New Jersey Institute of Technology

Digital Commons @ NJIT

Physics Syllabi NJIT Syllabi

Fall 2024

OPSE 301 - 101: Optical Science & Engineering Optics

Brandan Balasingham

Follow this and additional works at: https://digitalcommons.njit.edu/phys-syllabi

Recommended Citation

Balasingham, Brandan, "OPSE 301 - 101: Optical Science & Engineering Optics" (2024). *Physics Syllabi*. 726.

https://digitalcommons.njit.edu/phys-syllabi/726

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Physics Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Fall 2024 OPSE 301: Introduction to Optical Science and Engineering

General information: 3 credit hours. M,W: 8:30 AM – 9:50 AM, FMH 403B

Instructor: Brandan Balasingham, (732)-829-9158, brb23@njit.edu

Office Hours: F: 6:00 – 9:00PM or by appointment.

Optional Text: *Physics of Light and Optics* by Peatross and Ware ISBN:

1312929278

Course Content:

Laboratory and lecture. For applied physics, engineering, computer science, or biology majors. Introduces optics and photonics principles with their elementary applications. Topics include speed at light, reflection, refraction, geometric optics, interference and interferometry, polarization, dispersion, birefringence, fiber optics, diffraction, introduction to spectroscopy and ray tracing.

Prerequisite: Phys 121, Math 112, Matlab or Python knowledge

Specific goals for the course

- The student should know the relationships of frequency, wavelength, wave velocity, group velocity, refractive index, intensity, and dispersion
- The students should be able to understand the concepts of rays and wavefronts.
- Student should be able to apply equations of light propagation to determine the solution to different optical problems
- The student should be able to use some form of raytracing software
- The student will have a good understanding of interference and diffraction as well as the ability to solve problems with these principles.
- The student should understand the concepts of light propagation using Maxwell's equations.
- The student should grasp color and how to quantify it. They should understand scattering, dispersion, interference and diffraction gratings.
- The student should understand the mathematical representation of wave polarization as well as its associated states.
- The student should have basic optics related laboratory skills. Students should be able to perform and take data on various optical lab experiments.

Lecture Quiz

Multiple choice lecture quiz to be given at the beginning of class and you will have around 15 minutes to complete each one.

Exams

You will have one midterm and one final exam. There will be open-ended style questions as well as multiple choice.

List of topics to be covered

Topic with Lecture Notes		
EM Spectrum, Snells Law, ABCD Matrices, Total Internal Reflection		
Components: Mirrors, Lens, Prisms		
Electromagnetic Waves, Maxwells Equations		
Plane Waves, Complex Refractive Index, Energy Density of Fields		
Color, Dispersion		
Fresnel Equations, Brewsters Angle, Total Internal Reflection		
Interference, Young's experiment, Thin Film interference		
MIDTERM EXAM		
Beats. Group Velocity, Phase Velocity, Michelson Interferometer		
Intro to Lasers		
Anisotropic Medium, Polarization of Light, Jones Vectors, Waveplates		
Polarization of Light, Waveplates, Polarizers		
Diffraction - Fresnel and Fraunhofer Theory		
Diffraction Applications, Resolution of Telescope		
REVIEW for FINAL		

Grading Criteria:	Final:	30%
	Midterm:	30%
	Lecture Quizzes:	10%
	Labs:	20%
	HW.	10%

Letter Grades: (Curve will be applied at end of semester)

A 100% - 89%, B+ 89.9% - 84%, B 83.9% - 80%, C+ 79.9% - 75%, C 74.9% - 70.0%, D 69.9% - 60%, F <60%,

Academic Integrity is the cornerstone of higher education and is central to the ideals of this course and the university. Cheating is strictly prohibited and devalues the degree that you are working on. As a member of the NJIT community, it is your responsibility to protect your educational investment by knowing and following the academic code of integrity policy that is found

at: http://www5.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf