
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-2003

Design of an FPGA-based parallel SIMD machine for power flow Design of an FPGA-based parallel SIMD machine for power flow

analysis analysis

Tirupathi Rao Kunta
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Kunta, Tirupathi Rao, "Design of an FPGA-based parallel SIMD machine for power flow analysis" (2003).
Theses. 625.
https://digitalcommons.njit.edu/theses/625

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.njit.edu%2Ftheses%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/625?utm_source=digitalcommons.njit.edu%2Ftheses%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

DESIGN OF AN FPGA-BASED PARALLEL SIMD MACHINE
FOR POWER FLOW ANALYSIS

by
Tirupathi Rao Kunta

Power flow analysis consists of computationally intensive calculations on large matrices,

consumes several hours of computational time, and has shown the need for the

implementation of application-specific parallel machines. The potential of Single-

Instruction stream Multiple-Data stream (SIMD) parallel architectures for efficient

operations on large matrices has been demonstrated as seen in the case of many existing

supercomputers. The unsuitability of existing parallel machines for low-cost power

system applications, their long design cycles, and the difficulty in using them show the

need for application-specific SIMD machines. Advances in VLSI technology and Field-

Programmable Gate-Arrays (FPGAs) enable the implementation of Custom Computing

Machines (CCMs) which can yield better performance for specific applications. The

advent of Soft-Core processors made it possible to integrate reconfigurable logic as a

slave to a peripheral bus and has demonstrated the ability in the rapid prototyping of

complete systems on programmable chips. This thesis aims at designing and

implementing an FPGA-based SIMD machine for power flow analysis. It presents the

architecture of an SIMD machine that consists of an array of processing elements with

mesh interconnection and a Soft-Core processor; the latter is used as the host. The FPGA-

based SIMD machine is implemented on the Annapolis Microsystems Wildstar-II board

that contains multiple Virtex-II FPGAs. The Soft-Core processor used is the Xilinx

Microblaze and the application targeted is matrix multiplication.

DESIGN OF AN FPGA-BASED PARALLEL SIMD MACHINE
FOR POWER FLOW ANALYSIS

by
Tirupathi Rao Kunta

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

May 2003

APPROVAL PAGE

DESIGN OF AN FPGA-BASED PARALLEL SIMD MACHINE
FOR POWER FLOW ANALYSIS

Tirupathi Rao Kunta

Dr. Sotirios Ziavras, Thesis Advisor 	 Date
Professor of Electrical and Computer Engineering, and
Computer and Information Science, Associate Chair for Graduate Studies, NJIT

Dr.Roberto Rojas-cessa, CommitteeMember
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Alexandrosn os GerbessiotisCommittee Member
Assistant Professor of Computer and Information Science, NJIT

Date

Date

BIOGRAPHICAL SKETCH

Author:	 Tirupathi Rao Kunta

Degree:	 Master of Science

Date:	 May 2003

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering
New Jersey Institute of Technology, Newark, NJ, 2003

• Bachelor of Science in Electrical and Electronics Engineering
University of Madras, Chennai, India, 2001

Major:	 Electrical Engineering

To My Parents and the Almighty

v

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to Dr. Sotirios Ziavras, who not

only served as my research advisor, providing valuable and countless resources, insight,

intuition, but also constantly gave me support, encouragement, and reassurance. My

special thanks are given to Dr. Alexandros Gerbessiotis and Dr. Roberto Rojas-cessa for

actively participating in the committee.

I also would like to thank my team mates Amit, Satchit, Sunil, Prabhakar and

Abhishek in the Power Grid Laboratory, for their constant encouragement and support. I

also wish to give my special thanks to Xizhen for his valuable support and

encouragement through out my research. Last, but not the least, I wish to thank my close

friends Harsha, Pavan and Ramesh for their understanding and moral support through out

my masters.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Power System Problems 	 1

1.2 Overview of Parallel Architectures 	 3

1.2.1 Memory-Processor Connectivity 	 5

1.2.2 Interconnection Networks 	 6

1.2.3 Overview of SIMD Computers 	 8

1.3 Overview of Reconfigurable Computing Systems 	 10

1.4 Overview of Soft-Core Processor 	 12

1.5 Motivation 	 13

1.6 Objectives 	 15

2 DESIGN OF AN FPGA-BASED SIMD MACHINE 	 16

2.1 Overview of Wildstar-II board 	 16

2.2 Overview of Microblaze Soft-Core Processor 	 18

2.2.1 Overview of OPB bus 	 20

2.2.2 Microblaze Software Support 	 21

2.3 Sequential Architecture 	 21

2.4 SIMD Architecture 	 24

2.4.1 Architecture of Processing Element 	 27

2.4.2 Instruction Set 	 32

2.4.3 Controller 	 34

2.4.4 Global Memory 	 36

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

2.5 Sequential Architecture with Floating-Point Co-Processor 	 36

3 IMPLEMENTATION AND RESULTS 	 38

3.1 FPGA Design Flow 	 38

3.2 Microblaze Development Methodology 	 41

3.3 Sequential Implementation 	 43

3.3.1 Implementation 	 43

3.3.2 Performance Results on Sequential Machine 	 46

3.3.3 Performance Results with Floating-Point Co-Processor 	 49

3.4 SIMD implementation 	 49

3.4.1 Implementation 	 50

3.4.2 Performance Results on SIMD Machine 	 61

3.5 Analysis 	 64

4 CONCLUSION 	 67

APPENDIX A CODE ON SIMD MACHINE 	 68

APPENDIX B CODE ON SEQUENTIAL MACHINE 	 70

APPENDIX C CODE ON HOST MACHINE 	 77

REFERENCES 	 85

viii

LIST OF TABLES

Table	 Page

3.1 Matrix multiplication on Microblaze 	 48

3.2 LU decomposition on Microblaze 	 48

3.3 Execution times for 3x3 matrix multiplication 	 64

ix

LIST OF FIGURES

Figure	 Page

1.1 SIMD 	 4

1.2 MIMD 	 5

2.1 Wildstar-II Block Diagram 	 16

2.2 Wildstar-II Processing Module 	 17

2.3 Microblaze Core Block Diagram 	 19

2.4 Microblaze Bus Configurations 	 20

2.5 Sequential Architecture of Microblaze 	 22

2.6 Global Memory as Custom Peripheral 	 23

2.7 SIMD Architecture 	 24

2.8 Architecture of the SIMD Machine 	 25

2.9 Architecture of the PE 	 28

2.10 Floating-Point Data Format 	 29

2.11 3-stage Pipelined Floating-Point Adder/Subtractor 	 30

2.12 3-stage Pipelined Floating-Point Multiplier 	 31

2.13 Register-register type instruction format 	 33

2.14 Immediate-type instruction format 	 33

2.15 Controller of the SIMD machine 	 34

2.16 State machine of the controller 	 35

2.17 Floating-Point co-processor 	 37

3.1 FPGA Design Flow 	 38

3.2 Microblaze design flow 	 40

LIST OF FIGURES
(Continued)

Figure	 Page

3.3 Synthesis RTL view of Sequential Implementation 	 43

3.4 Custom peripheral connected to OPB bus 	 44

3.5 Heirarchial view of the OPB bus 	 45

3.6 RTL view of SIMD machine after synthesis 	 51

3.7 RTL view of processing elements after synthesis 	 52

3.8 RTL view of the controller 	 53

3.9 RTL view of a processing element 	 54

3.10 RTL view of pipelined floating-point unit 	 55

3.11 RTL view of a pipelined divider 	 56

3.12 Timing report for the SIMD machine 	 57

3.13 Device utilization Summary 	 58

3.14 Design Summary 	 58

3.15 Real time for completion of the "place" and "route" functions 	 59

3.16 Floorplan of the FPGA after "place" and "route" 	 59

xi

CHAPTER 1

INTRODUCTION

1.1 Power System Problems

Most power system problems such as power flow, transient stability, etc., require the

repetitive solution of linear equations represented by large matrices, on the order of

3000X3000. Power flow analysis is done in real time to monitor the performance of the

network continuously in order to determine disturbances, such as power station failures,

broken lines, and line overcharge [1]. This real-time analysis is also used to speed up the

process of deciding to purchase power from neighboring utilities according to expected

customer needs and available prices of power. The heavy computational load associated

with repetitive solutions of large matrices involved in the above real time analysis poses a

big challenge to computational times for conventional machines; they take several hours

to complete the analysis [9]. Many parallel techniques have been developed to reduce the

number of floating-point operations and, therefore, the total computation time. However,

these techniques do not reduce, to a great extent, the computational times which are

several hours for these computation intensive power flow problems. Recent

developments in computer technology suggest that computational times can be drastically

reduced by developing parallel architectures specific to the applications.

Parallel processing hardware and software provide an opportunity and challenge

to apply this new computing technology to solve power system problems. There is a

recent shift towards this technology as it has the potential to be cost effectively used to

solve computationally intensive problems. The three main issues in parallel processing

1

2

are parallel architecture development, software development, and algorithm development.

Much progress has been reported in these areas from past research and still a lot of

research is expected to solve specific problems.

The major computational part of the power system applications consists of

algorithms such as LU decomposition, matrix multiplication, and iterative techniques for

matrix inversion. These operations require floating-point operations with large matrices.

These floating-point operations appear in the most critical computational kernels of the

algorithm. Solving a system of N linear equations, such as A*x=b, is at the core of power

flow analysis. To solve A*x=b, we can use direct methods or iterative methods. The most

widely used direct method is LU decomposition, which is a decomposition of A into a

product of upper and lower triangular matrices (U and L, respectively). Once the

elements in L and U are determined, then the unknown vector x can be determined by

forward reduction and backward substitution, respectively, using the equations L*y=b and

U=x*y. LU decomposition has drastically reduced costs compared to matrix inversion,

especially for large matrices.

LU decomposition with forward reduction and backward substitution is a more

numerically stable technique when compared to matrix inversion because every non-

singular matrix can be factored with LU decomposition [9]. The other alternative to LU

decomposition is to solve N Gaussian elimination problems followed by N back

substitution problems, so the order of the algorithm is N*0 (N 3) + N * 0 (N2) = 0(N4).

In contrast, LU decomposition is applied once in time 0 (N 3) and can be used to solve

the N systems using N additional 0 (N 2) algorithms for forward and backward

substitutions. Therefore, the complexity of LU decomposition is 0 (N 3) + N * 0 (N2) =

3

0(N3); the storage space required is minimal as the original space storing A is used to

store L and U. If we assume that L has all 1 's on the diagonal, then A=L*U in matrix

form is

From observing the structure of the L and U matrices, it is clear that there is no need to

store L, U, and A separately. During decomposition, the modified elements of A are

replaced with new elements of L and U. The diagonal of L always contains 1's and does

not require storage. Matrix multiplication also requires large computational time when it

is applied to large matrices. The complexity of matrix multiplication is 0 (N 3). These two

applications are most widely used to benchmark parallel computers.

1.2 Overview of Parallel Architectures

A parallel computer is a set of processors that are able to work cooperatively to solve a

computational problem. This definition is broad enough to include parallel

supercomputers that have hundreds or thousands of processors, networks of workstations,

4

multiple-processor workstations, and embedded systems. Parallel computers offer the

potential to appropriately allocate computational resources on important computational

problems; whether they are processors, memory, or I/O bandwidth.

According to Flynn's classification, the two important parallel processing

architecture classes are Single-Instruction stream Multiple-Data stream (SIMD) and

Multiple-Instruction stream Multiple-Data stream (MIMD). In MIMD, each processor

runs its own instruction sequence and works on a different part of the problem; each

processor can communicate data to other processors. In MIMD, processors may have to

wait for other processors to send data or to access global data. In SIMD, all processors

are given the same instruction each time and processors operate on different data.

Typically, MIMD processors have powerful processors, distributed shared-memory

architecture, and are suitable for control level parallelism and coarse-grain parallelism. In

contrast, SIMD processors typically have many elementary processors and distributed

memory, and are suitable for data-level parallelism and fine-grain parallelism. Figures 1.1

and 1.2 show block diagrams for SIMD and MIMD machines, respectively, where CU is

the control unit.

Figure 1.1 SIMD.

5

Figure 1.2 MIMD.

Another way to classify parallel computers is based on memory-processor connectivity

and the interconnection network.

1.2.1 Memory-Processor Connectivity

We can distinguish parallel computers by the way processors are connected to shared

memory. We have shared memory, distributed memory and distributed-shared memory

systems.

1.2.1.1 Shared Memory. 	 The main feature of shared-memory multiprocessors is that

each processor has access to a global address space, which is shared by all processors in

the system. Communication and synchronization are implicitly done by shared variables.

Problems can arise if two processors want to write the same variable simultaneously. To

prohibit this situation, the user can use synchronization mechanisms like semaphores and

memory location locks. Generally, writing programs for shared-memory multiprocessors

is said to be easier than for distributed because the address space is global and can be

used conveniently. However, a major drawback is related to the scalability of the system.

6

Adding more processors to the system leads to substantial performance degradation due

to frequent message collisions. In fact, most of such systems do not have more than 64

processors, because the centralized memory and the interconnection network are both

difficult to scale once built.

1.2.1.2 Distributed Memory. In a distributed-memory multiprocessor, each

processor has its own address space. The information exchange has to be done over the

point-to-point interconnection network by message-passing. Every processing unit with

its memory block can be seen as a node within the multiprocessor. If a processor needs

information from another processor, it has to make a request over the communication

network. For message-passing systems, different kinds of messages exist.

1.2.1.3 Distributed Shared-Memory. Distributed shared-memory multiprocessors

combine features of distributed as well as shared-memory machines. The memory is

physically distributed among the nodes. However, the user has the illusion of one big

single address space. An example of a distributed shared-memory machine is the SGI

Origin 2000, a cache-coherent non-uniform memory access (ccNUMA) multiprocessor

designed and manufactured by Silicon Graphics, Inc and Cray. It consists of up to 512

nodes interconnected by a Cray link network. The distributed memory blocks can

transparently be accessed like for shared-memory architecture.

1.2.2 Interconnection Networks

One of the most important components of a multiprocessor machine is the

interconnection network. In order to solve a problem, the processing elements have to

cooperate and exchange their computed data over the network. We can distinguish

between two different classes of inter connection topologies:

7

• Static and

• Dynamic.

1.2.2.1 Static Connection Topologies. In static networks, the nodes are connected

to each other directly by wires. Once the connection between nodes has been established,

they cannot be changed. In a ring, for example, every processing element (PE) is wired

to just two neighbors, whereas in a 4-D hypercube every PE is connected to four

neighbors. If a node wants to communicate with any non-neighboring node, all nodes

between the two communicating processors have to be accessed.

(a) Mesh and Ring: The simplest connection topology is the n-dimensional mesh. In the

1-D mesh, all nodes are arranged in a line as an array structure, where the interior nodes

have two and the boundary nodes have one neighbor(s). In the two-dimensional mesh,

each node in the two-dimensional array is connected to four neighbors. If the free ends of

the mesh are connected to the opposite sides, the network is then called torus.

(b) Binary Tree: The basic (binary) tree has two children for the root node. The interior

nodes have three connections (two children, and one parent), whereas all leaves are

connected to just one parent.

(c) Star: A star has one central node, which is connected to all other nodes. The

disadvantage of this topology is obvious. Higher-level nodes can easily become

bottlenecks.

(d) Hypercube: Several companies, like Intel and NCUBE, have built hypercube-based

multicomputers. In the n-dimensional hypercube, the number of nodes is N = 2'. The

numbering of the nodes in a hypercube is done so that the addresses of neighbors differ in

8

just one bit position if n-bit distinct numbers are assigned as node addresses. For

example, in the 4-D hypercube node 0 (0000) has the following neighbors:

Node 1 (0001)

Node 2 (0010)

Node 4 (0100)

Node 8 (1000)

1.2.2.2 Dynamic Connection Topologies. Contrary to static networks, dynamic

network topologies can vary at runtime. Generally, dynamic networks can be

distinguished by their switching strategy and their number of switching stages (single-

stage or multi-stage networks). Many computationally intensive problems have a very

high degree of structured, fine-grain parallelism and can benefit from highly parallel

execution. Power system problems come under the above categories and map well onto

parallel SIMD processor arrays [3].

1.2.3 Overview of SIMD Computers

SIMD architectures are common in parallel processing. The ability of SIMD machines to

manipulate large vectors efficiently has created a phenomenal demand in such areas as

weather modeling and cancer radiation research. The power of this kind of architecture is

seen when the number of processors is equal to the size of the vectors. Even when the

number of processors available is less than the size of the vectors, the speedup, compared

to a sequential algorithm, can be immense. In SIMD architectures, a single control unit

(CU) fetches and decodes instructions. Then, each instruction is executed either in the

9

CU itself or is broadcast to a collection of processing elements (PEs). These PEs operate

synchronously but their local memories have different contents.

Illiac IV was the fist large SIMD machine built in the early 1970s. It had 32 PEs,

each of which was a processor with its own local memory; the PEs were connected in a

ring. The ICL Distributed Array Processor (DAP) and the Goodyear (Massively Parallel

Processing) MPP SIMD machines came in the late 1970s.The ICL had either 1K or 4K

one-bit processors arranged in a square plane, each connected in a rectangular fashion to

its nearest neighbors. The MPP had 16K one-bit processors, each with local memory, and

was programmed in Pascal and assembly language. The DAP and the MPP were fine-

grain systems based on single-bit processors, whereas the Illiac IV was a large-grain

SIMD system.

In the late 1980s, three new SIMD fine-grain machines were developed: CM-2,

MasPar and a new version of DAP. These SIMD machines are generally used in

conjunction with conventional computers. CM-2 uses a VAX machine or a Silicon

Graphics workstation as a host computer. CM-2 has upto 64K single-bit processors, 2048

64-bit floating-point processors and 8 Gbytes of memory. An application running on the

host downloads data into the processor array of the CM-2. Each PE in the CM-2 acts as a

single memory unit. The host then issues instructions to each PE of the CM-2

simultaneously. After the computations are complete, the host then reads back the result

from CM-2 as though it were conventional memory. The CM-2 has been measured at 5.2

GFLOPS running the unlimited Linpack benchmark solving a linear system of order

26,624. Even higher performance was achieved on some applications, e.g., seismic data

processing and QCD. The new DAP is front ended by sun workstations or VAXes. The

10

MasPar architecture consists of fine-grain SIMD units combined with enhanced floating-

point performance; it uses 4-bit (Maspar MP-1) or 32-bit (Maspar MP-2) basic SIMD

units. By the 1990s, parallel computers reached substantial peak performance with the

Intel Paragon and the CM-5 yielding more than 100GFLOPS. However, their high price,

long development cycles, the difficulty of sometimes programming them, the high cost of

maintaining them, and their unsuitability for all applications limit their usage in diverse

computing fields.

1.3 Overview of Reconfigurable Computing Systems

Field-Programmable Gate-Arrays (FPGAs) have been used in systems spanning a broad

range of applications ever since their introduction in 1985 [4]. Most of the systems used

FPGAs as a glue logic providing the advantages of high integration levels without the

expense and risk of custom ASIC devices. However, as FPGAs have increased in

capability, their use as in-system configurable computing elements is receiving

considerable attention. The use of FPGAs as reconfigurable computing elements is poised

to expand rapidly in the commercial market, where FPGA—based parallel processors will

compete with parallel computers and even some supercomputers in computationally

intensive applications. Many research projects were done over the past few years in

developing these FPGA-based high-performance machines. Reconfigurable FPGA

technology holds the potential for reshaping the future of computing by providing the

capability to dynamically alter hardware resources to optimally serve immediate

computational needs [2].

11

FPGA-based reconfigurable systems can be used as specialized co-processors,

processor-attached functional units, attached message routers in parallel machines, and

specialized systems for parallel processing. This was made possible with the advent of

multi-million gate FPGAs. In the past decade, FPGA-based configurable computing

machines have acquired significant attention for improving the performance of

algorithms in several fields, such as DSP, data communications, genetics, image

processing, pattern recognition, etc. FPGA-based co-processors are implemented as

attached co-processors dedicated to off-loading computationally-intensive tasks from

host-processors in PCs and workstations. Reconfigurable co-processors are viable

platforms for a wide-range of computationally-intensive applications. FPGA-based

configurable computing systems have garnered support from the scientific and academic

communities. Many research projects have demonstrated the viability of configurable

computing systems that can deliver the performance of supercomputers for specific

applications. Most of the FPGA—based parallel machines currently reside in multi-FPGA

systems interconnected via a specific network [6]. Some of the configurable computing

systems are:

1. The Ganglion Project at IBM Almaden Research Centre used XC3090 and XC3042
FPGA devices to implement a feed-forward, fully interconnected neural network on a
single VME board.

2. DEC's Paris Research Lab has designed and implemented four generations of FPGA-
based configurable co-processors called Programmable Active Memories (PAMs).

3. SPLASH-1 includes a 32-stage linear-logic array with a VME-interface to a SUN
workstation. Each stage consists of an XC3090 FPGA and a 128Kbyte static memory
buffer. SPLASH-1 outperformed Cray-2 by a factor of 325 in specific applications and a
custom built NMOS device by a factor of 45. SPLASH-2 uses 17 XC4010 FPGA devices
arranged in a linear array and also interconnected via a 16x16 crossbar.

12

4. PRISM-1 from Brown University coupled XC3090 with the Motorola M68010
microprocessor and PRISM-11 coupled XC4010 FPGA devices as co-processors to an
AMD29050 RISC processor.

Advances in VLSI technology not only brought about multi-million gate FPGAs,

but also facilitated the integration of numerous functions onto a single FPGA chip.

Peripherals formerly attached to the FPGA at the board level now can be embedded into

the same chip with the configurable logic. According to Xilinx predictions, the count of

FPGA system gates will exceed 50 million and FPGA chips will operate at more than 500

MHz [9].Thus, the availability of multi-million system gates in FPGAs introduced a new

design paradign, System-On-a-Chip (SOC), with which entire systems can be

implemented on a single FPGA chip without the need for expensive non-recurring

engineering charges or costly software tools.

1.4 Overview of Soft-Core Processors

Today's highly competitive embedded system market requires embedded system

designers to reduce both the time to market, and the non-returnable engineering and

manufacturing costs. In order to achieve this, embedded system designers need to rapidly

prototype new designs and easily integrate different digital components into one design,

while still meeting the design's functionality and performance requirements. Designers

also have to handle other issues such as the use of reusable intellectual property software

or hardware modules. The ability to use existing code and migrate code to and from

different embedded system platforms are also important design issues for embedded

system designers.

13

To the embedded system designer, FPGAs represent the ability to reconfigure

digital designs and also to integrate different digital designs together. The advantages of

microprocessors over FPGAs are ease of use and good performance. Recently, designers

have sought to combine the advantages of custom logic devices with that of

microprocessors. One of the more popular solutions is the use of soft-core

microprocessors. A soft-core processor is a reconfigurable microprocessor combining the

advantages of programmable logic devices and microprocessors. The reconfigurable

architecture of a soft-core processor is used to modify hardware and software designs,

which makes a soft core processor ideal for rapid prototyping. The main difference

between hardcore-processors (ASIC devices) and soft-core processors is that soft-core

processors have reconfigurable architectures. Soft-core processors are more flexible than

hard-core processors since custom logic can be easily interfaced to the processor. This

gives the designer more flexibility when interfacing soft-core processors with the rest of

the embedded system. They are also scalable, which allows more than one processor to

be used in a particular design. The scalable, flexible and rapid prototyping factors make

the soft-core processor suitable to use in a variety of applications such as

communications or digital signal processing.

1.5 Motivation

Power system applications require complex iterative operations on huge matrices, often

on the order of 3000x3000 operations. Conventional machines consume 8-10 hours in

computing several power-flow analysis problems. These complex iterative operations are

often carried out using conventional software or hardware approaches. Software

14

approaches apply a set of instructions to map an application algorithm to a general-

purpose computer. Since general-purpose computers are not implemented for special

algorithms, they do not often yield the best possible performance. Hardware approaches

are specific to the application and produce outstanding results. Recent studies in power

engineering suggest that parallel architectures specific to the application reduce the

computational times drastically. This led us to the development of an application-

specific parallel architectural solution for power-flow analysis problems.

The SIMD mode of computation can speed up the implementation of algorithms

for solving linear systems of equations, like LU decomposition and iterative techniques

for matrix inversion. The ability of SIMD architectures to manipulate large vectors in

minimal time has been demonstrated on existing SIMD machines. Most algorithms

consist of code that is rarely executed, so attempting to map the entire program into the

hardware logic will give us an inefficient solution. As power system applications have a

combination of rarely executed code as well as code to manipulate large matrices in real

time, we have chosen an SIMD architecture where an array of processing elements that

carries out the most critical computations are connected to a host.

FPGAs have provided an alternative method to computing by supporting the fine-

tuning of hardware to match software requirements. The fact that the number of system

gates in FPGAs has been increasing rapidly in recent years encourages the development

of large—scale application-specific custom computing machines on FPGAs for better

hardware performance. While these FPGA-based Custom Computing Machines (CCMs)

may not challenge the performance of microprocessors for all applications, for specific

15

applications an FPGA-based system can offer extremely high performance. This led us to

develop an FPGA-based SIMD machine for power system analysis computations.

Nevertheless, CCMs that integrate processors and FPGAs suffer from slow

interfaces between the general-purpose processor and the FPGAs, demonstrating the need

for higher bandwidth communications between these resources. The advent of soft- core

processors made it possible to integrate reconfigurable logic as a slave to its peripheral

bus. Integrating a soft core processor, reconfigurable logic and memory into a single

system allows us to achieve high performance. This led us to develop an on-chip

FPGA-based SIMD machine that uses a soft-core processor as the host and an SIMD array of

processing elements as a slave attached to its peripheral bus.

1.6 Objectives

The main objective of this thesis is to design an application-specific SIMD architecture

for power-flow analysis problems and implement it on an FPGA. This thesis also aims at

implementing a single-processor with a floating-point co-processor on an FPGA using

the Xilinx Microblaze soft-core processor, and later comparing the performance of the

SIMD machine with the sequential implementation.

These objectives will be addressed in this thesis by proposing an SIMD

architecture. Implementation details are reported and the matrix multiplication

application is mapped on to both the single-processor system and the SIMD machine to

evaluate their performance. The target system is the Annapolis Micro systems (AMS)

Wildstar-II development board that contains two FPGAs.

CHAPTER 2

DESIGN OF AN FPGA-BASED SIMD MACHINE

2.1 Overview of the Wildstar-II Board

The Annapolis Microsystems high-performance Wildstar-II Board combines the high

density of reconfigurable system gates from Xilinxs Virtex-II FPGAs with very large

memory and high I/O bandwidth. We chose the PCI-based Wildstar-II board as its two

XC2V600 Virtex-II FPGAs can deliver great levels of processing power, and its

substantial on-board DDR or DDR-II SRAM and DDR DRAM memories make it an

ideal choice for building custom computing machines.

WILDSTAR |/PCI

Figure 2.1 Wildstar-II/PCI Block Diagram [14].

16

17

Figure 2.1 shows the block diagram of the Annapolis Microsystems's Wildstar-II

/PCI board. It uses two Xilinx XC2V6000 FPGAs, with up to 16 million system gates

each. A host computer can communicate with the board via the PCI interface. The PCI

bus interface communicates with the Wildstar-II board's PCI controller. The PCI

controller has access to the FPGAs and Euro I/O cards using the Local Address Data

(LAD) bus. The host has direct register access and communicates with the FPGAs and

the I/O cards over the LAD bus. It has 12Mbytes of DDR II SRAM and 128MB of DDR

SDRAM on the board. It has programmable Flash bank per FPGA for image storage.

Figure 2.2 Wildstar-II Processing Module [14].

18

Each processing module consists of a Xilinx Virtex-II FPGA, six independent

DDR2 SRAM ports, one bulk DDR DRAM port, three input/output Transmit(Tx) And

Receive(Rx) clocks, a 32-bit LAD bus, Flash storage for multiple FPGA images, three

global clocks, three user clocks and three user LEDs. The Wildstar-II board has two types

of clocks: the global board clocks MCLK, PCLK and ICLK and the local clocks for each

FPGA consisting of ACLK, BCLK and CCLK. MCLK is differential and asynchronous

to PCLK. It is configurable through the Wildstar-II host software. PCLK is differential

and asynchronous to MCLK, and is configurable through the Wildstar-II host software.

ICLK is the Local Address Data Bus clock. It is fixed at 132MHz and the FPGA uses this

clock to interface to the PCI controller for host access via the LAD bus.

The host communicates with the board using Wildstar-II Application

Programming Interfaces (APIs). The host software includes Wildstar-II APIs, device

drivers, a run time library and utilities which enable efficient communication between the

host and the board through the PCI bus. The Application Programming Interface is a set

of functions coded in the C language allowing communication between an application

and the Wildstar-II run-time library. Many APIs are provided to open the board, close the

board, program the FPGAs, deprogram the FPGAs, write onto them and read from them.

2.2 Overview of the Microblaze Soft-Core Processor

Microblaze embedded systems comprise the Microblaze soft-core processor, on-chip

block RAM, standard bus interconnects and on-chip peripheral bus peripherals.

Microblaze systems can range from a simple processor core with a minimum local

memory to a large system with many Microblaze processors or many OPB peripherals.

19

The Microblaze embedded soft-core was chosen as it is a 32-bit Reduced Instruction Set

Computer (RISC) processor optimized for implementation in Xilinx FPGAs. The

Microblaze soft core processor has the following features:

1. Thirty-two 32-bit general purpose registers.

2. 32-bit instruction words with three operands and two addressing modes.

3. Separate 32-bit instruction and data buses (Harvard Architecture) that conform to
IBM's OPB (On-chip Peripheral Bus) specifications.

4. Separate 32-bit instruction and data buses with direct connections to on-chip
block RAM through a Local Memory Bus (LMB).

5. 32-bit address bus.

6. Single issue pipeline.

7. Hardware multiplier in Virtex-II.

Figure 2.3 Microblaze Core Block Diagram [13].

Microblaze is a big-endian processor. The Microblaze core is organized as a

Harvard architecture with separate bus interface units for data and instruction accesses.

Each bus interface unit is further split into a Local Memory Bus (LMB) and IBM's On-

20

chip Peripheral Bus (OPB). The LMB provides single cycle accesses to on-chip dual-port

block RAM. The OPB interface provides a connection to both on-chip and off-chip

peripherals and memory. Microblaze bus interfaces are available in six different

configurations as shown below:

Figure 2.4 Microblaze Bus Configurations [13].

The optimal configurations are chosen from the above set of configurations

depending on the code spaces and data spaces, and if fast accesses to both are required.

2.2.1 Overview of the OPB Bus

The OPB is one element of IBM's Core Connect architecture, and is a general-purpose

synchronous bus designed for easy connection of on-chip peripherals. OPB has the

following features:

1. 32-bit or 64-bit data bus.

2. Up to 64-bit address.

3. Supports 8-bit, 16-bit, 32-bit and 64-bit slaves.

4. Supports 32-bit and 64-bit masters.

5. Dynamic bus sizing with byte, halfword, fullword, and double word transfers.

21

6. Optional Byte Enable support.

7. Distributed multiplexer bus instead of 3-state drivers.

8. Single cycle transfers between OPT masters and OPB slaves.

9. Support for sequential address protocol.

10. 16-cycle bus-time out.

11. Slave time out suppress capability

12. Support for multiple OPB masters

Most of these features are well mapped onto FPGAs; however, some features can

result in inefficient use of FPGA resources or can lower the system clock rates. Xilinx

uses an efficient subset of OPB for Xilinx developed OPB devices.

2.2.2 Microblaze Software Support

The Microblaze software support consists of a complete GNU C compiler and binary

utilities of tool suites. These suites allow users to compile, assemble and link their C code

or Microblaze assembly programs. The compiler's code optimizer and code generator

have been customized to achieve the best possible performance for applications with the

Microblaze ISA.

2.3 Sequential Architecture

The sequential architecture consists of a Microblaze embedded processor with local

memory, where the instruction bus is connected to only the Local Memory Bus (LMB)

while the data bus is connected to both the LMB and OPB buses. This sequential

architecture is designed for implementation on the Wildstar II board's Xilinx XC2V6000

FPGA. The sequential architecture also consists of a global memory as a custom

22

peripheral to the OPB bus of Microblaze. This global memory enables the host to

communicate with the Microblaze embedded system on the Wildstar-II board. This

global memory consists of a dual-port RAM (DPM) to store the results produced from

23

Microblaze, glue logic to interface the ports on one side of DPM with the OPB bus,

enabling the OPB bus to read and write, and glue logic to interface the ports on the other

side of DPM with the LAD bus, enabling the host to read the results stored in DPM

through the PCI bus controller using the Local Address Data Bus. One side of the global

memory is connected to the data side OPB of the Microblaze embedded processor as seen

in Figure 2.6.

Figure 2.6 Global Memory as Custom Peripheral.

The sequential algorithms were written in C and built into the local memory while

the Microblaze embedded system was built using the Microblaze Development Kit tools

(MDK). The final X86 or bit file for the Microblaze system containing the sequential

code is generated using the MDK tools. An application code is written using the

Wildstar-II APIs to program the FPGA with the X86 file, to program the clocks and to

read the results from the board into the host. These APIs are compiled on the host using

Wildstar-II host software and the executable is run to program the FPGA and to read

back the results into the host. The sequential architecture can run floating-point

24

operations using software support as Microblaze does not have a floating-point unit. The

results obtained from the sequential implementation of LU decomposition and matrix

multiplication applications for different matrices on the sequential architecture are

discussed in the Implementation Chapter.

2.4 SIMD Architecture

Figure 2.7 SIMD Architecture.

25

The SIMD architecture was developed around the Microblaze embedded system

using the OPB bus on the Wildstar-II board with Xilinx XC2V6000 FPGAs. Figure 2.7

shows the proposed architecture for the FPGA-based SIMD implementation using a soft-

core Microblaze processor as the host. The FPGA-based SIMD machine comprises an

instruction memory connected to the OPB bus, the controller, the mesh-connected

processing array, the global memory with an interface to both the OPB and LAD buses,

and a Microblaze as the host processor. The processing array consists of a 3X3 mesh of

Figure 2.8 Architecture of the SIMD Machine.

26

processing elements (PEs) with each processing element attached to one side of a dual-

ported RAM that serves as local memory; it also contains glue logic to interface the other

side of the dual-ported RAM with the OPB bus, enabling the OPB bus to read and write.

Finally, mesh connections enable communications with neighboring PEs in the North,

South, East and West directions. The instruction memory is a dual-ported RAM; one of

the ports is connected to the OPB bus enabling OPB read and write operations, and the

other ports are connected to the controller. The SIMD instructions are stored in the

instruction memory. The controller fetches each instruction from the instruction memory,

decodes it and broadcasts the control signals to all the PEs. All the control signals reach

the PEs using hardwired connection as the fanout of each FPGA is big enough. The

Microblaze soft-core processor acts as a host to the SIMD machine. The SIMD

processing array and controller are connected to Microblaze through its Peripheral bus

OPB. The Microblaze can perform read and write operations on the PEs through the OPB

bus as though each PE is a single memory unit. The Microblaze loads the data into each

of the PE's data memory, loads the SIMD instructions into the instruction memory and

reads back the results from the processing array through the OPB bus. The global

memory is a dual-ported memory with one end interfacing the OPB bus and other end of

the dual-ported RAM interfacing the LAD bus enabling the host PC to read the results

from the board through the PCI controller.

Microblaze reads back the results from the PEs and stores them in the global

memory that has the LAD bus interface, so that the host PC can read the results from the

board. For exploiting parallelism, along with the parallel architecture we should also have

a parallel compiler for efficiently mapping the algorithms onto the parallel architecture.

27

But developing a compiler is a Herculean task. So, for this machine the parallel pieces in

the algorithms are found and the corresponding instructions are stored in the instruction

memory by the Microblaze. So, the Microblaze C code consists of a sequential part that

runs on the host Microblaze and a parallel part written as store operations into the

instruction memory of the SIMD machine. Once the instructions are stored in the

instruction memory, the controller fetches the instructions, decodes them and broadcasts

the control signals to the PEs. All PEs execute the same instruction simultaneously and

the results are read back by the Microblaze. The Microblaze stores those results in the

global memory, so that the host PC reads the results from the board using the Wildstar-II

APIs. The important property of this architecture is its scalability which lies primarily in

the architecture of the PE.

2.4.1 Architecture of the Processing Element

The processing array consists of a 3X3 mesh of PEs attached as a slave to the peripheral

bus of the Microblaze processor. Each PE is a processor without a control unit and also

contains local memory. Each PE contains a dual-ported memory connected both to the

internal data bus of the PE and to the global bus OPB. It allows the Microblaze to load

the initial data into the PE's local memory from the global memory and to read the results

from the PE's memory after all computations have been implemented. The PEs are

connected to neighboring PEs in the north, South, East and West directions using mesh

interconnections. All main operations in power flow analysis are floating-point

operations, so the PE should have an efficient floating -point unit. PEs should have the

capability to execute load, store, floating- point addition, floating-point subtraction,

floating-point multiplication and floating-point division and routing operations. The

28

interconnection between the PEs is register based using full- duplex connections. The

main advantage of the PE architecture is its scalability that allows to implement as many

PEs as needed.

Figure 2.9 Architecture of the PE.

The PE uses a register file with 16 32-bit registers. It has two local buses, one for

the source operands and the other for the destination bus. Internal PE communications

use 32-bit local buses. The data on the destination bus can be transferred to memory,

register file or can be routed to neighboring PEs. All of these destinations may be

specified in the instruction. It also has eight registers connected to the destination bus for

the interconnection of PEs. This register-based interconnection enables the data on the

destination bus to be routed to any of the neighboring PEs in the North, South, East and

29

West directions, as specified by the instruction. The main computation part of the PE is

the floating-point unit (FPU), which turns out to be the most critical path in the SIMD

design. The PE has a FPU which is intended primarily to implement floating-point

operations or pass data onto the destination bus for storing back into the memory or for

data routing. The FPU conforms to the IEEE 745 single-precision floating-point format.

Figure 2.10 Floating-Point Data Format.

According to the IEEE-754 floating-point format, data is represented with 32

bits, where bit# 31 is used as the sign bit, bit#30 to bit#23 (8 bits) are used as the

exponent, and bit #23 to bit#0 and an implied '1' (24 bits) are used as the mantissa. The

FPU employs a three-stage pipelined floating-Point adder, subtractor and multiplier, and

a 28-stage pipelined divider. The sequential implementations of these algorithms give

very poor performance on FPGAs. So, a pipelined architecture was developed for the

floating-point adder, subtractor, multiplier and divider to improve the performance on the

FPGAs.

2.4.1.1 Pipelined Floating-Point Adder/Subtractor.	 The floating-point addition

and subtraction algorithms [7] are similar and are performed in three stages.

Stage 1:

• The sign, exponent and mantissa with their implied bits are extracted from the

floating-point numbers in the input.

30

Figure 2.11 3-stage Pipelined Floating-Point Adder/Subtractor.

Stage 2:

• The exponents are compared and checked to identify the larger value, and an

appropriate shift value is calculated.

• If the exponent of data x is less than the exponent of data y, then the mantissa of x

is shifted right by the shift value, or else the mantissa of data y is shifted right by

the shift value.

• The exponents are adjusted according to the shift value.

31

Stage 3:

• The aligned mantissa is added or subtracted and then post normalized.

• The exponent is adjusted to perform post normalization.

• The result is obtained by combining the sign bit, the mantissa and the exponent.

2.4.1.2 Pipelined Floating-Point Multiplier.	 The floating-point multiplier [7] is a

three stage pipelined multiplier.

Stage 1:

• The sigh, exponent and mantissa with the implied '1' bit of the two numbers are

extracted

Figure 2.12 3-stage Pipelined Floating-Point Multiplier.

32

Stage 2:

• The resultant sign bit is calculated by doing a xor of the sign bit in the data x and

the sign bit in the data y.

• The exponent of x and y are added and adjusted.

• The mantissas of X and Y are multiplied and the upper 24 bits are taken.

Stage 3:

• The post normalization for the exponent and mantissa is done.

• The result is obtained by combining the sign bit, the exponent and the mantissa.

2.4.1.3 Pipelined Floating-Point Divider. 	 The floating-point divider uses the SRT

non restoring division algorithm [5]. The sequential implementation of this algorithm

gives a very poor performance on FPGAs. A VHDL technique called "unrolling of the

for loops" was used in developing a 28-stage pipelined architecture. The iterations of a

loop are unrolled into 24 stages and they are replaced using simple if statements.

The PE is connected to a 2KB dual-ported RAM using read and write registers as local

memory. These dual-ported RAMs are connected both to the local data bus (destination

bus in the PE) and global data bus (OPB bus). This enables the host to load the data into

the local memory and to read the data from the local memory. This also gets the

addresses from the host as well as from the sequencer of the SIMD machine.

2.4.2 Instruction Set

Two types of instruction formats were developed using the register-register instruction

and immediate-type instruction types. The register-register instruction format uses 6 bits

for the opcode, 5 bits each for the address of the source registers, 5 bits for the destination

register and 11 bits for masking. The immediate-type instruction format uses 6 bits for

33

the opcode, 10 bits for the immediate address, 5 bits for the destination register, and 11

bits for masking.

Opcode Source1 Source2 Destination Mask bits
(6bit) (5bit) (5bit) (5bit) (1 1 bit)

Figure 2.13 Register-register type instruction format.

Opcode Immediate address Register Mask bits
(6bit) (1 Obit) (5bit) (11 bit)

Figure 2.14 Immediate-type instruction format.

The opcode field, which is 6 bits long, specifies the operation for the PE, and the

5 bit addresses of the source and destination registers specify the addresses of the source

and destination operands, respectively. The memory address field specifies the address of

the memory to load from or store into the memory. The 11 bits for enabling the PEs are

used to mask a subset of the PEs when all of the PEs are not needed to be active for some

of the instructions.

FPU Operations:

1. Instruction: add/sub/mul/div Rd, Rs 1, Rs2

This instruction performs addition, subtraction, multiplication or division of two

floating-point numbers. The source registers are Rs1, R s2 and the result is stored into

the destination register.

34

2. Instruction:	 nr/er/wr/sr	 Rd

This instruction performs routing, where the contents received from the

north/east/west/south is stored into the destination register Rd.

3. Instruction:	 ns/es/ws/ss	 Rs1

This instruction performs routing, where the contents of the source register R s 1 is sent

to the north/east/west/south processing element via the north/east/west/south out

registers.

4. Instruction: LW Rd, mem(x)

This instruction loads the contents of the memory location with address x into the

destination register Rd.

5. Instruction:	 sw mem(x), Rd

This instruction stores the contents of the register Rd into the memory address x.

2.4.3 Controller

The controller serves as the sequencer of the SIMD machine. The host issues instructions

to the controller by storing them in the instruction buffer. The sequencer fetches

instructions from the instruction buffer and decodes them using its state machine. There

are six states in the sequencer: instruction fetch, instruction decode, instruction execute,

load memory, store memory and writeback. The state machine is shown in Figure 2.16.

This state machine shows the different states that the sequencer goes through for fetching,

decoding and executing the instruction. The execution state has many sub-states in it.

Whenever the machine is reset, the sequencer fetches the instruction from the instruction

buffer, increments the program counter, decodes the instruction and sends the control

signals to all the PEs to execute the instruction. The connection between the PEs and the

35

sequencer is hardwired. All the control signals are connected to the PEs and, according to

the instruction, either all PEs or some of them execute the instruction simultaneously.

Figure 2.15 Controller of the SIMD machine.

36

2.4.4 Global Memory

This is a dual-ported memory that has one end connected to the glue logic that interfaces

the OPB bus and the other end connected to the glue logic that interfaces the LAD bus.

Microblaze reads the results from the processing array and the final results after

computations are stored in the global memory. This enables the host PC to read the

results from the board, using the Wildstar-II APIs, through the PCI controller that

interfaces the LAD bus.

The algorithms used for sequential applications should be modified so that they

are efficiently mapped on to the SIMD machine. Once the algorithms for the SIMD

machine are developed, then the code is written in C for Microblaze; it contains

instructions to store the SIMD instructions in to the instruction memory. The C code is

built into the Microblaze system using the Microblaze Development Tools. An

application code is written for the host PC using the Wildstar-II APIs to program the

FPGA, program the clock, and read back the results. The implementation details for the

SIMD machine are discussed in the Implementation Chapter.

2.5 Sequential Architecture with the Floating-Point Co-Processor

Microblaze works on integer numbers only since it does not have a hardware FPU.The

floating-point co-processor is designed to enable floating-point operations with

Microblaze. The floating point co-processor consists of a single PE with an FPU, and a

controller and instruction memory interfaced to Microblaze through the OPB bus. The

design of the PE is similar to the design of a PE in the SIMD machine. This PE uses a

FPU, a register file with 16 32-bit registers and a dual-ported local memory. The

37

controller design is also similar to the design of the controller in the SIMD machine. The

global memory is a dual-ported memory used to interface both the OPB bus and LAD

bus. The results are stored by the Microblaze after the computations in the global

memory, and are read from the host. The architecture of the sequential Microblaze

system with a floating-point co-processor is shown in Figure 2.17.

Figure 2.17 Floating-Point Co-Processor.

38

The applications are written in assembly language and the assembly instructions are

stored in the instruction memory of the co-processor to test the floating point co-

processor. The results are read from the host using Wildstar-II APIs. The performance

results and comparisons with the SIMD machine are discussed in Chapter 3.

CHAPTER 3

IMPLEMENTATION AND RESULTS

The SIMD machine is designed using the hardware description language VHDL. The

design of the processing array, controller, global memory and glue logic to interface the

OPB and LAD buses are done in VHDL and integrated with the soft-core processor

Microblaze as a custom peripheral. During this design, different tools at various levels of

integration are used. We have followed two design flows in generating the complete

system. Before integrating the SIMD machine or any custom peripheral with the

Microblaze system, the FPGA design flow is followed and then the Microblaze design

flow is used to generate the complete system.

39

40

The following are the steps followed in the FPGA design flow:

1. The design of all modules required for both SIMD and sequential implementation is
done using a synthesizable subset of the VHDL language. The coding and compilation is
done using the Mentor Graphics Modelsim simulator.

2. The functional simulation is performed using the Modelsim simulator. Many test
benches were developed to test the SIMD machine using simulation. All the instructions
for the SIMD machine were tested using test benches.

3. These VHDL files are given as input to the synthesis tool Synplify. During Synthesis
the behavioral description in the HDL file is translated into a structural netlist and the
design is optimized for the Xilinx device XC2V6000. This generates a netlist in the EDIF
and VHDL formats.

4. The output VHDL file from the synthesis tool is used to verify the functionality by
doing post synthesis simulation using the Modelsim simulator.

5. The netlist EDIF file is given to the implementation tools of the Xilinx ISE 4.1i. This
step consists of translation, mapping, placing and routing, and bit stream generation. The
design implementation begins with the mapping or fitting of the logical design file to a
specific device, and is complete when the physical design is completely routed and a
bitstream is generated. Timing and static simulations are done to verify the functionality.
This tool generates an X86 file which is used to program the FPGA.

6. Finally, the results are obtained from the FPGA board and are checked for
functionality.

All these steps are followed in a general design methodology to program the

FPGA. In our design, the implementation steps in the FPGA design flow are carried out

after the Microblaze development flow. All iterative steps till synthesis are done for

verifying the SIMD machine. The EDIFs or HDLs generated after synthesis are used as

inputs for the Microblaze design flow. Finally, implementation steps are followed to

generate the final bitstream for the complete SIMD machine.

41

3.2 Microblaze Development Methodology

The sequential and parallel implementations are implemented using Microblaze and its

development tools. Both implementations use the available netlists for Microblaze and

the OPB bus, and the MDK tool flow to configure them according to the requirements of

the parallel and sequential systems, respectively. This tool allows custom designed

peripherals, both in the sequential and parallel implementations, to integrate and generate

a complete Microblaze system by modifying the netlists accordingly. The Microblaze

development tool involves the following steps:

Figure 3.2 Microblaze design flow [13].

1. Define a Microblaze hardware system in a text based Microprocessor Hardware
Specification (MHS) file. This file consists of peripherals, one of the six configurations
of Microblaze, system connectivity and memory spacing for each of the peripherals. The
MHS file for the sequential implementation consists of a Microblaze processor with
configuration-3, global memory as peripheral and global memory address space as 8000-

42

81fff. The MHS file for the parallel implementation consists of the sequential
components, the SIMD components and their memory address space. Also, we define the
software specifications using a Microprocessor Software Specification File (MSS).

2. The hardware and software specification files are used to build the Microblaze system
automatically involving the Library and Platform generators.

3. The Library Generator is used to build as system specific library of C functions that
map basic C functions to peripherals; it also configures the custom c libraries. Then, the
mb-gcc compiler is used to compile the source code. The C code is written for matrix
multiplication and LU decomposition assuming different sizes of matrices; it is compiled
using the mb-gcc compiler.

4. The executable from the mb-gcc compiler is given as input to the Platform Generator.
It builds this executable into the Block RAM of Microblaze.

5. The Microblaze peripheral definition file, which contains the description of the custom
peripheral, how it is connected to the OPB bus and the address space of the peripherals is
also used as input to the Platform Generator to generate the complete system.

6. The Platform Generator uses the MHS and MPD files, and looks for all the IP core
netlists, VHDL code for the custom peripherals and other libraries required for generating
the system as specified in the Peripheral Analyze order file.

7. Finally, using this entire information the Platform Generator generates a top level HDL
file that has all the information about the complete system.

8. This HDL file is synthesized in Synplify and a final netlist Electronic Data Interchange
Information (EDIF) is formed.

9. After this step, the Xilinx implementation tools are used. The resulting EDIF file is
used as input to the Xilinx Place and Route tool. This merges all the required netlists and
produces an X86 file with which we can program the FPGA to realize the hardware.

Thus, the generated X86 file is used to program the FPGA present on the

Wildstar-II board. An application code is written using the Wildstar-II APIs to program

the FPGA with the X86 file, program the clock based on the timing reports and read back

the results from the board. This application code is compiled and executed to read back

the results into the host PC. The synthesis and performance results after running the

applications are discussed below.

43

3.3 Sequential Implementation

3.3.1 Implementation

The sequential implementation uses the above discussed methodologies for

implementations on the board. The custom peripheral with the global memory and the

glue logic for interfacing the OPB and LAD buses are designed in VHDL. They are

synthesized using Synplify and a netlist EDIF is generated. The Microblaze development

tools are used as discussed above and a system top level HDL file is generated. This is

synthesized using Synplify and implementation tools are used to generate an X86 file for

the complete Microblaze system. The synthesis results are discussed below.

Figure 3.3 Synthesis RTL view of sequential implementation.

44

Figure 3.4 Custom peripheral connected to the OPB bus.

45

Figure 3.5 Hierarchical view of the OPB bus.

46

The above Figures 3.3, 3.4, 3.5 show the RTL view of the sequential implementation

after synthesis. The maximum frequency at which the sequential design operates is 639

MHz. This occupies just 6% of the FPGA resources.

3.3.2 Performance Results on the Sequential Machine

The two applications, matrix multiplication and LU decomposition, which are major

computational parts of power flow analysis, were written in C code for matrices of

different sizes. The data are integer numbers, as Microblaze can work on only integer

numbers and are initialized in C code. C codes were stored into the Microblaze Block

RAM while the Microblaze system was generated. The Wildstar-II APIs were used to

program the FPGA using the generated X86 file and to read back the results. APIs were

also used to program the clock to be 33 MHz for the sequential implementation. The

execution times are calculated by multiplying the number of clock cycles by the clock

period. The execution times are as given below:

Matrix Multiplication:

1. For a 3X3 matrix, C code was written and pointers were used to store the results

in the global memory that interfaces the host PC. The host reads these results

using the APIs; they are verified with the results on the PC.

The number of integer operations for a 3X3 matrix is 45. Also,

Clock speed = 33 MHz

Clock period =0.303 ns

Number of cycles per instruction= 3

Total number of clock cycles =45*3 = 135

Total execution time = 135*0.303 =40.905 ns

47

2. For a 5x5 matrix, C code was written and pointers were used to store the results in

the global memory after computations were carried out. The timing results are as

shown below:

The number of integer operations for the 5X5 matrix is 225. Also,

Clock period =0.303 ns

Total number of clock cycles = 225*3 =675

Total execution time= 375*0.303 = 204.525 ns

LU Decomposition:

1. For a 3X3 matrix, C code was written for LU decomposition and the results were

stored in the global memory after computations were carried out. The timing results

are as shown below:

The number of integer operations for a 3X3 matrix =13

Clock period =0.303 ns

Total number of clock cycles =13x3 =39

Total execution time =39*0.303 =11.817 ns

2. For a 5X5 matrix, C code was written and the timing results are as shown below:

The number of integer operations for a 5X5 matrix is 70

Clock period =0.303 ns

Total number of clock cycles =70*3=210

Total execution time=210*0.303=63.63 ns

Table 3.1 Matrix multiplication on Microblaze

Size of Matrix

Number of

operations

(I)

Total number

of cycles

C= I*3

Total execution

time

T= C*0.303 ns

3x3 45 45*3=135
135*0.3033=

40.905 ns

5x5 225 225*3=675
675*.303=

204.525 ns

Table 3.2 LU decomposition on Microblaze

Size of Matrix

Number of

operations

(I)

Total number

of cycles

C= I*3

Total execution

time

T= C*0.303 ns

3x3 13 13*3=39
39*0.303=

11.817 ns

5x5 70 70*3=210
210*0.303=

63.63 ns

48

The above Tables 3.1 and 3.2 show the execution times for matrix multiplication and LU

decomposition for 3x3 and 5x5 matrices on Microblaze running at 33 MHz. From the

49

above tables it can be observed that as the size of the matrix increases the execution times

are increase drastically.

3.3.3 Performance Results on Microblaze with Floating-Point Co-Processor

Matrix Multiplication:

Matrix multiplication for 3x3 matrices was tested on Microblaze with a floating-point

co-processor. The code for matrix multiplication of 3x3 matrices was written using

assembly language. The instructions are stored in the instruction memory of the floating-

point co-processor and the data are initialized in the data memory of the co-processor.

Once the instructions are executed the results are read from the host using Wildstar-II

APIs. The assembly language code consists of 90 instructions, of which 36 are load

instructions, 9 are store instructions and 45 are floating-point operations. The floating

point co-processor consumes 8 cycles for load operations, 11 cycles for floating-point

operations and 10 cycles for store operations. The timing results are as shown below:

The number of load operations is 36

The number of floating-point operations is 45

The number of store operations is 9

Total number of cycles = (36*8) + (9* 10) + (45*11) = 873

Total execution time = 873*0.303 = 264.519 ns

50

3.4 SIMD Implementation

3.4.1 Implementation

The SIMD design also uses the above discussed methodologies in the implementation.

The modules of the SIMD machine are designed using VHDL code, and are simulated

and synthesized. After synthesis is done, the Microblaze development flow is followed

where the complete system is generated. This Microblaze development tool configures

the soft- core process and its peripheral bus according to the requirements of the system

as specified in the MHS file. The Platform Generator counts the number of peripherals as

specified in the MHS file, and modifies the OPB bus so that it generates the logic that

enables the data, address and control signals connected to all the peripherals. The glue

logic written in VHDL for all the peripherals takes care of OPB bus read and write

operations by decoding the address specified for that peripheral and then enabling that

peripheral. The Platform Generator generates the top level HDL file that integrates the

SIMD machine, and glue logic for the OPB and LAD buses. This file is synthesized using

Synplify and the final EDIF file is generated. This EDIF file is used by the

implementation tools and the final X86 file is generated. This X86 file is used to program

the FPGA and realize the SIMD machine on that FPGA. Wildstar-II APIs were used to

program the FPGA using this X86, program the clock frequency and read back the results

into the host. The synthesis results and the implementation of matrix multiplication on the

SIMD machine are discussed below.

Figure 3.6 RTL view of the SIMD machine after synthesis.

51

52

The above Figure 3.6 shows the complete RTL view of the SIMD machine for

array processing, the glue logic and the integration of the OPB bus of Microblaze. The

following figure shows the RTL view of each module in a high-level block diagram. The

processing array is seen clearly in the RTL view shown in Figure 3.7.

Figure 3.7 RTL view of the processing elements after synthesis.

53

From this figure, it can be observed that all PEs are connected using the mesh

and local memories connected to the PEs. The left-most module is the controller whose

RTL view is seen clearly in the diagram of shown in Figure 3.8.

Figure 3.8 RTL view of the controller.

54

Figure 3.8 shows the RTL view of the controller; the control signals are hardwired

to all nine PEs. All the control signals are hardwired because the FPGA supports a fan-

out more than 100; as seen in the above figure, the fan-out used for the control signals is

only nine which is supported by the Vertex-II FPGA. Figure 3.9 shows a clear view of a

PE.

Figure 3.9 RTL view of a Processing Element.

The RTL view of a PE shows its complete architecture. The register interface

used for the mesh interconnection is seen in the above RTL view. There are four register

inputs and four register outputs for the communication of neighboring PEs in the north,

55

east, south and west directions. The pipelined functional unit is seen in the above figure

connected to the source and destination buses. The pipelined functional unit is seen in

Figure 3.10.

Figure 3.10 RTL view of the pipelined floating-point unit.

The floating-point unit consists of a three-stage adder, a subtractor, and a

multiplier and a 28-stage divider. The FPU contains the critical path of the SIMD design,

so the FPU is pipelined to improve the clock speed. The maximum frequency at which

the FPU can work is 50 MHz. This increases the overall system frequency of the SIMD

56

design. More specifically, the divider is the slowest functional unit and the critical path

lies in the divider, so deep level pipelining is used within the divider. Figure 3.11 shows

the 28-stage pipelined divider.

Figure 3.11 RTL view of the pipelined divider.

57

This is a major functional unit that brought down the system frequency, so a deep

pipelined structure was developed to increase the system frequency. The 28-stage

pipelined divider works at maximum frequency of 100 MHz. The following figure 3.12

shows the timing report for the SIMD machine.

Figure 3.12 Timing report for the SIMD machine.

This report shows that the maximum frequency at which the SIMD machine

actually works is 33.602 MHz. Based on this value, the clock generator on the Wildstar

board is programmed to be 33 MHz using the Wildstar-II APIs.

The following Figures 3.13 and 3.14, show the device utilization summary

showing that about 78% of the "slices" are used. Each slice is a combination of two

function generators and two storage elements. This can also be represented in terms of

58

the Combinational Logical Blocks (CLBs), where each CLB includes four slices and two

3-state buffers. It also shows that 19 block RAMs have been used out of the 144 which

are available. This shows that we can still increase the local memory capacity, which is

now 2KB. The total space of available block select RAMs is 3MB, so we can increase the

local memory size significantly. The total number of gates consumed is

1, 781,590 as seen in Figure 3.14.

Figure 3.13 Device utilization summary.

Figure 3.15 Real time for the completion of the "place" and "route" functions.

59

60

Figure 3.16 Floor plan of the FPGA after "place" and "route".

Figure 3.13 shows that the real time taken to generate the X86 file for the SIMD

machine is approximately four days. Figure 3.14 shows the floor plan of the FPGA after

"place" and "route".

The X86 file generated after "place" and "route" is used to program the FPGA

.Wildstar-II APIs are used to program the clock to be 33 MHz, to program the FPGA, to

realize the SIMD on the FPGA and to read back the results from the board. The

instruction memory is initialized with different instructions and is realized on the FPGA;

all instructions work properly. To port applications, like matrix multiplication and LU

decomposition, we should come up with parallel algorithms that map efficiently onto the

SIMD machine. The matrix multiplication algorithm was modified for the SIMD

61

machine, results were obtained, and execution times were calculated by multiplying the

number of clock cycles with the clock period. The execution time for matrix

multiplication on SIMD machine is discussed below.

3.4.2 Performance Results on the SIMD Machine

Matrix Multiplication:

Matrix multiplication for a 3x3 matrix was tested on the SIMD machine with nine

PEs. The 3X3 matrix multiplication algorithm was modified for the SIMD machine with

nine PEs. The code was written using the assembly language and consists of twelve

instructions; of which six of them are for load operations; five for floating-point

operations and one for a store operation. The instructions are stored in the instruction

memory and the data are stored in the local memories of the PEs. This reduces the

number of instructions, from ninety in the sequential implementation with a floating-

point co-processor to twelve in the SIMD implementation. The local memory of PEO

contains the first row of matrix A and the second column of matrix B, PE1 stores the first

row of matrix A and the second column of matrix B, and so on. The following assembly-

language instructions are converted into binary form and stored into the instruction

memory of the SIMD machine to perform 3X3 matrix multiplication simultaneously on

the nine PEs:

Contents of the instruction memory
1. Load rO, mem (0000000000)
000110 0000000000 00000 00000000000 =

2. Load r1, mem (0000000001)
000110 0000000001 00001 00000000000 =

3. Load r2, mem (00000000010)
000110 0000000010 00010 0000000000 =

18000000

18010800

18021000

62

4. Load r3, mem (0000000011)
000110 0000000011 00011 0000000000

5. Load r4, mem (0000000100)
000110 0000000100 00100 0000000000

6. Load r5, mem (0000000101)

=

=

18031800

18042000

000110 0000000101 00101 0000000000 = 18052800

7. Mul r0, r3, r6
100010 00000 00011 00110 0000000000 = 88033000

8. Mul r1, r4, r7
100010 00001 00100 00111 0000000000 = 88243800

9. Mul r2, r5, r8
100010 00010 00101 01000 0000000000 = 88454000

10. Add r6, r7, r9
000010 00110 00111 01001 0000000000 = 08c74800

11. Add r9, r8,r10
000010 01001 01000 01010 0000000000 = 09285000

12. Store r11, mem (000000111)
000111 0000000111 01010 0000000000 = 1c075000

The input matrices are mapped onto the data memories of the SIMD machine as shown

below:

Inputs:
(3 2 1"

Matrix A = 4 5 6
2 1

(1 2 4\

Matrix B = 7 8 9
3 5 6)

63

1. Data meml ="4040000040e000003f80000032000004000000040400000"

--- (3, 2, 1, 1, 7, 3) first row first column

2. Data mem2 = "40a00000410000004000000032000004000000040400000"

--- (3, 2, 1, 2, 8, 5) first row second column

3. Data mem3 = "40c00000411000004080000032000004000000040400000"

-- (3, 2, 1, 4, 9, 6) first row third column

4. Data mem4 = "4040000040e000003f80000040c0000040a0000040800000"

-- (4, 5, 6, 1, 7, 3) second row first column

5. Data mem5 = "40a00000410000004000000040c0000040a0000040800000"

-- (4, 5, 6, 2, 8, 5) second row second col

6. Data mem6 = "40c00000411000004080000040c0000040a0000040800000"

-- (4, 5, 6, 4, 9, 6) second row third column

7. Data mem7 = "4040000040e000003f800000404000003f80000040000000"

--(2,1,3,1,7,3) third row first column

8. Data mem8 = "40a000004100000040000000404000003f80000040000000"

-- (2, 1, 3, 2, 8, 5) third row second column

9. Data mem9 = "40c000004110000040800000404000003f80000040000000"

-- (2, 1, 3, 4, 9, 6) third row third column

The data and instructions are initialized in the data and instruction memories,

respectively, before generating the X86 file. APIs are used to program the FPGA using

the generated X86 file, to program the clock to be 33MHz and to read back the results.

The results obtained for this 3x3 matrix multiplication for the given matrix are found to

be correct. The SIMD machine consumes eight cycles for a load operation, ten cycles for

64

a store operation and eleven cycles for a floating-point operation. The execution times are

calculated as shown below:

Number of load operations is 6

Number of floating-point operations is 5

Number of store operations is 1

Total number of cycles = (6*8) + (5*11) + (1*10) = 113

Clock period =0.303 ns

Total execution time = 113*0.303 = 34.239 ns

3.5 Analysis

The execution time on the SIMD machine was compared with the execution time of

Microblaze with a floating-point co-processor for 3x3 matrix multiplication. The SIMD

machine uses nine PEs, each with a FPU and local memory, while the sequential

implementation uses a Microblaze with a floating-point co-processor. These execution

times do not include the time taken for input/output operations like loading the local

memories of PEs, storing the results from local memory to global memory and reading

the results from the host. The speed-up factor and efficiency of the SIMD machine are

calculated for 3x3 matrix multiplication from the execution times, as shown in the Table

3.3.

65

Table 3.3 Execution Times for 3x3 Matrix Multiplication

Architecture

Number of
Load

operations
(L)

Number
of

Store
op erations

(S)

Number of
FP

operations
FP()

Total
number
of cycles

L*8+S*10
+FP*11

(c)
_

Total
execution

(t) =
C*0.303 ns

Microblaze
(36*8)+

with a FP
co-processor

36 9 45
(9*10)+

(45*11)=
873

873*0.303=
264.519 ns

(6*8)+
SIMD

6 1 5
(5*11)+ 113*0.303=

Machine (1*10)= 34.239 ns
113

The execution time for 3x3 matrix multiplication on a single Microblaze with

floating-point co-processor running at 33 MHz is 264.519 ns, while the execution on the

SIMD machine running at 33 MHz is 34.239 ns. The calculation of the speed up and

efficiency are as shown below:

Speedup factor S (n) = T (1)/ T (n)

= 264.519/34.239

= 7.725

Efficiency: E (n) = S (n)/n

= 7.725/9

= 0.8584

This shows the efficiency of the SIMD machine for floating-point operations

which are critical operations in power flow applications. The speed-up of 7.725 for nine

processors is achieved as the matrix size is equal to the number of processors; for larger

matrices comparably better performance is possible. The main advantage of the SIMD

66

architecture is its scalability that enables it to scale to any number of PEs, limited only by

the available FPGA resources. Thus, the efficiency of this FPGA-based SIMD machine is

proved over the sequential machine. This performance of the SIMD machine can still be

improved by implementing instruction pipelining, or improving the floating-point unit or

replacing most of the components by Virtex-II optimized primitives.

CHAPTER 4

CONCLUSIONS

The architecture of an FPGA-based SIMD machine that takes advantage of scalability to

produce good performance for power flow analysis problems has been presented. This

SIMD machine was implemented on the Annapolis Microsystems Wildstar-II board. It

was tested for matrix multiplication and its performance was compared with the

sequential implementation using a single Microblaze processor with a floating-point co-

processor. The performance of the FPGA-based SIMD architecture is better than that of

the sequential processor. With future enhancements, like implementing instruction

pipelining, improving the performance of the FPU, or replacing the modules with Xilinx

primitives, we could produce even better results. Scaling this machine onto a multi-FPGA

system is going to improve the performance even further.

67

APPENDIX A

CODE ON SIMD MACHINE

The code for matrix multiplication on SIMD machine having nine processing elements is

written in assembly language. The following is the code in assembly language.

3x3 matrix multiplication on 9 PEs

1. load r1, mem(0000000000)
000110 0000000000 00000 00000000000 = 18000000

2. load r2, mem(0000000001)
000110 0000000001 00001 00000000000 = 18010800

3. load r3,mem(00000000010)
000110 0000000010 00010 0000000000 = 18021000

4. load r4,mem(0000000011)
000110 0000000011 00011 0000000000 = 18031800

5. load r5,mem(0000000100)
000110 0000000100 00100 0000000000 = 18042000

6. load r6,mem(0000000101)
000110 0000000101 00101 0000000000 = 18052800

7. mul r1,r4,r7
100010 00000 00011 00110 0000000000 = 88033000

8. mul r2,r5,r8
100010 00001 00100 00111 0000000000 = 88243800

9. mul r3,r6,r9
100010 00010 00101 01000 0000000000 = 88454000

10. add r7,r8,r10
000010 00110 00111 01001 0000000000 = 08c74800

11. add r10,r9,r11
000010 01001 01000 01010 0000000000 = 09285000

12. store r11,mem(000000111)
000111 0000000111 01010 0000000000 = 1c075000

68

Inputs:
matrix a={3 2 1

456
2 1 3}

matrix b={1 2 4
789
3 5 6}

data meml ="4040000040e000003f8000003f8000004000000040400000"---
(3,2,1,1,7,3)firstrow first col
data mem2 = "40a0000041000000400000003f8000004000000040400000"---
(3,2,1,2,8,5)first row sec col
data mem3 = "40c0000041100000408000003 f8000004000000040400000"--
(3,2,1,4,9,6)first row thrd col
data mem4 = "4040000040e000003f80000040c0000040a0000040800000"--
(4,5,6,1,7,3)secondrow firstcol
data mem5 = "40a00000410000004000000040c0000040a0000040800000"--
(4,5,6,2,8,5)secondrow sec col
data mem6 = "40c00000411000004080000040c0000040a0000040800000"--
(4,5,6,4,9,6)secondrow thrd col
data mem7 = "4040000040e000003f800000404000003f80000040000000"--
(2,1,3,1,7,3)thrd row first col
data mem8 = "40a000004100000040000000404000003 f80000040000000"--
(2,1,3,2,8,5)thrd row sec col
data_mem9 = "40c000004110000040800000404000003f80000040000000"--
(2,1,3,4,9,6)thrd row thrd col

result= {41a00000 41 d80000 42100000

42640000 429c0000 42c20000

41900000 41d80000 420c0000}

69

APPENDIX B

CODE ON SEQUENTIAL MACHINE

The code for matrix multiplication on sequential machine with co-processor is written

in assembly language. The following is the code in assembly language.

3x3 matrix multiplication on 1 PEs

1. load r0,mem(1) 18010000

2. load rl,mem(2) 18020800

3. load r2, mem(3) 18031000

4. load r3,mem(10) 180a1800

5. load r4,mem(11) 180b2000

6. load r5,mem(12) 180c2800

7. mul ro,r3,r6 88033000

8. mul rl,r4,r7 88243800

9. mul r2,r5,r8 88454000

10. add r6,r7,r9 08c74800

11. add r9,r8,r10 09285000

12. store r10,mem(19) 1c135000

13. load r3,mem(13) 180d1800

14. load r4,mem(14) 180e2000

15. load r5,mem(15) 180f2800

16. mul ro,r3,r6 88033000

17. mul r1,r4,r7 88243800

70

71

18. mul r2,r5,r8 	 88454000

19. add r6,r7,r9 	 08c74800

20. add r9,r8,r10 	 09285000

21. store r10,mem(20) 	 1c145000

22. load r3,mem(16) 	 18101800

23. load r4,mem(17) 	 18112000

24. load r5,mem(18) 	 18122800

25. mul ro,r3,r6 	 88033000

26. mul r1,r4,r7 	 88243800

27. mul r2,r5,r8 	 88454000

28. add r6,r7,r9 	 08c74800

29. add r9,r8,r10 	 09285000

30. store r10,mem(21) 	 1c155000

31. load r0,mem(4) 	 18040000

32. load r1,mem(5) 	 18050800

33. load r2, mem(6) 	 18061000

34. load r3,mem(10) 	 180a1800

35. load r4,mem(11) 	 180b2000

36. load r5,mem(12) 	 180c2800

37. mul ro,r3,r6 	 88033000

38. mul r1,r4,r7 	 88243800

39. mul r2,r5,r8 	 88454000

40. add r6,r7,r9 	 08c74800

72

41. add r9,r8,r10 	 09285000

42. store r10,mem(22) 	 1c165000

43. load r3,mem(13) 	 180d1800

44. load r4,mem(14) 	 180e2000

45. load r5,mem(15) 	 180f2800

46. mul ro,r3,r6 	 88033000

47. mul rl,r4,r7 	 88243800

48. mul r2,r5,r8 	 88454000

49. add r6,r7,r9 	 08c74800

50. add r9,r8,r10 	 09285000

51. store r10,mem(23) 	 1c175000

52. load r3,mem(16) 	 18101800

53. load r4,mem(17) 	 18112000

54. load r5,mem(18) 	 18122800

55. mul ro,r3,r6 	 88033000

56. mul r1,r4,r7 	 88243800

57. mul r2,r5,r8 	 88454000

58. add r6,r7,r9 	 08c74000

59. add r9,r8,r10 	 09285000

60. store r10,mem(24) 	 1c185000

61. load r0,mem(7) 	 18070000

62. load r1,mem(8) 	 18080800

63. load r2, mem(9) 	 18091000

73

64. load r3,mem(10) 	 180a1800

65. load r4,mem(11) 	 180b2000

66. load r5,mem(12) 	 180c2800

67. mul ro,r3,r6 	 88033000

68. mul r1,r4,r7 	 88243800

69. mul r2,r5,r8 	 88454000

70. add r6,r7,r9 	 08c74800

71. add r9,r8,r10 	 09285000

72. store r10,mem(25) 	 1c195000

73 load r3,mem(13) 	 180d1800

74. load r4,mem(14) 	 180e2000

75. load r5,mem(15) 	 180f2800

76. mul ro,r3,r6 	 88033000

77. mul r1,r4,r7 	 88243800

78. mul r2,r5,r8 	 88454000

79. add r6,r7,r9 	 08c74800

80. add r9,r8,r10 	 09285000

81. store r10,mem(26) 	 1c1a5000

82. load r3,mem(16) 	 18101800

83. load r4,mem(17) 	 18112000

84. load r5,mem(18) 	 18122800

85. mul ro,r3,r6 	 88033000

86. mul r1,r4,r7 	 88243800

74

87. mul r2,r5,r8 	 88454000

88. add r6,r7,r9 	 08c74800

89. add r9,r8,r10 	 09285000

90. store r10,mem(27) 	 1clb5000

Inputs:
matrix a={3 2 1

456
2 1 3}

matrix b={1 2 4
789
3 5 6}

data_ meml ="
	 start of matrix a 	
40400000 ---- memoryt location 1 mem(1)
40000000
3f800000
40800000
40a00000
40c00000
40000000
3200000
40400000 	 mem(9)
	 end of matrix a 	
	 start of matrix b 	
3f800000 	 mem(10)
40e00000
40400000
40000000
41000000
40a00000
40800000
41100000
40c00000 mem(18)
	 end of matrix b 	

results stored from mem(19) to mem(27)

result=41a00000 41d80000 42100000
42640000 429c0000 42c20000
41900000 41d80000 420c0000

LU decomposition on Sequential Machine without co-processor
#include<stdio.h>
#define max 5

main()
{

//float *c=(float*)8001;
int A[max][max]=16,9,3,-2,-1,7,0,1,5,1,2,3,4,5,6,7,8,9,0,2,3,4,5,4,51;
int i,j,k;

int cntdiv =0;
int cntmul =0;
int cntsub =0;

for(k=0;k<max-1;k++)
{

if(A[k] [k]==0)
{

printf("This Matrix's def==0,no result!\n");

}
for(i=k+1;i<max;i++)
{

A[i][k]=A[i][k]/A[k][k];
cntdiv=cntdiv+1;

}

for(i=k+1;i<max;i++)
{

for(j =k+1;j <max ;j ++)
{

A[i][j]=A[i][j]-A[i][k]*A[k][j];
cntsub=cntsub+1;
cntmul=cntmul+1;

}

}

}
printf("no.of operations");

75

printf("%d %d %d \n",cntdiv,cntmul,cntsub);
for(i=0;i<max;i++)
{

for(j =0 ;j <max ;_j ++)
{

//*c++=A[i][j];
printf("%d \n",A[i][j]);

}

}
return 0;
}

76

APPENDIX C

CODE ON HOST MACHINE

The code on host machine is written using Wildstar-II APIs. The following is the code on

the host machine using Wildstar-II APIs.

#define WSII PCI WIN32
#include "wsii.h"
#include <stdio.h>
#include <conio.h>

#define M CLOCK_FREQ 30.0

#define PE_ FILENAME "h:\\rao\\simd9pe_matmul backup\\simdlpe\\pe.x86"

#define RESET_ BASE 0x7FFFF
#define CTRL REG BASE 0x 100
#define BLOCK RAM_BASE 0x200
#define BLOCK_RAM_DWORDS 0x200

DWORD ProgramPE(WSII_BOARD hBoard, WSII_PE_NUM PENum, char *
pFilename);
DWORD ProgramBPE(WSII_BOARD hBoard, WSII_PE_NUM PENum, char *
pFilename);

//#define PE FILENAME
"c:\\annapolis2\\host\\tools\\XC2V6000\\FF1517\wsii_pci_pe.x86"

//#define PE FILENAME
"c:\\prabhu\\-w-vildstar\\mb_ex\\implementation\\configfpga\\wsii_pci_pe.x86"

int main (int argc, char* argv[])

{

int j;
DWORD dBoardNum = 0;
WSII BOARD hBoard;

77

DWORD *pReadBuffer;
DWORD *pWriteBuffer;

DWORD dUserInput;

DWORD error,i;

BOOLEAN bError;

DWORD dPEMask;

WSIIPENUM dPENum = WSIIPE0;

double fClockFreq;

int argi;

for (argi = 1; argi < argc; argi++)
{
if (argv [argi][0] = '-')
{
switch (toupper(argv [argi] [1]))
{

case 'B':
argi++;
if (argi < argc)
{

dBoardNum = strtoul(argv [argi], NULL, 0);
printf("Setting Board Number to %x\n", dBoardNum);

}
else
{
printf(" Warning: Invalid Board Number! \n");
return(0);

}

break;

case 'P':
argi++;
if (argi < argc)
{
dUserInput = strtoul(argv [argi], NULL, 0);

78

if (dUserInput = 0)
{
dPENum = WSII PE0;
printf("Setting PE Number to PE%d\n", dUserInput);

}
else if (dUserInput = 1)
{
dPENum = WSII PE1;
printf("Setting PE Number to PE%d\n", dUserInput);

}
else
{
printf(" Warning: Invalid PE Number PE%d!\n", dUserInput);
return(0);

}
}
else
{
printf(" Warning: Invalid PE Number! \n");
return(0);

}

break;

default:
printf (" Unknown option: \"%s\"\n", argv [argi]);
return(0);

}
}

}	 •

/***

* The first step for all programs must be to open the *
* board(s), using WSII_Open. If successful, this call *
* returns a board handle. This handle must be used in *
* all subsequent API calls that targer this board. *
**/

printf("Opening Board ... ");
hBoard = WSII_Open (dBoardNum, &error, WSII_FLAGS RESERVED);

/* An error in opening the board has occured if WSII_Open *
* returns NULL, or if the error parameter is not	 *
* WSII_SUCCESS. If an error occured, we print the error *

79

80

* and exit.	 *1

if ((hBoard == NULL) II (error!=WSII SUCCESS))
{

printf("WSII API was unable to open board.\nrc=%d: %s\n", error,
WSII GetErrorString(error));

return 0;
}

/***

* The next step is to programm all PE Clocks to the *
* desired frequencies for the test. Clocks should be *
* set BEFORE the PE is programmed so that they are stable*
* when the PE comes out of reset. This allows any DCMs *
* in the PE to lock on startup.
***/

printf("Setting M Clock to %f. \n", M_CLOCK_FREQ);

fClockFreq = WSII_SetClockFrequency (hBoard, WSII_CLK_GLOBAL_M,
M CLOCK FREQ);
printf ("M Clock Set to %fin", fClockFreq);

printf("Programming PE with %s ", PE_FILENAME);

if (!ProgramPE(hBoard, dPENum, PE_FILENAME)) return 0;
else printf("DONE\n");

/***

* Initialize Variables :
* This example uses two buffers to communicate with the PE, *
* a read buffer and a write buffer. The write buffer is *
* used to store data written to the PE, and the read buffer *
* for data read from the PE. At the end of the example *
* these buffers are compared and the differences printed. *
***/

pReadBuffer = (DWORD*) malloc(BLOCK_RAM_DWORDS*sizeof(DWORD));
pWriteBuffer = (DWORD*) malloc(BLOCK_RAM_DWORDS*sizeof(DWORD));

if (!pReadBuffer !pWriteBuffer)
{

printf("ERROR Allocating Buffers\n");
return 0;

}

srand(time(NULL));

81

for (i = 0; i< BLOCK RAM DWORDS;i++)
{

/***

* Clear the read buffer and init the write buffer with *
* a random data pattern.
***/

// pReadBuffer[i] = 0;
pWriteBuffer[i] = rand() I (rand() << 14) I (rand() << 28);

}

printf("\nResetting PE0	 “);

if (dPENum WSII PE0) dPEMask = WSII MASK PE0;
else if (dPENum WSII PE1) dPEMask = WSII MASK PE1;

WSII_PeReset(hBoard, dPEMask, WSII RESET PULSE);
if (WSII_GetLastError (hBoard) != WSII SUCCESS)
{

printf("Error %d Resetting Board\n", WSII_GetLastError (hBoard));
return 0;

}

printf("DONE\n");

fora =0;j <100000000;j ++)

pfintf("\n\n\n**
******\n”

"* This Example tests the LAD and LEDs on the WILDSTARII(tm) board. *\n"

n**\ n\n

" STEP 1 Test the LAD by Writing and Reading a Block RAM\n");

/***

* In this PE Image there is a block RAM mapped to LAD addresses *
* 0x200 to 0x400. Here we read and write to the Block RAM to *
* test the LAD bus.	 *
***/

// WSII WriteReg_32(hBoard, dPENum, BLOCK_RAM BASE,
BLOCK RAM DWORDS, pWriteBuffer);

if (WSII_GetLastError (hBoard) != WSII SUCCESS)
{

printf("Error %d Writing to Board\n", WSII_GetLastError (hBoard));
return 0;

}

//wait until SIMD instructions have been finished
printf("press any key when SIMD finished all the instructions\n");
getchar();
WSII ReadReg_32(hBoard, dPENum, BLOCK RAM_BASE,

BLOCK RAM DWORDS, pReadBuffer);
if (WSII_GetLastError (hBoard) != WSII_SUCCESS)
{

printf("Error %d Writing to Board\n", WSII_GetLastError (hBoard));
return 0;

}

bError = FALSE;
for (i=0; i< BLOCK_RAM_DWORDS; i++)
{
// if (pReadBuffer[i] != pWriteBuffer[i])
// {

printf(" BLOCK RAM value at offset %d. Found 0x%08x \n", i, pReadBuffer[i]);
// bError = TRUE;
// }
}

if (!bError) printf(" Block RAM LAD test SUCCESSFUL\n\n");

printf(" STEP2: Test the LEDs\n\n");

printf("Press Any Key to Turn Off all LEDs\n");
getch();
pWriteBuffer[0] = 0x0;

WSII WriteReg_32(hBoard, dPENum, CTRL REG BASE, 1, pWriteBuffer);
if (WSII_GetLastError (hBoard) != WSII_SUCCESS)
{

printf("Error %d Writing to Board\n", WSII_GetLastError (hBoard));
return 0;

}

printf("Press Any Key to Turn On the GREEN LED\n");
getch();
pWriteBuffer[0] = 0x1;

WSII WriteReg_32(hBoard, dPENum, CTRL REG BASE, 1, pWriteBuffer);
if (WSII_GetLastError (hBoard) != WSII_SUCCESS)

82

{

printf("Error %d Writing to Board\n", WSII_GetLastError (hBoard));
return 0;

}

printf("Press Any Key to Turn On the YELLOW LED\n");
getchO;
pWriteBuffer[0] = 0x2;

WSII_WriteReg_32(hBoard, dPENum, CTRL REG BASE, 1, pWriteBuffer);
if (WSII_GetLastError (hBoard) != WSII_SUCCES S)
{

printf("Error %d Writing to Board\n", WSII_GetLastError (hBoard));
return 0;

}

printf("Press Any Key to Turn On the RED LED\n");
getch();
pWriteBuffer[0] = 0x4;

WSII_WriteReg_32(hBoard, dPENum, CTRL REG BASE, 1, pWriteBuffer);
if (WSII_GetLastError (hBoard) != WSII_SUCCESS)
{

printf("Error %d Writing to Board\n", WSII_GetLastError (hBoard));
return 0;

}

printf("Press Any Key to Turn On ALL LEDs\n");
getch();
pWriteBuffer[0] = 0x7;

WSII_WriteReg_32(hBoard, dPENum, CTRL REG BASE, 1, pWriteBuffer);
if (WSII_GetLastError (hBoard) != WSII_SUCCESS)

{

printf("Error %d Writing to Board\n", WSII_GetLastError (hBoard));
return 0;

}

printf("Press Any Key to Turn off ALL LEDs\n");
getch();
pWriteBuffer[0] = 0x0;

WSII_WriteReg_32(hBoard, dPENum, CTRL_REG_BASE, 1, pWriteBuffer);

83

if (WSII_GetLastError (hBoard) != WSII_SUCCESS)
{

printf("Error %d Writing to Board\n", WSII_GetLastError (hBoard));
return 0;

}

printf("Press Any Key to Exit\n");
getch();
WSII_PeDeprogram(hBoard, dPENum);

return 0;
}

DWORD ProgramPE(WSII_BOARD hBoard, WSII_PE_NUM PENum, char *
pFilename)
{

FILE *f;
long filesize = 0;

DWORD *pBuffer;

f = fopen(pFilename, "rb");
if (!f)
{

printf("Cannot Open File : %s\n", pFilename);
return 0;

}

fseek(f, 0, SEEK_END);
filesize =ftell(f);
fseek(f, 0, SEEK_SET);

pBuffer = (DWORD*) malloc(filesize);

fread(pBuffer, 1,filesize, f);

WSII_PeProgram (hBoard, PENum, pBuffer, filesize>>2);

if (WSII_GetLastError (hBoard) != WSII_SUCCESS)
{

printf("Error %d programming PE\n", WSII_GetLastError (hBoard));
return 0;

}

return 1;}

84

REFERENCES

1. Anjan Bose and Jun Qiang Wu, "Parallel Solution of Large Sparse Matrix Equations
and Parallel Flow," IEEE Transactions on Power Systems, Vol. 10, No. 3,
August 1995.

2. Bozidar Radanovich, "An Overview of Advances in Reconfigurable Computing
Systems," Proceedings, Conference on System Sciences, 1999.

3. Daniel J.Tylaysky and Anjan Bose, "Parallel Processing in Power Systems
Computation," Transactions on Power Systems, Vol. 7, No. 2, May 1992.

4. Reiner.Hartenstein, "A Decade of Reconfigurable Computing: A Visionary
Retrospective," IEEE Proc. Int. Conf. Exhib. Design Automation, Testing
Europe, Munich, Germany, 2001, pp. 135-143.

5. Harris, D.L.; Oberman, S.F.; Horowitz, M.A.; Computer Arithmetic, 1997.
Proceedings, 13 th IEEE symposium on, 6-9 Jul 1997.

6. Scott Hauck, Gaetano Borriello, Car1 Ebeling, "Mesh Routing Topologies for Multi-
FPGA Systems," International Conference on Computer Design, pp. 170-177,
1994.

7. Nabeel. Shirazi, Al. Walters, and Peter. Athanas, "Quantitative Analysis of Floating
Point Arithmetic on FPGA Based Custom Computing Machines," IEEE
Proceedings Symposium, FPGAs Custom Computing Machines, Napa Valley,
California, April 1995, pp. 155-162.

8. Sotirios. G. Ziavras, "Processor Design Based on Dataflow Concurrency,"
Microprocessors and Microsystems, Vol. 27, No. 4, May 2003, pp. 199-220.

9. Xiaofang.Wang and Sotirios.G. Ziavras, "Parallel LU Factorization of Sparse Matrices
on FPGA-Based Configurable Computing Engines," Concurrency and
Computation, 2003.

10. Sotirios.G. Ziavras, "Investigation of Various Mesh Architectures with Broadcast
Buses for High Perform. Bus-Based Arch., R.Lin and S.Olariu, Vol. 9, No. 1,
Jan 1999, pp. 29-54.

11. E.V.Krishnamurthy and S.G. Ziavras, "Complexity of Matrix Partitioning Schemes
for g-inversion on the Connection Machine," Centre for Automation Research
and Computer Science Department, University of Maryland, CAR-TR-400 and
CS-TR-216, Oct.1998.

85

86

12. http://toolbox.xilinx.com/docsanixilinx4/dataidocs/lib/dsoelpr32.html,(retrieved on
April 2003).

13. Microblaze Hardware Reference Guide, version 2.1, March 2003.

14. Widlstar-II Hardware Reference manual, Annapolis Microsystems, revision 2.4,
2002.

	Design of an FPGA-based parallel SIMD machine for power flow analysis
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Design of an FPGA-Based SIMD Machine
	Chapter 3: Implementation and Results
	Chapter 4: Conclusions
	Appendix A: Code on SIMD Machine
	Appendix B: Code on Sequential Machine
	Appendix C: Code on Host Machine
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

