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Figure 2.1 Diagram of the OC detector for BPSK modulation.

the decision is made that 1 is transmitted; otherwise the decision is made that —1 is
transmitted. Due to the symmetry of the BPSK constellation and assuming a source
with equal symbol probabilities , it suffices to analyze the case of s = 1. For this case

the received signal is r = \/ P;c + z. Define

D = 2Re (w'r) = wr + (wr)”, (2.4)

where “*” denotes complex conjugation. According to the decision rule, when D < 0,
the decision is made that —1 is transmitted and an error occurs. Therefore the BEP
is P, ppsk = Pr(D < 0). The analysis has two steps. First, the BEP is expressed
conditioned on the fading of the interference. Subsequently, the conditioned BEP is
averaged over the fading of the interference.

Fixing the values of the channels c; of the interference sources leads to fixed
values of the eigenvalues of the interference plus noise covariance matrix R. These
eigenvalues ), form the diagonal of the matrix A. Substituting w = R~c into (2.4)

and de-composing R™! as UA™'U¥ | D can be expressed as

Ny
D= NHgtm + gnTh) (2.5)
m=1

matrix. As shown in [26] and can be readily verified, the resulting weight vectors provide
the same performance as they differ only by a scaling factor.
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where A,,’s are the eigenvalues of R defined previously, x,,’s are elements of the

whitened observation vector

X = [21, 29, , 25,7 = Ur, (2.6)

and g,,’s are elements of the modified channel vector

g= [glvg2a e agNA]T = UHC- (27)

Conditioned on the eigenvalues A, the variable D is a quadratic form of Gaussian
random variables. The goal is to evaluate the conditional BEP B, gpsk (E|A) =
Pr(D < 0|JA), where the notation indicates the dependency on the Ny, largest
eigenvalues of R (the other (N4 — Npi,) eigenvalues are equal to the constant o).
Let ®pja(jw) be the characteristic function of D conditioned on A. Using results

from [2, Appendix B], it can be shown that the conditional BEP is

1 otjE o 1, d ",
P, spsk (E|A) = _ﬁj ’ ——D%dw = — Z Res {Lw(]—z;wn} , (2.8)
—ootye Im(wr)>0

where € is a small positive number and Res[® pja(jw)/w; wn} denotes the residue of
Ppia(jw)/w at pole w,. The summation is taken over the poles in the upper half of
the complex plane.

In (2.5), D is a quadratic form of complex-valued random vectors x and g. By
applying the results in [2, Appendix B] to (2.5) (see Appendix A for details), it can

be shown that the characteristic function ®pa(jw) is

Wiz

wl,m w2,m (2 9)

NA—Nmm Nmin
] (W= wim) (W —wom)’

Coal) = | T o= m=1
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where

w = =i (VR+ o - V/P) (2.10)
w = j(VP+a+/E) (2.11)
wim = =i (VP A+ = VP) (2.12)
wm = § (VP A+ V). (2.13)

The residue in (2.8) is evaluated in Appendix B and obtained as (B.13). After
substituting wy, we, wy m, and wa , into (B.13), B, gpsk (E|A) can be obtained as

Py gpsk (E|A)

Nmin )\m (O, )NA —Nmin

_ NA 1
N ' Z2\/13 + A (VP + A+ VPs) (A, — g2)VANmin

Nmin Na—Nnpin—1 NA _ Nmin + l —1

An 2\ NA—=Nmnin
< 11 m—{—(a) > 2.14)

n=1,n#m =0 l

{1“ e (v vy ()

2
nln#m)\ _)\ Ps+)\m
1 1

(VP 20 = VP (VP F 07 + P 1 hgy) A N

1 1
VBTV (VP t o2 — VP ¥ Am)NA‘Nm‘n'l] }
1

X .
(VP + 0%+ \/E)NAiNmi“Al (2vP; + 0?) Na=Nmin-tl

(2.15)

When the number of receive branches N, is less than or equal to the number of

. . . Na—Nmin—1
interferers, i.e., Ng < Ny, Npin = Ny, the summation >, 4 "™

in (2.14) is equal
to zero.
As an example, the expression of BEP for the special case of no interference is

now derived.
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2.3.1 Special Case: No Interference
In this case, Ny, = Ny = 0, OC becomes MRC. Eq. (2.9) becomes

wWiws

NA—Nmin
} (2.16)

®p(jw) = {(w —w1) (w — wy)

Substitute the above expression in (2.8), and carry out the calculation of the residue.

By spsk = l(l—u) NS (Nam Lk l(l—!—,u)k , (2.17)
o] L () o] )

k=0

Then

where u = 1/7v/ (1 +1), and

Py
g

is the signal to noise ratio (SNR). Since there is no interference, the BEP is unconditional.
(2.17) is the same as (14-4-15) in [2]. Note that the derivation of (2.17) did not require
integration. In [2], the BEP of MRC is obtained by integration. It was shown that

[2, Eq. (14-4-18)] for SNR ~ > 1,

ING -1\ 1
Pb,BPSK ~ ( NA )W (219)

Eq. (2.19) will be used later for comparison.

2.4 Derivation of Unconditional BEP
For the general case with interference, the unconditional BEP B, gpsk is obtained by

averaging the conditional BEP P, gpsk (E|A) over the fading of the interference c;, or

min] ?

equivalently over the eigenvalues A = [A1, Ag, -+, Ay T

Pb,BPSK = /Pb,BPSK(El)\)p)\(A)dAa (2-20)

where px () is the joint probability density function (PDF) of the eigenvalues. Serendipitously,

the PDF px(A) was developed in [20] for a signal model similar to ours and is given
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by
Neni Nmax—Non
1 ‘min A — 0_2 A — 0.2 max min
A = K €X - 1
pA( ) OP;Vmin E P < PI ) ( PI ) ]
2 g2\ ?
Jom M=o N-o ) (2.21)
4 P] PI
1<i<j<Nmin
where
1
K- (2.22)

T Mo — ] [T (Vo — ]

The conditional BEP in (2.15) is a non-rational function of the eigenvalues A,,’s.

To facilitate the integration in (2.20), define the following transformation of variables

A

Ym = 4/—+1, m=1,2--, Nuin (2.23)
Py
and define the set y = [y1, 92, ,yn..|" . Since A, is random, ¥, is random as well.
Also define
n= U—2+1—,/1+1 (2.24)
P St .
Then
A = Pi(yh—1) m=1,2,- Nup (2.25)
o’ = P (n*-1). (2.26)

By substituting (2.25) and (2.26) into (2.15), and after some straightforward manipulations,

the conditional BEP as a function of the variables y,,’s is obtained as

Nmin Nag—Nnin—1 NA . Nmin + l — 1

Pyppsk (Ely) = — Z fm (y ~Nmin Z

1=0 [

1+ Xm: h -y LY (2.27)
m, l 27])NA m1n+l ’7 bl *




where the functions f,, (y) and h,,; (y) are defined respectively as

Ng—Nnin Nmin
fo(y) = Lo (o)™ I L~y
m - NaA—Nmin —
2Ym (y2, —n?)"* neLtm Y ~ Un
and
- min—l
hma (y) = (—1)NA—Nmin—l (1+77>NA N 1
m,l y 2ym (ygn _nz)NA—Nmin"l
N .
min 1_—y2
XoNg-tut ) [ 05
n=1ln#m Ym Yn

The function by (y,,) in (2.29) is in turn defined for 1 < k < Ny — Ny, as

bk (Ym) = — (1 + Ym) (1 — Ym)® + (1 = ) (1 + ym)".
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(2.28)

(2.29)

(2.30)

Clearly, the conditional BEP B, gpsk (Fy) is a rational function of the elements

of the set y. By using the Jacobian of the transformation from A to y, the joint PDF

of y is

Nmin

py(y) = K { H exp [-0 (v —n*)] (vf - n2)N’““"_N’“i“}
x [ 1T (yf—yﬁ)ﬂ Y1Y2 " YNoin

IS'L<JSNmm

fory1 2 y2 2 -+ 2 yYn,, = 7, Where

is the signal to interference ratio (SIR) and
2Nmin

[T (Vo = 01] [T (¥ — ]

Kl — NmaxNmin

(2.31)

(2.32)

(2.33)
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The unconditional BEP B, gpsk is obtained by averaging the conditional B, gpsk (E|y)

over the random variables in the set y,

Pb,BPSK
- / Posrs (Ely) py (y)dy
N, Na ot [Ny Ny +1— 1
__ / f (9) Py )y + (—1)¥4 Mo 3
m=1 (=0 l

x (--) {1+§/ ot (7) Dy (y dy} ((277)]3?“:’::[, (2.34)

This expression can be used for any number of diversity branches N4 and any

number of interferers N;. Since, as previously mentioned, N4 < Ny, Npin = Ny,

*Nmin 1

the summation lei”(‘) is equal to zero; therefore, only the first term — Z o

f fm (¥) py(y)dy is required to calculate the BEP for Ny < Nj.

Next the terms of (2.34) are evaluated.

2.4.1 Evaluation of Y =i [ fo (y

The following definitions are needed:

1. B, is a sequence defined as

\/gexp (Bn%) Q (v28n) q=0
B,={ —-+ (i - 772> \/gexp B*)Q (V28n) q=1, (2.35)

29 —1 9 g—1
— B, 1+ ——n°B,_ > 2
L < 2/8 77) q1+ ﬁ 77 (]2 q_

where @ (-) is the Gaussian Q-function. Note that the values of B, for ¢ > 2
can be evaluated recursively from the values of B,_; and B,_,. Since (2.35) is a
second order difference equation with initial values for By, by using the method

detailed in [27], this equation can be solved and B, (for ¢ > 2) can be expressed
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in terms of the initial values By and B, as:

By = v4-1,1B1 + v4-1,2B0, (2.36)
where
q+j5—1 r
=% X Mo (2a7)
r=1 I+ +lp=g+j—1 Lm=1
Lie{1,2},lr>5
and
2¢+1
€l = —op -7’ (2.38)
2
ez = % (2.39)

The second summation in (2.37) is taken over all sets of indices satisfying the
stated conditions. Substituting By and B in (2.36), then B, (for ¢ > 2) in

closed-form is:

B, = vq_m% + [(% - n2> Vg1 + vq—1,2:| \/gexp (67%) @ (\/2—577) :

(2.40)

. Hp, is a function of integers p and ¢. For 0 < p,q¢ < Nyin — 1,

1
[T (Vo = 00! [T (N = 9]
* 2 > det W, (2.41)

mi+-+my ;o ~1=Nmin—1=p ni+-4+ny_; —1=Nmin—1—¢

m.€{0,1} n;€{0,1}

Hp,q =

where for Ny, = 1,det W =1; for Ny, > 1, det W is the determinant of an

(Nmin — 1) X (Npin — 1) matrix whose i-th row, j-th column element is

I/Vi}j=(mj+nj+Nmax—Nmm+z'+j—2)!.
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Using these definitions, in Appendix C it is shown that

Nmin

> / Fm (¥) Dy (y)dy

1 NA_Nmin I\Jmin_1 Nmin_l
= (-3) e X v
v p=0 q=0
1 l(Nmax—~NA+q)!

2.4.2 Evaluation of "= (b, (y) py(y)dy
The function by (y,,) defined in (2.30) can be alternatively expressed as (proven in

Appendix E)
(k/2]

bk (ym) = 2ym Z QA t (yrzn - 772)t ) (243)
t=0

where [k/2] denotes the largest integer that is equal to or less than k/2, and ay; is

evaluated as:

ayy = Kk —h- t) (1—n)—2n (k t__l N t)} (2n)* 7%, (2.44)

t

When calculating a, it is assumed that (™) = 0 for m < n or n < 0.
Substituting (2.43) in (2.29) and using steps similar to those in Appendix C,

then:

Nmin
> / huni (¥) Py (y)dy

[(NA‘Nmin_l)/Q]

N N A 1
— (“l)NA Nmin l(1+77)NA Nmin l/@NA_len+1 Z aNA_Nmin_l:tEm
t=0
]Vm'm_l]\[min_1 /6 P
X 3 Y (1) (Nmax = Na+ 1+t +q)lHyg (;> : (2.45)
p=0 q=0

Using the expressions obtained in (2.42) and (2.45), (2.34) can be evaluated to obtain
the exact BEP for any given number of diversity branches N4, number of interferers

N, SNR v = P,/o? and SIR 8 = P,/ P;.
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A simpler expression can be derived for the special case of Ny > N;, SNR~v > 1
and SIR 8 <« 1.

Special Case: Ny > N;, SNR yv> 1 and SIR g« 1

In this case, Npax = Na, Nmn = N;. Both (2.42) and (2.45) contain the term
BNa=Nmint1 Gince f <« 1 and N4 > Npin, terms containing SV4~Mmintl are neglected.
Therefore "= [ £ (y)py(y)dy =~ 0and - "== [ b, (y) py(y)dy ~ 0. By substituting
these approximations in (2.34) and using 7 = \/m——i_——l_ ~1+1/(2y) fory > 1,

2(Ns—Np)—1

1
B Bpsk & ( (Na— Np) >W (2.46)

Comparing (2.46) with (2.19), it can be seen that for SNR v > 1, the BEP of a
system with N, diversity branches and N; (N < N,) large interferers is equivalent
to that of a system with (V4 — Ny) diversity branches but without interference. This

is a well-known result for OC [13].

2.5 Numerical Results
Figures 2.2 to 2.5 show the BjEP versus SNR for different SIR . Figures 2.2 to 2.4 are
for N4 = 4 diversity branches, and N; = 1, 2, 3 interferers, respectively. Figure 2.5
is for N4 = 8 diversity branches and N; = 5 interferers. Figure 2.6 is for 4 branches,
varying number of interferers, and SIR = 10.

In Figures 2.2, 2.4, 2.5 and 2.6, the interference generated in the simulations
had a Gaussian distribution as assumed in developing the BEP analysis. Simulation
results in Figure 2.3 were generated for two interference sources transmitting BPSK
symbols. Analytical results were calculated using (2.34) and the related expressions
such as (2.42) and (2.45).

In all the figures, the analysis results match the simulation results. This provides

convincing demonstration of the validity of the analytical expression for BEP.
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Figure 2.2 BEP versus SNR for N4 = 4 branches, N; = 1 Gaussian distributed
interferer.

As shown in Figure 2.3 for BPSK interference, the Gaussian assumption for
the interference, while necessary for obtaining the theoretical results, is not critical
for the accuracy of the BEP expressions. This can be explained by recognizing that
the system has a sufficient number of degrees of freedom to suppress the interference
sources effectively. The interference suppression is not sensitive to the Gaussian
assumption. In fact, it is well known that OC maximizes the SINR irrespective of the

density function governing the interference.
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Figure 2.3 BEP versus SNR for N4 = 4 branches, N; = 2 BPSK interferers.
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Figure 2.4 BEP versus SNR for N4 = 4 branches, N; = 3 Gaussian distributed

interferers.
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Figure 2.5 BEP versus SNR for N4 = 8 branches, N; = 5 Gaussian distributed
interferers.
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Figure 2.6 BEP versus SNR for N4 = 4 branches, SIR = 10. The number of
interferers varies from Ny =4 to N; = 7.



CHAPTER 3

SEP AND BEP FOR OC WITH M-PSK MODULATION

3.1 Introduction
In Chapter 2, a new method was introduced for deriving the closed-form expression
for the exact BEP for OC with BPSK modulation. The method started from the
decision statistics of OC. This approach is not applicable to systems with M-PSK
modulation.

An expression for SEP for M-PSK was derived in [20]. The expression is
exact, and it applies to any number of interferers and receive branches. It involves
(Nmin + 1)-fold integration, where Ny, is the minimum number of receive branches
or interferers. An effective technique was derived to evaluated the SEP in [28]. A
simpler and more elegant SEP expression was derived in recent work [29] for the same
case. The expression contains integration over an integrand, which incorporates the
incomplete Gamma function, itself an integral form.

In this chapter, expressions for both SEP and BEP for M-PSK are derived,
with any number of receive branches and interferers. The moment generating function
approach is taken to reach the final expressions, which involve only a single integration
over elementary functions. With these expressions, it takes much less time to evaluate
the SEP and BEP than it would take to carry out Monte Carlo simulations or to
evaluate a multiple-fold integral.

The system model and assumption for this chapter are the same as those
described in Chapter 2, with the exception that now the desired signal s is an M-PSK
symbol. The expressions for SEP and BEP are developed in Section 3.2. Numerical

results are shown in Section 3.3.

26
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3.2 Expressions for SEP and BEP
With the OC detector, the components of the received signal vector r are weighted
and combined to obtain the output signal. The weight vector yielding the maximum

SINR is w = R !c. The output of the combiner is

wir = /P,c"R7'cs + c Rz (3.1)

The terms v/P;,c?R'cs and ¢’R ™'z represent respectively, the desired signal and
interference plus noise. The latter is Gaussian distributed conditioned on the channel
vectors ¢ and c¢;. The signal model of (3.1) is similar to that of an AWGN channel
with noise variance Eg, “CH R !z |2] , with the expectation taken over the interfering

signal s; and AWGN n.

3.2.1 Expression for SEP
For M-PSK signals over the AWGN channel, the SEP P »r.psk (E|7v) (conditioned on
the SNR ) can be expressed as [24, Eq. (8.22))

1 [M-)m/M sin? (7 /M
PS,JW—PSK (E"'}’) = ;A exp {—’}’—-—S;(n—?/g———)-} d9, (32)

where M is the number of symbols of the M-PSK modulation, and + is the symbol
SNR. Likewise, for OC with M-PSK, the SEP can be written as

Y sin? (n/M
Ps mopsk (Elv) = - / exp {—%M} ds, (3.3)
0

sin’0

where 7, is the SINR at the output of the optimum combiner. The SEP is conditioned
on channel realizations through ~;. In order to get the ensemble average SEP F; pr.psk

for OC, P prpsk (E|v:) has to be averaged over the distribution of ,

B arpsk = / P m-psk (E"Yt)p“/t (7¢) dy, (3.4)
0
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where p., (v,) is the PDF of the SINR <. Let py,x(v|A) represent the PDF of
conditioned on the non-trivial eigenvalues A = [A, Ay, -+ -, An....]” . The unconditional

PDF p., (7:) can be obtained by averaging p.,a (7:|\) over A:

Py () = / Prix (%I A) pa(A)IA. (3.5)

By substituting (3.3) and (3.5) in (3.4), and after some manipulations similar

to those in [24], it follows that

Fs mopsk = %/ [A(M—I)W/M Mo a (—M> dﬁ} PA(A)dA, (3.6)

sin’6

where M., x (-) is the MGF of the SINR v, conditioned on eigenvalues A. For the
Rayleigh fading channel, the MGF is given by [24, Eq. 10.52]

(3.7)

1 NA_Nmin Nmin 1
1—7s

Mya(s) = (

i=1 Ai

where

-

is the symbol SNR.
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3.2.2 Expression for BEP

For M-PSK modulation with Gray code bit mapping over the AWGN channel, the
BEP Py a-psk (E]7) is ([30], [24, Eq. (8.30)))

Py mopsk (Ely)
Py (Ely) M =2
5 [PL(E|y) + 2P, (Ely) + P3 (E|y)] M =4
_ 3 [PLEY) + 2P (ElY) + Ps (Ely) + 2P, (Ely) + M =g
3P (E|y) + 2B (Ely) + P7 (E]Y))
USRNSSR G s
\ Ps (Ely) + 2F (Elv) + Pr (E]7)]
(3.8)
where
1= (2k=1)/M] in? 1
P (Ely) = 51;;/0 exp {—’78 [(21;n2;) & } df
w[1-(2k+1)/M] 2
_% i exp {—’ys 1 [(21;1—:291) m/M] } dé. (3.9)

For M > 32, similar expressions can be obtained [30].

Adapt these expressions for OC by averaging Py (E|7y) over 7; (similar to the
derivations from (3.2) to (3.6)) so that,

Py

] [1-(2k—1)/M] sin® [(2k — 1) w/M]
L { /0 M, <~ = >d0 pa(A)dA

X w[1—(2k+1)/M] sin? [(2k + 1) 7/M]
—5- {/o Moy, a <_ sin’6 ) 4

Xpa(A)dA. (3.10)
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and
(
Py M=2
L(Py + 2P, + Py) M=4
B mopsk = § 231 (3.11)
S (PL+2Py+ P+ 2P+ 3P+ 2P+ P;) M =38
| 3k Bt i e+ B+ 2P+ P) M =16

The BEP for OC can be evaluated from (3.11) and (3.10).

3.2.3 Compact Expressions for SEP and BEP
There is a similarity between the expressions for SEP (3.6) and BEP (3.10). In fact,

if one defines

oo =1 [[ [ i (-5) ] monvar 3.12)

then the SEP in (3.6) can be expressed as

Ps,M—PSK =C ((M — 1)7T/M, SiIl2 (F/M)) s (313)

whereas the Py in (3.10) is given by
P = 5O (x[l~ (2~ 1)/M],sin[(2 — 1) m/M))
2O (R - k4 1)/M) s @k /M) (314)

Evaluation of C (¢, &) is carried out next.

3.2.4 Evaluation of C (¢,£)
Start by substituting (3.7) in (3.12),

1 ?( sintg \MATVmm [T 0 sin?g
C(6,6) = ;/{/ (w55 [H (W)]de}

xpx (A) dA. (3.15)



