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CHAPTER 1

INTRODUCTION

1.1	 Objective

The objective of this dissertation is to determine the opto-electronic characteristics of a

variety of nanocomposites as well as various device specific semiconducting materials

using THz spectroscopy.

Nanocomposites like Single Walled Carbon Nanotubes on Quartz and Ion

implanted Silicon Nanoclusters in fused silica were examined in the range of 0.2 to

0.7THz. Their electronic characteristics were analyzed using standard and modified free-

carrier conduction models.

200mm diameter Si1_xGex wafers with varying Ge content and 200mm diameter

Oxide (SiO2 or HfO2) coated p-type Silicon wafers were analyzed so as to extract their

electronic properties. Additional experiments on the dielectric coated wafers revealed that

the effect of oxide on conduction can be quantified in the 0.2 to 1 THz range. Free-carrier

based models were applied in novel ways to infer these properties.

1.2 Why Study Nanomaterials?

With the advent of numerous techniques developed to pattern and create materials on the

nanometer scales, a need developed to be able to accurately predict and measure their

intrinsic electrical properties. While imaging methods can tell a great deal of the structure

1
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down to the atomic scales, the electrical properties have remained a challenge. In

measuring such a property one would assume that a measuring device would need to be

on the same scale as the nanoscale structure. In this regard, techniques have been

developed in the last few years to pattern contacts or create probe tips on such small

structures [1].

The majority of the methods that have been developed mostly yielded information

concerning the interaction of the nanomaterial structure with different environments and

not the structure's intrinsic properties [2]. Nanomaterials on small scales have intrigued

scientists because of the fundamental challenge they impose on our well-established

understandings of the electronic behavior of their bulk counterparts. For example, how

are the electronic properties different in silicon nanostructures (< 10nm) as compared to

the silicon wafer (bulk material size on order of microns)? In this respect, one would like

to find out what happens to the electrical conductivity when the size of the device is on

the order of the mean free path (the characteristic distance over which carriers scatter and

lose their energy)? Our hope before we engaged in this research was to answer these

questions and investigate the conduction mechanisms involved in nanomaterials, in

particular single walled carbon nanotubes.

1.3	 Nanocomposites

To date, nano-sized structural formations have been obtained from a variety of bulk

samples that are metallic, semi-metallic or non-metallic in elemental form.

Characteristics of each structure can further change due to different crystal structures that

have been observed for the same material on the nanoscale, some examples include
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hexagonal or tetrahedral silicon both derived from silicon, as well as the bucky ball

(fullerene), single walled carbon nanotube (swcnt), or multi-wall cnt (mwcnt), all based

on carbon. Among the many different types of structures, we can further classify them by

the way they are grown. Some nanomaterials are grown from a parent substrate, some are

grown individually from atomic constituents and some are used to tailor the properties of

a host material. The latter group is usually referred to as nanocomposites or artificial

dielectrics — manmade composite materials consisting of a dielectric matrix (host)

containing clusters of another material (guest).

Initially, artificial dielectrics were to be used in the construction of lenses that

could focus microwave radiation [3]. In this case metallic particles, in any form such as

spheres or wires, with dimensions on the order of millimeters, were embedded in a

dielectric substrate. The index of refraction of the resulting dielectric was modified; in

essence it was defined by the electric or magnetic dipoles induced in the conducting

particles. This had profound implications. The scientific community by now has realized

the great potential that could be gained by exploring interactions between light and matter

in the optical frequency domain where sub micron size particles are required

[4,5,6,7,8,9]. As different sets of material interactions were explored researchers realized

that the effect of the material on the host could be further enhanced in the presence of

light. From these investigations new classes of materials were born, ones whose

properties can be conditioned by the presence of light and hence were called conditional

artificial dielectrics (CADS). For example, a system of semiconductor particles embedded

in a glass matrix may be brought to a conductive state by absorbed photons having

energy above the bandgap energies of the particulate. The material can be characterized
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as semi-conducting or semi-insulating depending on the energy of the incoming photons

and the application. One needs to note that the embedded particulate/clusters have to be

smaller than the wavelength (k) of the radiation, due to scattering effects which increase

as k-4 . Furthermore, these materials not only exhibit linear interactions. In particular,

upon photo doping (shining light), strong non-linear interactions can be observed due to

optically activated dipoles between semiconductor clusters. Such composites could be

exploited for novel device applications.

1.4 THz on Nanocomposites

These different behaviors define the electrical properties of the resulting medium (AD).

To better understand these properties, methods need to be developed that can extract

information related to the composite materials electrical permittivity or its dielectric

constant, given that we know the properties of the embedded conducting particles and the

host dielectric material. As mentioned earlier, a non-contact technique, such as

spectroscopy can be used to analyze the material properties. Since the absorption

properties of the medium depend on the cluster size and conductivity [4], probing

wavelengths in the THz frequency region is advantageous due to two reasons:

• The wavelengths are much larger than the cluster sizes (sub-mm to mm), so that

scattering effects can be ignored.

• The conduction band of the semiconducting medium under photodoping is no longer

continuous, the state separations lie in the THz frequency range.

The latter is the consequence of the photo-generated carriers. Their presence, in general,

increases the refractive index of the host medium [3]; thus the dielectric properties at
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other frequency regions (THz region) have changed and can be determined through

Kramers-Kronig's relation. The conduction energy bands split into discrete states, which

is an indication of quantum confinement. It has been shown that the states' separation is

in the THz frequency region for cluster sizes on the order of tens of nanometers [10]. By

probing the sample with a THz source, the underlying physical processes of carrier

transport within these structures can be understood, and this can aid in the development

of device design and applications.

Time-resolved studies can also reveal fundamental carrier transport properties

within these clusters. Recently, there have been many investigations into the ultrafast

(picosecond or shorter) carrier dynamics of nano-sized clusters [11] using THz pulsed-

spectroscopy. The mobility, inter-valley scattering, carrier relaxation times, and mean-

free path are important parameters for assessing the electronic and optical properties.

Time resolved spectroscopy where one color (visible) of pulsed radiation excites the

sample and the other color (pulsed THz) probes the sample could be used to measure

these parameters.

An additional aspect that we can explore with the above technique deals with non-

linear effects that have been observed for some nanocomposites [12,13,14]. Little is

known about the interactions between individual clusters or nano-structures. We can

explore interactions if any between varying density nano-clusters in the composite

material using THz spectroscopy, and quantify the nature of any non-linear behavior.


