dominate the
short-range repulsion.

A work that compares the above interaction energy terms to computations of
hydrogen-bonding systems shows that the interaction of one pair of orbitals, call them
orbital pair k, contributes to the interaction energy an order of magnitude more than the
other orbital pairs (Hazma and Mayer, 2001b). Therefore, it is shown that the overlap of
the k™ pair of orbitals is the only significant overlap. The expressions presented in the
original paper are modified mathematically by applying

S, =83, (11.23)
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thus further simplifying the expressions. Within the following two-electron integral
statements, an orbital name without a subscript is assumed to be the k™ orbital, and all

overlap integrals S =S, in (11.23). The finite basis contribution is given by

o = g ((alifa)+ (ol >) 1-8? (< [ifa)+ <a|f3|b>) (11.29)

1-§°
where f, is the Fockian of molecule i. The intramolecular effect is given by

A

4

U ra = T%[(aalaa)+(bb|bb)] (11.25)

The effect of small intermolecular overlap on the original wavefunctions is said to be

insignificant due to the S* dependence of Equation (11.25). The overlap effects on the

exchange and the electrostatic contribution are given by

us,el/ex=%(z<bl Z/rlb < ._Z /rl >]

ied

287

(1-5)

n,(molecule 4)
2S2 Z] (2Jaibk - Ka,b,, )
1- 52 n,(molecule B)

+ Y (2Jak,,i —Kak,,i)

i=1

+ (2, -K,,) (11.26)

+

The simplification of the direct overlap contribution is given by
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Us direct = lfiz (Z(al—Zi/,-’,|b>+j;3<b|—Zj/rj|a>J

25°
(1—S2 2 (3Kab Jab)
n,(molecule 4) (11 27)
2(ab,|aa,)-(ab|aa, ,
28 pr [ (a’ k |a'ak) (at k laka: ):I

1- S2 n,(molecule B)

+ Y [2(bh|pa)-(bb|ab,)]

i=1

48’
_—_—(Lab + Lba)

(1-57)
The calculations assuming the significant contribution from one overlapping pair give an
interaction energy that is different from the original interaction energy by less than one
millihartree over all interaction distances.

At near ambient temperatures, the interaction energy between closed-shell
molecules results from a relatively small overlap in the electron density, as encountered
in the numerous theoretical and computational studies of intermolecular interactions.
Also, at distances where this overlap occurs, the electron density begins to resemble a
spherical wavefunction that decays exponentially with distance. These concepts have
been combined to assume that intermolecular interaction overlaps are describable by the
interaction of two spherically symmetric Gaussian-type wavefunctions (Jensen, 1996),
similar to the SGA wavefunctions of section 10.7. The spherical Gaussian overlap
(SGO) approximation considers the interaction of two ls GTF orbitals, both with the

same orbital exponent &. The overlap of these two orbitals is given by Equation (7.23)

and is simplified when using equal orbital exponents and the normalization constant

5

' (11.28)

£
S‘..ze2

y
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The orbital exponent is therefore found by rearranging this expression

£=-2s, (11.29)
Y,

i

This effective orbital exponent varies with distance and with the actual exponents of the

orbitals, implicit within S, . For instance, if the exchange integral is calculated for

spherical Gaussians with the same exponent, Equation (7.26) is used

K, = 2\/;‘5"7 (11.30)
T

When the SGO approximation is applied, inserting Equation (11.29) into Equation

-2InS, S
Kij=2 - 7‘ (11.31)

g

(11.30) yields

This approximation yields two-electron integrals as functions of electron density overlap,
which can be found within supermolecule calculations. The SGO approximation has also
been applied to electron-electron and electron-nucleus interactions, resulting in similar

simplifications of the one- and two-electron integrals (Kairys and Jensen, 1999).

11.5 Hydrogen Bonding
Hydrogen-bonding interactions are long-lived, attractive interactions between a highly
electronegative atom in one molecule and an exposed hydrogen atom within the other.
The interaction energies are usually an order of magnitude greater than non-bonded
interactions between neutral molecules. The interaction distances are small, and
complexes of many molecules hydrogen-bonded to one another have a profound effect on

the macroscopic system thermodynamics of a fluid.
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The role of hydrogen bonding within biological systems is very important.
Deoxyribonucleic Acid (DNA), the fundamental molecule holding the genetic code of
biological species, is held together by hydrogen bonding. Biomolecule-receptor
complexes are important for the transfer of important material into and out of cells.
Multiple hydrogen-bonding sites on molecules, as well as their relative positioning, yield
a lock and key relationship to the cell in this case.

Hydrogen bonding in the past has been determined experimentally (Curtiss, et al.
1979), while more recently theoretical and computational studies have been undertaken
(Estrin, et al. 1996; Kairys and Jensen, 1999; Hazma and Mayer, 2001b; Bartha, et al.
2003; Kozmutza, et al. 2003; Kryachko and Scheiner, 2004). Classically, such
interactions have included an electronegative atom interacting with a hydrogen atom that
has a large positive partial charge, while more recently studies have included systems
where the hydrogen atom has a near neutral charge, as in methane.

Comparisons have been made between the experimental hydrogen-bonding

interaction energy ( £=-2740%+350K ) and oxygen-hydrogen interaction distance
(7o =2.01 A) (Curtiss, et al. 1979) with ab initio and DFT methods for the water dimer

(Estrin, et al. 1996). This interaction is depicted within Figure 11.1. The computational
results show that theoretical methods predict interaction energies within experimental
error, with the ab initio methods tending to be more accurate. Interaction distances are
predicted better with the DFT methods.

Simplifications have been attempted using the theoretical approximations at short-
range (Hazma and Mayer, 2000b). Within that work, it is assumed that the short-range

interaction is dominated by one orbital on each of the water molecules. The topological
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Figure 11.2 Orbitals within water molecules after application of Lowdin’s pairing
theorem (Hazma and Mayer, 2001b). The outermost solid line is the 0.05 au isodensity
surface.

of these forces at the molecular level, as well as orientation effects, causes species to

behave very differently in condensed phases. These differences grow out of the

difference within the electronic structure at the molecular level.
A direct measure of how multiple-body interaction effects at the molecular level
dictate the macroscopic thermodynamics at the system level is shown in the virial

equation of state, Equation (3.38). If binary interaction potentials presented above are

inserted into Equation (3.39), the theoretical result can be compared to second virial

coefficient data of real fluids.

The study of potential energy functions has grown as the need for them in

molecular simulation studies has grown. Specifically, site-site potentials are used to
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approximate the whole interaction between molecules as a set of interactions between the
sites of the different molecules. Not only does the interaction function need to be of
proper form, but they should be computationally efficient for use in large-scale
computational methods.

A vast majority of the contemporary force fields used in molecular dynamics and
Monte Carlo simulations, such as Chemistry at Harvard Molecular Mechanics
(CHARMM) (Brooks, et al. 1983), Optimized Potentials for Liquid Simulations (OPLS)
(Jorgensen, et al. 1984), Transferable Potentials for Phase Equilibrium (TraPPE) (Martin
and Siepmann, 1998), and Anisotropic United-Atoms (AUA) (Ungerer, et al. 2000),
utilize the LJ potential of Equation (11.15) with the inclusion of a Coulombic interaction
term

12 6
u (r)=dg || 2| - T |49 (11.32)
ij ij

T

where this interaction energy corresponds to when sites i and j are a distance r, apart.
The interaction parameters 6, and g, are found from the pure parameters by the use of

combining rules, the most common of which are the arithmetic mean

c,to,
o, = 5 (11.33)
and the geometric mean
&y =iy (11.34)

sometimes referred to jointly as the Lorentz-Berthelot combining rules. The partial
charges are found by one of the theoretical or semi-empirical routines considered in

Section 7.3. Most of the major, accessible molecular dynamics programs ask for the site-
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site potential parameters for the functional form in Equation (11.32). It is a
computationally efficient function, although it exists only as an effective potential that
considers the balance between the repulsive short-range effects, the attractive van der
Waals effects and the Coulombic interaction from the effective partial charges.

Up to this point, there is no straightforward way of determining parameters for
Equation (11.32) in molecular dynamics simulations. It is common to set parameters for
groups within linear alkanes before extending the model parameters to groups with heavy
atoms other than carbon. Within OPLS, the alkyl group parameters are optimized to
reproduce the densities and heats of vaporizations of 15 liquids. Within TraPPE, these
parameters are found to reproduce critical temperatures and saturated liquid densities for
alkanes between methane and dodecane. For AUA, which contains another parameter
that moves the interaction center off the nucleus of the heavy atom, the parameters are
optimized by reproducing the vapor pressures, heats of vaporization and liquid densities
of ethane, pentane and dodecane. Further parameters for non-alkyl functional groups are
found in a trial-and-error manner to reproduce system properties like those above. Table
11.1 lists the alkyl group LJ parameters for the three methods described above, and
expresses how different fitting criteria can alter the functional group properties.
According to J. I. Siepmann (personal communication, August 25, 2004), methods that
employ statistical thermodynamics would aid in this process since they may offer initial
guesses to the parameters.

Some criticism of the LJ functional form has arisen. As stated above, the

repulsive contribution is better represented as a decaying exponential, rather than the

arbitrary »~" contribution (Knowles and Meath, 1986a). This reasoning has lead to the
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Table 11.1 Lennard-Jones Parameters for Alkyl Groups within Molecular Dynamics
Force Fields (Jorgensen, et al. 1984; Martin and Siepmann, 1998; Ungerer, et al. 2000)

CH, CH, CH c

OPLS’ ___AUA TraPPE __OPLS _ AUA __ TraPPE___OPLS _ TraPPE___OPLS _ TraPPE
elky(K) 881 120.15 98 594 86291 46 403 10 25.2 0.5
a(A) 3905  3.6072 3.75 3905 34612 395 3.85 468 38 6.4

*denotes the use of the CH, functional group within n-butane

use of the exponential-6 functional form, Equation (11.17). Also noted is that the

attractive contribution may not be well represented as a 7 function (Hart and Rappé,

1992). That study considers the overlap of singly-occupied s-type STOs, as in the work

of Rosen (1931), and creates a relatively simple potential. It contains a repulsive term
similar to the exponential-6 potential, and an attraction term that contains polynomials in
interaction distance multiplied by damping functions. Although not nearly as simple a
functional form as the empirical potentials, the theoretically-motivated model is shown to

be more capable in describing the interactions between small diatomic molecules.

11.7 Summary
Several approaches exist that attempt to model the interactions of closed-shell molecules.
These methods range in complexity, from the full consideration of molecular orbitals
within perturbation treatments, to a consideration of selected orbitals with significant
overlap, to empirical expressions where the details of the interaction are found within
correlation parameters. Very specific results can be attained through the use of
computational chemistry software. The method one chooses depends entirely on how

accurate one wishes to be with predicting interaction energies and distances.
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Several key points within this research are carried through to the interaction
model developed in this work. Due to the theoretical examinations of the hydrogen-
bonding schemes, considering the overlap of one pair of orbitals that obey the SGO
approximation simplifies the description of functional group interactions. Also, since the
helium dimer interaction model fits best with the information available from AIM theory,
namely the SGA and the extent of the electron density, this becomes the basis for the
short-range repulsions within this work. This model will not be as simple as the
empirical functions used in molecular simulation, but it may be useful as a force field

with parameters that are entirely definable using first-principles methods.



CHAPTER 12

MODELING SMALL MOLECULE AND FUNCTIONAL GROUP
INTERACTIONS

Interaction theory lays a descriptive reasoning for the nature of intermolecular
interactions. The most rigorous solutions involve theoretical frameworks within
perturbation theory, usually resulting in expressions that account for overlaps between all
the orbitals in one molecule with all the orbitals in the other. Simpler interaction models
exist, either by reducing the number of significant overlaps considered in a short-range
interaction, or by assuming an empirical form to the potential and fitting parameters to
known experimental data. Within the range of expressions considered, an engineering
model can be developed with predictive capabilities of the more complicated expressions
while wielding relatively simple concepts.

This chapter describes novel work towards an interaction potential energy model
usable for small molecules and functional groups. This work begins by applying the
concept of the Spherical Gaussian Overlap (SGO) approximation in Section 11.4 to
molecules and functional groups whose wavefunctions are approximated by the Spherical
Gaussian Approximation (SGA) in Section 10.7. These orbitals are then applied to the
helium dimer expression in an attempt to describe short-range interactions. The long-
range interactions are described using the Atoms in Molecules (AIM) properties with
classical electrostatic interaction expressions from Section 3.4.

Small molecule intermolecular potentials are predicted and compared to second
virial coefficients through theory presented in Section 3.3. Interactions between larger

molecules are considered as a set of possible functional group interactions and compared
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to United-Atom (UA) interaction potentials, namely TraPPE. A study is conducted to
account for the long-range effects of highly electronegative atoms and groups in these
functional group interaction models. Finally, an interaction matrix is assembled toward

the prediction of fluid properties using the statistical models offered in Section 5.4.

12.1 Overlap of Spherical Gaussian Wavefunctions
Electron density overlap using the SGO approximation (Jensen, 1996; Kairys and Jensen,
1999) as described in Section 11.4 allows for a simplified representation of the overlap of
electron density between two closed-shell molecules at close-range. It has been argued
that this is accurate due to the large repulsive energy generated by a relatively small
overlap between the electron densities.

Also, as demonstrated by the work of Hazma and Mayer (2001a, 2001b), the
interaction between two closed-shell molecules may be rigorously represented by the
overlap of one pair of orbitals, given that the proper transformation of the molecular
orbitals is conducted.

These works suggest that molecular interactions may be approximated by the
overlap of two spherical GTFs, like those presented Section 10.7. Since a small overlap
results in a large repulsion, the GTFs need only represent the tails of the electron
densities.

Figure 12.1 depicts the approximations made in this work toward a simplification

of the interactions between two closed-shell molecules. On the left, the p-type orbitals
within the neon atom and methanol molecule are explicit and overlap with the p-type

orbital of another neon atom or the s-type orbital of the hydrogen atom with another






210

and by the application of Léwdin’s pairing theorem (Hazma and Mayer, 2001b) in
Equations (11.21) through (11.27), information on all the orbitals within the molecule is
necessary for an accurate calculation. Given that this work attempts to determine
interaction potentials with only one GTF on each interacting entity, the above expressions
are not used and may be revisited in future work.

The expression of the helium dimer in Equation (11.18) by Rosen (1931) offers a
concise description of the short-range interaction effects evolved from a pair of doubly-
occupied orbitals. Also an advantage is the lack of a long-range contribution to the
potential, which is to be considered using the classical expressions within Section 3.4.

The integrals involved in Equation (11.18) are given in general, thereby STOs or
GTFs may be used. If the latter are used, the quantum integrals result in relatively simple

expressions that combine the orbital exponents, £, and £, , and the interaction distance r .

Assuming the use of normalized GTFs of the form

3/4
g = (2—5] e (12.1)

T

The integrals within Equation (11.18) are given as the following:

S = bt (12.2)

_1 285
S = . erf (r Fit ] (12.3)
K, =S %(fﬁfb) (12.4)

S(Sats 2
L, =—|222 A 4 12.5
’ r( S Jerf("f \[(3‘fa+§b)(§a+‘fb)J (12>
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S(£+¢, 22,
I, =2 % ] 12.6
r( z, J”f[rf\/(fﬁx,,)(éﬁfb)} (126

=z, — (12.7)

=—z,— Y7 (12.8)

-Z, _ 5 S (fa +S, Sp¥

<a m b> =Z, - __fb erf F i ) (12.9)
_ZB - S fa +§b é:ar

<a - b>_ZB_r \fa erf E i (12.10)

where erf is the error function. Slater-type orbitals may also be used to determine the

integrals necessary for Equation (11.18), but they are not used in this work due to the
complexity of the resulting two-electron integrals.

The helium dimer interaction model includes the Coulombic effects between
nuclei and electrons. The nucleus-nucleus interaction is explicit in Equation (11.18),
while the electron-electron interaction is implicit within Equation (12.3) and the nucleus-
electron interactions are implicit in Equations (12.7) and (12.8). In this work, this effect
is considered through the interactions between partial charges and dipole moments found
in AIM theory. Therefore, these effects are removed, and the expression describing

short-ranged interactions for this work is given by
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This expression serves as the short-range exchange-repulsion term in interactions
between closed-shell molecules. Its effectiveness is considered in the intermolecular
potential function between small molecules and molecules where hydrogen bonding plays

an important role.

12.3 Small Molecule Interactions

The statistical mechanics presented within Chapter 3, and more specifically the virial
equation of state within Section 3.3, offers a window between the behavior of interacting
molecules and the experimentally determinable virial coefficients. Any model that
attempts to predict small molecule interactions can be assessed by how well it predicts
second virial coefficients using Equation (3.39).

The model to describe interactions between small molecules is given by Equation
(3.54), where the exchange-repulsion contribution is considered through the helium dimer
expression in Equation (12.11), and where the long-ranged electrostatic effects are given
by the averaged expressions in Section 3.4. In total, the small molecule interaction model
is given by

u= uHez + u#]/lz + (uﬂlaz + u/‘zal ) + ualaz

(12.12)
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the SGO approximation breaks down, as an unrealistic negative interaction energy results.
Since these interaction distances are unattainable at the thermodynamic conditions
considered in this work, the results at these extremely short ranges are ignored. Fixes
applied to the exponential-6 interaction potential presented at the end of Section 11.3 are
needed here if this interaction potential were to be applied numerically.

With analytical interaction curves such as that presented for methane, the second
virial coefficient is able to be calculated for any nearly spherically symmetric molecule
that has undergone an AIM analysis. Equation (3.39) is used for this calculation, with a
modification made to alleviate the problem of the interaction model at extremely short
interaction distances. Therefore, the modified formula to determine the virial coefficient

is given by
r3 =u{n
B(T) =~2n[——°"§°‘* + [ (et —l)rédru} (12.13)

where 7, o is chosen to correspond to a very large repulsive interaction energy. Also,

since the statistical average for the dipole-dipole interaction is utilized, the temperature
dependence in this term is considered and must be included within the functionality of u .

The calculations of the second virial coefficients for seven small molecules and
how they compare to experiment is presented in Figure 12.4. The upper figure presents
the species, namely methane, nitrogen and fluorine, whose intermolecular potential is
represented well enough to give a reasonable description of the second virial coefficient.
The lower figure shows poor predictions for the species carbon dioxide, nitrous oxide,

carbon monoxide and oxygen, although the model performs somewhat well for oxygen.
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The sporadic results in the predictions of second virial coefficients suggest that
the interaction model within Equation (12.12) offers too simple of a description of the
nature of interactions between small molecules. Higher-order attraction effects may be

necessary, such as the quadrupole moments or effects that lead to terms that are not
dependent on »~° (Hart and Rappé, 1992). Also, the use of STOs and p-type functions

within Equation (12.11) would offer a description of short-range effects that resemble

real systems more closely.

12.4 Large Molecule Interactions through Functional Group Interactions

The interactions between large molecules can not be analyzed in as straightforward a
manner as the interactions between small molecules. The approximation that the
molecule is spherically symmetric is not a good assumption for non-cyclic molecules
with more than three heavy atoms. The electronegativities of particular atoms within the
larger molecules may result in a distribution of electron density that, for modeling
interactions, is best describable through partial charges rather than the overall molecular
dipole moment. Steric effects play a role in interactions also, since not all portions of the
molecule are available to electron density overlap.

The role of functional groups within the analysis of interactions between large
molecules is to offer an entity the size of a small molecule that serves as the interaction
site. The functional group becomes the interacting entity, and its group properties are the
main properties considered in the interaction model. The remainder of the molecule and
its set of group properties also contribute to the interaction, but in a way that is secondary

to the interacting functional groups. Steric effects are considered in functional group
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interactions, since a group is available to interact only if it has the available external
surface area. Through functional groups, the interaction between two large molecules
can be reduced into a set of functional group interactions.

The functional group interaction model is similar to that of the small molecule
interaction model in Equation (12.12), except that the non-averaged electrostatic
expressions are utilized. The functional groups within a molecule do not have the
freedom to rotate as entire molecules do in the gas phase, therefore the direction of the

dipole moment (given by the sign of x# in Appendix G) is also important to the kinds of

interactions functional groups have. The interaction model between functional groups is

describable through the following expression

u= uHez + uqq + (u‘hﬂz + u‘lzﬂl ) + u/llﬂz

(12.14)
+ (u‘h"z N uqzal ) + (uﬂxaz + u/lzal ) + ua,az

Again, the helium dimer interaction serves as the short-range repulsion, while the
Coulombic interaction term is included so as to characterize the partial charge
distribution of the molecule for that particular orientation. As is seen shortly, the
Coulombic effects from surrounding functional groups play an important part in
determining the interaction characteristics between the molecules at the specified
orientation.

Like the analysis of the small molecule interaction, assumptions must be made to
achieve a spherically symmetric description of the electron density of a functional group.
Figure 12.6 demonstrates the algorithm followed to accomplish this. Initially, the
functional group, a methyl group in Figure 12.6a, is reduced to the UA in Figure 12.6b.

Then, the SGA is used to reproduce the distance between the center of the UA and the
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interaction energy: a model based on GCM concepts, where only the properties of the
functional group contribute to the interaction; a GCM model including the partial charges
on the remainder of the molecule; a GCM model including partial charges and dipole
moments on the remainder of the molecule; and the TraPPE model, described in Equation
(11.32), where the LJ parameters are correlated to reproduce phase equilibrium, and
where no partial charges are attributed to the groups.

Figure 12.7 suggests that the most general description of the functional group
interactions cannot be reproduced appropriately by considering simple models that ignore
the complete Coulombic contribution from surrounding functional groups. These long-
range Coulombic effects allow for more favorable interactions, appropriate considering
propane is a non-polar molecule that should interact somewhat favorably due to van der
Waals forces. The AIM partial charges on the functional groups, héwever small, and the
dipole moments cause the molecules to have unfavorable or neutral interactions if only
the GCM model is considered. The inclusion of other partial charges and opposite-
pointing dipole moments in the molecule causes a modification in this original interaction,
thereby resulting in the more favorable interaction regimes.

The interactions given by the TraPPE potential assumes an attraction regime in all
the group interactions in propane through the use of LJ potentials and no partial charges.
The TraPPE potential would not be able to produce a cross interaction like the full model
in this work, since the combining rule for the well depths must result in a cross
interaction depth that is between the pure interaction depths. The cross interaction well

depth of the model in this work is deeper than either of the interactions, mainly due to the
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within an alcohol is the same as the partial charge within a water molecule. The lack of a
repulsive wall is an artifact of the model description for hydrogen.
The sensitivity of the hydrogen-bonding scheme between water molecules is also

presented in Figure 12.8. Here, instead of the Gaussian coefficient corresponding to 7,,,

in the AIM property table, a Gaussian coefficient is used that corresponds to the actual

extent of the electron density along the interaction axis. These new values

(r(H)=2.32 au, r(0)=3.38 au) correspond to slightly different exponents on the GTF

(£(H)=0.563, £(0)=0.196). These alternate values cause a slightly less repulsive

short-range interaction and result in a hydrogen-bonding distance closer to experimental

values. The interaction well is also deeper by about 25% of the value predicted using 7,,, .

12.5 Interaction Matrices

To account for the possible interactions between two molecules, one may begin to reduce
the problem by finding all the possible interactions between the functional groups in one
and the functional groups in the other. This would result in a matrix of interaction curves
that describe a finite number of possible intermolecular interactions. This is exactly the
matrix of quantities that engineering models in Section 5.2 use in excess Gibbs relations
in the mixture of fluids. The functional group interactions of this work are applicable
within such engineering models.

Problems arise in the creation of such a matrix from the interaction model of this
work. The analysis of the interaction model for functional groups, given by Equation
(12.14), suggests that to use AIM properties of functional groups to describe interactions

between molecules, one must consider all the functional groups in each molecule and
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their influence on the interaction. Although this conclusion is directly contrary to the
classical view within GCMs, where only the interacting groups influence the energy, the
GCM approach is much more computationally efficient than the approach derived in this
work. Due to the necessity of including the long-range Coulombic effects of non-
interacting functional groups, creating a matrix of values for any molecule with more
than three functional groups involves accounting for the locations of all functional groups.
The computations of such interaction curves are quite involved and necessitate the
creation of specific software that can handle minimizing interaction energies while not
altering interior angles and bond lengths. No such software has been created to calculate
such curves for the interaction model of this work.

A similarly conceived interaction model to that of this work is the UA model,
TraPPE. This model considers effective potentials in the form of a LJ interaction
equation and a Coulombic interaction term. The Coulombic interaction between
functional groups is greatly simplified since partial charges are placed only on selected
UAs and since no dipole moments of functional groups are considered. Table 12.1
presents the parameters from the TraPPE potential that are used to determine the
interaction energies between functional groups of interest in this work.

Motivated by the study of mixtures between alkanes, alcohols and ethers, an
interaction matrix considering the possible functional group interactions in these systems
is presented in Table 12.2 and Figure 12.9. The values given within the table represent
the energies of interaction either at the minimum of the interaction curve (for favorable

interactions), at a distance corresponding to the sum of the 7, values (for repulsive

Vg

interactions), or at a
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Table 12.1 Parameters from the TraPPE Potential for use in Functional Group
Interaction Matrix

LJ parameters o (A) elk; (K) q
CH; alkyl® 3.75 98
CHj alcohol® 3.75 98 0.265
CHj ether® 3.75 98 0.250
CH, alkyl® 3.95 46
CH, alcohol® 3.95 46 0.265
O alcohol? 3.02 93 -0.700
O ether® 2.8 55 -0.500
H alcohol? 0.435
bond lengths A)
CH,-CH,* 1.54
CH,-OH* 1.43
CH,-O° 1.41
O-H? 0.945
bond angle (deg)
CH,-CH,-CH,* 114
CH,-O-H? 108.5
CH,-O-CH,’ 112
8 Chen et al, 2001.
® Stubbs et al, 2004.

Table 12.2 Interaction Matrix for Alkane, Alcohol and Ether Systems (energies in K)

CH; CH; CH; CH; CH; 0] o H
alkyl  alcohol ether alkyl alcohol alcohol ether  alcohol

CHj; alkyl -98.00 -98.00 -98.00 -67.14 -67.14 -9547 -73.42 0.00

CHj alcohol | -98.00 -8.15  -8.84 -67.14 1173 -627.3 -571.6 232.7
CH; ether -98.00 -8.84  -11.53 -67.14 93.79 -5745 -522.3 2221
CH; alkyl -67.14 -67.14 -67.14 -46.00 -46.00 -65.41 -50.30 0.00

CH; alcohol | -67.14 1173 9379 -46.00 2023 -7159 -655.5 353.1
O alcohol -9547 -6273 -5745 -6541 -7159 1031 876.4  -2896
O ether -73.42 -571.6 -522.3 -50.30 -655.5 8764 7764 -2402
H alcohol 0.00 2327 2221 0.00 353.1  -2896  -2402 690.5
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distance corresponding to a hydrogen-bonding interaction (r =2.01 A for oxygen atom-
hydrogen atom interactions). Coulombic effects between interacting and neighboring
functional groups are considered only when both interacting functional groups have
partial charges. This condition is achieved in all interactions except those including a
CH; alkyl or CH; alkyl functional group. For all others, the partial charges of the nearby
groups are considered in the orientations given by the images within Figure 12.9. An
attempt was made to choose orientations that would result in the most favorable

interactions.

12.6 Conclusions

Information calculated using AIM theory offers rigorous information about molecules
and portions of molecules. This information, in turn, is usable within first-principles
interaction energy functions between closed-shell molecules. In combination with the
helium dimer short-range interaction term and the classical long-range interaction terms,
the AIM properties are usable in approximating second virial coefficients of small
molecules and functional group interactions within larger molecules. Of particular
importance is the prediction of the interaction energy in the water dimer system that is
comparable to experimentally measured energies.

The simplicity of the GCM models and the TraPPE potentials make them
advantageous. The more rigorous expression using AIM properties within functional
group interactions necessitates the use of a model that describes the position and
orientation of the entire molecule. Even in the case where the partial charges are near

neutral, they have a significant effect on interactions between molecules. The appropriate
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tool to account for all the information, namely the magnitude and position of the partial
charges with the interacting molecules, is the next hurdle toward the validation of such an
approach.

The interaction matrix used in this work is created from TraPPE, an interaction
model that contains concepts similar to that of the model developed in this work. The
idea of using particular orientations to describe most of the functional group interactions
exists in both methods. This methodology will be carried further in this work when a tool
to determine interaction energies in various orientations is developed accordingly. Until
then, the interaction matrix using TraPPE gives a sense of what is possible when first-

principles properties and energies are used within a lattice-fluid model.



CHAPTER 13

PURE SPECIES THERMODYNAMIC BEHAVIOR
AND LATTICE-FLUID THEORY

The use of vacancies within lattice-fluid theory has the interesting prospect of predicting
both pure and mixture system behavior. In the past, the most successful models predict
either the former (through empirical equations of state) or the latter (though models of
lattice fluids that do not include vacancies). This has hindered the development of a fully
predictive model for the entire fluid phase, since the different modeling techniques need
unrelated correlations and different modeling parameters.

The lattice-fluid models described in Chapters 4 and 5 are shown to describe
either the pure state or a mixture system. Since lattice fluids have more established
success at predicting mixture behavior, efforts are made to develop their ability to predict
volumetric behavior. This chapter develops a pure species lattice-fluid model intended to
describe both pure and mixture systems. A more generalized athermal ways expression is
applied to the quasi-chemical equation to give a general model for use in any fluid system.
A pure species is modeled as a mixture of molecules and vacancies, and an engineering
EoS emerges from this study. Parameters are correlated to reproduce the critical point of
pure fluids, and the physical significance of these quantities is evaluated. The
methodology is extended to the EoS description of larger molecules through the use of
the functional group properties and interaction matrix of Section 12.5. Their capabilities
are evaluated by how well these models predict the critical point of fluids without any

experimental data.
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13.1 Use of the Generalized Guggenheim Expression
To determine the volumetric properties of a lattice fluid, one must maximize the partition
function given by Equation (4.4) with respect to the number of vacancies, N,. This is
similar to the procedure taken to achieve the equations of state in Section 4.4 and in the

general derivation of the quasi-chemical statistics presented in Appendix B. The general

expression is given by

ath
(am J 2T, P2 _ (13.1)
N,

where the reduced notation within Equation (5.52) is used and where it is assumed that
the interaction volume and energy between two vacancies and between a vacancy and a
molecule in adjacent lattice sites vanishes.

The Guggenheim expression in Equation (4.9) allows for the inclusion of
vacancies on the lattice as if they were a distinct species. The application of this
expression yields results that are equivalent to prior work (Smirnova and Victorov, 1987;
Panayiotou, 2003b). |

An athermal ways expression that is derived using the same procedure as that of
Equation (4.9) is offered in Appendix A. This derivation assumes a mixture of two
molecular species with vacancies on the lattice, and the result for any number of species
is inferred by the new results and the Guggenheim expression presented earlier. The

generalized result is given by

2k /2
NG 'J (13.2)

where
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N,=Y"rN, (13.3)
i=0
0 =Y 4N, (13.4)
i=0
g == (13.5)
2y

and where the exponent in Equation (13.2) is given by

n

Z('}—I)Ni

Zok =0

= (13.6)

2 Zn:(’}_qi)Ni

i=0

If the previously assumed relation between the surface area and the molecule is taken,
given by Equation (4.11), then one recovers the original Guggenheim athermal ways
function given by Equation (4.9).

The derivative of this expression with respect to N, must be taken to utilize the

EoS framework in Equation (13.1). This is given by

(aan""’J =1n[£]+[ﬁ,(]1n(§] 13.7)
N, ), W) (2 N,

To make this expression explicit in the molar volume of the system, a general form of the

relationship between the number of vacancies and the total volume of the system,

Equation (4.5) is used. The resulting expressions for N,/N, and O,/N, are found and

inserted into Equation (13.7) to yield

oln Q™ 1-6, &0, z " @
=In|1+—2Y —£ |- 22« |In| 8, +(1-8 — 13.8
[ aNo )N. n( 0, Z J (2 KJ n( ° ( 0)§ G ] ( )

o =1 €

where the molar volume is found within the expression
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(K-Zm] o
6, = by = i1 1

. (13.9)

and where @', the surface area fraction of species i in a system with no vacancies, is
i

given by Equation (5.6). This quantity is not considered a variable of the system, since
the system composition and the associated structural properties of the species allows for
the exact calculation of these quantities. A collection of volume and surface area

characteristics is found in ¢,, which is given by

¢ =1 (13.10)

=
This quantity serves as an important bridge to relating this work to past works in the

literature.

13.2 Vacancies within the Quasi-Chemical Equations

The next step in completing the EoS is to find the solution to the model variable 'y,

which is based within quasi-chemical theory and is a solution to Equation (5.52). To
show how vacancies fit within the lattice-fluid system, the nonlinear system is rewritten

to include vacancies as a separate species. The system becomes the following

%zié’lry.l“j,(i=0,l,...,n) (13.11)
&

I
where the surface area fraction of a species also includes the number of vacancies

6 —— i (13.12)

J n
z,Ny+ Y z,N,
k=1
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Separating the term with the vacancies from the remainder of the summation yields

ytJe

1 & .
== Or,0r0+zl:0jr..r (i=0,1,....,n) (13.13)
J=

To better see how this system reduces to the system with no vacancies, one can
manipulate Equation (13.12) to result in
9’ szNk
k=1

6,=———=0, —-0/(1-6,) (13.14)
== +1  zZNy+) zN,

k=1
Inserting this expression into the summation in Equation (13.13) gives the more explicit

relationship showing the role of vacancies on the lattice

i

Fl—=eori0r0 +(1-00)i9;rjr,,(i =0,1,...,n) (13.15)
J=1

These expressions, combined with the equation of state given in Equations (13.1) and
(13.8) through (13.10) yield volumetric properties once the variables of the nonlinear

system (g, and I',,i =0,1,...,n) are found.

13.3 Pure Species: A Binary Mixture of Molecules and Vacancies
The simplest lattice-fluid system that exhibits volumetric properties is where one species
with multiple interaction sites of the same type inhabits a lattice with vacancies.

Conceptually, this is a mixture system of a species with size » and number of
interactions z, with vacancies occupying one lattice site and number of interactions z,.

This is also a generalization to the Ising-like fluids (Stanley, 1971), where the molecular

or magnetic species usually occupies one site also, like a vacancy.
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The convenience of studying such a system is because one can achieve an analytic
solution to the EoS explored in the previous section. For the case where n=1, the

system of equations reduces to the EoS of the form

p_b‘)_—_———b"/b_cln l+90(1—l) +(z_0_ jlneo_z_olnxoo (13.16)
kT 1-c c c 2 2
where b =rb, and
V-b
0. = _ 13.17
*V-(1-c)b (347

The local composition of vacancies around vacancies, given by x,, =68, is found as the

solution to the polynomial

(1-73) %% [ 721/6, +2(1-73, ) | %00 +1=0 (13.18)
After finding the proper root from Equation (13.18) and substituting in Equation (13.17),
Equation (13.16) yields an analytical relationship between the temperature, pressure and
molar volume of the lattice-fluid system.

The equation in this form serves as a generalization for the lattice-fluid equations
within Section 4.4. The quasi-chemical equations are used in all these methods, and
various forms of the Guggenheim athermal ways contribution are applied. Equation
(13.16) uses the most general athermal ways function, given by Equation (13.2). This
EoS should reduce to the past expressions once one applies the relevant assumptions.

This equation has two lattice-specific parameters, b, and z,, and three molecule-
specific parameters, b, ¢ and &, (within 7). Each of the molecule-specific parameters

may be evaluated theoretically from the first-principles methods to determine AIM

structural properties of molecules (for » and c¢) and energetics between molecules (for
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g,,). However, these structural properties are dependent on the characteristics of the

lattice, since b depends on the size of a lattice site and ¢ depends on this and the
coordination number of the lattice.

The first attempt at evaluating the lattice parameters is made through correlation
of the equation to reproduce the experimental critical point of the pure fluid. To
eliminate one of the lattice parameters from consideration, it is assumed that the
Guggenheim relation between the size of the molecule » and the surface area parameter
q=1z/z, istrue

z, _ r-1 _1-b,/b
2 r-z/z; l-c

(13.19)

This allows for the coordination number of the lattice to be describable by the fitted

parameters in the equation. For the other lattice parameter, it is assumed that all the

lattices on which the molecules reside is given the volume of b, =10.0 cm’/mol,

approximately the AIM volume of neon.

The correlation procedure to find 5, ¢ and ¢, consists of forcing the EoS of
Equation (13.16) to reproduce the critical point (T, p. and ¥,.) and the conditions of

Equation (2.30). The correlation is performed on a number of small molecules that
contain less than four heavy atoms. Table 13.1 shows the results of the correlation, and
several trends within the parameters can be noted. Within the noble gases, appropriate
trends are seen within the size of the molecules and the bulkiness of the molecule, given
by ¢. Within the small molecules, those with no dipole moments have an interaction
energy of about —200 K , while carbon dioxide has a larger interaction energy likely due

to the quadrupole moment. For those small molecules with dipole moments, the
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Table 13.1 EOS Parameters Correlated to Reproduce Critical Point

molecule b (cm*/mol) c ei/ks (K)
Ne 19.0 0.812 -35.2
Ar 33.1 0.574 -196.0
noble gases
Kr 40.2 0.501 -304.8
Xe 51.6 0.417 -476.5
N2 39.5 0.516 -175.2
small molecules- 0, 32.7 0.570 -207.5
no dipole
moment F> 29.7 0.603 -186.5
CO, 42.2 0.452 -516.9
CcoO 40.6 0.515 -180.7
NO 27.1 0.565 -314.8
Sg?a" molecules- N>0 43.6 0.440 -537.1
ipole moment
H3N 33.8 0.472 -809.8
H,O 26.6 0.541 -1318.0
CF4 61.5 0.341 -445.8
CHF; 60.8 0.321 -648.1
fluoromethanes CH,F, 56.2 0.312 -853.2
CH;5F 52.6 0.328 -753.6
CH4 43.4 0.471 -292.0
CH;CH; 64.0 0.340 -582.6
CH;3NH; 56.9 0.337 -918.1
methyl-
CH;0H 55.5 0.295 -1375.6
CH5F 52.6 0.328 -753.6
CH;CH;3CH; 88.0 0.259 -814.0
ol CH;CH;3NH; 80.9 0.266 -1027.1
ethyl-
CH;CH;0H 77.2 0.237 -1389.7

CH;CH;F 73.7 0.278 -851.9
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interaction energies become larger as the magnitude of the dipole increases (from top to
bottom). Within the remaining three sections, the volumes and the interaction energies
follow appropriate trends.

Figures 13.1 and 13.2 show how the correlated structural EoS parameters relate to
the critical volumes and structural parameters found in AIM calculations. Firstly, critical
volumes and AIM volume show a strong linear dependence to the correlated parameter,
thus qualifying its physical significance in the fluid model. With regards to the parameter

¢, recall its definition in Equation (13.10). The numerator contains the factor z,, which

reflects the amount of external surface area a molecule has to interact with other

molecules. The denominator contains the factor 7, which signifies the number of lattice

sites a molecule occupies and is related to the volume of the molecule. Therefore, it is
expected that the ratio of the AIM external surface area and the AIM volume of the
molecule is related to the correlated parameter ¢. As Figure 13.2 suggests, there is a
monotonic linear trend in the correlation.

Figure 13.3 depicts the ability of the equation of state with correlated parameters to
reproduce liquid-like and vapor-like volumes of nitrogen on the critical isotherm. As
required, the EoS reproduces the critical point, depicted as a red diamond near the center
of the figure. It also reproduces the gas-like densities quite well except for the small
error in the intermediate region between ideal gas densities and the critical density. The
equation does poorly for liquid-like volumes, where the equation predicts smaller
densities than experiment at a given pressure. The shortcomings with this EoS are

common for those equations that are analytic through the critical region, as mentioned in
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varied. Even for a relatively small molecule like ethanol, it is difficult to accept that all
the interactions between two ethanol molecules always results in an energy of —1400 K,
(as suggested by Table 13.1) since these interactions are highly dependent on orientation
effects (as depicted in the interaction matrix of Table 12.2).

The logical step in determining the volumetric properties of these larger
molecules is to consider the entire matrix of interactions in the quasi-chemical approach
within Equation (13.15). The structural parameters of the molecules, also necessary in
the nonlinear system of equations, are available through the use of the AIM properties
within Appendix G. This treatment results in a larger number of nonlinear equations to
solve, and a closed-form solution such as that for small molecules is not possible. For a
given isotherm, it is necessary to solve the system of equations for each fluid density to
yield pressures at those conditions, and therefore a graph of continuous curves to show
the volumetric behavior of the fluid.

The determination of the volumetric properties of a fluid with the use of the
energetics from Chapter 12 and the AIM properties of Chapter 10 can be considered a
fully theoretical prediction of macroscopic system properties from first principles. No
parameters within the model are fitted to experimental data. All are found using
computational techniques described in this work.

Like the small molecule EoS, two lattice parameters need to be determined to

perform calculations with the lattice-fluid model. These parameters, b, and z,,

determine the lattice on which the fluids are modeled. For the modeling of the larger

molecules, the methane molecule is chosen as the reference species. The volume of a

lattice site b, is therefore 287.6 au (25.66 cm®/mol), and the total surface area of a



242

lattice site is 213.28 au (0.5972 nm*). This latter value combined with the interaction
area corresponding to those used in COSMO-based models, 25.0 au (0.070 nm®), yields

the number of interactions for a vacant lattice site, z, =8.53.

Table 13.2 lists an analysis of the predicted critical points of a range of molecules
considered later in mixture systems. The EoS does a poor job in reproducing the critical
points for all the fluids considered. The model also is unable to correctly predict the
trends with the critical temperature. Also noted with the small molecule EoS described
above, this EoS is analytical, and therefore suffers the same problems in the critical

region as those of cubic and all other analytical equations of state.

Table 13.2 Calculated Critical Parameters Compared to Experiment

Calculation Experiment
T, Pec Ve I Pc Ve
propane 205 50 120 369.83 42.48 200
butane 201 37 160 425.12 37.96 255
pentane 199 30.5 195 469.7 33.7 311
hexane 198 25 245 507.6 30.25 368
DME 375 65 142 400.1 54 170
methanol 933 215 85 512.64 80.97 118
ethanol 658 61.5 165 513.91 61.48 167
propanol 593 32.5 270 536.78 51.75 219
butanol 493 15.5 350 563.05 44.23 275

Figure 13.4 shows the isotherms of propane compared to experimental data at
various reduced temperatures. The reduced quantities within the model predictions are
related to the critical point predicted by the model, while the reduced quantities within

the experimental data are related to the experimental critical point. The structural
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allows for greater cohesion between molecules within the liquid phase. Also, the
partition function approach leaves out any description of the translational motion of the
molecules, instead including molecular partition functions that describe the vibrational
and rotational motion of molecules around their lattice sites. This molecular partition
function is independent of the system pressure, and therefore does not contribute to the
EoS (as can be seen in the relation between the partition function and the EoS in Equation
(3.30)). This may be why the EoS does not reflect the mass effects (and therefore, the
translational energy) within the series of alkanes. This seems likely also for the incorrect
trend within the alcohols, where the larger molecules should need a higher temperature to

achieve a supercritical state because of their greater mass.

13.5 Conclusions

The generalized Guggenheim statistics derived in this work offers a more general
description of athermal lattice-fluid systems than previous expressions. This equation
with the quasi-chemical equations is used to formulate a closed-form engineering EoS.
This EoS has five parameters: two parameters characterizing the lattice and three
parameters related to the molecular species. When the molecular parameters are fit to the
critical point, physical significance is seen in the each of the parameters, and relations
seem to exist between appropriate AIM properties of the molecules.

With the application of the generalized athermal ways expression, the structural
characteristics need not obey the past assumption requiring a strict relationship between
number of lattice sites occupied and number of external contacts . Such flexibility allows

for the description of fluid species with parameters reflecting the molecular structure
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found using ab inito methods. When this approach is taken for larger molecules,
functional groups are used and pure species volumetric behavior is able to be predicted.
However, the model fails to correctly predict the critical point of alcohols and alkanes.
The use of fundamental quantities as the parameters within the EoS allows for an
assessment of the capabilities of the statistical model. With a larger set of results using
the AIM properties calculated from this work, the errors within the statistical model may

be diagnosed, and appropriate changes may be made.



CHAPTER 14

PREDICTIONS OF VAPOR-LIQUID EQUILIBRIUM
USING LATTICE-FLUID THEORY

The success of the COSMO-based methods is a testament to the power of the quasi-
chemical approach in describing the thermodynamic properties of mixture systems. With
the simple information describing the electrostatic potential around a molecule,
intermolecular interactions can be analyzed and sorted using statistics. The partition
function of the system emerges from these statistics, and vapor/liquid equilibrium,
liquid/liquid equilibrium, partition coefficients and solubilities are made available to
engineers.

This chapter considers criticisms of the COSMO-based approaches and fills in
these gaps with the molecular-level properties studied in this work. The structural and
electrostatic properties found from AIM Theory and the functional group interaction
potentials offer first-principles information for the physical parameters used in modeling
mixture systems. Equations are developed to incorporate these parameters to fully
predict vapor/liquid equilibrium of a range of fluid systems. Attempts are made to
predict the mixture behavior of systems containing alcohols, alkanes and ethers. Limits
to the quasi-chemical approach are discussed. Modifications are made to these equations
to better represent real fluid systems, and these results are compared to experiment.

This chapter outlines a methodology that attempts to fully predict the vapor/liquid
system behavior without correlating any model quantity to VLE experimental data. Up to
this point, no model has accomplished this; instead, past models choose to correlate

structural, electrostatic or energetic information to experiment. This work uses calculated
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surface areas and volumes from isolated molecule electron density profiles as the
structural parameters. Energetics are found by applying a functional group interaction
potential whose parameters have been found by reproducing phase equilibrium of pure
species in molecular simulations. With further development, the first-principles force
field of this work, where structural and electrostatic properties from isolated molecule
electron densities are applied to an interaction model, will be used to offer an interaction
matrix with no fitted parameters. This novel approach to predicting VLE, when validated,
achieves the goal of first-principles knowledge of macroscopic fluid system behavior

without the need for correlation to experiments.

14.1 Criticisms of COSMO-based Approach
Since COSMO-based methods are being used to predict a wide range of fluid-phase
properties, their modeling successes and failures are being scrutinized. Several criticisms
have arisen in the recent past, ranging from the fundamental assumptions of the model to
the limitations in the accuracy of the model results. The criticisms focused on here are
mainly on the basic premises of the model.

A criticism of the COSMO-based methods is the way the location and form of the
surface charge density that exists around the molecule and takes part in interactions. The
distance from the atoms at which these charge densities are sampled is a parameter that is
correlated to experimental data. Although originally attributed as a surface that is 120%
the van der Waals radius away from the atoms, a value used in most continuum solvation
models, the radius has changed in more recently refined versions. These radii form

spheres around the atoms, and the union of these spheres create crevices that have been
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species (since Figure 10.1 suggests that the 0.001 au isodensity surface roughly
corresponds to the COSMO-based surfaces). Calculation of any of these AIM volumes
for a molecule yields a value that is far below that of a liquid-like volume for the species.
To reproduce these volumes, either larger distances must exist between the molecules
(unlikely, since past studies do indicate that interactions probably occur at these distances
envisioned by COSMO-base methods), or that vacancies must be included in the lattice.
Including vacancies is not straightforward in COSMO-based methods, since the charge
density surfaces of molecules must interact with charge densities of vacancies that are
influenced by nearby molecules. The lack of vacancies is the same approach taken by
UNIQUAC, UNIFAC and other past engineering models, where the liquid is on a packed
lattice.

The thermodynamic inconsistency of an earlier version of COSMO, the COSMO-
RS method, has been resolved by the creation of the COSMO-SAC method and the
COSMOSPACE method. Both these methods are based around the quasi-chemical
equations and the entropy of the athermal system described in Sections 4.2 and 5.4.

This work attempts to address the criticisms above by using the molecular-level
properties within a lattice-fluid model that incorporated vacancies. The structural
properties within AIM are used instead of the correlated radii to determine the extent of
electron densities. The interaction model proposed in this work takes the structural and
electrostatic properties and converts these into interaction energies and distances
describable with an interaction curve. Since calculated curves in this work have not been
achieved, similar properties, attainable using the TraPPE force field created for molecular

dynamics simulations, are used. These curves avoid the predisposed interaction distances
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necessary in the COSMO-based methods, and allow for a description of interaction
energies at all distances. The most favorable interaction energies are then used in a
statistical model similar to that of the COSMO-based methods, except where vacancies
are included on the lattice. The interaction energy between a molecule and a vacancy, as
well as an interaction between two vacancies, vanishes and thus agrees with acceptable

physical principles.

14.2 The Development of the Lattice-Fluid Model to Predict VLE
The prediction of VLE using the lattice-fluid framework is focused around developing

expressions for the activity coefficient y of the species. These values are then used

within the gamma-phi formulation reviewed in Section 2.2. The focus now is to lay out
the process by which these activity coefficients are calculated and implemented.

The activity coefficient for species i in a liquid mixture is given by Equation
(2.22). To evaluate this expression, equations describing the Gibbs energies of the
mixture system and the pure fluid system must be determined. For lattice fluids, these
can be found using the partition function in Equation (4.4). This equation is governed by
the temperature, pressure and composition of the system.

The model variables for this partition function, the numbers and types of

interactions M, and the number of vacancies N, are found by solving the quasi-

chemical equations, given by Equations (5.29) through (5.31) and developed in Appendix
B. An equivalent and simpler way of determining the model variables is to consider the
relation given by Equation (5.52) and solving that nonlinear system, where the interacting

entities are functional groups. Both of these treatments involve solving the quasi-
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chemical equations for the pure and mixture system, so one may determine the model
variables for both systems for application within Equation (5.51).
The athermal contribution to the activity coefficient is found by utilizing the

athermal ways function of Equations (4.9), (4.13), or (13.2), where the last of these is a

generalization of the earlier two. The full expression for In 7™ is given by

ath oln(Q™®
Iny™ =- OlnQ + (—) ~Inx, (14.1)
oN, ), oN,

Ny '

T.p.Nj,
where the athermal ways within the second term is for the pure system at the mixture

system temperature and pressure. If one uses the classical Guggenheim expression of

Equation (4.9), this relation reduces simply to

lnyimh=mﬁ+(1_ﬂ]_%[1_%+m%] (14.2)
X, X; i i

However, this expression had been developed without vacancies on the lattice. Therefore,

it must be assumed that the volume fraction ¢, and the surface area fraction 6, are taken

in a fully packed lattice, with no vacancies.

The gamma-phi formulation in its original presentation assumes that y, is

independent of pressure. Since this work is using the Gibbs ensemble, pressure is a
thermodynamic variable that influences all other variables within the equations.

Therefore, for procedures that iterate the pressure, such as BUBL p and DEW p, the
most general procedure involves calculating y, at every pressure iterate. This involves

calculating the solutions of the pure and mixture species quasi-chemical equations each
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time. With computers and automated algorithms, this may be accomplished while still
achieving a timely result.

If one can assume that @, =1 within the gamma-phi formulation, then the

pressure of the mixture system is readily given by summing both sides of Equation (2.23)

p= Zx,.y,pf“‘ (14.3)

where either the experimental results or Antoine’s equation is used for p/*. The vapor
compositions given by

v.=xy.n"[p (14.4)
These equations will be used in this work to predict isothermal VLE data for a variety of

mixture systems. Since it is easier to know the liquid compositions x, in experiments,

the pressure and vapor compositions will be pursued, as in the BUBL p procedure.

14.3 Calculated VLE Behavior using the Full Treatment

In theory, once AIM properties of a species are found, interaction energies, pure fluid and
mixture system behavior can be predicted using the interaction model in Chapter 12 and
the lattice-fluid statistics in Chapters 4, 5, 13, and 14. This work focuses on the mixture
systems describable with the TraPPE interaction matrix of Table 12.2, which gives the
interaction energies for systems containing linear alkanes, linear alcohols and
dimethylether. This information allows for the prediction of pure system properties
(done in Chapter 13) and several combinations resulting in binary mixture systems.

Analyzing a mixture system using the full treatment of the theory involves

allowing the EoS to determine the model variables (namely I', and &, ) of the pure
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systems and the mixture system. These solutions and the generalized Guggenheim
equation is used to determine the activity coefficients in Equations (5.51) and (14.1) and
the pressure for the species from Equation (14.3). This is done in an iterative manner

using the BUBL p procedure. The vapor composition is calculated from Equation (14.4),

and the results are compared to experiment. Also available from this treatment is the
excess volume of the binary mixture, assumed not to vanish in the most general version
of the model.

The first system treated in this manner is an ideal binary mixture system
containing 1-propanol/1-butanol at 373.15 K, depicted in Figure 14.5. The model here
predicts ideal solution behavior and the associated vapor phase compositions. The
experimental data shows some curvature that migrates around the predicted p-x line. The
experimental data offers no vapor compositions for this mixture.

The second system treated is the binary mixture containing dimethylether and
ethanol at 293.15 K, depicted in Figure 14.6. Here, the calculated p-x line is well above
the experiment, while there is agreement with the p-y calculation and experiment. The
disagreement in the p-x behavior is due to the inability of the EoS to accurately predict
the liquid volume of the mixture system. In this case, too few vacancies exist in the
ethanol-rich branch, and the dimethylether molecules tend to vaporize rather than interact
with the ethanol molecules. As shown in the next section, the p-x line is modified if the

experimental liquid volume is used.
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14.4 The Use of Experimental Liquid Volumes

In several systems of interest to this work, the EoS fails to predict a liquid phase or a
liqﬁid-like volume for the pure species at the mixture system temperature. For instance,
the EoS critical parameters predicted in Table 13.2 suggests that linear alkanes exist in a
supercritical state for all temperatures above 200 K. Therefore, any mixture system
prediction using the full treatment of the method fails unless the system temperature is
less than 200 K. Also, although dimethylether has a predicted critical temperature of 375
K, a prediction for the mixture system with the species at 353.15 K is not possible
because a liquid-like volume does not exist near the experimental or mixture system
pressure at that temperature.

To alleviate this shortcoming, the experimental liquid volume at near-ambient
temperatures from a standard engineering source (Poling, et al. 2001) is used to
determine the number of vacancies on the lattice. In this case, the mixture system
volume is considered the weighted average of the two systems, and the excess volume of
the mixture is considered to vanish. While not true in general, this is a reasonable
approximation because the excess volume is often quite small.

To apply experimental liquid volumes that determine the number of vacancies in

the pure and mixture system, more care must be taken in calculating Iny“" within
Equation (14.1). To start, consider the functionality of the athermal ways function for a
binary system

InQ* = Q™ (T, p,N,,N,,N, (T, p,N,, N,)) (14.5)

ath

The derivative of the mixture system In Q" within Equation (14.1), in its most general

form, is given by
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ath ath ath
(mnﬂ } ___(6an J +(61nQ ] (GNOJ (14.6)
aNi T,p.N,; aNi T,p,N;,Ny aNO T,p.N,N, aNi T,p,N;

J J

For the pure system 1n Q")

ath (i) ath (i) ath (i)
0lnQ _{onQ N o0lnQ ON, (14.7)
N oN, aN, aN,
! T.p T,p.Ny T.p.N; LT

In general, the functionality of N, is determined by the thermodynamic variables
of the system. Within the full treatment of the method, N, is determined by the

minimization of the Gibbs energy (maximizing the term in the Gibbs partition function)
with respect to all the model variables. However, here the experimental liquid volume is

used to set this quantity. The function describing N, here becomes

4 4
Ny(N,,N,)=N,| +=r [+ N,| *-r, (14.8)
by by

The derivatives of this expression must be included within Equations (14.6) and (14.7)
for the information to be applied properly.

The first system to be calculated using the experimental liquid volumes is the
pentane/hexane ideal binary mixture system at 298.7 K, depicted in Figure 14.7. Here,
both the p-x and the p-y lines are in good agreement with the experimental values, where
the experimental values depict slightly higher pressures in both the p-x and the p-y lines.

The second system to be calculated here is the dimethylether/methanol system at
353.15 K, depicted in Figure 14.8. As mentioned before, although dimethylether is
predicted to be sub-critical at this temperature, no liquid-like volume is predicted at the

experimental pressures (1.96 to 22.3 bar). Here, the model predicts a more ideal system
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14.5 Alcohol-Alkane Mixture Systems
The prediction of alcohol-alkane mixture systems is a goal of many mixture models,
since it offers a clear and common example of non-ideal behavior. It is also a goal to
understand the nature of such mixtures, since compounds in these two groups of
molecules are regularly found in the chemical industry, and their behaviors are used to
model more complex biological, pharmaceutical and industrial systems.

The main problem of describing alcohol-alkane systems is the hydrogen-bonding
effects between alcohol molecules. Association effects arising from hydrogen bonding
are difficult to describe statistically. Models in the past have allowed aggregation to
account for the long-lived complexes in the liquid phase. In the COSMO-based models,
an entirely separate correlation parameter is introduced solely in the attempt to describe
hydrogen bonding. By introducing such a fix, it suggests a limitation of a quasi-chemical
approach in handling such systems.

An attempt is made to calculate the VLE behavior of the binary system 1-
propanol/hexane at 313.15 K, depicted in Figure 14.10. As with other systems involving
alkanes, the liquid volumes are utilized here. This VLE graph depicts predictions of
liquid-phase splitting, and therefore analysis of VLE behavior using this technique would
not be possible.

In the analysis of the solution to the quasi-chemical equations for the 1-
propanol/hexane system, the model variable that represents the behavior of the hydrogen

atoms, I}, increases an order of magnitude in the region of small concentrations of 1-
propanol (I'y; =0.0156 at x, =0.04 while I'; =0.1522 at x;, =0.002). This combined

with the value in pure 1-propanol (I';; =0.0007 at x, =1) yields a large enough
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concentrations. This may be why the system pressures are underpredicted on the p-x line

at low alcohol concentrations in Figures 14.11 and 14.12. The arbitrary value of [',; =0

is seen as an overcorrection to the model result. Since statistical models always predict a
non-zero solution even though an effect is highly unlikely, a more correct model

description through an extension of the quasi-chemical method would likely yield a small,

non-zero result for I',; at these low concentrations.

14.6 Conclusions
The use of molecular characteristics and energetics from first principles offers a new
perspective on the statistical models used to predict fluid-phase behavior. In the past,
errors within the modeling technique could not be analyzed, since they would be masked
by the use of empirical parameters. Now that these characteristics are describable using
first principles, focus can be applied to analyzing the faults of the statistical
methodologies.

The use of the quasi-chemical method for the full prediction of VLE behavior has
its shortcomings. The method depends on an EoS that is required to predict liquid-like
volumes at the mixture system temperature and pressure. It also fails to predict the
proper number of interactions within alcohol/alkane systems, thus predicting phase
splitting where an azeotrope should exists. Fixes to these problems have been suggested
in this work, such as the use of experimental liquid volumes and the arbitrary observation

that I'; =0 in alcohol/alkane mixtures. Now that these more specific problems with the

statistical methods have been diagnosed, a more focused effort can be made to fix the

quasi-chemical method used in fluid-phase property prediction.



CHAPTER 15

CONCLUSION

15.1 Summary of Contributions
The goal of this work is to create a general model that uses molecular-level properties to
predict macroscopic fluid system properties. This motivates research in three areas:
molecular and functional group property calculation; applied intermolecular interaction
theory; and statistical thermodynamics of lattice-fluid systems. Research has been
conducted in these fields, and contributions have been made to achieve an unbroken
algorithm toward the goal of the work.

Within the field of molecular and functional group property calculation, the
contributions within this work focus on how the methods in computational chemistry can
be used in engineering applications. This work demonstrates that molecular-level
properties are attainable using modest computational equipment. This has resulted in the
calculation of properties for a wide range of molecules and functional groups within the
molecules. The transferability assumption is analyzed using AIM computational results,
thus giving quantitative evidence of its impossibility. Novel AIM properties, such as the
exposed surface area and the polarizability of non-alkyl groups, are calculated for use in
this work.

Within the field of intermolecular interactions, the goal of finding a functional
group interaction model motivates the combination of rigorous theory with the AIM
properties. The extent of the electron density of molecules and functional groups is used

to describe short-range repulsive effects. The AIM electrostatic properties are used in
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classical expressions to describe long-range effects. These two contributions are
combined to form first-principles interaction potentials for small molecules and
functional groups. The intermolecular potentials allow for the prediction of second virial
coefficients for small molecules. The functional group interaction model yields
interaction energies between groups over all interaction ranges. These potentials are
comparable to those used in molecular dynamics simulations. The model also predicts a
hydrogen-bonding interaction energy and distance in the water dimer system that is
comparable to experimental results.

Within the field of lattice-fluid theory, an all-encompassing fluid model is
developed that uses the available structural and energetic information from the fields
described above. A generalization of the Guggenheim statistical model for athermal
systems is derived, so as to utilize the rigorously calculated volumes and surface areas
from AIM theory. Local-composition concepts are resolved with vacancies on a lattice to
create a lattice-fluid model that may be used in both pure fluid and mixture systems. A
closed-form engineering EoS is derived, where the fitting parameters in the equation
show physical significance. An excess Gibbs energy is calculated for several ideal and
non-ideal mixture systems, and VLE behavior is predicted without the use of any

parameters correlated from VLE data.

15.2 Future Work
As with all novel contributions to a research field, questions about assumptions arise as
the capabilities of the methods grow more rigorous. Future work within the three areas of

research will go a long way toward reaching the goal of a fully predictive fluid model.
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Future work in the field of molecular and functional group property calculation
involves creating a database of AIM properties and making such information available to
engineers. The use of higher level ab initio and DFT methods will give molecular
properties that are more comparable to experiment. With these results, AIM properties of
functional groups will reflect the improvement of the molecular calculations. These
properties can then be used in new group-contribution methods which are based on the
rigorous properties, likely allowing for a more detailed description of macroscopic
properties with a more user-friendly method. To make the information more readily
accessible to engineeré, a suite of programs can be created to calculate functional group
properties merely from the initial guess of the geometry of the molecule.

Future work in the field of intermolecular interactions involves approaching the
problem from a more theoretical standpoint, as well as validation of the current
methodology. Several expressions that describe the short-range contribution have been
presented, and application of the more theoretical expressions can likely improve the

model. The use of Slater-type orbitals and p-type orbitals within the orbital overlap

models will make the model reflect system behavior more rigorously. The inclusion of
quadrupole moment information will improve the description of the long-range effects in
the intermolecular and functional group interaction models. A suite of programs can be
created that considers two molecules and calculates interaction energy curves and an
interaction matrix for all the possible group interactions. These curves can also be
applied within molecular dynamics simulations in order to validate their effectiveness at

macroscopic property prediction.
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Future work in the field of lattice-fluid theory involves assessment of the
limitations of the quasi-chemical approach and application of new statistics to alleviate
these problems. This work has already shown the inability of the statistics to accurately
predict critical points and liquid volumes of pure fluids, and the distribution of interaction
numbers within nonideal mixture systems. More molecular effects can be included in the
model, such as non-nearest-neighbor interactions, proximity effects, and the inclusion of
a translational partition function within lattice-fluids. A more realistic EoS can be used
within the generalized Guggenheim statistics, such as the Carnahan-Starling equation of
state for hard-spheres (Carnahan and Starling, 1969), as opposed to the modified ideal
gas law. Studies can be conducted into the approach taken for Ising models and
renormalization theory to account for critical behavior. The results from the quasi-
chemical equations can be compared to excess Gibbs and excess enthalpy data to assess
further the capabilities of the predictive model.

Of great importance to the engineering community is the ease with which
information from fundamental studies are made available for use in engineering
applications. Great effort can be made to make disseminate the methods in this work
using software. This entire work is computation-oriented, and a program that takes an
engineer from a molecular structure to macroscopic system properties is envisioned. This
would allow for the dissemination and, hopefully, successful use of the new

methodologies.



APPENDIX A

GUGGENHEIM STATISTICS
FOR A BINARY SYSTEM WITH VACANCIES

The statistics proposed by Guggenheim (1944a) attempt to determine the number of ways
an athermal, lattice-fluid system may be arranged. The method relates two approaches
that describe the Helmholtz energy of the system: through the partit‘ion function and
through the fundamental property relation. The original derivation considers a binary
mixture of polymer with monomers, and has been incorporated in numerous engineering
models of a lattice-fluid. Here, a generalization to the approach is taken, so as to include

vacancies in the lattice initially and to eliminate any assumption about the structure of the

molecules on the lattice. The result is a generalized function that reduces to past work.

A.1 The Gibbs Ensemble Approach
Assume the Gibbs partition function can be approximated by the maximum summand.

Therefore, for a binary system with vacancies

A=fN Qe *le b (A.D)

where f is the molecular partition function for species i. Considering an athermal

system, W' =0 and

o

A= N frhqee T (A2)
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Vacancies occur on the lattice, and it is assumed that the partition function of a vacant
lattice site, f,, is unity. Therefore, this term is included within the partition function

without effect on the expression

o

A= f;)Nof;lezNzQarhe ;57 (A3)
The total Gibbs energy of the system is therefore

pV'
k,T

G' (N, N,.N,)
kT -

2
~InA=-) N,Inf,-InQ" (N,,N,,N,)+ (A.4)
i=0

Here, an EOS for an athermal system must be used to relate the pressure to the
occupancy of the lattice. Consider a modified ideal gas EoS, where the hard-sphere

molecular volumes affect the pressure
p[V' =y (nN, +1,N,) | = (N, + N, ) k, T (A.5)

where the total volume of the system is given by

Vi=b» 1N, (A.6)

i=0
Inserting these into Equation (A.4) gives

G' (Ny, N, N,)
k,T

2
==3'N,In f, - InQ* (N,,N,, N, )
i=0

(A7)
N N, +1N, +1,N,

N,

(N, +N,)

It is helpful to express this relationship in terms of the total number of lattice

sites N, , the occupation fraction of the molecules on the lattice @, and the volume
fraction ¢ of molecule 1 in the system where no vacancies exist. The definitions of these

variables are given by



N, =N, +nN,+nrN,

rN,+rN.
=172

NI
___hN
KN, +nN,
Rearranging yields
N, =N, (1-)
1
N, =—N,0¢
r

1

N, =Lvo(1-9)

£
Inserting the new variables into Equation (A.7) gives

G' (N, 0,¢) _
kBT - 1

a w
~InQ™ (N,,w,8)+N, ifa—)[

-N, (1—a))lnf0—%N,amﬁlnf1 —rlN,a)(l—qi)lnf2

e
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(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

This expression will be revisited later, after another expression for the total Gibbs energy

of the system is derived.

A.2 The Fundamental Property Relation Approach

Consider the fundamental property relation for the total Gibbs energy of a binary system

dG' =-S'dT +V'dp + u,dN, + p,dN,

(A.15)

Any changes in the thermodynamic variables of the system will be made isothermally.

Therefore

dG' =V'dp+ udN, + p,dN,

(A.16)
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Vacancies occur on the lattice, and the chemical potential, g, , within the athermal

system is assumed to be zero. Therefore, the term is included in the expression without

changing the differential. Also, rewriting the expression in dimensionless form yields

G _ i @ Fo gy PN+ o an, (A.17)
kT kT kT kT kT

An EoS is necessary here to express the differential pressure and the total volume
of the system in terms of the occupancy of the lattice. Here too, the modified version of
the ideal gas EoS is used, Equation (A.5). The differential pressure given in terms of the

numbers of molecules is

N +N
g 11 TR —l—sz-(—llz—z—)dNo (A.18)
kT b N, N2

Inserting this expression into Equation (A.17) and organizing by the differentials yields

dG'(N,,N,,N. N,
( k"BT‘ 2)=(ln70——N—g(N,+N2)JdNO

+(ln;/l +%‘—JdN, (A.19)

0

Nt
+(lny2 +-]v—JdN2

0

where the chemical potential is expressed now through the absolute activity y

y7
Iny, =-- A.20
Vi T ( )

Here, the variables within Equation (A.19) are to be changed to the variables of

Equations (A.8) through (A.10). The differentials of the numbers of vacancies and

molecules on the lattice, found using Equations (A.11) through (A.13), are given by

N, =(1-w)dN, - N do (A21)
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dN, = L (0gdN, + N gdo + N.wdp) (A22)
1

1

dN, =rl[w(1—¢)dN, +N,(1-¢)do - N,od¢ | (A.23)

Lengthy algebra yields the following expression for the differential total Gibbs energy in

terms of the new variables

4G (N 2.9) = |:lny0 +¢—wln(

£

kT h Yo r 7
[ ¢ 1-¢ ]
2 + 2
n(l-0) n(l-o)
+N, : do (A.24)
+2ln(l’}—J+——( _¢)ln[7—fj
| A 7o r 70 )]
Lln(@}
No| T \T2 dé
+ 1 1

The remainder of the derivation is only concerned with changes in the overall occupancy
of the lattice . Therefore, the other differential expressions are neglected, simplifying
the expression to

6 1y
dGi(Nz’w’¢)=N rl(l—[g)2 7‘2(1_[0)2

WT +£1n[A]+(‘_-¢_)m(ﬁj

" n
LA Yo r Yo /.

do (A.25)

Here, let «, express the ratio of absolute activities to the molecular partition functions

a, =——(yy ’;"),, (A.26)
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The reason for this will be apparent later, when this Gibbs energy is compared with that

from the partition function approach. Inserting this into Equation (A.25) yields

46, _1-¢ ]
n(l-0) n(l-o)

dG'(N,,0,0) N
kT

+In f, —ﬁlnf1 —(1_¢)lnf2 do (A.27)
n

r

~

+£lnozl+———(l—¢)lnoz2

K r

The indefinite integral of this expression is given by

b 1-¢ |
n(l-o) n(l-o)
G’(an’¢) =N,|+oh f, —ﬂa—)-lnf] —(1—¢)wlnf2 +C(Nz=¢) (A.28)
kBT rl r2
[ 1-4
_+r] jlnaldw+ ” jlnazdw |

A.3 Equating the Approaches
Next step is to consider the difference of the Gibbs energies, to apply limits to the
indefinite integrals in Equation (A.28). Consider the process going from a system of N,

lattice sites with no occupancy to the same size system with the desired occupancy @

and volume fraction ¢

AG' G'(N,w,4) G'(N,0,9)
kT kT kT

(A.29)

For the partition function approach, plugging Equation (A.14) into Equation (A.29) yields
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! - —
=S =N, o__, (=)o +wlnﬁ)—@mﬁ—MMﬁ
ksT n(l-o) n(l-o) h 4!
(A.30)
[Qath (N,,a),¢)}
~ln| ————
Q™ (N,,0.4)
For the FPR approach, plugging Equation (A.28) into Equation (A.29) yields
G | —go_ (=0)e g g0y, (9o
k,T n(l-0) n(-o) n 7
(A.31)
+ﬂ Ilnaldw+wIMa2dw
hoo g 0
Equating these yields
ath ) _ 2]
In QM =-N, ¢ [nedo L9 [ine,do (A.32)
Q" (N,,0.4) hg no

Since the number of ways a system of N, lattice sites with no molecules occupying the

lattice is one, then Q** (N,,0,¢4)=1 and

InQ™ (N,,0,4)=-N, [zajlnaldw + (1-4) ajln azda)} (A.33)
ho 0

r

After evaluating «,, the athermal ways function is solved for.

A.4 The o Integrals

The concept of ¢, in the derivation of the Guggenheim statistics is that it represents the

ratio of probabilities of placing molecules on the lattice. The explanation of the quantity
is available within the original derivation of the statistics (Guggenheim, 1952).

In the numerator is the probability that a group of # sites is entirely occupied by a

molecule of species 1. This is given by



278

Ny

P =
Ny +nN, +1,N,

(A.34)

where @, holds symmetry factors that describe the total number of ways a single
molecule of species 1 can occupy a given 7 group of sites. The denominator of the ratio
is the probability that those same 7 sites are completely unoccupied (occupied by

vacancies). This is given by

r-1
P = Ny 2o (A.35)
N,+nrN,+r,N,\ z,N,+z N, +z,N,

This probability is the product of finding one vacancy at the first of the r lattice sites and
the probability of finding vacancies along each of the remainder of the 7 —1 sites. The

definition of &, from Equation (A.26) is a ratio of these probabilities

r-1
o =L =ﬁ=w,_f\i(ZoNo+Z'Nl+zzN2] (A36)
(7’012))l 0 Ny 2o
Similarly for «,
r-1
o, =1L =£z_=w22Yz_(zoNo”1Nl+ZzN2J (A37)
(7'0f0)2 £ Ny ZoNg
In the reduced coordinates, these expressions are found to be
r-1
l— 1
a,(N,0,$)=o, ———— _ob |),4 08 4209 (A.38)
il-o)l nl-0 n l-o
1-
0, (Noo.p)=a,—22—|1:4.29 g, 20-4)[" (A.39)
n(l-o)| rl- a) n l-o

Here, it is convenient to define g, as the ratio of contacts between molecule i and a

vacant site. This is given by
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g =2 (A.40)

This differs from the original expressions from Guggenheim (1944, 1952). The original

expressions require a relationship between r, and g, , namely
1
—z—zo(ri—q,)=r,.—1 (A.41)

This relationship will not be used in the present derivation, since here it is assumed that

the volume and surface area of a molecule can be found rigorously using other techniques.

A.5 Athermal Ways for the System
Returning back to Equation (A.33), the athermal ways of the system is now able to be
evaluated by using Equations (A.36) and (A.37). Algebraic manipulation is required to
achieve the final result. An intermediate result for Q" is given by an expression found
just prior to converting natural logarithm functions back into factorials using Stirling’s

approximation. This is given by

~-InQ*" (N,,a),¢)=N,¢—w—(lnw] —lnr,)+Nt£1—-ﬂai(lnw2 —Innr,)
h h

NP2 mg4N, (L_f—)“—’ln(l ~¢)

h 2

+N, (?ﬂ+ m)(mw 1) (A.42)

4N, (i“’)[ln:zl-co)—l]wt
#(n-1)
T

r

t
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Once the integral in the final line is evaluated and the expression is reverted back into
factorial form, the expression for the number of ways an athermal binary mixture with

vacancies can be arranged is found to be

Zok' (2
Qath =wlleé\/2 NI! (NO +q]N1 +q2N2)' (A.43)
N,ININ,!| (N, +1N, +1,N,)!
where the exponent is given by
2K _ (n=1)N, +(r,-1)N, (A4d)
2 (’i—Q1)Nl+(rz—Q2)N2
A general expression is inferred from this result, given by
n NI | Zok [2
Q" =]]a" —— 2! (A.45)
i=1 l-n_I N ! Nr !
i=0 [
where g, is given by Equation (A.40),
N,=>rN, (A.46)
Q,=24N, (A47)
i=0
and where the exponent is given by
« Z(’? ~1)N,
fo” = (A.48)

2 Z(ri_qi)Ni
i=0

It can be seen here that if Equation (A.41) were satisfied, then x within these expressions
must be unity. This applied to a system without vacancies results in the athermal ways

function in the previous Guggenheim derivations.



APPENDIX B

GENERALIZED QUASI-CHEMICAL APPROACH

The quasi-chemical method is used within many modern engineering models of fluid-
phase behavior. Its derivation exists in many places, from the originating methods of
Guggenheim (1944b) through to the parallel derivation offered by the COSMO-based
methods (Lin and Sandler, 2002; Klamt, et al., 2002). This method is rederived here,
utilizing the concepts of local composition and the notation of Knox and coworkers (1984,
1987). Vacancies are included on the lattice initially, and a variable substitution that

leads to the reduction of these equations to that of the COSMO-based methods is offered.

B.1 Model Equations
The equations for a lattice-fluid are written to determine the following model variables:

numbers and types of nearest-neighbor interactions M,, ; the interaction distances
between nearest neighbors 7, ; and the number of vacancies on the lattice N;. Also, for
convenience of notation, let Ny =M, . Assume there are » different species in the

system, and there are m distinct types of functional groups within the molecules. All the
summations without bounds in the following derivation include vacancies with all the
molecule and functional groups.

The total number of interactions a functional group takes part in is related to the
interaction numbers by the relation

z, M,
2

=Y M, fork=0,1,.n (B.1)
i
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For the entire system, let the total number of interactions of the system be represented by

I, given by

1=;Z’ffk =;ZMH (B.2)

Also necessary in the quasi-chemical approach is the equality between interaction

numbers and interaction distances with those quantities with opposite indices. Therefore,
the following relationships must hold

M,=M, (B.3)

Yo = Tk (B.4)

With these model equations and the partition function for the lattice-fluid, the

macroscopic system properties are definable through the model variables. The solution

method involves finding the most probable set of interaction numbers and interaction

distances.

B.2 Partition Function Approach

The general partition function for a lattice-fluid is given by

o
AT, P.N,) = Do (T2 N) DD QT p N E e BT e o7 (B.5)
wtov!
Let 7, stand for the summand
o
0 (T, NV W) =Q(T, p, NV W e ¥ * (B.6)

An acceptable assumption for systems far away from the critical region is that the

maximum of 7, with respectto W' and V' represents the entire summation.
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A(T’p’Ni)=Amtemal (T’p9Ni)TA (T’pﬂNi;(Vt)*a(Wt)‘) (B'7)

The total volume and the total energy of the system are explicit in the model variables.

These relations are given by

V'=Y Nb+D Y M, (r,) (B.8)
7 k1
E'= ZZMklukl (rkl) (B.9)
K 1

where v,, is the volume of interaction and u, is the energy of interaction evolved
between an interaction of groups k and / at a distance 7,,. The partition function now is
expressed through the modeling variables

A(T, P N,) = A (T> 2 N,) 7, (T, 2, N Nou M1 ) (B.10)
The task now is to find the maximum of 7, with respect to the model variables.

Taking the natural logarithm of Equation (B.6) and expanding

1
Inz, =lnQ--2 (ZN,b,+ZZMk,vk,(rk,))———ZZMk,uk,(rk,) (B.11)
k;T\ 5 % kT T4

B

Here, define 7,, as the enthalpy of interaction, a combination of the energy effects and
the volumetric effects
M (1) = v (1) + PV (700 (B.12)

This simplifies Equation (B.11) to

Inz, =n Q-2 Np, —LZZMMH (r) (B.13)
k,T % k,T 54

Not all the M,, and r, within this expression are independent variables, since

M,=M, and r,=r,. This derivation will proceed by using M, and r, where
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0 <k <! as the independent variables. Lengthy algebra on Equation (B.13) yields the

partition function with only independent variables
Inz, =InQ-N, by 4+ %0 Mo ZN‘ _Ié_ Zil g Mo _ Moo
kg T 2 k,T| ‘3 kg k,T kT

2
(B.14)
_2m 1 i M, 4+ Moo _ ok _ Mo i M, M | Mo _ o "o
~ 5 kT k,T kT kT ~ k,T kT kT

B.3 Maximizing Conditions
The values of the model variables are found by finding the extrema within Equation

(B.14). The derivatives that must be evaluated are

[aln’A] =0 (B.15)

aNO T.p.My .y

[aln“} ~0for0<k<! (B.16)
aMk[ T,p,Ny.ny

(aln“) —0for0<k<! (B.17)
ar/d T,p.No .My

Equation (B.15) results in the following expression

(aanJ _Ph 7% M _, (B.18)
aNo T,p.My.ry

This expression is usually referred to as the EoS, since the partial derivative of InQ with
respect to N, usually results in an expression explicit in system volume, thereby yielding
an equation that related p, 7,and V"'.

Equation (B.16) is dealt with in two parts. First, for the off-diagonal interactions,

where k <!/
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0= 0lnQ ol Mu_y Moo _ ok _ "o (B.19)
My )i n k,IT  k,T k,T kT
Next, for the diagonal terms, where k =/=s
0< olnQ | T Moo o Mo (B.20)
aMSS T.,p.My N,y kBT kBT kBT

Equation (B.17) is also considered for off-diagonal and diagonal terms, similar to
the last two derivatives. For the off-diagonal terms, only those where & > 0 is considered,
since it will be assumed that 77, =0 for all / (there are no energetic or volumetric

consequences in an interaction between two vacancies or a group and a vacancy).

Therefore, for 0 <k <!

0 k.T
0=(aanJ —2M,d[ (7 /5T)
T,p.r No .My

(B.21)

or, ]
K T.pr.No.My

Similarly for diagonal terms

0 kT
Oz(aanJ —Mss( (Uss/ B )J (B.22)
arss T,p.ry,No-My o, Lopstia NoM

RAY

Now the derivatives of the ways function © must be evaluated.

B.4 The Ways Function
It is assumed that Q is the product of a naive combinatorial formula and a

proportionality factor

Q=K—rr— (B.23)
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This relation is normalized to the number of ways an athermal system can be arranged.

The proportionality factor is found to be (Knox, et al., 1984; Knox, 1987)

K=K(M,,N)=Q"(M,,N, )[]‘[(52%]! /1 !} (B.24)

Combining the last two expressions, one finds that

LER)

Q(M,,N,)=Q" (M,,N,)==~ B.25
( Kl l) ( 0 I) I!HHMkI! ( )
k !
After applying Stirling’s approximation, InQ is given by
Q=1 Q™ +2z(iﬁimﬂj-1(m Jin7(M,)
PEAN 2 (B.26)

—;Z(MH InM,)

Before evaluating the necessary derivatives with Equation (B.26), the expression
should be represented only in terms of the independent model variables. The derivation
henceforth assumes that the independent variables have the subscripts 0 <k </. The

evaluations of the derivatives of InQ with respect to 7, is straightforward, since it is
seen within Equation (B.25) that the ways function is independent of all r,. Therefore,

Equations (B.21) and (B.22) are easily computed, and will be revisited later.
Writing the ways function in terms of the remaining independent variables is
somewhat difficult, and the necessary derivatives in Equation (B.19) and (B.20) are

found implicitly. Start by rewriting the double summation within Equation (B.26) to give
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nQ=lnQ" +22(%4ilnz—k12\—4—"j—11n1
k

My, In My, +23 (M, InM,, ) (B.27)
k=1

+2§ i (Mkl lan1)+zm:(Mss 1nMss)

k=1 1=k+] s=1
The task now is to find the dependence of all the M,,and M, on the independent

model variables. For the former, consider the expression

z M m
M,, = _q?_q_le”" (B.28)
p=

Attempting to isolate the independent variables within the expression, one finds that
z,M, & n
M,, == -Z]MM -M, - M, (B.29)
P

p=q+1

All the numbers of interactions within this expression are independent variables. Taking

the derivative with respect to a general M, where k </

(___aM 0 J =-5,-6, (B.30)
oM, ),

where the & here is the Kronecker delta. For the diagonal element

(aM"qJ =-6 B.31
—| =-4, (B.31)
oM, ),

ss

Equation (B.29) is independent of M|, therefore
oM,
(—‘)"} =0 (B.32)

At this point, it is time to consider M,,. Following the example starting at

Equation (B.28), consider the expression



Taking the derivative with respect the off-diagonal element

oM, M M, i\ OM,, My M,

For the diagonal element

oM My .M, p=l aMss My

AAY

Finally, with respect to the number of vacancies

oM, _Zy
oM, My M. 2
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(B.33)

(B.34)

(B.35)

(B.36)

At this point, one may revisit the derivatives of InQQ. When taking the derivative

with respect to the off-diagonal elements M,,, one finds that

(6ln9} =2ln(MkoM,0]
aMkl T,p.Mo,M . MOOMkI

Taking the derivative with respect to the diagonal element, one finds that

dlnQ M M, M.,
=ln| —=[=In
aMss T,p.My .M,y MOOMss MOOMss

Finally, taking the derivative with respect to the number of vacancies yields
(mnﬂ] _[6an"’hJ LB (2,M,/2)"
aMO T,p.My g aMo N, 2 MOO !

This expression now only depends on the choice of Q™.

(B.37)

(B.38)

(B.39)
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B.S The Quasi-Chemical Equations in Reduced Variables
Now that the derivatives of InQ have been found, the conditions where the maximum of
7, 1is achieved can be summarized. Firstly, the trivial case of the 7, , Equations (B.21)

and (B.22), is considered. Since Q is independent of interaction distance, these

expressions lead the conclusion that

(a(nk,/kBT)

=0 B.40
o (B.40)

]T,PMQ My
for 0<k<I. This implies that functional groups, on average, are interacting at the
minimum of 7,, with the interaction energy of u,, and with the volumetric effect of pv,,.

With regards to the number of holes in the system, the EoS is given by

ath 2
(aan ) +z_o[ln[(zoMo/z) ]_ o ]_pbo ~0 Ba1)
T.p.N

oM, 2 M1 kT | kT

Again, the explicit EoS can be found after choosing the appropriate athermal ways
function.
The numbers of interactions for the off-diagonal elements are governed by the

relation

MkOMIO —exp| - ok + o _ M _ Moo (B42)
MM, kT kT kT kT

The diagonal terms are given by

2
MOs =exp|:_(2 ’70:' _ nss _ ’700 ]} (B.43)

MM, k,T kT kT

These terms can be combined to give the familiar interchange energy of the quasi-

chemical equations
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Mk[M[k =exp[_(277kl_nkk _”U)j| (B.44)
Mklel kBT

This relation is true for combinations of k>0 and />0. It is also the case that equations
like Equation (B.44) are used to calculate the actual maximizing variables, and thus, the
solution to the quasi-chemical equations.

It is at this point useful to concisely express the results of the derivations as a set
of non-linear expressions. The equations include the EoS, Equation (B.41), the relations
for interaction distances, Equation (B.40), the quasi-chemical relations, Equation (B.44),
and the fundamental model relations, Equations (B.1) through (B.4).

Within these expressions, define a set of dimensionless relations that simplify the

derivation results even further. Let the local composition of / groups around & groups

be defined as

Kl
__M B.45
Y M, /2 ( )
Let the surface area fraction of group & be defined as

0, = el T /2 (B.46)

I
With these relations and the equations from the derivation, the non-linear system of

equations determining the model variables is give by

ath
(51119 J +Z_o[ln(&]_h}_l’_l%=o (B.47)
ONy Jrow 21 W) KT kT

O Yy =®/y,k,(k,l =1929-"9m) (B.48)

D v =L(k=0,1,..,m) (B.49)
!
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Dudw _ 22 (k,1=0,1,...,m) (B.50)
VeV
with 7,, defined as
v —exp| - 2 " Mu =T (B.51)
u = exp 2%,T '
B

This system of equations is the generalization of the quasi-chemical equations,
where in the past vacancies were not included on the lattice, and interaction volumes
always vanished, leaving 77, = ¢, .

A significant simplification of the model equations can be made to relate this

model to that employed by the COSMO-based methods. Define I', as a quantity related

to the activity of functional group & through the relation

T, =y, /®, (B.52)

Using this relation, Equations (B.47) through (B.50) reduce significantly, to the system

described by
ath
(alnﬂ] _Z_o[lnrg_ﬂ]_ﬁ’odo (B.53)
Ny, ). . 2 kT | kT
FL =Y 05,0, (k=0,1,...m) (B.54)
!

k
This latter result is given for COSMO-based models, while the EoS is necessary to

describe vacancies on the lattice.



APPENDIX C

INPUT FILES FOR GAUSSIAN 98W

C.1 Full Input File
The following input file contains all five sections outlined in Section 6.1: header section,

route section, title, Z-matrix and the wavefunction file name. A geometry optimization is

performed on ethanamide (CH,CONH, ), and a .wfn file is given as an output. If a.win

file is not desired, the keyword “output=wfn” and the final two lines of the input file may

be omitted.

$chk=ethanamide.chk

gmem=400MB

$nproc=1

#opt rmp2(full)/aug-cc-pvdz density output=wfn

OPT calculation of ethanamide at mp2 level

0 1
Cl
02 1 Bl
C3 1 B2 2 Al
H4 3 B3 1 A2 2 D1
HS 3 B4 1 A3 2 D2
H6 3 B5 1 Ad 2 D3
N7 1 B6 2 A5 3 D4
H8 7 B7 1 A6 2 D5
H9 7 B8 1 A7 2 D6

Bl 1.231687

B2 1.511214

B3 1.089296

B4 1.087833

B5 1.084815

B6 1.371706

B7 1.007534

B8 1.005152

Al 122.740081

A2 109.047689

A3 112.200378

A4 108.574315

A5 121.926423

A6 116.973255

A7 120.925002

D1 90.076546
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D2 -149.414353
D3 -27.879112
D4 -179.722359
D5 -11.048318
D6 -167.113695

ethanamide.wfn

C.2 Input File using .chk Checkpoint File
The following input file utilizes an already existing checkpoint file to read the title,
charge, multiplicity and Z-matrix for the molecule, outlined in Section 6.4. Note the use

of the “geom=allcheck™ and “guess=read” keywords listed in the route section. A single

point energy calculation is performed on ethanamide (CH3CONH2) , and a .wfn file is

given as an output. If a .wfn file is not desired, the keyword “output=wfn” and the final

two lines of the input file may be omitted.

$chk=ethanamide.chk

$mem=4 00MB

$nproc=1

#hf/6-31++G(d,p) geom=allcheck guess=read
#scf=tight output=wfn

ethanamide.wfn

C.3 Output File from Gaussian 98W
The output file from Gaussian 98W listed below includes the following: common
beginning lines; coordinates of the nuclei; statement of method used in analysis of the
electron density; the electrostatic properties of the molecule; and the AIM properties.
The listing of AIM properties includes: location of attractors; location of critical points;
electrostatic properties; and energetic properties. Each of the sections described here is

separated by a ‘+ + + +’ line below.



Entering Gaussian System, Link 0=g98

Input=hfluoride3j30o.speaim.txt

Output=hfluoride3j3o.speaim.out

Initial command:

1ll.exe "E:\G98W\gxx.inp" "hfluoride3j3o.speaim.out" /scrdir="E:\G98W\"
Entering Link 1 = ll.exe PID= 664.

Copyright (c) 1988,1990,1992,1993,1995,1998 Gaussian, Inc.
All Rights Reserved.

This is part of the Gaussian(R) 98 program. It is based on

the Gaussian 94 (TM) system (copyright 1995 Gaussian, Inc.),

the Gaussian 92 (TM) system (copyright 1992 Gaussian, Inc.),

the Gaussian 90 (TM) system (copyright 1990 Gaussian, Inc.),

the Gaussian 88 (TM) system (copyright 1988 Gaussian, Inc.),

the Gaussian 86 (TM) system (copyright 1986 Carnegie Mellon
University), and the Gaussian 82 (TM) system (copyright 1983
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.

++++
Z-Matrix orientation:
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
1 9 0 0.000000 0.000000 0.092619
2 1 0 0.000000 0.000000 -0.833570
++++

dhxkdhkh kI rdxhhkdxdkddhkdhkddhdhkddddhhrhddhkdhdkdhhkhkdkddFdhhkhkhkdkdddrhhkkdddhdrhhkhkkkdkhhhk

Population analysis using the MP2 density.

dhkkhkdhhhhdhhkhhhhhdhhhhdhdhhhkddrhhhhhhkddrhhhhhhhhdhhdhkhkdhkhdhhkdhkhdhdrxhddkhhhk

4+

Total atomic charges:
1
1 F -0.280735
2 H 0.280735
Sum of Mulliken charges= 0.00000
Atomic charges with hydrogens summed into heavy atoms:
1
1 F 0.000000
2 H 0.000000
Sum of Mulliken charges= 0.00000

Electronic spatial extent (au): <R**2>= 14.4297
Charge= 0.0000 electrons
Dipole moment (Debye):
X= 0.0000 Y= 0.0000 Z= -1.8175 Tot= 1.8175
Quadrupole moment (Debye-Ang):
XX= -5.9620 YY= -5.9620 Zz2= -3.7762
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Octapole moment (Debye-Ang**2):
XXX= 0.0000 YYY= 0.0000 2zZ= -1.8087 XYY= 0.0000
XXY= 0.0000 XXzZ= -0.1093 Xzz= 0.0000 YzZz= 0.0000
YYZ= -0.1093 XYzi= 0.0000
Hexadecapole moment (Debye-Ang**3):
XXXX= -4.4001 YYYY= -4.4001 zz2zz= -3.9085 XXXY= 0.0000
XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 zzZX= 0.0000
Z222Y= 0.0000 XXYY= -1.4667 XXZZ= -1.6428 YYZZ= -1.6428
XXYZ= 0.0000 YYXZ= 0.0000 ZzXYy= 0.0000

N-N= 5.142141874930D+00 E-N=-2.498608080782D+02 KE =9.992363305921D+01
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+H++

dhkkhkhkdhkkhk kA Ak Ak r Ak hhhkk kA kA khkhkkhkkhhhkdhkhkkkddhhkkhhhkkkdxrdhhkdhxkh

Properties of atoms in molecules using the MP2 density.

hkkkkdhhhkkhhkhhhdkdrh bk rkkkkhkkhkh ok hhkhkh kA kA hr Ak hkhkkdhhFhhkhkdkdkrhrhkdkdxdhdhkhd

I. ATTRACTORS

Attr. Cartesian Coordinates Nucleus Density
X Y Z (Distance) Total Spin

1 0.000000 0.000000 0.175020 F (0.000005) 0.42851E+03 0.00000E+00
2 0.000000 0.000000 -1.465056 H (0.110163) 0.36197E+00 0.00000E+00

II. CRITICAL POINTS ON ATTRACTOR INTERACTION LINES

Line Attractors Cartesian Coordinates Density
A B X Y Z Total Spin
1 2 1 0.000000 0.000000 -1.282010 0.35102E+00 0.00000E+00
++++

Attr Number of electrons Charge
total spin
1 9.720001 0.000000 ~0.720001
2 0.280083 0.000000 0.719917
Total 10.000084 0.000000 -0.000084
Attr Kinetic energy Dipole moment
G K L X Y Z
1 0.996488E+02 0.996499E+02 0.112E-02 0.000000 0.000000 0.420704
2 0.274697E+00 0.274281E+00 -0.416E-03 0.000000 0.000000 0.045586

Total 0.999235E+02 0.999242E+02 0.703E-03 0.000000 0©0.000000 0.466290

Attr Traceless quadrupole moment
XX YY ZZ XY XZ YZ
1 ~0.149910 -0.149910 0.299820 0.000000 0.000000 0.000000
2 0.062823 0.062823 -0.125646 0.000000 0.000000 0.000000
Total -0.087087 -0.087087 0.174174 0.000000 0.000000 0.000000
++++

Normal termination of Gaussian 98.



APPENDIX D

WAVEFUNCTION OUTPUT

A wavefunction file for water at the MP2/3-21G level and basis set is presented.
The .win file yields the characteristics of the wavefunction approximation, and when
calculated properly, will give the computed electron density at any point relative to the
position of the nuclei. The electron density at a point is found through the summation of

the electron density contributed by each orbital y*° multiplied by the occupation of that

orbital v

Mo 2

p(r)=2 v [w(v)] (D.1)

I=1

where n,,, is the total number of orbitals used in the calculation, and is not necessarily
equal to half the number of electrons (to yield two electrons within each orbital). Here,
the orbitals used with the calculation are molecular orbitals (MOs), which have
contributions centered on all nuclei within the system. Also, the occupation number v of
an orbital is two for HF calculations and not necessarily two for methods based on higher
theory, since more states are available for electrons to inhabit in methods that include
electron correlation.

The MOs are further described by GTFs and with number given by the basis set

chosen for calculation. A given MO consists of n,,,, primitives of the form of a GTF
which, for AIM calculations, can take the form of s-type orbitals (i+ j+k =0), p-type
orbitals (i+ j+k=1), d-type orbitals (i+j+k=2), or f-type orbitals (i+ j+k=3).

In general, a MO is represented as
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WIMO (r) = ; Comm (r)
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(D.2)

where c,,, gives the coefficient that multiplies the m" primitive within the /" orbital.

Each GTF within the wavefunction file has a different exponent and orbital center, and

all the information is given within the .wfn file.

Title Card Required

GAUSSIAN 13 MOL ORBITALS 21 PRIMITIVES 3 NUCLEI
0 1 (CENTRE 1) 0.00000000 0.00000000 0.20940408 CHARGE = 8.0
H 2 (CENTRE 2) 0.00000000 1.48149962 -0.83761633 CHARGE = 1.0
H 3 (CENTRE 3) 0.00000000 -1.48149962 -0.83761633 CHARGE = 1.0
CENTRE ASSIGNMENTS 111 1 11 1 11 1 1 1 11 2 2 2 3 3
CENTRE ASSIGNMENTS 3
TYPE ASSIGNMENTS 11 1 1 1 2 2 3 3 4 4 1 2 3 1 1 1 1 1
TYPE ASSIGNMENTS 1
EXPONENTS 0.3220370D+03 0.4843080D+02 0.1042060D+02 0.7402940D+01 0.1576200D+01
EXPONENTS 0.7402940D+01 0.1576200D+01 0.7402940D+01 0.1576200D+01 0.7402940D+01
EXPONENTS 0.1576200D+01 0.3736840D+00 0.3736840D+00 0.3736840D+00 0.3736840D+00
EXPONENTS 0.5447178D+01 0.8245472D+00 0.1831916D+00 0.5447178D+01 0.8245472D+00
EXPONENTS 0.1831916D+00
MO 1 MO 0.0 OCC NO = 2.0000059 ORB. ENERGY = 0.0000000
0.31343219D+01 0.44912805D+01 0.28565813D+01 -0.13214659D+00 0.12510020D+00
-0.19801657D-13 -0.99991662D-14 -0.39659636D-15 -0.20026773D-15 -0.14882765D-01
-0.75152926D-02 -0.62013784D-02 -0.23982472D-14 0.13217562D-16 0.26597630D-02
0.19085423D-02 0.26811292D-02 0.14149938D-02 0.19085423D-02 0.26811292D-02
0.14149938D-02
MO 2 MO 0.0 OCC NO = 1.9923686 ORB. ENERGY = 0.0000000
-0.86268546D+00 -0.12361724D+01 -0.78624059D+00 -0.29709090D+00 0.28124928D+00
-0.90766252D-13 -0.45833884D-13 -0.36232990D-15 -0.18296433D-15 0.50984632D+00
0.25745513D+00 0.27525592D+00 -0.10659108D-13 -0.33074145D-16 0.60634827D-01
0.19865283D-01 0.27906844D-01 -0.55570495D-02 0.19865283D-01 0.27906844D-01
-0.55570495D-02
MO 3 MO 0.0 OCC NO = 1.9873068 ORB. ENERGY = 0.0000000
-0.10796407D-13 -0.15470553D-13 -0.98397087D-14 -0.14258108D-13 0.13497830D-13
0.22142760D+01 0.11181344D+01 -0.61019419D-15 -0.30812740D-15 -0.42764437D-13
-0.21594593D-13 0.10398403D-13 0.26370166D+00 -0.56189151D-16 -0.44858988D-14
0.30082167D-14 0.42259569D-14 0.58554825D-15 0.30299521D-14 0.42564910D-14
0.55746521D-15
MO 4 MO 0.0 OCC NO = 1.9817530 ORB. ENERGY = 0.0000000
0.92828368D-01 0.13301704D+00 0.84602598D-01 0.35023256D-01 -0.33155729D-01
0.73838435D-13 0.37285910D-13 0.17917952D-15 0.90479592D-16 0.18757167D+01
0.94717342D+00 0.21486354D-01 0.88486590D-14 0.66894373D-17 0.20607671D+00
-0.66170870D-01 -0.92957149D-01 -0.22498740D-01 -0.66170870D-01 -0.92957149D-01
-0.22498740D-01
MO 5 MO 0.0 OCC NO = 1.9788228 ORB. ENERGY = 0.0000000
-0.57947634D-17 -0.83035210D-17 -0.52812739D-17 -0.93353628D-16 0.88375781D-16
0.44031146D-15 0.22234238D-15 0.17232217D+01 0.87016861D+00 -0.11145607D-15
-0.56281542D-16 0.49124612D-16 0.55483603D-16 0.14562428D+00 -0.94271143D-17
0.93478726D-01 0.13131935D+00 0.37757062D-01 -0.93478726D~01 -0.13131935D+00
-0.37757062D-01
MO 6 MO 0.0 OCC NO = 0.0187608 ORB. ENERGY = 0.0000000
0.12138664D-16 0.17393920D-16 0.11063025D-16 -0.10886717D-14 0.10306210D-14
0.21347783D-15 0.10779907D-15 0.35120093D+01 0.17734458D+01 0.16072792D-14
0.81162159D-15 -0.24043637D-15 0.20839420D-16 0.49441379D-01 -0.81774318D-16
-0.13200753D+00 -0.18544479D+00 -0.82447623D-01 0.13200753D+00 0.18544479D+00
0.82447623D-01



MO 7
.30670183D+00
.20111260D-13
.17714846D+01
.12852689D+00
.57220123D-01
MO 8

0.22775760D-15
.43843706D+01
.20236825D-13
.16232121D-14

0.20391541D-14
MO 9

0.41612575D+00

0.14404074D-13
.10982006D+01
0.93644475D-01
0.15866831D-03

10
0.34823045D-15
0.11953610D-15
0.42663061D-14
0
0

[eNeoNoNoRe]

.35793192D+00
.79784526D-01
11
.95515979D-02
.75935607D-14
.50713204D+00
0.37508012D+00
.56118237D-01
12
0.45421399D-15
.13433725D-15
0.16036515D-14
.92885616D-01
.26040258D+00
13
0.24140963D-01
0.50236340D-13
-0.85975272D+00
-0.60380842D-01
0.19696365D+00
END DATA
THE HF ENERGY

MO 0.

MO O.

MO O.

MO O.

MO O.

MO O.

MO O.

0

OCC NO

.43948388D+00
.10155505D-13
.15706575D+00
.18055519D+00

OCC NO

.32636191D-15
.22139587D+01
.45948960D-14
.22802960D-14

OCC NO

.59628127D+00
.72735694D-14
.24796304D+00
.13155220D+00

OCC NO

.49899171D-15
.60361681D-16
.31849857D-14
.50282445D+00

0CC NO

.13686822D-01
.38344910D-14
.36207041D+00
.52691432D+00

OCC NO

.65085926D-15
.67835765D-16
.13424691D-14
.13048615D+00

OCC NO

.34592438D-01
.25367651D-13
.60877104D+00
.84823291D-01

-75.585809975842 THE VIRIAL(-V/T)=

0.0172343

.27952416D+00
.22056340D-14
.18840350D-14
.57220123D-01

0.0120382

.20757539D-15
.15794759D-16
.40166082D+00
.20361049D-14

0.0073579

.37925173D+00
.54352495D-15
.12685824D-14
.15866831D-03

0.0020107

.31737282D-15
.18487725D+01
.12250648D-16
.79784526D-01

0.001e872

.87052052D-02
.15189197D-13
.68935776D-15
.56118237D-01

0.0004158

.41396487D-15
.26747545D+01
.10658274D-16
.26040258D+00

0.0002379

.22001768D-01
.54033323D-14
.45845399D-14
.19696365D+00

ORB. ENERGY =
0.25162149D+00
-0.11137705D-14
0.29293024D-15
0.12852689D+00

ORB. ENERGY =
-0.76110701D-14
-0.79758185D-17
0.34871437D-17
-0.16214247D-14

ORB. ENERGY =
0.14239074D+01
-0.27446170D-15
0.57955343D-15
0.93644475D-01

ORB. ENERGY =
0.98094875D-14
0.93356750D+00

-0.45271402D+00

-0.35793192D+00

ORB. ENERGY =
-0.10502437D+01
0.76700302D-14
-0.41602276D-14
0.37508012D+00

ORB. ENERGY =
0.35230268D-14
0.13506604D+01

-0.54118385D+00
0.92885616D-01

ORB. ENERGY =
-0.11612109D+01
0.27284999D-14
-0.95570172D-15
-0.60380842D-01

0.0000000

-0.23820441D+00
0.35081256D+01

-0.89695821D-01
0.18055519D+00

0.0000000
0.72052289D-14

-0.40075608D-13
0.45819365D-14

-0.22777851D-14

0.0000000

-0.13479811D+01

-0.21748004D+01
0.30279138D+00
0.13155220D+00

0.0000000
-0.92864213D-14
0.84486974D-14
-0.24616399D-14
-0.50282445D+00

0.0000000
0.99424211D+00

-0.10042892D+01
0.30856594D+00
0.52691432D+00

0.0000000

-0.33351702D-14
0.31757604D-14

-0.64618900D-15
0.13048615D+00

0.0000000
0.10992923D+01

-0.17025948D+01
0.33398091D+00

-0.84823291D-01

2.00183768
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APPENDIX E

TABLES OF MOLECULAR PROPERTIES

The table of molecular properties contains data for dipole moments (“Dipole Moments”,

2004), molecular polarizabilities (Miller, 2004), and ionization potentials (Lias, 2004).
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Table E.1 Molecular Properties: Alkanes

molecule name CAS number OPT uSI(’lIDE) o SPE a S:;S ) p“r I (eV)
methane 74-82-8 243 2.593 12.61

ethane 74-84-0 4.18 4.47 11.56

propane 74-98-6 0.082 0.091 0.084 5.96 6.29 10.95

butane 106-97-8 7.77 8.2 10.53

g-butane 106-97-8-conf 0.086 0.096 7.69

isobutane 75-28-5 0.129 0.144 0.132 7.76 8.14 (10.57)
pentane 109-66-0 0.081 0.090 9.57 9.99 10.28

g-pentane 109-66-0-conf 0.062 0.067 9.51

isopentane 78-78-4 0.093 0.104 0.13 9.50 10.32

neopentane 463-82-1 9.56 10.2 (10.2)

hexane 110-54-3 11.44 11.9 10.13

g-hexane 110-54-3-conf 0.085 0.092 11.31

2-methylpentane 107-83-5 0.132 0.147 0.1 11.33 (10.12)
3-methylpentane 96-14-0 0.083 0.092 11.26 (10.08)
2,2-dimethylbutane 75-83-2 0.054 0.063 11.25 (10.06)
2,3-dimethylbutane 79-29-8 0.000 0.000 0.2 11.23 (10.02)

00€



Table E.2 Molecular Properties: Alkenes

molecule name CAS number OPT uSI(’[l;) op SPE i S::a) - I (eV)
ethene 74-85-1 4.02 4.252 10.5138
propene 115-07-1 0.410 0.370 0.366 5.88 6.26 9.86
1-butene 106-98-9 0.452 0.373 0.438 7.73 8.27 9.55
trans-2-butene 624-64-6 0.000 0.000 7.79 8.49 9.10.
cis-2-butene 590-18-1 0.246 0.260 0.253 7.67 9.11
2-methylpropene 115-11-7 0.592 0.502 0.503 7.70 8.29 9.239
1-pentene 109-67-1 0.433 0.382 0.4 9.58 9.65 9.51
trans-2-pentene 646-04-8 0.042 0.050 9.63 9.84 9.04
cis-2-pentene 627-20-3 0.293 9.52 9.84 9.01
2-methyl-2-butene 513-35-9 0.197 9.54 8.69
3-methyl-1-butene 563-45-1 0.318 0.32 9.55 9.52
1-hexene 592-41-6 0.501 0.420 0.4 11.43 11.65 9.44

10€



Table E.3 Molecular Properties: Amines

molecule name CAS number opT uSI(’[};) o SPE i g:j ) - I (eV)
methanamine 74-89-5 1.541 1.325 1.31 3.79 4.01 (8.80)
ethanamine 75-04-7 1.533 1.323 1.22 5.60 7.10. 8.86
t-1-propanamine 107-10-8 1.600 1.406 1.17 7.39 9.20. 7.7 (8.78)
g-1-propananmine 107-10-8-conf 1.454 1.283 731

2-propanamine 75-31-0 1.438 1.293 1.19 7.41 7.77 (8.72)
t-1-butanamine 109-73-9 1.572 1.378 1.3 9.20 13.5 8.7
g-1-butanamine 109-73-9-conf 1.417 1.243 9.12

2-butanamine 13952-84-6 1.417 1.238 [1.28] 9.13 8.46
2-methyl-1-propanamine  78-81-9 1.429 1.266 1.2 9.11 8.50.
2-methyl-2-propanamine ~ 75-64-9 1.370 1.222 [1.29] 9.17 8.46
1-pentanamine 100-58-7 1.626 1.439 11.06
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Table E.4 Molecular Properties: Diamines

molecule name CAS number OPT #Sl(’[];) o SPE @ t(::: ) o I (eV)
dimethylamine 124-40-3 1.228 1.067 1.01 5.60 6.37 8.24
methylethylamine 624-78-2 1.162 1.018 7.45

diethylamine 109-89-7 1.100 0.974 0.92 9.27 10.2 9.61 7.85
methyl-n-propanamine 627-35-0 1.118 0.981 9.22

methylisopropanamine 4747-21-1 1.101 0.977 9.13

Table E.5 Molecular Properties: Triamines

molecule name CAS number OPT uSI(’I;) o SPE -l S;ﬁ ) o I (eV)
trimethylamine 75-50-3 0.849 0.655 0.612 7.49 8.15 7.82
n,n-dimethyl-ethylamine ~ 598-56-1 0.798 0.616 9.35

methyldiethylamine 616-39-7 0.753 0.582 11.10

Table E.6 Molecular Properties: Nitriles

molecule name CAS number OPT uSl(’]])E) po SPE i S:;IS ) ke I (V)
ethanenitrile 75-05-8 4.323 3936  3.92519 431 4.4 4.48 12.2
propanenitrile 107-12-0 4438 4.029 4.05 6.15 6.7 6.24 11.84
butanenitrile 109-74-0 4.559 4.153 3.91 7.94 8.4 (11.2)
2-methylpropanenitrile 78-82-0 4.481 4.042 429 7.88 8.05 (11.3)
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Table E.7 Molecular Properties: Alcohols

molecule name CAS number opT uSI(’Il;) o SPE @ g;:3) — I(eV)
methanol 67-56-1 2.062 1.705 1.7 3.10 3.23 3.32 10.85
ethanol 64-17-5 1.928 1.619 1.69 4.89 5.41 5.11 10.43
g-1-propanol 71-23-8 1.821 1.534 1.58 6.64 6.74 10.18
t-1-propanol 71-23-8-conf 1.820 1.528 1.55 6.68

2-propanol 67-63-0 1.938 1.669 1.58 6.67 7.61 6.97 10.17
g-1-butanol 71-36-3 1.806 1.521 1.66 8.45 8.88 9.99
t-1-butanol 71-36-3-conf 1.874 1.595 8.45

2-butanol 78-92-2 1.970 1.710 1.7 8.41 9.88
2-methyl-1-propanol 78-83-1 1.720 1.446 1.64 8.43 8.92 10.02
2-methyl-2-propanol 75-65-0 1.880 1.634 1.7 8.44 9.90.
g-1-pentanol 71-41-0 1.797 1.515 1.7 10.26 (10.00)
t-1-pentanol 71-41-0-conf 1.789 1.505 10.34

2-methyl-2-butanol 75-85-4 1.782 1.541 1.9 10.14 9.8)
3-methyl-1-butanol 123-51-3 1.732 1.448 10.19

1,2 propanediol 57-55-6 3.083 2.687 [2.25] 7.32

1,3 propanediol 504-63-2 2.647 2.255 [2.55] 7.35

1-methoxy-2-propanol 107-98-2 2.823 2.397 2.36 9.20
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Table E.8 Molecular Properties: Ethers

molecule name CAS number oPT uSI(’]::) o SPE a S:;z) — I (V)
dimethyl ether 115-10-6 1.693 1.355 1.30. 491 5.29 10.025
methy] ethyl ether 540-67-0 1.571 1.261 1.17 6.80 7.93 9.72
diethyl ether 60-29-7 1.463 1.175 1.15 8.59 8.73 9.51
methyl propy! ether 557-17-5 1.484 1.183 1.107 8.54 8.86 9.41
methyl isopropyl ether 598-53-8 1.582 1.311 1.247 8.48 9.45
methyl tert-butyl ether 1634-04-4 1.554 1.311 10.15 (9.24)
ethyl tert-butyl ether 637-92-3 1.467 1.242 12.00

Table E.9 Molecular Properties: Aldehydes

molecule name CAS number oOPT uSI(’]})E) - SPE il 211:3) p_— I (eV)
methanal 50-00-0 3.061 2.430 2.332 2.57 2.8 2.45 10.88
ethanal 75-07-0 3.450 2.834 2.75 4.43 4.59 10.229
propanal 123-38-6 3.301 2.711 2.72 6.13 6.5 9.96
butanal 123-72-8 3.218 2.635 2.72 7.94 8.2 9.84
2-methylpropanal 78-84-2 3.383 2.787 2.69 7.90 9.71
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Table E.10 Molecular Properties: Ketones

# (D)

a (nm’)

molecule name CAS number opT SPE o SPE oxp o I (eV)
propanone 67-64-1 3.621 3.009 2.88 6.18 6.33 6.39 9.703
butanone 78-93-3 3.445 2.852 2.779 7.91 8.13 9.52
2-pentanone 107-87-9 3.336 2.745 2.7 9.71 9.93 9.38
3-pentanone 96-22-0 3.275 2.702 2.8 9.61 9.93 9.31
3-methyl-2-butanone 563-80-4 3.473 2.874 2.5 9.62 9.30.
methyl vinyl ketone 78-94-3 3.324 2.769 8.00

Table E.11 Molecular Properties: Carboxylic Acids

molecule name CAS number opT uSI(’I]? o SPE i S;I:) — I (eV)
methanoic 64-18-6 1.733 1.465 1.425 3.32 3.4 11.33
ethanoic 64-19-7 2.038 1.690 1.7 5.05 5.1 10.65
propanoic 79-09-4 1.894 1.551 1.75 6.78 6.9 10.525
butanoic 107-92-6 1.824 1.477 1.5 8.59 8.58 10.17
2-methylpropanoic 79-31-2 1.986 1.634 1.3 8.54 10.33
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Table E.12 Molecular Properties: Esters

u (D)

a (nm’)

molecule name CAS number OPT SPE - SPE b s I (V)
methyl methanoate 107-31-3 2.061 1.853 1.77 5.06 5.05 10.835
methyl ethanoate 79-20-9 2.097 1.808 1.72 6.83 6.94 6.81 10.25
ethyl methanoate 109-94-4 2.289 2.105 1.93 6.90 8.01 6.88 10.61
methyl propanoate 554-12-1 1.931 1.653 1.7 8.59 8.97 10.15
ethyl ethanoate 141-78-6 2.193 1.943 1.78 8.69 9.7 8.62 10.01
propyl methanoate 110-74-7 2.360 2.179 1.9 8.65 10.52
propyl ethanoate 109-60-4 2.321 2.048 [1.78] 10.42 (9.92)
methyl acrylate 96-33-3 1.695 1.517 [1.77] 8.73 (9.9)
vinyl ethanoate 108-05-4 2.068 1.764 [1.79] 8.95 9.19
methyl butanoate 623-42-7 1.842 1.579 10.43 10.41 (10.07)
ethyl propanoate 105-37-3 2.078 1.817 [1.74] 10.41 10.41 (10.00)
butyl methanoate 592-84-7 2.361 2.181 [2.03] 10.49 10.52
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Table E.13 Molecular Properties: Fluorides

molecule name CAS number opT uSI(’]])E) o= SPE a S:;} ) — I (eV)
fluoromethane 593-53-3 2.351 1.951 1.858 245 2.97 12.47

fluoroethane 353-36-6 2.403 2.051 1.937 4.23 4.96 (11.78)
g-1-fluoropropane 460-13-9 2.307 1.974 1.9 5.97 (11.3)

t-1-fluoropropane 460-13-9-conf 2.450 2.112 2.05 5.98

2-fluoropropane 420-26-8 2.397 2.069 1.958 5.98 (11.08)
g-1-fluorobutane 2366-52-1 2.246 1.913 7.76

t-1-fluorobutane 2366-52-1-conf 2.523 2.188 7.75

2-fluorobutane 2.294 1.979 7.74

2-methyl-1-fluoropropane 2.301 1.971 71.72

2-methyl-2-fluoropropane 353-61-7 2.368 2.052 7.74
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Table E.14 Molecular Properties: Amides

molecule name CAS number OPT uSI(’[I?Z) pow SPE @ 21;1;‘3) -~ I (eV)
methanamide 75-12-7 4.451 3.895 3.73 4.15 4.2 4.08 10.16
ethanamide 60-35-5 4.402 3.820 3.68 5.85 5.67 9.65
propanamide 79-05-0 4.262 3.685 7.59

butanamide 541-35-5 4.085 3.542 9.32

2-methylpropanamide 563-83-7 4.183 3.656 9.35

Table E.15 Molecular Properties: Nitros

molecule name CAS number opT uSI(’];) o0 SPE @ 22:3) o I (eV)
nitromethane 75-52-5 4.388 3.505 3.46 4.83 7.37 11.08
nitroethane 79-24-3 4.569 3.689 3.23 6.56 9.63 10.88
1-nitropropane 108-03-2 4516 3.670 3.66 8.25 8.5 (10.81)
2-nitropropane 79-46-9 4.653 3.768 3.73 8.27 (10.71)
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Table E.16 Molecular Properties: Inorganics

u (D)

a (nm*)

molecule name CAS number oPT SPE - SPE po p_p I (eV)
carbon monoxide 630-08-0 0.438 0.243 0.1098 1.96 1.95 14.014
carbon dioxide 124-38-9 2.64 2911 13.773
hydrogen fluoride 7664-39-3 2.088 1.818 1.826178 0.74 0.8 16.044
fluorine 7782-41-4 1.08 1.38 15.697
molecular hydrogen 1333-74-0 0.75 0.8059 15.42593
water 7732-18-5 2.276 1.857 1.8546 1.37 1.45 12.6206
ammonia 7664-41-7 1.813 1.468 1.4718 2.05 2.81 10.070.
nitrogen 7727-37-9 1.73 1.7403 15.5808
nitrous oxide 10024-97-2 0.594 0.125  0.16083 2.97 3.03 12.886
neon 7440-01-9 0.30 21.56454
molecular oxygen 7782-44-7 1.31 1.5812 12.0692
hydrogen cyanide 74-90-8 3.342 3.017 2.985188 247 2.59 13.60.
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APPENDIX F

INPUT AND OUTPUT FILES FOR PROAIMV

F.1 Input for Basic Integration

hexane3j3o
C 2
PROAIM
200
-2.667587 3.991982 0.000000
-1.345536 1.998661 0.000000
180 90 200
OPTIONS
INTEGER 2
11
3 500
REAL 1
1 12.0

F.2 Input for Integration of groups in Electric Field

hexane3j3o z+50
C 2
PROAIM
200
-2.667588 3.991992 0.002022
-1.345539 1.998663 0.001876
90 45 100
OPTIONS
INTEGER 1
11
REAL 1
1 12.0

F.3 Input for External Surface Area Calculation

hexane3j3o0
C 2
PROAIM
200
-2.667587 3.991982 0.000000
-1.345536 1.998661 0.000000
90 45 100
OPTIONS
INTEGER 2
2 100
3 100
REAL 1
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4 1.0D-9

xsa isodensity surface

0.001d0

montecarlo volume routine

100 'ntrials

100000 'number of random points per trial

F.4 Output for Integration

PROAIMV - Version 94 - Revision B

hexane geometry 2t [opt=tight rmp2=full/6-31++g(d,p)]
-V/T FOR THIS WAVEFUNCTION = 2.00070274000
MOLECULAR SCF ENERGY (AU) = -235.39269906658

hexane3j3o
PROAIM SURFACE ALGORITHM USED
Critical Points in Atomic Surface:
1 Bond -2.66758700E+00 3.99198200E+00 0.00000000E+00
2 Bond -1.34553600E+00 1.99866100E+00 0.00000000E+00
Optional Parameters Read From Input
INTEGRATION IS OVER ATOM C 2
DYNAMIC CUTOFFS USED THROUGHOUT
CUTOFF VALUE USED IS 1.00E-09
PRE-INTEGRATION PRIMITIVE CUTOFF ALGORITHM USED

TOTAL NUMBER OF PRIMITIVES = 412
NUMBER OF PRIMITIVES USED OUTSIDE BETA SPHERE= 287
NUMBER OF PRIMITIVES USED INSIDE BETA SPHERE= 291

23200 OF THE 75768 PRIM COEFFS ZEROED OUTSIDE BETA SPHERE
20001 OF THE 76824 PRIM COEFFS ZEROED INSIDE BETA SPHERE
RADIUS OF BETA SPHERE: 1.4363 WITH 200 POINTS PER RAY
Default number of theta and phi planes used for Beta Sphere
36 PHI AND 24 THETA PLANES IN BETA SPHERE
180 PHI AND 90 THETA PLANES OUTSIDE BETA SPHERE

Integrate Out to 1.20E+01 For Rays Intersecting Surface at Infinity

VOL1 RHO CONTOUR THRESHOLD= 0.0010

VOL2 RHO CONTQUR THRESHOLD= 0.0020

Doing Beta Sphere Integration .

Beta Sphere Integration is done ..

Doing Proaim Surface Routine
500 Initial GradRho Trajectories Per Interatomic Surface
140 Points per GradRho Surface Trajectory

Max. Dist. Between Ends of Adjacent GradRho Surface Trajectories

Maximum Length of GradRho Surface Trajectories = 8.00E+00

INSERTION LIMIT USED = 6

INSERTION LIMIT REACHED 0 TIMES FOR SURFACE 1
INSERTION LIMIT REACHED 0 TIMES FOR SURFACE 2
FOR SURFACE # 1 NUMBER OF INSERTED PATHS = 0
FOR SURFACE # 2 NUMBER OF INSERTED PATHS = 0
TOTAL NUMBER OF INSERTED PATHS= 0

Surface is done

Doing Integration Outside of Beta Sphere
Default number of radial points used
Integration Outside of Beta Sphere is Done

RESULTS OF THE INTEGRATION

N 7.98486527866057E+00 NET CHARGE -1.98486527866057E+00

G 3.91029327904546E+01

K 3.91035319975581E+01 E(ATOM) -3.91310116136340E+01
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R (-1}
R1

R2

R4
GR(-1)
GRO
GR1
GR2
VNEO
VNET
VEET
EHF

EL DX
EL DY
EL DZ
EL DIPOLE MAG

.99207103551932E-04
.29160733615813E-01
.58342580029904E+01
.09658789575428E+01
.22311657662070E+01
.59897138020210E+02
.98563050921308E+01
.05314521124194E+01
.69516503316555E+01
.58751598161868E+01
.50055480179420E+01
.71506574163116E+02
.62015210827790E+01
.62015210827790E+01

.31133904626963E+00
.56496468222067E+00
.40889541646776E-06
.79130841065878E+00

ATOMIC QUADRUPOLE MOMENT TENSOR

OXX
QXY
QXZ
QYY
QYZ
Q72

2.
-5.
1.
6.
2.
-9.

39288228225037E+00
08179667916091E+00
90970456971477E-06
62666798331359E+00
93343542977484E-05
01955026556396E+00

VNEO (COR)
VNET (COR)
VEET (COR)

VREP (COR)
V (ATOM)

EIGENVALUES OF QUADRUPOLE MOMENT TENSOR:

-9.95303688499775E-01

1.00148539541321E+01

EIGENVECTORS OF QUADRUPOLE MOMENT TENSOR:

8.32025997649714E-01
5.54736639523696E-01
2.22597409040472E-06

FAXA
FAYA
FAZA
FBXA
FBYA
FBZA
RHO*L
VOL1
VOL2

N (VOL1)
N (VOL2)

-1
-7
1.
-6.
2.

N P

.11458660206909E+00
.89340638668150E-01

55945921953161E-07
55837568210484E+00
13922593424540E-01

.40670729638210E-07
.03155324375102E+03
.59604371906269E+02
.31199459024643E+02
.93688954123273E+00
.89609848053934E+00

MAXIMUM DISTANCE REACHED FROM NUCLEUS

Atomic Overlap Matrix Not Calculated

NORMAL TERMINATION OF PROAIMV

5.54736639526925E-01
-8.32025997649634E-01
-1.22659800827073E-06
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-9.50389183920008E+01
-1.71566815261165E+02
6.62247741408148E+01

9.32952836099598E+01
-7.82715316512053E+01

-9.01955026563236E+00

-1.17162945615666E-06
-2.25539081813172E-06
9.99999999996770E-01

1.1996329351E+01



F.5 Output for Surface Area Calculation

PROAIMV - Version 94 - Revision B

hexane geometry 2t [opt=tight rmp2=full/6-31++g(d,p)]

-V/T FOR THIS WAVEFUNCTION = 2.00070274000
MOLECULAR SCF ENERGY (AU) = -235.39269906658
hexane3j3o0
PROAIM SURFACE ALGORITHM USED
Critical Points in Atomic Surface:

1 Bond -2.66758700E+00 3.99198200E+00 0.00000000E+00

2 Bond -1.34553600E+00 1.99866100E+00 0.00000000E+00
Optional Parameters Read From Input

INTEGRATION IS OVER ATOM C 2

DYNAMIC CUTOFFS USED THROUGHOUT

CUTOFF VALUE USED IS 1.00E-0S

PRE-INTEGRATION PRIMITIVE CUTOFF ALGORITHM USED

TOTAL NUMBER OF PRIMITIVES = 412
NUMBER OF PRIMITIVES USED OUTSIDE BETA SPHERE= 287
NUMBER OF PRIMITIVES USED INSIDE BETA SPHERE= 291

23200 OF TEE 75768 PRIM COEFFS ZEROED OUTSIDE BETA SPHERE
20001 OF THE 76824 PRIM COEFFS ZEROED INSIDE BETA SPHERE
RADIUS OF BETA SPHERE: 1.4363 WITH 100 POINTS PER RAY
Default number of theta and phi planes used for Beta Sphere
36 PHI AND 24 THETA PLANES IN BETA SPHERE
90 PHI AND 44 THETA PLANES OUTSIDE BETA SPHERE

Integrate Out to 9.00E+00 For Rays Intersecting Surface at Infinity

VOL1 RHO CONTOUR THRESHOLD= 0.0010

VOL2 RHO CONTOUR THRESHOLD= 0.0020

Doing Beta Sphere Integration

Beta Sphere Integration is done

Doing Proaim Surface Routine
100 Initial GradRho Trajectories Per Interatomic Surface
100 Points per GradRho Surface Trajectory

Max. Dist. Between Ends of Adjacent GradRho Surface Trajectories = 6.00E-01

Maximum Length of GradRho Surface Trajectories = 8.00E+00

INSERTION LIMIT USED = 6

INSERTION LIMIT REACHED 0 TIMES FOR SURFACE 1
INSERTION LIMIT REACHED 0 TIMES FOR SURFACE 2
FOR SURFACE # 1 NUMBER OF INSERTED PATHS = 52
FOR SURFACE # 2 NUMBER OF INSERTED PATHS = 85
TOTAL NUMBER OF INSERTED PATHS= 137

Surface is done
proaimxsa process has taken 3501.881 seconds

atomxsa routine has begun
the external surface area will be calculated for
the 0.001000 isodensity surface

0 pts fixed using the band-aid routine
writing surface integration (.surfint) file
.surfint file is called hexane3j3o CO02.surfint
xsa vaules within 0.001000 by 0.0000000100
initial shaving uses 1991 wfns of a possible 4140
writing of surface file (.surface) complete
.surface file is called hexane3j3o_C02.surface

23267 wfns used for atomxsa routine
max distance of surface enclosing domain is 4.664816 au
min distance of surface enclosing domain is 1.438520 au

mean distance (r**2*sin(th)) of surface enclosing domain is
mean distance (r*sin(th)) of surface enclosing domain is

atomxsa process has taken 1233.962 seconds
ending atomxsa routine

4.249719 au
4.236977 au
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external surface area and mc volume routine has begun
100 mc trials will be conducted
each with 100000 randomly drawn pts between rmin and rmax
the calculated xsa is 82.4754 au
for closer inspection, refer to xsasum.txt
the mc volume is 159.3228 au
with a std dev of 0.6836 au
for closer inspection, refer to atmcvolpts.txt
aimstruc process has taken 97.446 seconds
ending aimstruc routine

F.6 Executable file

proaimv hexane3j3o met0l hexane3j3o
proaimxsa hexane3j3o metOlsurf hexane3j3o
atomxsa

aimstruc

proaimv hexane3j3c mee02 hexane3j3o
proaimxsa hexane3j3o mee02surf hexane3j3o
atomxsa

aimstruc

proaimv hexane3j3c mee06 hexane3j3o
proaimxsa hexane3j3o_meelO6surf hexane3j3o
atomxsa

aimstruc

proaimv hexane3j3o _mee09 hexane3j3o
proaimxsa hexane3j3o mee09surf hexane3j3o
atomxsa

aimstruc

proaimv hexane3j30 meeld4 hexane3j3o
proaimxsa hexane3j3o meeldsurf hexane3j3o
atomxsa

aimstruc

proaimv hexane3j3c metl5 hexane3j3o
proaimxsa hexane3j3o metl5surf hexane3j3o

atomxsa

aimstruc

proaimv hexane3j3o_x+50 metOl
proaimv hexane3j3o_x+50 mee02
proaimv hexane3j3o x+50 mee(6
proaimv hexane3j3c x+50 mee(9
proaimv hexane3j3o_x+50 _meeld
proaimv hexane3j3o x+50 metl5
proaimv hexane3j3o y+50 metOl
proaimv hexane3j3o_y+50 mee(2
proaimv hexane3j3o_y+50 meel6
proaimv hexane3j3o_y+50 mee(9
proaimv hexane3j3c y+50 meeld
proaimv hexane3j3o_y+50 metl5
proaimv hexane3j3o_z+50_metO1l
proaimv hexane3j3o_z+50_meel2
proaimv hexane3j3o z+50_mee(6
proaimv hexane3j3c z+50 mee(9
proaimv hexane3j3o z+50 meeld
proaimv hexane3j3c z+50 metl5

hexane3j3o x+50
hexane3j30o x+50
hexane3j3o_x+50
hexane3j3o_x+50
hexane3j30 x+50
hexane3j3o_x+50
hexane3j30 y+50
hexane3j3o y+50
hexane3j30 y+50
hexane3j30 y+50
hexane3j3o_y+50
hexane3j30 y+50
hexane3j3o_z+50
hexane3j3o_ z+50
hexane3j3o z+50
hexane3j3o_z+50
hexane3j3o_z+50
hexane3j3o_z+50



APPENDIX G

ATOMS IN MOLECULES PROPERTIES FOR FUNCTIONAL GROUPS

All quantities in the tables are given in atomic units. the conversion factors are as

follows:

E :1au=6275l1 keal =2625.5 L =27.212eV =315780.1K

mol mol

4 2 1 au=2.542 Debye

a :1au=0.14819 nm*

cm’

V :1au=0.089237

mol
A :1au=0.0028 nm>

7, - 1au=0529177 A

The superscripts on values or functional group definitions stand for the following:
tr denotes value found using assumption of transferability
+ denotes a value determined by the summation of atoms within the group

y denotes value partly determined through symmetry
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