

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

5)QUART: The QUART (Universal Asynchronous Receiver / Transmitter) is used for

communication between the DIOS 1 processor and the host computer. The host

computer sends code and data to the DIOS processor, which then operates on this

data and then sends the results back to the host processor. The configuration

options for the QUART are shown above in figure 2.13 and are kept at their default

values.

6) Clock Timer: A hardware timer is used to count the clock cycles required by the

program to run. Figure 2.14 shows a snapshot of the hardware timer. This timer is

22

connected to DIOS 1 (which is connected to the DART) as this processor is used

to download code into the other two processors and also runs the main program.

23

Figure 2.15 show the priorities each processor has for using the local or global

RAM, and other resources connected to the bus.

24

Figure 2.16 shows the programmer which is used to bum the compiled and

synthesized design into the FPGA. The design programmer uses the USB port through

the MasterBlasterTM interface provided by Altera® to burn our three-DIOS-processor

configuration discussed above into the Altera FPGA. An indication is given once the

design has been successfully burned into the chip. Dow the code to be run on the chip is

downloaded using the DIOS SDK (Software Development Kit) shell, which is a UDIX-

like shell. The "nb" command is used to build (compile) the source code of the matrix

multiplication program written in the C programming language. If the compilation is

successful, then an out file with an extension of ".srec" is generated which can then be

25

downloaded into a local or the global memory. It can then be executed using the "nr"

command.

The "nb" command, when used with the —b option builds the program from a

specific memory location. Similarly, the "nr" command, when used with the —x option,

just downloads the program into the processor but does not execute it. This feature is

particularly useful to us as we use the DIOS 1 processor to download the code first into

the local memory of DIOS 2 and DIOS 3 CPUs before we press the reset switch. This

causes the DIOS 2 and DIOS 3 CPUs to start running the code from their starting

memory location, which now makes them wait in a loop until a particular memory

location is set to 1. This happens when DIOS 1 downloads the main controlling program

into its own local memory and then starts running the code. When all the processors have

finished running their programs, they set another flag. The DIOS 1 processor checks this

flag after it has finished running its own code. It then prints out the timing results for the

entire process.

26

CHAPTER 3

PERFORMANCE RESULTS

3.1 Sequential Implementation Results:

Performance results for sequential implementation of the above code are as shown

in Table 3.1 for 8 X 8 matrices having various density levels. These matrices were

produced by hand. The single DIOS processor used employs a hardware multiplier which

requires 16 clock cycles for each multiplication.

Table 3.1 Performance results for sequential implementation

27

The speed-up shown is for a comparison with the conventional algorithm. It

becomes obvious that the performance deteriorates for very dense matrices because of the

required comparisons.

Figure 3.1 Graph of CPU clock cycles versus matrix density (8 X 8 matrices)

Figure 3.1 shows a graph of the CPU clock cycles required versus the matrix

density. Note here that in spite of the increase in density the curve remains almost as a

straight line with the slope only increasing negligibly at certain points. In the case of the

conventional algorithm, the required clock cycles would increase exponentially.

28

matrix multiplication algorithm

The graph in Figure 3.2 shows the speed up obtained by using the above

algorithm, when compared to the conventional algorithm. Here, we observe that as the

density (number of non-zero elements in the matrix) reduces, the speed up increases

exponentially. Typically at 30% density the speed up is around 7.8. The speed up equals

1 at around 88% density and reduces for higher densities as the overhead of comparisons

becomes significant.

Dote that the clock cycles mentioned above include the overhead for post-

processing. However, it does not include the overhead for pre-processing which is done

on the host PC. It also does not include the overhead for initializations required before the

timer starts counting. However, these overheads are not significant. Also the overhead for

29

pre-processing which involves sorting matrix B in row order is not much. The quick sort

algorithm is used to sort Matrix B. Matrix A which is in the matrix market format is

already sorted in the column order as required by the our algorithm

Speed up A: Speed up (with post processing overhead) compared to conventional

algorithm for sequential implementation.

Speed up B: Speed up (without post processing overhead) compared to our algorithm for

sequential implementation.

Speed up C: Speed up (with post processing overhead) compared to our algorithm for

sequential implementation

Table 3.2 Performance results for parallel implementation

The speed up in Table 3.2 is obtained by comparing the clock cycles in the above

table with the clock cycles required by a regular unblocked algorithm used for

30

