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CHAPTER 1

INTRODUCTION

The study of data hiding (information hiding, watermarking) tries to establish the

achievable limits and the design of methods for conveying a message data, embedded

within a host (cover) signal, in an imperceptible and reliable way. Data hiding

techniques aim at achieving three primary goals. These are:

• Hiding rate: The maximum amount of message data that can be embedded in

a given host signal.

• Robustness: The level of resistance of the embedded signal (stego signal) against

all forms of attacks so that the embedded message data can be reliably extracted

by the receiver.

• Transparency: The degree of perceptual degradation in the host signal due to

the embedding operation.

The design of optimum embedding and detection operations is the central issue in

data hiding research.

Data hiding study provides tools that can be employed to serve a variety of

purposes including, but not limited to, copyright control, ownership verification,

secure media distribution, transaction tracking, authentication, captioning, and

hybrid analog and digital communications. Ultimately, data hiding applications are

classified based on how they make use of the tradeoff among the conflicting goals

of hiding rate, transparency and robustness. Designing practical methods that will

achieve wide acceptance depends on exploiting this tradeoff optimally. This requires

an approach that incorporates the findings of many research areas, [1, and the

references therein]. A significant number of researchers have introduced sophisticated
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information hiding techniques that approach information theoretic limits of data

hiding capacity, [2, 3, 4, 5, 6].

Performance of data hiding methods is usually restricted by the maximum

amount of distortion that may be introduced to the host signal with no perceptual

distortion. The embedding distortion is ideally derived from a perceptual distortion

measure, and it is the resource of the communication between embedder and detector.

The information hider needs to design the embedder-detector that makes the most

effective use of this core resource.

One conservative assumption in data hiding is that the embedder has no access

to the host signal (oblivious data hiding). Though, not all data hiding applications

are necessarily oblivious, the focus in this dissertation is the oblivious one.

1.1 Data Hiding Framework

Let C E RN be some sampled real valued information signal, and W E RN the

auxiliary message signal. An embedder E embeds the message signal W in the host

signal C to yield the stego signal S E IN given as

Let d(.,.) be a predefined distortion metric suitable to information signal C. In

other words d(S, C), is the "distance" between S and C. A commonly used metric

or distance measure is the mean squared error given by

The embedding distortion, d(S, C) is constrained to be less than a defined threshold

P to ensure that the cover signal C and the stego signal S are perceptually the same

or very similar.
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The stego signal is corrupted by a noise signal Z E R N before it reaches the

detector D. At the detector, an estimate Ŵ Є RN of the message signal W is

obtained from the received signal Y=S+Z as

The problem now boils down to the optimal design of embedder E and detector D to

maximize the "fidelity" of W, subject to the distortion constraint d(S, C) < P.

The above setting can be equivalently translated into a classical communications

problem. Consider a message letter m from an alphabet M with size M. (The

message letter m can equivalently be considered as an index 1 <= m <=M.)The

encoder E is to transmit the message letter m to decoder D through N uses of a

noisy channel with varying states at each transmission. The channel state vector

C is also available at the encoder as a side information. The encoder uses a code

with M codewords of length N and power P. At the decoder, the sent message is

decoded from the received noisy codeword as m . In this case, the objective is to find

the optimal encoding and decoding so that reliable communication between E and D

is possible for the given power constraint P and the side information C. When the

state vector C is additive to the sent codeword the two scenarios become identical.

Consequently, the encoder-decoder pair, (E, D), in the communications framework

becomes dual to the embedder-detector pair, (E, D), in data hiding framework with

the inclusion of a mapping rule that maps a message index m to a message signal W

and Ŵ  to m  as

In the text following notation is used. Vectors are denoted by bold-faced

characters. Random variables and their realizations are denoted by the capital and

corresponding lower case letters, respectively, in italic typeface. The matrices are
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denoted by 'blackboard bold' letters. For the general case all signals are assumed

to be vectors of size N. However, in cases where the vector random variables

are independent, identically distributed (iid), the analysis is simplified by using

the individual random variables in derivations where the vector extensions are

straightforward.

1.2 Review of Data Hiding Methods

The early works in the literature for data hiding mainly focused on heuristic

approaches. As the similarities between the issues of data hiding and other fields

become evident, a variety of approaches were made available by exploiting those

similarities. Among these approaches the ones that generated a lot of attention

are inspired from spread-spectrum communications and communication with side

information [7, 8, 9, 10, 11

Data hiding techniques are characterized by the embedding and detection

techniques employed. Methodologically, the proposed embedder-detector designs can

be categorized into two main groups: additive spread-spectrum based methods, and

quantization based methods.

In additive spread spectrum methods, the watermark signal is generated by

modulating the information symbols with a weighted unit energy spreading vector

which is then added to the host signal [12, 13, 14, 15, 16]. By choosing an appropriate

weighting factor, perceptual intactness of the host signal is retained. These methods

are preferable due to their ease in processing, and their reliability under additive

noise interference. With additive embedding, data hiding rate is uncompromisingly

traded off against robustness to severe attacks while complying with the perceptual

constraints. Major drawback of such methods is that host signal affects as a source of

interference at the detector. As a result of this fact, satisfactory performance is not

possible unless the host signal is available during detection or host signal interference
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is negligibly smaller than the channel interference. In additive schemes, optimal

decoding of the watermark signal depends on exact probabilistic characterization of

the host signal at the detector.

The shortcomings of additive spread spectrum methods in suppressing the host

signal interference are handled by adopting the results of communication with side

information to data hiding applications. Costa in [17] introduced the notion that, in

a communication channel, a side information available to encoder but not to decoder

does not necessarily causes a reduction in the communication rate by making an

analogy with a hypothetical case where a writer communicates to a reader by writing

on a sheet of paper that is covered with iid Gaussian dirt spots. Costa showed that

the two party can communicate at a rate as high as using a clean sheet of paper.

His results, when evaluated within data hiding context, encouraged researchers in

designing practical oblivious data hiding schemes that can achieve the hiding capacity.

To achieve the hiding rates that are closer to the upper capacity bound, several

implementations that utilize this approach are proposed, in the literature [18, 8, 19,

20, 21, 22]. These techniques are characterized by the use of enhanced quantization

procedures in order to design embedding-detection methods that approximate the

performance of optimal encoding-decoding. In this class of methods, the optimal

implementation requires higher dimensional quantization for embedding. However, a

satisfactory performance is also achievable through scalar quantization. On the other

hand, the extraction of the hidden message is achieved, most generally, by employing

minimum distance decoding due to the use of lattice structures in embedding. As

a consequence of such an embedding, these methods are vulnerable against signal

scaling. Therefore, they perform well only if the attack is not severe. However, they

are suitable for oblivious data hiding applications.

Chen, et al. in [23] provide a formal treatment of data hiding methods that use

quantization to embed signals, that is called quantization index modulation (QIM).
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In this type of methods, quantization is used to force the host signal coefficients to

take desired values depending on the information signal to be embedded. Similarly,

Chou, et al. in [10, 22], based on a duality with distributed source coding problem,

implemented the exhaustive codeword generation for Costa's scheme by using a robust

optimization method through the utilization of optimal quantizers. In this research

direction, the most popular embedding technique is a low complexity implementation

of QIM which relies on uniform scalar quantization, that is called dither modulation

(DM) [24]. In fact the earliest data hiding methods [25, 26, 27, 28], which modified

only 1 or 2 least significant bits (LSBs) of the host signal, are based on the same

principle in rejecting the host signal interference, so called low bit modulation (LBM).

For example, a method which modifies only 2 LSBs may be considered as a form of

quantization index modulation where the step size of quantizer used is 4. Even-odd

modulation is another embedding technique that operates similarly. In the data

hiding scheme proposed by Wang, et al., [29], the significant wavelet coefficients are

modified such that they quantize to an even or odd value depending on the bit to be

embedded. In [30], Wu, et al., introduced a similar scheme based on JPEG quantizers

by altering the DCT coefficients.

The additive spread spectrum and quantization based methods have poor

performances for the "no attack" and "severe attack" cases, respectively. In the

former, the performance becomes independent of the additive attack level. Whereas

in the latter, the performance drops rapidly with the increase in the attack. These

deficiencies point out to a non-optimal design procedure compared to Costa's scheme

which can deliver perfect host signal interference rejection at all attack levels. The

need for a class of practical methods where the hider has better control over the

operating characteristics is immediately recognized by various researchers.

In quantization based data hiding methods, this effort resulted by incorporating

a processing stage that follows the embedding quantization and by employing forms
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of redundancy coding. In [8] and [31], Chen, et al. respectively introduced distortion

compensated version of QIM (DC-QIM) (that can achieve the capacity under

AWGN attacks), and spread transform (ST) technique for practical implementations

(that embeds the message signal by spreading the resulting embedding distortion

over many host signal coefficients). Ramkumar, et al. [20], considering scalar

embedding, employed a thresholding type of processing at the embedder and, also,

used a continuous triangular periodic function for extracting the embedded binary

watermark signal. In [21], Eggers, et al. optimized the performance of DC-DM by a

more careful optimization of embedding-detection parameters. They also combined

multi-level signaling with binary coding techniques for low attack applications, and

provided some performance results, [5, 32]. Perez-Gonzalez, et al. [33] proposed a

probability density function (pdf) transformation type of processing for embedding.

Furthermore, they provided a calculation of upper bound on the probability of error

for multidimensional embedding case considering various noise distributions.

In order to improve the performance of additive spread spectrum methods, a

similar approach to quantization based methods is also developed. Reference [33],

inspired by ST-DM, proposed a decoding technique that integrates the underlying

principles of quantization based methods with the additive schemes. In this method,

watermark signal is selected such that when the linear correlation between the

watermark signal and the undistorted stego signal is quantized, the resulting signal

is a centroid of the lattice associated with the embedded signal. The probability of

error performance of this method is improved by further processing. Consequently,

the watermark signal is selected such that, rather than the quantized correlation

metric itself, the properly scaled error due to quantization of the correlation metric

is mapped to the desired centroid. Similarly, in [34], the watermark signal energy

is properly shaped to compensate for the host signal interference at the detector.

This is achieved by designing the weighting as a function of the projection of the



8

host signal onto the spreading sequence, so that at the detector, host signal's effect

is diminished.

1.3 Dissertation Overview

This dissertation is a study of theory and practice of oblivious data hiding with

the emphasis on efficient embedding and detection techniques. The dissertation

is organized as follows. Chapter 2 starts with a discussion on the theory of

communication with side information with reference to earlier works in the field.

Then, an alternate communications framework is proposed from a data hiding

perspective, and the duality between the communications and data hiding frameworks

is elaborated from this point of view. Finally, codebook design and generation for

data hiding methods is addressed.

In Chapter 3, the intricacies of the high performance embedder-detector design

is explored in terms of the proposed framework assuming mean squared error

distortion measure. The performance evaluation criteria needed for a fair comparison

of those methods is laid out as: the type of post-processing, the type of demodulation,

and the optimization criterion used to determine embedding-detection parameters.

Various practical embedding-detection schemes are compared with respect to their

rate, correlation, and probability of error performances under AWGN attacks.

Chapter 4 discusses and investigates the techniques for boosting the performance

of embedding-detection techniques for the two extreme cases of large and small

embedding signal sizes. These methods are the spread transforming and multiple

codebook hiding, respectively, corresponding to cases where the embedding signal size

is large and limited. General form of spread transforming for an arbitrary spreading

gain is given with a transform domain embedding approach. Multiple codebook

hiding method is introduced. The use of multiple codebooks offers freedom in the

choice of the codeword that is more "friendly" with the host signal, especially when
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the embedding signal size is small. In proposed scheme, each codebook is designed by

the use of a real unitary transformation selected from a set of transformations that

is known to both embedder and detector.

Chapter 5 proposes scalar quantization based embedding-detection methods

against cropping and compression type of non-invertible attacks. Attacks on

the stego signals can be classified into two main groups, namely, invertible and

non-invertible attacks. Invertible attacks can be reversed by some intelligent

and usually computationally intense manipulations. Therefore, hiding rate is

not decreased. On the other hand, non-invertible attacks like cropping, AD-DA

conversion, and compression may lead to insignificant hiding rates if they are not

taken into account in advance by the designer. A true watermark embedding

methodology should either be invariant to these attacks or include practical means

of undoing and reducing the disturbing effects of them. In Section 5.1, a method to

recover the message signal from a stego content that has undergone cropping and

resampling consecutively is presented. The information loss due to the cropping is

coped with by multiple embedding of the watermark signal, and the synchronization is

restored by using cyclic autocorrelation features of the cropped-resampled signal and

redundancy coding. In Section 5.2, embedder-detector operation is modified to make

use of the compression scheme's quantization characteristics (i. e. quantization tables)

assuming information hider has access to details of the compression algorithm prior

to embedding. This is achieved by fine tuning the embedding-detection parameters

to minimize the disturbing effects of the quantization noise.

Conclusions are given in Chapter 6.



CHAPTER 2

COMMUNICATION WITH SIDE INFORMATION

AND DATA HIDING

Shannon [35], introduced the first analysis of discrete memoryless channels with side

information, in the form of varying channel states from a finite set, causally known

to the encoder. He proved that this channel is equivalent (in terms of capacity) to

a usual memoryless channel that has the same output alphabet and an expanded

input alphabet with no side information. Accordingly, each letter of the new input

alphabet is generated as a mapping from the set of states into the input alphabet of

the original channel. In [36], Kusnetsov et al. examined a practical version of the same

problem where the errors in the channel are invariant, namely memory with defective

cells. They offered an encoding scheme for reliable storage of information when the

encoder is given the defect information, and they investigated the redundancy bounds

for such codes. Gelfand, et al. in [37] considered a similar channel as in [35] by

removing the causality condition on the encoder such that, at any transmission time,

the encoder has the whole channel state information for all times. They proceeded

to derive the capacity of this channel assuming an input alphabet X, an output

alphabet y, an auxiliary alphabet U, and a finite set C of side information where

X, 3), U, C, E RN . The channel capacity, Co , is expressed in terms of random variables

X E X, Y E y , U E U, and C E C by a maximization over all conditional joint

probability distributions p c (c)p u,x (u, x|c)py(y|x, c) as

where px (x) is the probability mass function of a random variable X and /(X, Y)

is the mutual information between two random variables X and Y. Heegard, et al.

10
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[38] also using this formulation, extended the idea to establish achievable storage

rates for memory when defect information is given only to encoder or to decoder and

completely to decoder but partially to encoder.

Costa [17], applied the results of [37] to memoryless channels with discrete

time and continuous alphabets, and presented an information-theoretic analysis of

a problem that also applies to oblivious data hiding. He studied a communications

scenario where encoder transmits a message index to decoder in the presence of a

side information and designed the auxiliary variable in Gelfand's formulation as U =

X + αC , where X is the power constrained input, C is the channel state information

available at the encoder, and a is a scaling factor. Costa showed that for an additive

white Gaussian noise (AWGN) channel with Gaussian input and side information,

the channel capacity does not depend on the side information.

Later research gained considerable momentum first by reinterpreting these

results in terms of oblivious data hiding, and later, by formulating the problem from

a game theoretic perspective. References [39] and [40] assumed Gaussian distributed

host signal and squared error distortion measure, and studied the problem as a

data hiding game between the hider-extractor and attacker. In [39], Moulin, et al.

introduced an information-theoretic model for data hiding considering memoryless

attacks. In their model, the information hider determines the embedding strategy

without knowing the attack, whereas the attacker uses the stego signal to design the

attack. The extractor, on the other hand, is assumed to be in a position to learn the

strategy of the attacker. It is shown that for squared error distortion measure and

white Gaussian distributed host signal, Gaussian test channel is the optimal attack

and the hiding capacity is the same as in the case when the host signal is known to the

detector. They also showed that Costa's results are valid for this setting of the data

hiding game under the small distortions scenario which assumes host signal power is

much higher than that of the distortions introduced by the hider and attacker. Cohen,
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et al. [40] presented a detailed discussion and the results of hiding capacity assuming

Gaussian distributed host signal and squared error distortion measure, similar to [39],

except the removal of the assumption that extractor knows the attack. They showed

that independent, identically distributed (iid) Gaussian host signal maximizes the

hiding capacity among all finite fourth moment distributions for the host signal. It

is also discussed that additive attacks are sub-optimal. Furthermore, they extended

Costa's results by considering non-white noise attacks and non-Gaussian embedding

distortions.

These studies showed that the solution for the hiding capacity varies with the

setting of the game, and Costa's framework yields the upper bound on the coding

capacity among all versions of the game, since attacker has a fixed strategy (additive

noise) that is known to both encoder and decoder. Therefore, Costa's framework

and his results serve as a test-bed for comparing and evaluating the performances of

various practical embedding-detection techniques.

2.1 Costa's Framework

Costa in [17], based on the results of [37], considered a power constrained AWGN

channel with iid Gaussian input X and side information C (in the form of channel

state) that is available only at the encoder in a non-causal manner. A message

index m is transmitted to the receiver by properly selecting the codeword X that is

distorted during transmission by the additive channel state C and the channel noise

Z. Consequently, the channel output is defined as Y = X + C + Z. Considering

the design of U = X + aC, 0 < a < 1, and assuming X, C, Z are iid length N

sequences of random variables with zero covariance matrices and Gaussian marginal

distributions (i.e. X ti A1(0, P), C ti N.(0, 4), Z N N (0, σ^2 σ^ 2z)), the communication

rate is computed as [17]


